Not so local: the population genetics of convergent adaptation in maize and teosinte

Silas Tittes, Anne Lorant, Sean Mcginty, James Holland, Jose de Jesus
Sánchez-González, Arun Seetharam, Maud Tenaillon, Jeffrey Ross-Ibarra

- To cite this version:

Silas Tittes, Anne Lorant, Sean Mcginty, James Holland, Jose de Jesus Sánchez-González, et al.. Not so local: the population genetics of convergent adaptation in maize and teosinte. 2023. hal-04291074

HAL Id: hal-04291074

https://hal.science/hal-04291074

Preprint submitted on 17 Nov 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Silas Tittes ${ }^{\text {a,b,c,1 }}$, Anne Lorant ${ }^{\text {d }}$, Sean McGinty ${ }^{\mathrm{e}}$, James B. Holland ${ }^{\mathrm{f}}$, Jose de Jesus Sánchez-González ${ }^{\mathrm{g}}$, Arun Seetharam ${ }^{\mathrm{h}}$, Maud Tenaillon ${ }^{\mathrm{i}}$ and Jeffrey Ross-Ibarra ${ }^{\text {b,c, }, \mathrm{j}, 1}$
${ }^{a}$ Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA, ${ }^{\text {b }}$ Dept. of Evolution and Ecology, University of California, Davis, CA 95616, USA, ${ }^{\text {c }}$ Center for Population Biology, University of California, Davis, CA 95616, USA, ${ }^{\text {d Department of Plant Sciences, University of California, Davis, CA 95616, }}$ USA, ${ }^{e}$ Dept. of Integrative Genetics and Genomics, University of California, Davis, CA 95616, USA, ${ }^{\text {f }}$ United States Department of Agriculture - Agriculture Research Service, Raleigh, NC 27695 USA and Department of Crop and Soil Sciences, North Carolina State University, ${ }^{\text {g }}$ Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco CP45110, México, h'Department of Ecology, Evolution, and Organismal Biology; Genome Informatics Facility, lowa State University, Ames, IA 50011, USA, ${ }^{\text {i Génétique Quantitative et Evolution - Le Moulon, Université Paris-Saclay, INRAE, }}$ CNRS, AgroParisTech, 91190, Gif-sur-Yvette, France, ${ }^{\text {j }}$ Genome Center, University of California, Davis, CA 95616, USA

Abstract

What is the genetic architecture of local adaptation and what is the geographic scale over which it operates? We investigated patterns of local and convergent adaptation in five sympatric population pairs of traditionally cultivated maize and its wild relative teosinte (Zea mays subsp. parviglumis). We found that signatures of local adaptation based on the inference of adaptive fixations and selective sweeps are frequently exclusive to individual populations, more so in teosinte compared to maize. However, for both maize and teosinte, selective sweeps are also frequently shared by several populations, and often between subspecies. We were further able to infer that selective sweeps were shared among populations most often via migration, though sharing via standing variation was also common. Our analyses suggest that teosinte has been a continued source of beneficial alleles for maize, even after domestication, and that maize populations have facilitated adaptation in teosinte by moving beneficial alleles across the landscape. Taken together, our results suggest local adaptation in maize and teosinte has an intermediate geographic scale, one that is larger than individual populations, but smaller than the species range.

KEYWORDS Local Adaptation, Convergent Adaptation, Maize, Teosinte

Introduction

As populations diverge and occupy new regions, they become locally adapted to the novel ecological conditions that they encounter. Decades of empirical work have carefully documented evidence for local adaptation, including the use of common garden and reciprocal transplant studies demonstrating that populations express higher fitness in their home environment (Clausen et al. 1948) as well as quantitative genetic approaches that show selection has acted on individual traits to make organisms better suited to their ecological conditions (Savolainen et al. 2013). It is clear from these studies that local adaptation is pervasive in natural populations.

One important but understudied aspect of local adaptation is its geographic scale. Empirical studies have documented adaptation at multiple scales, from microgeographic differentiation among mesic and xeric habitats along a single hillside (Hamrick and Allard 1972) to regional (Lowry et al. 2008; Whitehead et al. 2011) and even global scales (Colosimo et al. 2005). A key factor determining the geographic scale of local adaptation is the distribution of the biotic and abiotic challenges to which organisms are adapting, as these features place limits on the

[^0]locations over which an allele remains beneficial. Environmental features overlap with each other to varying degrees (Tuanmu and Jetz 2015). The degree of overlap between environmental features may be important if mutations are pleiotropic, as an allele may not be beneficial when integrating its effect over multiple selective pressures (Chevin et al. 2010).

The geographic scale of local adaptation depends, too, on population structure. Gossmann et al. (2010) showed that the estimates of the proportion of new mutations fixed by natural selection across a number of plant species tended to overlap with zero, suggesting there is little evidence for adaptation at non-synonymous sites (though see Williamson et al. 2014; Geist et al. 2019 for more recent non-zero estimates of α in two plant taxa). One potential explanation raised by the authors for this surprising finding was that natural populations are often structured, such that very few adaptations would be expected to be common over the entire range of the species' distribution. Indeed, even when selective pressures are shared across populations, structure can hinder a species' adaptation by limiting the spread of beneficial alleles across its range (Bourne et al. 2014). Consistent with this, Fournier-Level et al. (2011) conducted a continent-scale survey across strongly structured populations of Arabidopsis thaliana, finding that alleles which increase fitness tended to occur over a restricted geographic scale. But it remains unclear if the scales identified in Arabidopsis are common to lo-
cal adaptation across the entire genome, and how similar the ${ }_{110}$ general patterns are across taxa.

The majority of local adaptation studies are motivated by conspicuous differences in the phenotypes or environments of two or more populations. As such, many instances of local adap- ${ }^{14}$ tation that are occurring, as well as the underlying beneficial mutations being selected, may go overlooked. This hinders our ability to draw more general conclusions about the overall frequency and impact of local adaptation on a given population's evolutionary history.

Using population genetic approaches, we can compare the observed distribution of beneficial alleles across multiple populations to get a more holistic description of the history of selection. The patterns of selective sweeps and adaptive fixations that are exclusive to or shared among multiple populations can be used to measure a beneficial allele's geographic extent, which is influenced by the factors outlined above. If we infer multiple structured populations have fixed the same beneficial allele, this suggests that pleiotropy has not disrupted the adaptive value of the allele across environments or that the populations share a sufficiently similar set of selective pressures. Assessment of the relative frequency and geographic extent of unique and shared beneficial alleles thus allows us to quantify the scale of local adaptation. Additionally, when multiple populations do share an adaptive allele, we can infer the mode by which sharing occurred (Lee and Coop 2017), providing further insights about the environmental and genetic context of each adaptation as well as the processes underlying allele sharing among populations.

Motivated to improve our understanding about the genetic basis of local adaptation and its geographic scale, we set out to use population genetic approaches to understand patterns of adaptation via selective sweeps in multiple discrete populations of domesticated maize Zea mays ssp. mays and its wild relative teosinte Zea mays ssp. parviglumis growing across their native range in Mexico. Zea mays is an annual grass, native to southern Mexico. Maize was domesticated $\approx 9,000$ years ago (Piperno et al. 2009) from its common ancestor with the extant annual grass teosinte, but traditional open-pollinated populations maintain an extremely large population size and a surprising amount of diversity (Bellon et al. 2018). Maize is also the world's most productive crop (Ranum et al. 2014), and an important model system for genetics (Nannas and Dawe 2015).

Previous work in both maize and teosinte has demonstrated clear population structure at both regional (Pyhäjärvi et al. 2013) and fine (Van Heerwaarden et al. 2010; Hufford et al. 2011) scales, and population genetic and common garden studies in both subspecies have shown clear signatures of populations being adapted to ecological conditions across their native range (Janzen et al. 2021). In maize this includes local adaptation to high elevation (Fustier et al. 2019; Gates et al. 2019), phosphorous (Rodriguez-Zapata et al. 2021), temperature (Butler and Huybers 2013), and day length (Swarts et al. 2017). Similarly, studies of teosinte have documented local adaptation based on features such as the differential patterns of microbial community recruitment (O'Brien et al. 2019), elevation (Fustier et al. 2019, 2017), and temperature and phosphorous (Aguirre-Liguori et al. 2019).

