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Abstract: The use of convolutional neural networks (CNNs) in image classification has become the1

standard method of approaching computer vision problems. Here we apply pre-trained networks2

to classify images of non-breaking, plunging and spilling breaking waves. The CNNs are used as3

basic feature extractors and a classifier is then trained on top of these networks. The dynamic nature4

of breaking waves is exploited by using image sequences to gain extra information and improve5

the classification results. We also see improved classification performance by using pre-computed6

image features such as the optical flow between image pairs to create new models in combination7

with infra-red images. The inclusion of the dynamic information improves the classification between8

breaking wave classes. We also provide corrections to the methodology from the article from which9

the data originates to achieve a more accurate assessment of performance.10

Keywords: Breaking waves; Optical flow; Convolutional Neural Networks; Image Classification11

1. Introduction12

Large ocean waves carry huge amounts of energy which can be dissipated through a process13

known as breaking. One example of breaking is when an overturning of the crest causes a collapse and14

a breakdown to turbulence. The breaking process releases large amounts of energy in the dissipation15

of the kinetic energy of the wave through this turbulence. Understanding the breaking process,16

exchange of gases and energy in waves at various scales is of great importance to improving models17

of ocean-atmosphere interactions such as weather and climate models [1,2]. The dissipation of large18

amounts of energy through turbulent breaking is also of interest in coastal engineering applications19

where waves may slam into cliffs or man-made coastal structures.20

The dissipation of energy at small length-scales creates difficulty in modelling breaking waves, as21

they interact with the air above the surface in the breaking process, creating large and small bubbles22

through a turbulent air entrainment [3,4]. Breaking waves being turbulent, it is a complex two-phase23

process at the free surface where by overturning waves generate bubbles and jets of water plunging24

back into the wave create vortices which increase the mixing further. Current numerical methods25

make great simplifications/assumptions about the fluid flow at which point the details in the breaking26

process may be lost [5] and what happens after breaking is largely unresearched as numerical methods27

are unable to simulate the process on large scales.28

Ocean waves are difficult to recreate in the laboratory due to the different salinity, temperature29

and thus density gradients throughout the fluid. The waves are usually generated mechanically and30

do not experience the same breaking or spraying as ocean waves generated by wind. It is desirable31

then to study breaking waves so that it is feasible to measure turbulent quantities and determine32

characteristics of these waves in a real world setting. Examples are the breaking threshold, a criterion33

that distinguishes breaking waves from non-breaking waves and the spreading of breaking through34

the wave.35

To overcome these challenges new methods are being pursued to extract dense or detailed36

information from ocean waves in real time using video data. A large video database of waves allows37
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for a thorough analysis of breaking waves using image processing and modern computer vision38

techniques. The collected image data can also be used in the training of deep learning models for39

classification [6], clustering, segmentation and prediction of wave characteristics [7]. Such models40

can be used in further processing the image data collected to automatically detect, track and estimate41

quantitative wave properties.42

We have applied image processing algorithms to breaking wave image data to probe what extra43

information can be gained from this approach of analysing fluid flows and in particular breaking44

waves. The main technique used on the dataset is optical flow [8,9], which calculates the displacement45

of pixels between a pair of images. One of the difficulties is the discontinuous nature of breaking waves46

and the fact that these algorithms have been developed to deal with typically more rigid objects and47

motions. Thus it may prove necessary to use images from video at high resolution and high frequency48

to be able to resolve the details in the motions.49

2. Related Works50

Advances in the field of machine learning (ML) and increased processing power of computers51

over the last two decades have seen ML incorporated into almost every quantitative research field.52

Fluid dynamics and oceanography have been no different, with applications from the simulation of53

fluids [10] to flow optimisation and control [11]. Image processing and computer vision techniques54

have also shown great promise in oceanographic research where both classical algorithms and deep55

learning approaches have been implemented to process large amounts of image data to produce three56

dimensional depth maps [12–14], wave tracking [15], classification and segmentation of waves [16,17]57

and wave height estimations [18,19].58

Infra-red provides somewhat of an advantage for the study of breaking waves when using images59

due to small temperature fluctuations which are recorded by the infrared camera at the breaking60

region [20]. These temperature fluctuations manifest as streaky patterns on the back of plunging61

waves [21] and can be detected with the feature extraction in modern convolutional neural networks.62