Studying local adaptation of maize and teosinte across the same geographic locations presents opportunities to disentangle multiple processes that interact with adaptation. For example, the effect of the domestication process in maize populations and their ongoing interaction and dependence on humans has created changes in the timing and types of selection imposed across
all populations, as well as changes in demography (Wright et al. 2005). Based on population structure and differences in the abiotic environment among populations, we anticipated that local adaptation would have a small geographic scale. We predicted that sweeps would be exclusive to individual populations, and that adaptations shared between subspecies would be limited to sympatric pairs of populations growing in similar environments and with ample opportunity for genetic exchange. Because of domestication and the ongoing migration facilitated by humans, we expected that maize would show more shared adaptations, leading to a relatively larger geographic scale of local adaptation. Contrary to our predictions, our results suggest adaptations are often shared across two or more populations, and commonly between maize and teosinte. We also found that migration and standing variation have played an important role as sources of beneficial alleles, including many that are shared across the two subspecies.

Results

We sampled teosinte (Zea mays subsp. parviglumis) individuals from six locations across its native range, along with a nearby (sympatric) population of traditionally cultivated openpollinated maize (commonly referred to as landraces) at five of these locations (Figure 1C). We sampled ten individuals from each population for each subspecies, with the exception of the Palmar Chico populations, where we took advantage of 55 and 50 individuals previously sampled for maize and teosinte, respectively (Table S1, Supplement I, Chen et al. 2020). In most cases, results for both Palmar Chico populations were downsampled to ten randomly selected individuals to facilitate comparisons to the other populations. We did, however, use a second random sample of the Palmar Chico populations to estimate the precision of our inference of selective sweeps (see below in Results and Methods).

Rangewide samples for each subspecies were constructed by randomly selecting one individual from each population. All 195 individuals were sequenced at 20 to $25 x$ coverage and aligned to version 5 of the Zea mays B73 reference genome (Hufford et al. 2021; Portwood et al. 2019). Analyses were based on genotype likelihoods (Korneliussen et al. 2014) except in cases where called genotypes were required (see Methods).

Subspecies and populations are genetically distinct despite evidence of gene flow.

To assess the relationships among our sampled populations, we constructed a population-level phylogeny using Treemix (Pickrell and Pritchard 2012 v.1.13). As anticipated from previous work (Buckler and Holtsford 1996; Hufford et al. 2012), we found clear divergence between two clades composed of maize and teosinte populations, though the relationship among geographic locations differed between the subspecies (Figure 1B).

Within subspecies, populations were genetically distinct from one another. Using NGSadmix (Skotte et al. 2013), there was little evidence of admixture between populations of the same subspecies; only two of the sampled individuals revealed evidence of mixed ancestry (Figure 1A and 1D).

Despite the clear phylogenetic separation between the two subspecies, there is evidence for gene flow between maize and teosinte populations. We conducted $f 4$ tests using Treemix (Pickrell and Pritchard 2012), and found that all populations showed some evidence of gene flow with various populations of the other subspecies, as measured by the high absolute Z-Scores of
the f4 statistic. Overall, we found little evidence of increased gene flow between sympatric pairs (Figure 1E), but Z-Scores were sensitive to the specific combinations of non-focal populations included in each test (Table S2). Specifically, we found that elevated f 4 tests almost always included the maize population from Crucero Lagunitas ($p<2 \times 10^{-10}$), which was true whether or not the f 4 test included its sympatric teosinte.

Figure 1 I The geographic distribution, population structure, and gene flow of maize and teosinte populations. (A and D) Admixture proportions among populations within subspecies. The dominant cluster in each population is colored by sampling location. (B) The unrooted tree of maize and teosinte populations. (C) Geographic sampling locations for the studied maize and teosinte populations. (E) F4 tests to quantify evidence of gene flow between the subspecies for allopatric and sympatric population pairs. Each point in (E) reports the absolute Z-Score for an f 4 test, where a given focal population ${ }^{185}$ was partnered with another population of the same subspecies as a sister node, and two other populations from the other sub- ${ }^{187}$ species as a sister clade (see Methods for further details). Black ${ }^{188}$ points show $f 4$ tests that included maize from Crucero Lagunitas, otherwise points are colored by focal population. The dotted line corresponds to our chosen significance threshold ($p=0.001$).

Amatlán de	Crucero	El	Los	Palmar		
Cañas	Lagunitas	Rodeo	Guajes	Chico	rangewide	San Lorenzo

Figure 2 I Inbreeding, diversity, and demography. The distribution of $\pi(\mathrm{A})$ and Tajima's $\mathrm{D}(\mathrm{B})$ calculated in 100 Kb windows for maize and teosinte populations. Dashed lines show the median values for the two subspecies. Filled white points show the median values of each statistic generated from coalescent simulations under the demographic history inferred for each population. Colors for each population are as in Figure 1 and are shown at the bottom of the figure. (C) The inferred demography for each population. (D) The quantile of observed Homozygosity By Descent (HBD) lengths (cM) versus those simulated under each population demography. Dashed lines shows the 1:1 correspondence between the axes. (E) The distribution of inbreeding coefficients in each population. Filled white points are the average values for each population.
with both previous Sanger (Wright et al. 2005) and short-read (Hufford et al. 2012) estimates for both subspecies. Variation in Tajima's D and π was greater among populations of teosinte than maize (Figures 2 A and B, Table S2).

We independently estimated the demographic history for each population from their respective site frequency spectra using mushi (DeWitt et al. 2021 v0.2.0). All histories estimated a bottleneck that started approximately 10 thousand generations ago (assuming a mutation rate of 3×10^{-8} (Clark et al. 2005) (Figure 2E).

Teosinte is a primarily outcrossing grass (Hufford 2010), and regional maize farming practices promote outcrossing as well (Bellon et al. 2018). To validate our estimated demography and characterize the history of inbreeding in each population, we compared the empirical quantiles of homozygosity by descent (HBD) segments inferred using IBDseq (Browning and Browning 2013) to those simulated under the demography of each population. With the exception of the smallest HBD segments, which are more prone to inaccurate estimation, the simulated
quantiles generally resemble the empirical quantiles (Figure 2D). This indicates that the inbreeding history of our population is adequately captured by the demography. However, consistent with previous studies of teosinte (Hufford 2010), we do see variation in the distributions of HDB among populations. For example, the size distribution of HBD segments in San Lorenzo and Los Guajes were consistently larger than those simulated from their demographies, particularly for the smallest segments. This likely reflects inbreeding caused by demographic changes, particularly those further in the past that may not be not as accurately captured by our demography inferences. These results are consistent with previous studies that found evidence for historical inbreeding in teosinte, particularly in individuals sampled from San Lorenzo (Pyhäjärvi et al. 2013). Lastly, we estimated inbreeding coefficients (F) using ngsRelate (Hanghrj et al. 2019). Although inbreeding coefficients were as high as 0.37 , the mean value of F was 0.017 ± 0.001 (SE) and 0.033 ± 0.001 (SE) for maize and teosinte (respectively), (Figure 2E). These values are consistent with prior estimates of the rate of outcrossing of $\approx 3 \%$ in teosinte (Hufford et al. 2011) and suggest there has been relatively little inbreeding in either subspecies in the recent past.

Rangewide estimates of the proportion of mutations fixed by natural selection (α) are commensurate with that of individual populations

If populations are relatively isolated and adaptation occurs primarily via local selective sweeps, then we expect that most adaptive fixations will happen locally in individual populations rather than across the entire species range. This pattern should become even stronger if alleles experience negative pleiotropy, such that they are only adaptive in one environment and deleterious in others, further inhibiting the ability of such alleles to fix rangewide. If adaptation via sweeps is commonly restricted to individual populations, using a broad geographic sample to represent a population could underestimate the number of adaptive substitutions that occur (Gossmann et al. 2010). To test this, we es- ${ }^{27}$ timated the proportion of mutations fixed by adaptive evolution (α) (Smith and Eyre-Walker 2002) across all of our populations and the rangewide samples for both subspecies. We estimated α jointly among all populations by fitting a non-linear mixed- ${ }^{275}$ effect model based on the asymptotic McDonald-Kreitman test ${ }^{276}$ (Messer and Petrov 2013). Across populations, α varied between ${ }^{277}$ 0.097 (teosinte San Lorenzo) and 0.282 (teosinte Palmar Chico), ${ }^{278}$ with more variation among teosinte populations (Figure 3). In ${ }^{279}$ contrast to our expectations, rangewide estimates of α were com- ${ }^{280}$ mensurate with individual populations. We additionally evalu- ${ }^{281}$ ated estimates of α for specific mutation types, which has been ${ }^{282}$ shown to be lower at sites mutating from A / T to G / C, due to ${ }^{283}$ the effects of GC-biased gene conversion in Arabidopsis (Hämälä ${ }^{284}$ and Tiffin 2020). While we do find some evidence that α predic- ${ }^{285}$ tions varied by mutation type (see Figure S2, Supplement III), ${ }^{286}$ the patterns are the opposite of that found in Arabidopsis, per- ${ }^{287}$ haps because of the increased level of methylation in maize and ${ }^{288}$ the higher mutation rate at methylated cytosines. Even after accounting for differences among mutation types, rangewide values remained commensurate with that of the populations.

Teosinte populations have a higher proportion of private sweeps

Our inferences of α are based on substitutions at non- ${ }^{297}$ synonymous sites. The functional space for selection to act ${ }^{298}$

Figure 3 The proportion of mutations fixed by natural selection. Estimated values of the proportion of mutations fixed by natural selection (α) by population. Vertical lines show the 95% credible interval. maize and teosinte from Palmar Chico. After optimizing over a grid of hyperparameters for RAiSD (see Methods), we estimated the proportion of sweeps shared between replicates to be 0.67 and 0.80 for maize and teosinte, respectively. This proportion is consistent with the false positive rates for strongly selected hard sweeps estimated from simulations under the demographic histories (See Supplement IV). As such, a non-trivial number of the putative sweep regions we inferred with RAiSD in other populations are likely also false positives, though far fewer than previously reported using alternative methods for identifying sweep regions (Tittes et al. 2021).

We used the inferred sweep regions to assess the degree to which adaptation is shared or locally restricted using the sweep regions we identified. We determined how many sweep regions were exclusive to one population (private), along with the number of overlapping sweep regions shared across two or more populations within and between the two subspecies. Overall, sharing was common, though fewer sweeps were exclusively shared between teosinte populations (Figure 4A). Across teosinte populations, 22% of sweeps were private, which was significantly greater than the 14% found in maize (binomial glm, $p=0.0026$; Figure 4B).

B

Amatlán de	Crucero					
Cañas	Lagunitas	El	Los	Palmar	San	rangewide

Figure 4 The distribution of shared and private selective sweeps. (A) The total number of sweeps inferred in each population. (B) The proportion of sweeps that are unique to each population. (C) The negative $\log 10 p$ values for hypergeometric tests to identify maize-teosinte population pairs that shared more sweeps than expected by chance (see Methods). P values were adjusted for multiple tests using the Benjamini and Yekutieli method. Populations along the y axis are maize (order matches the legend below, with Amatlán de Cañas at the bottom), while the point color designates the teosinte population each maize population was paired with. Points with black outline highlight the sympatric population comparisons. Point size is scaled by the number of shared sweeps identified in each pair. The dotted line indicates our chosen significance level ($p=0.05$). (D) Counts of shared and unique sweeps broken down by how many maize and teosinte populations they occurred in. Grey boxes show sweeps shared across the two subspecies.

Sympatric population pairs do not share more sweeps

If local adaptation favors certain alleles in a given environment, 320 we might expect to see increased sharing of sweeps between ${ }^{321}$ sympatric populations of maize and teosinte. To look for evi- ${ }^{322}$ dence of such sharing, we used a hypergeometric test based on ${ }^{323}$ the number of sweeps in each population and the number of ${ }_{324}$ shared sweeps between population pairs, which allowed us to ${ }^{325}$ test if sympatric population pairs tended to have more sharing ${ }^{326}$ than expected by chance. In conducting this test, we incorpo- ${ }^{327}$ rated our estimate of sweep precision (see Methods). Sympatric ${ }_{328}$ pairs did not tend to have a lower p value than allopatric pairs, ${ }^{329}$ and no population pair showed more sharing than expected ${ }^{330}$ by chance (Figure 4). We additionally found that, despite ev- ${ }^{33}$ idence that sweeps are commonly shared between maize and ${ }_{332}$ teosinte (Figure 4D), there were zero sweeps exclusive to sym- ${ }^{33}$ patric pairs; sweeps that were shared between sympatric pairs ${ }_{334}$ always included at least one other allopatric population.

Convergent adaptation from migration is common among maize and teosinte populations

In instances when two or more populations shared a sweep region, we used rdmc (Lee and Coop 2017; Tittes 2020) to infer the most likely mode of convergence. We classified sweeps based on which composite log-likelihood model was greatest out of four possible models of convergence (independent mutations, migration, neutral, and standing variation). Of the 102 sweeps that were shared by two or more populations, there were 1,38 , and 23 sweeps inferred to be convergent via independent mutations, migration, or standing variation; and an additional 40 sweeps inferred to be neutral (Figure 5C). The high proportion (37\%) of neutral models inferred by rdmc is consistent with our estimate of sweep precision. We have higher confidence, however, that regions inferred to be non-neutral with both RAiSD and rdmc represent bona fide sweeps. The strength of support (measured as the composite likelihood score of the best model relative to the next best) varied among sweeps and modes of convergence, but in general a single model tended to be clearly favored among the alternatives (Figure 5A). Selection coefficients for sweeps

Figure 5 Modes of convergent adaptation and affiliated parameters for shared selective sweeps. (A) The difference in composite likelihood scores for the best supported mode of convergent adaptation (colors in top legend) compared to next best mode (black points), and best mode compared to the neutral model (other end of each line segment above or below black point). (B) Selection coefficients colored by the most likely mode of convergent adaptation. (C) Number of shared sweeps for both subspecies that were inferred to be from each convergent adaptation mode. (D) The most likely source population for shared sweeps that converged via migration. Bars are colored by population (bottom legend) and are outlined in black for teosinte and grey for maize. (E) Observed frequency of the inferred time in generations that each selected allele persisted prior to selection for models of convergent adaptation via standing variation. (F) Observed frequency of each inferred migration rate value for models of convergent adaptation via migration. Panels C, D, E and F are partitioned by which subspecies shared the sweep.
varied among modes, with convergence via migration having ${ }^{347}$ the highest average estimate (Figure 5B). When migration was ${ }^{348}$ the mode of convergence and sweeps were shared by both sub- ${ }^{349}$ species, teosinte El rodeo, and maize from Crucero Lagunitas 350 and Palmar Chico were the most frequent source populations (Figure 5D). In convergence models with migration, we tested migration rates between 10^{-3} and 10^{-1}. The most likely migration rate varied across sweeps, but tended to be 10^{-1} for the majority of sweeps shared by the two subspecies and sweeps exclusive to maize. In contrast, the lowest migration rate $\left(10^{-3}\right)$ was always the most likely for sweeps exclusive to teosinte (Fig-
ure 5 F). Together, these findings indicate that many alleles are adaptive in the genomic background of both maize and teosinte, and that adaptive alleles are commonly shared between the two subspecies.