The infra-red cameras are also less sensitive to the reflection of light from the sun on the sea surface than63

traditional visible wavelength cameras. Using infra-red cameras does however come with limitations64

in image resolution and observation distance.65

Optical flow in fluids research has also been used to analyse the motion of fluids in laboratory66

wave tanks [5,22] and to improve the results from Particle Image Velocimetry (PIV) [23,24]. Attempts to67

constrain the variational equations of optical flow with fluid mechanics equations has shown increased68

accuracy in some cases [25–27].69

Video classification algorithms where both raw frames and optical flows are combined to help70

with the classification task have also been explored [28] and shown to give increased performance over71

the same algorithms without the additional optical flow information. Although the cited article uses a72

more complex Long-Short-Term-Memory (LSTM) network architecture, which was not implemented73

for our experiments as we use only two frames compared to a longer video sequence, they explore the74

usefulness of additional optical flow information. However it is noted that optical flow on its own in a75

case of noisy video frames can show degraded classification performance in comparison to just raw76

image frames.77

3. Materials and Methods78

3.1. Data collection79

The data used for this project is from Buscombe and Carini [6] in which they used a multitude80

of popular pre-trained CNNs as basic feature extractors for infra-red (IR) images of breaking waves81

in order to classify them. Details of the data acquisition can be found within the cited paper. The82

dataset consists of 9996 images split among three different wave classes: nonbreaking, plunging and83

spilling waves. The IR images were taken at a resolution of 640 by 480 pixels and are downsampled84
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to a resolution of 299 by 299 for the CNN feature extractions. The dataset is highly imbalanced and85

contains relatively few examples of the plunging breakers: with 9996 total images, 208 are plunge,86

2354 spilling and 7434 non-breaking wave images. Consecutive sample frames from each one of the87

wave classes are shown in Fig. 1.88

As documented in Buscombe and Carini [6], the images were captured using a thermal infra-red89

camera in November of 2016 at a US Army Corps of Engineers Field Research Facility in Duck, North90

Carolina, USA. The camera was angled at 45◦ to the sea surface and mounted on a pier at the research91

facility. The images were sampled continuously at 10 frames per second while a Light Detection and92

Ranging device (LIDAR) measured the sea surface elevation in the same field of view. The wave93

height, as measured by the LIDAR, varied between 0 and 5.94 meters during the 10.5 hour acquisition94

period. The sequences vary in length from 7 frames to over 700 frames in a sequence (shorter sequences95

typically belonging to the plunge and spill breaking waves, while nonbreaking sequences are much96

longer). The distribution of pixel intensities was used to determine if the image contained a breaking97

wave. The type of breaking wave detected in these images was then manually classified by examining98

the patterns in front of and behind the breaking region. We made several changes to the dataset after99

finding errors in the manual classification which are described in subsection 3.2. Further details of100

camera and LIDAR specifications are available in the cited paper.101

Our proposal is to achieve better results on the classification task by incorporating some of the102

dynamical information from the waves using the optical flow methods described in the following103

sections. In the original paper, the authors claim to have a high precision and recall on each of the104

classes (after augmentation F1 scores ≈ 92 for all classes) but in a further analysis we found flaws105

with their dataset and model. The metrics used to assess the models were significantly degraded after106

correction of the dataset problems described in subsection 3.2. Thus, we aim to improve upon the107

corrected results by inclusion of the dynamical information.108

Nonbreaking

Spilling

Plunging

Figure 1. Samples of wave dynamics for each of the given classes. The image sequences span a
time-frame of 1.0, 0.4 and 0.4 seconds for the non-breaking, spilling and plunging sequences respectively.
The wave movement is difficult to observe in the non-breaking case. However the breaking waves
(spilling and plunging) show turbulent white-water effects which are picked up well by the infra-red
(IR) camera. These white-water patterns contain distinctive identifying markers for the type of breaking
that occurs. In the spilling case the breaking occurs more slowly and the white-water spreads over the
back face of the wave. To contrast this in the plunging wave there is more structure to the back of the
wave as the breaking happens more suddenly and crashes in front of the wave.
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Nonbreaking

Spilling

Plunging

Figure 2. Samples of calculated optical flows using TV-L1 for each of the given classes. The optical flows
are calculated using the sample IR images in Figure 1 and their respective next frame. The difference
between the non-breaking and breaking classes is clear while the differences between spilling and
plunging classes are more subtle but the extended "white water" region can be seen in the spilling
optical flows.

3.2. Dataset Corrections109

During the investigation several issues were identified with the dataset that was originally110

proposed to be used. Firstly in going through the original authors code, it was noted that the dataset111

splitting into training and testing sets was randomised. As the data was sequential (video images at 10112

frames per second) it essentially meant that the authors’ model was training on images that were one113

tenth of a second away from the testing images and in most cases the model saw images either side of114

the test image. Thus to sort the dataset correctly we separated the images into discrete waves based on115

the filename (i.e. group images xxx110 xxx120 and xxx130 into wave 1 for the class they belong to).116

The grouping of the images into waves revealed another problem with the dataset: misclassified117

images. The grouping method described above revealed some waves in the classes contained only118

one or two images, but a file search for the images that would surround these revealed images of the119

same wave put into a different class (e.g. found spill/xx30, spill/xx50 but plunge/xx40). This is a clear120

mislabelling of the dataset as the waves do not change class and back again within 0.2 seconds. Each121

of these corrections was manually verified.122

Once the data was sorted correctly, we tested the original authors best model and found it was123

significantly less accurate and the original logistic regression model did not perform well even on124

training data. One of the proposed reasons for this under-performance is the large class imbalance125

in the dataset and the fact that there are very few samples of the plunging breaking waves. Thus,126

the model is unable to find a distinguishing feature between the spilling waves and the plunging127

waves before over-fitting to the training set. It is cautioned to not randomly split sequential data like128

this which is highly dependent on the previous observation when splitting into training and testing129

datasets. This will give false results in regard to the models ability to generalise as the testing set130

contains near identical examples to the training set.131

3.3. Optical flow132

Motion analysis in image processing can be reduced to three main groups of problems: motion133

detection, object tracking and location and the derivation of 3D properties from 2D projections acquired134

at different points in time [29]. In this section we are concerned with tracking the motions of individual135

pixels in a pair of images. In this way we calculate the displacement of pixels from the first image to136

the second; this is optical flow.137
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The optical flow between a pair of successive images is the apparent motion of the objects138

appearing in the two frames [29]. Thus the optical flow is a vector field of the displacements of pixels139

and provides a mapping from the first image to the second image. Errors in this mapping can be140

caused by the following features: occlusion where the movement of objects blocks other objects in141

the second image, a lack of texture (high gradients in the pixel intensity) on the objects, or sudden142

brightness shifts such that tracking the motion becomes difficult.143

A variety of techniques for calculating the optical flow field exist including classical methods144

and methods using convolutional neural networks (CNN) for the estimation of optical flow. Classical145

methods include variational techniques like the Horn-Schunck optical flow [8] which minimises an146

energy functional over the images, yielding a dense (for each pixel) vector field of displacements.147

These techniques are based on the assumption that displacements are only one or two pixels in size,148

thus pyramid or multi-scale approaches are implemented which allow the detection of larger motions.149

The multi-scale method downsamples the image to calculate a rough optical flow to be used as a base150

approximation for each increase in resolution back to the original resolution. This is often referred to151

as a coarse-to-fine optical flow estimation.152

The CNN based methods are instead trained to estimate the motion fields in a more “black box”153

manner by providing many example images and their ground truth optical flows. A CNN model then154

learns to detect the textures within the images, and the change in location of these textures between155

the images thus producing an optical flow field. The ability to generalise is then dependent on the156

variety of textures and objects in motion in the images used for training the CNN. Datasets used for157

this training create an artificial optical flow by overlaying objects in the images and moving them from158

one frame to the next, in this way they know the “ground truth” optical flow.159

We have selected two optical flow (OF) methods for use in this study; a classical method TVL1 [9,160

30–32] and a CNN based method SPyNet [33,34]. The details of the OF algorithms can be found in the161

respective articles along with working implementations. Fig. 2 shows the optical flow (computed with162

TVL1) corresponding to the sample frames shown in Fig. 1.163

3.4. Training and classification metrics164

For the feature extraction, we use different pre-trained image classification models from the165