Discussion

Local adaptation occurs at intermediate scales

Gossmann et al. (2010) hypothesized that population structure within a species could limit the fixation of adaptive alleles across a species range, causing a reduction in the proportion of muta-
tions fixed by positive selection (α). Based on this hypothesis 418 and the strong population structure we observed (Figure 1), we 419 expected that rangewide samples would have smaller estimates $\quad 420$ of α. Instead, α for the rangewide samples of both maize and teosinte were commensurate with that of individual populations ${ }_{422}$ (Figure 3), a pattern that persisted even when we considered ${ }^{423}$ α estimated from several different mutation types (Figure S2). 424 This is inconsistent with the patterns we would expect fine-scale ${ }_{425}$ local adaptation to generate, where adaptive substitutions for a ${ }_{426}$ given population should not be shared by other populations ex- ${ }^{427}$ periencing their own distinct local selective pressures and antag- ${ }^{428}$ onistic pleiotropy suppresses rangewide fixation in alternative ${ }_{429}$ environments. Our findings makes sense in the light of other 430 work studying pleiotropy's impact on adaptive evolution in Arabidopsis, which found that most mutations impact few traits and that the genetic architecture was largely non-overlapping when studied across multiple environments (Frachon et al. 2017). Our results are consistent with models in which locally beneficial alleles are simply neutral elsewhere, a process thought to be more common when overall levels of gene flow are low (Wadgymar et al. 2022) but one that could nonetheless augment the rangewide spread of such alleles.

We found a similar pattern from our analysis of shared versus unique selective sweeps, which were more often shared by at least one other allopatric population. Similar to our predictions for α, we expected that local adaptation would lead most sweeps to be exclusive to individual populations. Instead, the average proportion of sweeps exclusive to a single population was low to moderate for maize and teosinte populations, respectively (Figure 4). We also expected that maize and teosinte populations growing in close proximity would share similar local selective pressures and would therefore share more signatures of adaptation. However, no pairs showed evidence of sharing more sweeps than would be expected by chance, and overall sympatric pairs did not show increased sharing of selective sweep regions compared to allopatric pairs (Figure 4). This regional scale of local adaptation is consistent with patterns seen in maize adaptation to the highlands (Calfee et al. 2021), where sympatric maize and teosinte populations show little evidence of adaptive gene flow, and adaptive teosinte introgression appears widespread among highland maize.

There are a number of considerations to make in the interpretation of our results. The two methods we used to identify signatures of adaptation, estimating α and identifying signatures of selective sweeps, are best-suited for adaptation that leads to fixation of beneficial alleles, and / or mutations of large effect. 462 For the moderate population sizes and selection coefficients ob- 463 served here, fixation of new beneficial mutations takes a considerable amount of time, on the order of $4 \log (2 N) / s$ generations (Charlesworth 2020). Compared to the sojourn time of adaptive ${ }_{466}$ mutations, our populations may have occupied their current ${ }^{467}$ locations for relatively few generations. As a result, the selective 468 sweeps underlying local adaptation to the selective pressures ${ }_{469}$ that populations currently face are more likely to be incomplete, 470 so may be more difficult to detect (Xue et al. 2021; Pritchard 471 et al. 2010). Likewise, the adaptive sweeps that have completed 472 may have been under selection in ancestral populations that 473 occupied different environments than the sampled individuals, 474 and their signatures may no longer be detectable (Przeworski 475 2002), placing a limit on the temporal resolution with which we can make inference about instances of local adaptation. Another complication in detecting local adaptation relates to the
size and complexity of plant genomes. Large genomes may lead to more soft sweeps, where no single mutation driving adaptive evolution would fix (Mei et al. 2018). Like incomplete sweeps, soft sweeps are harder to identify (Schrider and Kern 2016; Pritchard et al. 2010), which could obscure the signatures of local adaptation. Even if our populations have occupied their current locations for a sufficient duration for local adaptation to occur, the completion of selective sweeps may be hindered by changes and fluctuations in the local biotic and abiotic conditions. Relatively rapid change in local conditions could also result in fluctuating selection, such that most alleles do not remain beneficial for long enough to become fixed (Rudman et al. 2021).

While our focus has been on the trajectory of individual beneficial alleles, the genetic basis of many adaptive traits may be highly polygenic. Allele frequency changes underlying polygenic adaptation are more subtle than those assumed under selective sweeps, making them harder to detect (Pritchard et al. 2010). Evaluating local adaptation in maize and other systems will be facilitated by studying the contribution of polygenic adaptation to the evolution of complex traits. However, if adaptation across our studied populations were strictly polygenic, and especially if it were acting on alleles with small effect sizes, we would expect to find few to no shared sweeps. The fact that we find many instances of sharing across populations supports that a non-trival amount of local adaptation is occurring via selective sweeps, or through polygenic adaptation acting on a few loci with large effects that leave a signature similar to that of a selective sweep.

Differences in diversity and demography influence adaptation in maize and teosinte

While our results were generally similar between the two subspecies and among the sampled populations, there are several important differences. The most obvious difference between the subspecies is the ongoing interaction and dependence of maize on humans via domestication and farming. Compared to teosinte, maize had lower average genomewide estimates of diversity (Figure 2A). These differences are consistent with the previously discovered pattern that diversity tends to be lower in crops compared to their wild relatives (Doebley 1989; Hufford et al. 2012), a pattern putatively driven by domestication bottlenecks (Eyre-Walker et al. 1998). In line with this argument, the few teosinte populations with lower diversity than those in maize (El Rodeo and San Lorenzo) were inferred to have the most substantial bottlenecks and historical inbreeding (Figure 2). More generally, we found that π and Tajima's D were more variable among teosinte populations, indicative of differences in their demographic histories.

Our demographic inferences suggest that all populations had signatures of a bottleneck, the timing of which coincides with the beginning of maize domestication $\approx 9,000$ years ago (Piperno et al. 2009). The severity of the bottleneck varied considerably across populations, particularly for teosinte. While finding a bottleneck in the maize populations is consistent with domestication, it is less clear why we found a similar bottlenecks for the teosinte populations at approximately the same time. One possibility is that the teosinte bottlenecks reflect land use change induced by human colonization. For example, evidence from Mesoamerican phytolith records in lake sediment show evidence of anthropogenic burning as early as 11 K years B.P. (Piperno 1991). The establishment and spread of human populations
over the subsequent millenia would require an ever increasing ${ }_{540}$ area for farming, dwellings, transportation, and trade (Haines 541 et al. 2000). Such land use changes would likely encroach on 542 the habitat available for teosinte and drive species-wide cen- ${ }^{543}$ sus size declines. Given the success of maize breeding and 544 domestication, we anticipated a recent expansion for maize pop- 545 ulations as previously seen (Beissinger et al. 2016; Wang et al. ${ }^{546}$ 2017). However, with only 10 individuals per population, recent 547 expansions will be difficult to detect with approaches based on ${ }_{548}$ the site frequency spectrum (Keinan and Clark 2012; Coventry ${ }^{549}$ et al. 2010). The demography of the rangewide samples for both ${ }_{550}$ subspecies showed little evidence of the bottleneck inferred in in- 551 dividual populations, likely due to the reduced sampled size (5 and 6 individuals) for the rangewide data. We additionally used strong regularization penalties to avoid over-fitting (see Methods), which limits the detection of rapid and dramatic changes in population size. The near-constant size of the rangewide samples and the lack of recent expansion in maize are both likely influenced by this modeling choice.

Finally, demographic inferences are known to be sensitive to the effects of linked selection (Ewing and Jensen 2016), and our demographic models have likely underestimated effective population sizes and the variation in changes over time therein. However, all populations independently converged to similar values in the oldest generation times, around the time when we would expect the ancestral lineages would have coalesced (Figure 2C). This suggests any biases in the estimated population sizes that are specific to maize, which has had recent explosive population growth, are occurring in the more recent past (Beissinger et al. 2016). Similarly, although the asymptotic MK method we employed has been shown to provide reliable estimates of α when fixations are due to strong beneficial mutations (Messer and Petrov 2013), it does not account for the influence of background selection and the rate of fixation of weakly beneficial mutations (Uricchio et al. 2019).