Tensorflow Python library. The top (fully connected) layer of these networks was removed so that a166

vector of features was outputted. This feature vector is then saved for each image or image pair. For167

comparison with the original paper [6], we then trained the same logistic regression (LR) model on168

these feature vectors. A new fully connected layer was found to give no significant improvement over169

the LR model although more samples of the plunging class or more aggressive data augmentation170

could boost the performance of the neural network but this was not pursued here. The images were171

downsampled to the appropriate size for each respective CNN architecture (based on what they had172

originally been trained on) for optimal feature extraction. We trained several different models of which173

some take two or three images as the inputs. For the multi-image inputs we process each image with174

the CNN and combine the feature vectors together before training the classification model. Stacking175

the inputs on top of each other and processing these with the CNNs was found to produce inferior176

results. This result is likely because the channels in these pre-trained CNNs corresponded to the red,177

green and blue features but extracting all those channel features on each grayscale image gave more178

useful information. We trained an IR, OF, IR+IR and IR+OF models, where IR stands for infra-red179

and OF stands for optical flow image inputs. The addition represents the concatenation of the feature180

vectors with IR+IR being two consecutive infra-red images.181

The metrics used for the evaluation of the classification predictions are described below, with182

the inclusion of two more metrics than in the Buscombe and Carini paper. The models were assessed183

using five different metrics on the classes: Precision (Pr), Recall (Re), F1 score (F1), Informedness [35]184

(In) and the Brier score [36] (Bs) and each is defined in terms of the true and false positive (TP, FP) and185

true and false negatives (TN, FN) as follows:186
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Pr =
TP

TP + FP
, Re =

TP
TP + FN

, F1 = 2
Pr × Re
Pr + Re

In =
TP

TP + FN
+

TN
TN + FP

− 1, Bs =
1
N

N

∑
t

R

∑
i
(pti − lti)2 ,

where in the Bs the sums are over all N samples and all R classes, pti represents the predicted187

probability for sample t and class i and lti is then a vector with a 1 in the position indicating the true188

label. It thus measures the mean square difference between the predicted probability and the actual189

labels and thus a lower Bs is better. The informedness score estimates the probability of making an190

“informed decision": a score of 1 indicates a perfect classifier while a score of 0 indicates random191

decisions.192

4. Results193

4.1. Classification194

After fixing the problems with the original dataset (see subsection 3.2), we use the original195

authors methods as a new baseline measure for our results. The best model from the [6] paper is a196

logistic regression model fit to features extracted by a pre-trained MobileNet_V2 [37]. We found the197

MobileNet_V2 CNN to perform much worse than using the features extracted from the Xception [38]198

pre-trained CNN. All model results below are from features extracted by the Xception network and a199

logistic regression fit.200

Table 1. Metrics for tested models. For each metric (column) the best score for each class is indicated
by the bold text. Higher scores are better for all metrics except for the Brier score where a score
of 0 indicates perfect predictions and confidence. Results for models using augmented data are in
parenthesis.

Model Class Precision Recall F1 score Informedness Brier score
IR Non-breaking 0.97 (0.96) 0.94 (0.93) 0.95 (0.95) 0.87 0.09

Plunge 0.33 (0.30) 0.42 (0.47) 0.37 (0.37) 0.41 0.97
Spill 0.80 (0.79) 0.85 (0.83) 0.82 (0.81) 0.79 0.22

TV-L1 Non-breaking 0.98 (0.98) 0.96 (0.96) 0.97 (0.97) 0.90 0.06
Plunge 0.32 (0.30) 0.59 (0.57) 0.42 (0.39) 0.58 0.70

Spill 0.85 (0.85) 0.86 (0.85) 0.85 (0.85) 0.81 0.22
SPyNet Non-breaking 0.97 (0.97) 0.96 (0.96) 0.96 (0.96) 0.87 0.06

Plunge 0.15 (0.14) 0.46 (0.46) 0.22 (0.22) 0.43 0.92
Spill 0.84 (0.84) 0.76 (0.76) 0.80 (0.80) 0.72 0.33

IR + IR Non-breaking 0.98 (0.97) 0.96 (0.95) 0.97 (0.96) 0.89 0.08
Plunge 0.39 (0.34) 0.43 (0.49) 0.41 (0.40) 0.42 1.01

Spill 0.84 (0.82) 0.89 (0.87) 0.86 (0.84) 0.83 0.24
IR + TV-L1 Non-breaking 0.98 (0.98) 0.97 (0.97) 0.98 (0.98) 0.90 0.05