Differences in adaptation between maize and teosinte, and among populations, were apparent based on differences in the patterns of selective sweeps. Maize had a higher proportion of selective sweeps shared with at least one other population (Figure 4). The greater number of shared sweeps in maize populations is likely the result of their recent shared selective history during the process of domestication, resulting in a set of phenotypes common to all maize (Stitzer and Ross-Ibarra 2018). In comparison, the higher proportion of unique sweeps in teosinte suggests local adaptation has played more of a role in shaping their recent evolutionary history. Teosinte grows untended, and did not undergo domestication, leaving more opportunity for divergence and local selection pressures to accumulate differences among populations. This is reflected in the inferred population history, which had longer terminal branch lengths for teosinte (Figure 1B), suggesting there is increased genetic isolation among teosinte populations due to longer divergence times, reduced gene flow, or both.

Convergent adaptation is ubiquitous

We found convergent adaptation to be common among pop- ${ }^{595}$ ulations and subspecies (Figures 4 and 5). The frequency of 596 convergence further suggests there are a large number of muta- ${ }^{597}$ tions that are beneficial in more than one population, even when 598 placed in the different genomic backgrounds of the two sub- 599 species. Our approach allowed us to distinguish between multi- 600 ple potential modes of convergence, including a neutral model 60
that models allele frequency covariance by drift alone (Lee and Coop 2017). The distribution of most likely selection coefficients of the inferred beneficial alleles suggests the strength of selection is moderate to strong, though this estimate is likely biased as strong positive selection will be easier to detect. Convergence via independent mutations was by far the least frequent mode. This is consistent with previous analyses of domestication (Hufford et al. 2012) and adaptation (Wang et al. 2021) in maize, and unsurprising given evidence for ongoing gene flow (Figure 1E), the relatively short evolutionary time scales, and the low probability that even strongly selected new mutations can overcome drift multiple times independently.

For convergent sweeps that occurred via standing variation within maize or shared between maize and teosinte, the distribution of generation times that the selected variant was standing before the onset of selection tended to be bimodal, with both long and short standing times. In contrast, sweeps exclusive to teosinte were consistently inferred to be standing variation for more generations (Figure 5E). Sweeps that occurred via standing variation and shared between subspecies were often found in only a subset of maize populations. Many of these sweeps likely reflect the presence of structure in ancestral populations, suggesting different alleles beneficial to maize were likely derived from more than one teosinte population. The bimodal features of sharing seem at face value surprising. How can an allele be standing variation for so many generations after divergence but prior to selection when the populations diverged less than ten thousand generations ago? We speculate that ancestral population structure and limited sampling of 6 populations could explain the pattern. For example, extremely long standing times that predate domestication may reflect divergence between our sampled teosinte populations and the populations most closely related to those that gave rise to domesticated maize. This is yet another area in which more comprehensive sampling could help resolve patterns of local adaption.

The most common mode of convergent adaptation was via migration, and frequently occurred between geographically disparate populations (Figures S6). This included a relatively large number of shared sweeps via migration between maize and teosinte (Figures 5 and S7). There is ample evidence that maize and teosinte are capable of hybridizing (Wilkes et al. 1967; Ellstrand et al. 2007; Ross-Ibarra et al. 2009), and previous work has identified gene flow between geographically disparate populations of maize and Zea mays mexicana (Calfee et al. 2021). Further, convergence via migration between geographically disparate maize populations has been inferred during adaptation to high elevations (Wang et al. 2021).

Our findings on convergence via migration point to an intriguing hypothesis, namely, that some number of alleles that are beneficial to teosinte may have originally arisen in another teosinte and maize populations and moved between populations via gene flow with maize, an idea suggested by Ross-Ibarra et al. (2009) based on allele sharing at a small set of loci. Our inference that migration is a frequent source of beneficial alleles in teosinte populations suggests that they may be mutation limited. Consistent with this, the three teosinte populations that most often shared sweeps with maize (El Rodeo, San Lorenzo, and Amatlán de Cañas) (Figure S7) also showed the strongest signatures of bottlenecks (Figure 2C), which would limit the rate of new and beneficial mutations. It is worth noting that the total number of shared sweeps is much lower than previously reported (Tittes et al. 2021), and only four of fifteen instances of convergence via
migration include two or more teosinte and maize populations ${ }_{663}$ (Figure S7). Despite the lower totals, the evidence still supports 664 this hypothesis. Firstly, we found relatively few shared sweeps 665 exclusive to teosinte populations (Figure 5C), which is what we ${ }^{666}$ would expect if maize populations facilitate the movement of ${ }^{667}$ beneficial teosinte alleles. However, it is important to note that there are fewer sweeps exclusive to teosinte for all modes of convergence, not just via migration, so this alone is not sufficient evidence. Thirdly, sweeps shared via migration that were exclusive to teosinte were always inferred to be the lowest migration rate $\left(1 \times 10^{-3}\right)$ (Figure 5F), where those shared by both subspecies or exclusive to maize were primarily inferred to be the highest migration rate $\left(1 \times 10^{-1}\right)$. This indicates alleles that are only beneficial in teosinte move between populations more slowly. Despite the patterns of population structure in both subspecies, there is evidence of gene flow based on f 4 tests. In particular, f 4 tests that included maize from Crucero Lagunitas were consistently elevated across both subspecies (Figure 1E and S1). This is in accordance with our finding that Crucero Lagunitas maize was one of the most commonly inferred source populations of migration sweeps that were shared between maize and teosinte (Figure 5D). Together, these results suggests that geographically widespread varieties of maize such as Celaya (Crucero Lagunitas) (Orozco-Ramírez et al. 2017) may have played a prominent role as a source of and/or transport for beneficial alleles among maize and teosinte populations. However, teosinte populations were often the source of beneficial alleles for sweeps shared between both subspecies (Figure 5C). As such, teosinte populations may have also commonly been the source of adaptive variation for both other teosinte and maize populations.

Materials and Methods

Samples and whole genome resequencing

We sampled seeds from five populations of Zea mays ssp. parviglumis and four populations of Zea mays ssp. mays from plants growing across the species' native range. We additionally included populations of parviglumis and maize from Palmar Chico which were previously analyzed and reported in (Chen et al. 2020) for a total of 6 and 5 populations of maize and teosinte (See Supplement I for accession IDs and further sample details). All maize and teosinte populations from each named location were less than 1 km from one another, with the exception of Crucero Lagunitas, which were separated by approximately 18 km .

DNA extraction for teosinte followed (Chen et al. 2020). Genomic DNA for landraces was extracted from leaf tissue using the E.Z.N.A.® Plant DNA Kit (Omega Biotek), following manufacturer's instructions. DNA was quantified using a Qubit (Life Technologies) and 1ug of DNA per individual was fragmented using a bioruptor (Diagenode) with 30 seconds on/off cycles.

DNA fragments were then prepared for Illumina sequencing. First, DNA fragments were repaired with the End-Repair enzyme mix (New England Biolabs). A deoxyadenosine triphosphate was added at each 3 'end with the Klenow fragment (New England Biolabs). Illumina Truseq adapters (Affymetrix) were then added with the Quick ligase kit (New England Biolabs). Between each enzymatic step, DNA was washed with sera-mags speed beads (Fisher Scientific). The libraries were sequenced to an average coverage of 20 to $25 x$ PE150 on the Xten at Novogene (Sacramento, USA).

We additionally grew one individual of Zea diploperennis from the UC Davis Botanical Conservatory as an outgroup. DNA for Zea diploperennis was extracted and libraries prepared as above,
-uniqueOnly 1
-remove_bads 1
-only_proper_pairs 1
-trim 0
-C 50
-minMapQ 30
-minQ 30

Genetic Diversity

We estimated per base nucleotide diversity (π) and Tajima's $\mathrm{D}(\mathrm{D})$ in non-overlapping $1 \mathrm{~kb}, 100 \mathrm{~kb}$ and $1,000 \mathrm{~kb}$ windows with the thetaStat utility from $A N G S D$, though estimates did not substantively differ between window sizes. To estimate π and the unfolded site frequency spectra for each population, we polarized alleles as ancestral and derived using short-read sequence data for Zea luxurians and Zea diploperennis as outgroups. Zea luxurians sequence from Tenaillon et al. (2011) was downloaded from The NCBI Sequence Read Archive (study SRR088692). We used the alignments from the two species to make minor allele frequency (MAF) files using ANGSD. We used the MAF files to construct a table of genotypes found at each locus. Sites with minor allele frequency estimates greater than 0.001 were treated as heterozygous. Sites that were homozygous in both species were imputed onto the maize v5 reference and assumed to be the ancestral allele. As there were substantially more called bases in Zea luxurians than in Zea diploperennis, we also assumed sites that were homozygous in luxurians and missing in diploperennis were ancestral, but excluded sites that were missing from luxurians. Sites that were classified as heterozygous were treated as missing and imputed onto the maize reference as ' N '.