Plunge 0.43 (0.36) 0.41 (0.46) 0.42 (0.40) 0.48 0.91
Spill 0.88 (0.88) 0.92 (0.91) 0.90 (0.89) 0.86 0.12

From Table 1 we can see that the optical flow of the images can be used in the classification task201

and it provides results comparable to using a single image. However the best results came from using202

the two IR images or a combination of the IR images and the optical flow. The extra information from203

the use of two images does not affect the nonbreaking classifications significantly, but it does have204

a positive impact on the spill and plunge classifications. In our experiments we also observed that205

the image augmentation implemented (rotation, zoom, crop) does not help when using the optical206

flow and in some cases it decreases performance. The SPyNet model shows difficulty in extracting the207

features to differentiate the two breaking types (plunge and spill). The CNN’s output for calculating208

optical flow was seen to produce inaccurate and overly smooth flows on these images and thus209
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performs slightly worse than the TV-L1 model. The probabilities of each class obtained from the210

models are visualised in Fig. 4.211

We also tabulate the errors from each of these metrics to make it more clear where exactly the best212

improvements in our models are. In Table 2 we give these improvements as percentages relative to the213

baseline IR model. It is clear that most models have performed significantly better in most metrics214

when compared to the single IR input model. The IR+TV-L1 model reports the majority of largest215

improvements (indicted by the bold text).216

Table 2. The table below gives first the Infrared errors as a reference in section (a). The rest of the rows
within section (b) contain the relative % improvement over the simple IR input model. Each error
(except for Brier score) is calculated as 1− score, where the score is the value reported in Table 1. For the
Brier score, since a lower score is best, we leave it as is. The percentages reported are the improvements
in respective errors for the models, so a high positive % indicates a large improvement in the metric
(reduced error). The best improvements are once again highlighted in bold text.

(a)
Errors

Model Class Precision Recall F1 score Informedness Brier score
IR Non-breaking 0.03 0.06 0.05 0.13 0.09

Plunge 0.77 0.58 0.63 0.59 0.97
Spill 0.20 0.15 0.18 0.21 0.22

(b)
Relative Improvements over IR Model Errors

TV-L1 Non-breaking +33.33% +33.33% +40.0% +23.08% +33.33%
Plunge -1.49% +29.31% +7.94% +28.81% +27.84%

Spill +25.0% +6.67% +16.67% +9.52% 0.0%
SPyNet Non-breaking 0.0% +33.33% +20.0% 0.0% 33.33%

Plunge -26.87% +6.9% -23.81% +3.39% +5.15%
Spill +20.0% -60.0% -11.11% -33.33% -50.00%

IR+IR Non-breaking +33.33% +33.33% +40.0% +15.38% +11.11%
Plunge +8.96% +1.72% +6.35% +1.69% -4.12%

Spill +20.0% +26.67% +22.22% +19.05% -9.09%
IR+TV-L1 Non-breaking +33.33% +50.0% +60.0% +23.08% +44.44%

Plunge +14.93% -1.72% +7.94% +11.86% +6.19%
Spill +40.0% +46.67% +44.44% +33.33% +45.45%

4.2. Misclassifications217

In this section we present the analysis of some misclassifications and confusion matrices in Fig. 3 of218

the models on testing (unseen) data both with and without augmentation applied. This allows for quick219

visual identification of misclassifications by looking at the off-diagonal terms in the confusion matrices.220

For the confusion matrices, each row corresponds to a true label and each column corresponds to221

the predicted label. Higher performance corresponds to a darker main diagonal in the matrix. We222

observe that all models perform well on the non-breaking waves, with IR and the SPyNet OF having223

the largest errors on spilling waves (approximately 19 and 10 percent of spilling waves classified as224

non-breaking respectively). The TV-L1 OF and the combined IR+OF (TV-L1) are the best performing225

models at separating plunging waves from spilling waves. The majority of misclassifications occur as226

a wave is just entering or exiting the frame when it is reasonable to be incorrect.227

5. Discussion228

We have explored the use of optical flow features for the classification of breaking wave images.229

This was tested on an image classification task to gain improved classification of sequences of IR230

images of breaking waves compared to only using a single IR image. After an initial exploration231

of the original dataset, the original analysis was found to be flawed. A large class imbalance exists,232
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IR IR with augmentation