Population Structure and Introgression

We used ngsadmix (Skotte et al. 2013) to assess population structure within subspecies. To do so we used a SNP-calling procedure in $A N G S D$ with the same filters as listed above, along with a SNP p-value cutoff of 1×10^{-6}. We looked for evidence of gene flow between subspecies using f4 statistics and Z-scores calculated with blocked jackknifing, implemented using treemix (Pickrell and Pritchard 2012). Trees for f4 tests were always of the form (Maize_X, Maize_Y; Teosinte_focal, Teosinte_Z), or (Maize_focal, Maize_Y; Teosinte_W, Teosinte_Z); with each unique combination of populations was considered to be the "focal" and "_X" positions of the tree. We considered any tree with a Z-score greater than or equal to 3 significant, indicating a departure from the allele frequency differences expected if population history matched the hypothesized tree. We assessed Z-scores separately based on whether the focal population was maize or teosinte, and for trees that include the sympatric pair of the focal population.

Demographic and Inbreeding History

We inferred each population's demography using a single unfolded site frequency spectrum with mushi (v0.2.0) (DeWitt et al. 2021). In efforts to reduce overfitting given our modest samples sizes, we increased the
regularization penalty parameters to alpha_tv=1e4, alpha_spline=1e4, 795 and alpha_ridge $=1 \mathrm{e}-1$.

We assessed homozygosity by descent (HBD) in each population 797 using IBDseq (v2.0) (Browning and Browning 2013). We compared 798 empirical results to simulations in msprime (Kelleher et al. 2016) using 799 each population's inferred demographic history. We performed ten 800 replicates of each of these simulations. Replicates were similar across all 801 populations; only one replicate was chosen at random for visual clarity. 802 We estimated recent inbreeding using ngsrelate (Hanghøj et al. 2019) 803 with default parameters. Input files were generated using ANGSD with 804 the same filters as listed above, along with a SNP p value cutoff and maf filter of

```
-SNP_pval 1e-6
```

-minmaf 0.05,
respectively.

Estimating the Rate of Positive Selection, α

We modeled the rate of positive selection, α of 0 -fold nonsynonymous mutations using the asymptotic extension of the McDonald-Kreitman (MK) test (Messer and Petrov 2013), where α is calculated at each allele frequency bin of the uSFS (from $1 / n$ to $(n-1) / n$). At each allele frequency bin, each α was calculated as

$$
\alpha=1-\frac{d_{0}}{d} \frac{p}{p_{0}}
$$

where d_{0} and d are the number of derived fixed differences for selected and putatively neutral sites, respectively, and p_{0} and p are the number of selected and putatively neutral polymorphic sites. We identified 0-fold and 4-fold sites using Python (https://github.com/silastittes/cds_fold).
We fit the Asymptotic MK extension as a nonlinear Bayesian mixedmodel using the R package brms (Bürkner 2017, 2018).

$$
\alpha_{i j} \sim a_{j}+b_{j} e^{-c_{j} x_{i j}}
$$

where $\alpha_{i j}$ is the value of α calculated at the $i^{\text {th }}$ allele frequency bin of the $j^{\text {th }}$ population and $x_{i j}$ is the corresponding allele frequency bin. The nonlinear brms model was coded as
alpha ~
$\mathrm{a}+\mathrm{b} * \exp (-\mathrm{c} *$ allele_frequency)
where all three free parameters of the asymptotic function (a, b, and c) were treated as random effects of population and nucleotide type (see Supplement III), and the subspecies was treated as a fixed effect. These effects were coded in brms as

```
a + b + c
    1 + allele_frequency +
    (1 + allele_frequency | pop) +
    (1 + allele_frequency | nuc_type) +
    ssp
```


Identifying Selective Sweeps

We used RAiSD (Alachiotis and Pavlidis 2018) to infer signatures of selective sweeps in each population, including the rangewide samples. Across all populations, we used a minor allele frequency threshold of 0.05 and a window size of 24 SNPs. We called SNPs and generated VCF files for each population using the dovcf utility from ANGSD, using a SNP calling p-value cut off of 1×10^{-6}. We used the Python package mop (https://pypi.org/project/mop-bam/) to exclude SNPs that fell in regions with low and excessive coverage and/or poor quality. Here we required each locus to have at least 70% of individuals with a depth between 5 and 100, and to have a phred scaled quality scores above 30 for base and mapping quality. We additionally used mop to rescale the $\mu_{v a r}$ sub-statistic in each population based on the proportion of high quality bases available in each of the RAiSD SNP windows, after which we recalculated the overall μ statistic as the product of the three sub-statistics (Alachiotis and Pavlidis 2018).

Individual SNP windows in RAiSD are small and spatially autocorrelated with neighboring windows, implying that a sweep signature is distributed over multiple windows. This makes it difficult to compare shared RAiSD outliers across populations, which may have experienced the same sweep, but may differ in how the μ statistic is distributed across windows. To compare sweep signatures across populations we collected
outliers into "sweep regions" by fitting a cubic spline modeling the adjusted μ statistic by position along the chromosome using smooth.spline function in R, which uses cross validation to choose the optimal smoothing parameter for the cubic spline. We compared the empirical cubic spline fit to the those simulated under each populations' demography using msprime (Kelleher et al. 2016), and selected windows with fitted values greater than 99.9 th percentile from the simulations as outlier regions. We merged outlier regions within $50,000 \mathrm{~Kb}$ of one another and treated as a single sweep region. The custom R functions for a defining outlier regions is available at https://github.com/silastittes/sweep_regions.

For the above steps, we selected the best combination of parameters by conducting a grid search that optimized on the highest proportion of sweeps shared between the two Palmar Chico replicates, averaged over both subspecies. For the grid search we considered RAiSD snp windows of $10,24,50,100,200$, and 500 ; outlier quantiles of $0.8,0.9,0.95,0.99$, and 0.999 ; and merge windows of $50 \mathrm{~K}, 100 \mathrm{~K}, 200 \mathrm{~K}$, and 500 K BPs.

Assessing the precision of sweep inferences and the number of shared sweeps expected by chance

To assess precisions of sweep inferences, we used a second random sample of non-overlapping individuals from the two Palmar Chico populations. False positives were assessed based on the number of sweep regions that did not overlap between the 2 replicate Palmar Chico samples from each subspecies. To account for differences in the total number of sweep regions for each replicate, we averaged the two proportions

$$
P=1-\left(\frac{n_{S}}{n_{P 1}}+\frac{n_{S}}{n_{P 2}}\right) / 2
$$

where n_{S} is the number of sweeps shared between the replicates, and $n_{P 1}$ and $n_{P 2}$ were the number of sweeps in the first and second replicates, respectively. In downstream analyses, we used the average value of P for the two subspecies, although it was higher for teosinte than for maize (0.67 and 0.80 , respectively).

We evaluated the number of sweeps that we would expect populations to share by chance using a simple statistical test based on the hypergeometric distribution,

$$
\operatorname{Pr}(x \geq X)=\sum_{x \geq X}^{n_{1}} \frac{\binom{n_{2}}{x}\binom{N}{n_{1}-x}}{\binom{N}{n_{1}}}
$$

where N is the total number of loci tested; n_{1} and n_{2} are the number of outlier loci in the first and second populations, respectively; and x is the number of shared outliers between the two populations. The population with the larger number of outliers was always designated at the first population. We accounted for false positive by multiplying the raw values of N, n_{1}, n_{2}, and x by the $F P$ value described above.

We corrected p-values for multiple tests using the Benjamini and Yekutieli method implemented with the R function p.adjust (Benjamini and Yekutieli 2001).

Inferring modes of convergent adaptation

For sweep regions that were overlapping in 2 to 9 of the 11 populations, we used $r d m c$ to infer the most likely mode of convergent adaptation (Lee and Coop 2017; Tittes 2020). To ensure a sufficient number of loci were included to estimate decay in covariance across the sweep regions, we added 10% of each sweep region's total length on each of its ends prior to fitting the models. To reduce the computation time, we exclude sites that had an allele frequency less than $1 / 20$ across all populations. As sweep regions differed in size, we subset from their total number of sites to maintain approximately similar densities, with a lower and upper bound of 1 K and 100 K SNPS, respectively. Sweep regions near the ends of chromosomes for which we could not estimate the number of centiMorgans for were subset to 10K SNPs. To contrast allele frequency covariance in sweep regions to neutral expectations, we first sampled allele frequencies at 100 K random loci. When fitting $r d m c$, we assumed the effective population size was 50 K for all populations. The recombination rate was approximated for each sweep region as the median interpolated value based on a previously generated genetic map for maize that was lifted on to the v5 reference genome (Ogut et al. 2015). The $r d m c$ function includes arguments that control the grid of parameter values over which composite likelihoods were computed were:

```
n_sites = 20,
num_bins = 1000,
sels = 10^seq(-5, -1, length.out = 15),
times = c(1e2, 1e3, 1e4, 1e5),
```

```
gs = 10^seq(-3, -1, length.out = 3),
migs = 10-(seq(-3, -1, length.out = 2)),
cholesky = TRUE
```

We compared composite likelihoods over four convergent adaptation modes, "neutral", "independent", "standing", and "migration". We assigned each sweep to the mode with the highest log composite likelihood. To assess the overall performance of the method to distinguish between the four modes, we computed differences between the highest composite likelihood and the next highest for each sweep.

All wrangling to prepare input data for statistical analyses was done using R (R Core Team 2020) with appreciable reliance on functions from the tidyverse suite (Wickham et al. 2019). Figures were made using ggplot2 (Wickham 2016), patchwork (Pedersen 2019), and cowplot (Wilke 2019). Bam files that all downstream analyses are based on are available https://datacommons.cyverse.org/browse/iplant/home/ aseetharam/B73v5-deduped-alignments. The processed data used for generating figures and analyses are available from https://datacommons. cyverse.org/browse/iplant/home/silastittes/parv_local_data. Code and instructions for the entirety of the analyses, including Jupyter notebooks for reproducing figures, is available from https://github.com/silastittes/ parv_local.

Acknowledgments

We would like to thank Andi Kur for providing the corn art, along with Matthew Gibson, Tom Booker, Cathy Rushworth, and other members of the Ross-Ibarra lab for feedback and suggestions on early drafts of the manuscript. This work was funded in part by grants from the National Science Foundation (1822330 and 1238014). We would also like to acknowledge Felix Andrews for statistical advice, although we did not follow it.

References

Aguirre-Liguori, J. A., B. S. Gaut, J. P. Jaramillo-Correa, M. I. Tenaillon, S. Montes-Hernández, et al., 2019 Divergence with gene flow is driven by local adaptation to temperature and soil phosphorus concentration in teosinte subspecies (zea mays parviglumis and zea mays mexicana). Molecular ecology 28: 2814-2830.
Alachiotis, N. and P. Pavlidis, 2018 Raisd detects positive selection based on multiple signatures of a selective sweep and snp vectors. Communications biology 1: 1-11.
Beissinger, T. M., L. Wang, K. Crosby, A. Durvasula, M. B. Hufford, et al., 2016 Recent demography drives changes in linked selection across the maize genome. Nature plants 2: 1-7.
Bellon, M. R., A. Mastretta-Yanes, A. Ponce-Mendoza, D. OrtizSantamaría, O. Oliveros-Galindo, et al., 2018 Evolutionary and food supply implications of ongoing maize domestication by mexican campesinos. Proceedings of the Royal Society B 285: 20181049.
Benjamini, Y. and D. Yekutieli, 2001 The control of the false discovery rate in multiple testing under dependency. Annals of statistics pp. 1165-1188.
Bourne, E. C., G. Bocedi, J. M. Travis, R. J. Pakeman, R. W. Brooker, et al., 2014 Between migration load and evolutionary rescue: dispersal, adaptation and the response of spatially structured populations to environmental change. Proceedings of the Royal Society B: Biological Sciences 281: 20132795.
Browning, B. L. and S. R. Browning, 2013 Detecting identity by descent and estimating genotype error rates in sequence data. The American Journal of Human Genetics 93: 840-851.
Buckler, E. and T. P. Holtsford, 1996 Zea systematics: ribosomal its evidence. Molecular Biology and Evolution 13: 612-622.
Butler, E. E. and P. Huybers, 2013 Adaptation of us maize to temperature variations. Nature Climate Change 3: 68-72.
Bürkner, P.-C., 2017 brms: An R package for Bayesian multilevel models using Stan. Journal of Statistical Software 80: 1-28.
Bürkner, P.-C., 2018 Advanced Bayesian multilevel modeling with the R package brms. The R Journal 10: 395-411.
Calfee, E., D. Gates, A. Lorant, M. T. Perkins, G. Coop, et al., 2021 Selective sorting of ancestral introgression in maize and teosinte along an elevational cline. bioRxiv .
Charlesworth, B., 2020 How long does it take to fix a favorable mutation, and why should we care? The American Naturalist 195: 753-771.
Chen, Q., L. F. Samayoa, C. J. Yang, P. J. Bradbury, B. A. Olukolu, et al., 2020 The genetic architecture of the maize progenitor, teosinte, and ${ }^{1007}$

Hufford, M. B., P. Gepts, and J. ROSS-IBARRA, 2011 Influence of cryptic population structure on observed mating patterns in the wild pro-
bioRxiv preprint doi: https://doi.org/10.1101/2021.09.09.459637; this version posted August 30, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.
genitor of maize (zea mays ssp. parviglumis). Molecular ecology 20: 1084 46-55.
Hufford, M. B., A. S. Seetharam, M. R. Woodhouse, K. M. Chougule, 1086 S. Ou, et al., 2021 De novo assembly, annotation, and comparative 1087 analysis of 26 diverse maize genomes. Science .
Hufford, M. B., X. Xu, J. Van Heerwaarden, T. Pyhäjärvi, J.-M. Chia, et al., 1089 2012 Comparative population genomics of maize domestication and 1090 improvement. Nature genetics 44: 808.
Janzen, G. M., M. R. Aguilar-Rangel, C. Cíntora-Martínez, K. A. Blöcher- 1092 Juárez, E. González-Segovia, et al., 2021 Demonstration of local adap- 1093 tation of maize landraces by reciprocal transplantation. bioRxiv . 1094
Keinan, A. and A. G. Clark, 2012 Recent explosive human population 1095 growth has resulted in an excess of rare genetic variants. science 336: 1096 740-743.
Kelleher, J., A. M. Etheridge, and G. McVean, 2016 Efficient coalescent 1098 simulation and genealogical analysis for large sample sizes. PLoS 1099 computational biology 12: e1004842.
Kern, A. D. and D. R. Schrider, 2016 Discoal: flexible coalescent simula- 1101 tions with selection. Bioinformatics 32: 3839-3841.
Korneliussen, T. S., A. Albrechtsen, and R. Nielsen, 2014 Angsd: analysis 1103 of next generation sequencing data. BMC bioinformatics 15: 356. ${ }_{1104}$
Lee, K. M. and G. Coop, 2017 Distinguishing among modes of convergent 1105 adaptation using population genomic data. Genetics 207: 1591-1619. 1106
Li, H., 2013 Aligning sequence reads, clone sequences and assembly 1107 contigs with bwa-mem. arXiv preprint arXiv:1303.3997.
Lowry, D. B., R. C. Rockwood, and J. H. Willis, 2008 Ecological reproduc- 1109 tive isolation of coast and inland races of mimulus guttatus. Evolution: 1110 International Journal of Organic Evolution 62: 2196-2214.
Mei, W., M. G. Stetter, D. J. Gates, M. C. Stitzer, and J. Ross-Ibarra, 2018 Adaptation in plant genomes: Bigger is different.
Messer P W and D. A. Petrov, 2013 Frequent adaptation and the mcdonald-kreitman test. Proceedings of the National Academy of 1115 Sciences 110: 8615-8620.
Nannas, N. J. and R. K. Dawe, 2015 Genetic and genomic toolbox of zea 1 mays. Genetics 199: 655-669.
O'Brien, A. M., R. J. Sawers, S. Y. Strauss, and J. Ross-Ibarra, 2019 Adap- 1119 tive phenotypic divergence in an annual grass differs across biotic 1120 contexts. Evolution 73: 2230-2246.
Ogut, F., Y. Bian, P. J. Bradbury, and J. B. Holland, 2015 Joint-multiple 1122 family linkage analysis predicts within-family variation better than single-family analysis of the maize nested association mapping population. Heredity 114: 552-563.
Orozco-Ramírez, Q., H. Perales, and R. J. Hijmans, 2017 Geographical ${ }_{1}$ distribution and diversity of maize (zea mays l. subsp. mays) races in mexico. Genetic resources and crop evolution 64: 855-865.
Ossowski, S., K. Schneeberger, J. I. Lucas-Lledó, N. Warthmann, R. M. ${ }^{1128}$ Clark, et al., 2010 The rate and molecular spectrum of spontaneous mutations in arabidopsis thaliana. science 327: 92-94.
Pedersen, T. L., 2019 patchwork: The Composer of Plots. R package version 1.0.0.