OF (TV-L1) OF (TV-L1) with augmentation

OF (SPyNet) OF (SPyNet) with augmentation

IR + IR IR + IR with augmentation

IR + OF (TV-L1) IR + OF (TV-L1) with augmentation

Figure 3. Confusion matrices for each of the tested models. The true class is in each row and the
predicted class in each column.
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Figure 4. The evolution of probabilities for each class from some of the tested models. The horizontal axis corresponds to the image in the sequences. We see that the
gain from the optical flow method in the classification of plunge images comes at the cost of uncertainty in the spill cases. A Brier score of 0 indicates a correct
classification and total confidence in the classification i.e. the probability of that class is 1. Sudden spikes or changes in predictions are mostly from start and ending
of image sequences where waves are only starting to enter the frame or almost entirely out of frame.
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which made it difficult to train and test a robust classifier, and initial results were compromised. After233

correction of the data, comparisons were drawn between the baseline IR model which was claimed234

as best by the original authors and several other models which took advantage of the dynamical235

nature of the waves by performing a feature extraction on sequential images. It was found that a236

novel combination of the IR and optical flow information could produce slightly better results and237

the inclusion of augmented images provides additional gains to the IR models, but acts to somewhat238

deteriorate the performance of the optical flow models.239

Our experiments have focused on the inclusion of temporal features in the data used to train the240

models. This gives a significant reduction in errors when compared to the baseline, single infra-red241

image input, model. In contrast to Buscombe and Carini [6], who have quantified the performance of242

different pre-trained network feature extractions, our focus was thus on the data input to the networks.243

As opposed to the results in table 1 of [6], we detected and removed a selection bias within the244

data split caused by the high correlation of the training and testing data when randomly selected. Our245

results give a baseline which corresponds to Buscombe and Carini’s results for the Xception network246

when the selection bias is removed and all the models, with the exception of the SPyNet based optical247

flow, have shown significant improvements over the baseline model. Further our results show that our248

application of optical flow as input to a pre-trained CNN has reduced errors on the classification task249

but similar to Ng et al. [28] noisy optical flows lead to a deteriorated performance as with the SPyNet250

results.251

An analysis of the misclassified cases of the models shows that most misclassifications occur at the252

beginning or end of the image sequences where the type of wave is unclear. The gains on identifying253

both the plunging and spilling waves from using the optical flow can be achieved also by using the254

two IR images and applying the feature extraction on these. Further improvements may be possible255

with more regularisation or more aggressive data augmentation, in combination with more complex256

models, for better performance on the plunging samples. The dataset was deemed insufficient to257

train more complex neural networks or fine-tuning without over-fitting and adapting of the SPyNet258

optical flow network was abandoned after it failed to produce accurate optical flows on the images.259

The inclusion of Optical Flow into the features for the classification task improved the results on the260

plunging wave category, and a combination of optical flow and IR images gave the best results on the261

spilling waves.262

In future work, a higher quality dataset in terms of clearer and higher resolution images, but263

also in terms of a better balance of the breaking wave classes, will make the classification task and264

training of more complex models easier. Distinctive patterns in wave breaking can be identified but265

capturing the temporal evolution of wave properties through a sequence of images remains a challenge.266

Investigation of how breaking evolves over time and an understanding of how it affects the free surface267

is crucial to provide accurate parameterizations for numerical forecasting systems.268

6. Conclusions269

The introduction of optical flow to incorporate temporal features leads to significant increase in a270

models ability to distinguish between plunging and spilling waves. The novel application of optical271

flow (TV-L1 and SPyNet) and sequential images to breaking wave to infer temporal features yields272

significant performance gains as evident from both Table 2 and in Fig. 3 where errors are reduced273

by up to 60%. Moreover, our use of sequential images has shown that improved performance was274

achieved in nearly every metric for each model tested versus a baseline result obtained using only a275

single infra-red image. The addition of image augmentation to boost the number of image samples276

available for training of models leads to further increases with models that have raw infra-red images277

as inputs (IR, IR+IR and IR+OF models), whereas degradation of performance is seen where only278

optical flow is the input (TV-L1 and SPyNet models). This observation is inline with those of Ng et279

al. [39] where they conclude the decrease is because of insufficient detail in the optical flow images280

which is exacerbated by cropping or augmentation.281
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