Pickrell, J. and J. Pritchard, 2012 Inference of population splits and mixtures from genome-wide allele frequency data. Nature Precedings pp. 1-1.
Piperno, D. R., 1991 The status of phytolith analysis in the american tropics. Journal of World Prehistory 5: 155-191.
Piperno, D. R., A. J. Ranere, I. Holst, J. Iriarte, and R. Dickau, 2009 Starch grain and phytolith evidence for early ninth millennium bp maize from the central balsas river valley, mexico. Proceedings of the National Academy of Sciences 106: 5019-5024.
Portwood, J. L., M. R. Woodhouse, E. K. Cannon, J. M. Gardiner, L. C. Harper, et al., 2019 Maizegdb 2018: the maize multi-genome genetics and genomics database. Nucleic acids research 47: D1146-D1154.
Pritchard, J. K., J. K. Pickrell, and G. Coop, 2010 The genetics of human adaptation: hard sweeps, soft sweeps, and polygenic adaptation. Current biology 20: R208-R215.
Przeworski, M., 2002 The signature of positive selection at randomly chosen loci. Genetics 160: 1179-1189.
Pyhäjärvi, T., M. B. Hufford, S. Mezmouk, and J. Ross-Ibarra, 2013 Complex patterns of local adaptation in teosinte. Genome biology and evolution 5: 1594-1609.
R Core Team, 2020 R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
Ranum, P., J. P. Peña-Rosas, and M. N. Garcia-Casal, 2014 Global maize production, utilization, and consumption. Annals of the new York academy of sciences 1312: 105-112.
Rodriguez-Zapata, F., A. C. Barnes, K. A. Blocher-Juarez, D. J. Gates,
A. Kur, et al., 2021 Teosinte introgression modulates phosphatidylcholine levels and induces early maize flowering time. bioRxiv
Ross-Ibarra, J., M. Tenaillon, and B. S. Gaut, 2009 Historical divergence and gene flow in the genus zea. Genetics 181: 1399-1413.
Rudman, S. M., S. I. Greenblum, S. Rajpurohit, N. J. Betancourt, J. Hanna, et al., 2021 Direct observation of adaptive tracking on ecological timescales in drosophila. bioRxiv .
Savolainen, O., M. Lascoux, and J. Merilä, 2013 Ecological genomics of local adaptation. Nature Reviews Genetics 14: 807-820.
Schrider, D. R. and A. D. Kern, 2016 S/hic: robust identification of soft and hard sweeps using machine learning. PLoS genetics 12: e1005928.
Skotte, L., T. S. Korneliussen, and A. Albrechtsen, 2013 Estimating individual admixture proportions from next generation sequencing data. Genetics 195: 693-702.
Smith, N. G. and A. Eyre-Walker, 2002 Adaptive protein evolution in drosophila. Nature 415: 1022-1024.
Stitzer, M. C. and J. Ross-Ibarra, 2018 Maize domestication and gene interaction. New phytologist 220: 395-408.
Swarts, K., R. M. Gutaker, B. Benz, M. Blake, R. Bukowski, et al., 2017 Genomic estimation of complex traits reveals ancient maize adaptation to temperate north america. Science 357: 512-515.
Tenaillon, M. I., M. B. Hufford, B. S. Gaut, and J. Ross-Ibarra, 2011 Genome size and transposable element content as determined by high-throughput sequencing in maize and zea luxurians. Genome biology and evolution 3: 219-229.
Tittes, S., 2020 rdmc: an open source r package implementing convergent adaptation models of lee and coop (2017). G3: Genes, Genomes, Genetics 10: 3041-3046.
Tittes, S., A. Lorant, S. McGinty, J. F. Doebley, J. B. Holland, et al., 2021 Not so local: the population genetics of convergent adaptation in maize and teosinte (version 1). bioRxiv
Tuanmu, M.-N. and W. Jetz, 2015 A global, remote sensing-based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling. Global Ecology and Biogeography 24: 13291339.

Uricchio, L. H., D. A. Petrov, and D. Enard, 2019 Exploiting selection at linked sites to infer the rate and strength of adaptation. Nature ecology \& evolution 3: 977-984.
Van Heerwaarden, J., J. ROSS-IBARRA, J. Doebley, J. C. Glaubitz, J. DE JESÚS SÁNCHEZ GONZÁLEZ, et al., 2010 Fine scale genetic structure in the wild ancestor of maize (zea mays ssp. parviglumis). Molecular Ecology 19: 1162-1173.
Wadgymar, S. M., M. L. DeMarche, E. B. Josephs, S. N. Sheth, and J. T. Anderson, 2022 Local adaptation: Causal agents of selection and adaptive trait divergence. Annual Review of Ecology, Evolution, and Systematics 53: 87-111.
Wang, L., T. M. Beissinger, A. Lorant, C. Ross-Ibarra, J. Ross-Ibarra, et al., 2017 The interplay of demography and selection during maize domestication and expansion. Genome biology 18: 1-13.
Wang, L., E. B. Josephs, K. M. Lee, L. M. Roberts, R. Rellán-Álvarez, et al., 2021 Molecular parallelism underlies convergent highland adaptation of maize landraces. Molecular biology and evolution 38: 3567-3580.
Whitehead, A., F. Galvez, S. Zhang, L. M. Williams, and M. F. Oleksiak, 2011 Functional genomics of physiological plasticity and local adaptation in killifish. Journal of Heredity 102: 499-511.
Wickham, H., 2016 ggplot2: Elegant Graphics for Data Analysis. SpringerVerlag New York.
Wickham, H., M. Averick, J. Bryan, W. Chang, L. D. McGowan, et al., 2019 Welcome to the tidyverse. Journal of Open Source Software 4: 1686.

Wilke, C. O., 2019 cowplot: Streamlined Plot Theme and Plot Annotations for 'ggplot2'. R package version 1.0.0.
Wilkes, H. G. et al., 1967 Teosinte: The closest relative of maize. Teosinte: the closest relative of maize.
Williamson, R. J., E. B. Josephs, A. E. Platts, K. M. Hazzouri, A. Haudry, et al., 2014 Evidence for widespread positive and negative selection in coding and conserved noncoding regions of capsella grandiflora. PLoS genetics 10: e1004622.
Wright, S. I., I. V. Bi, S. G. Schroeder, M. Yamasaki, J. F. Doebley, et al., 2005 The effects of artificial selection on the maize genome. Science 308: 1310-1314.
Xue, A. T., D. R. Schrider, and A. D. Kern, 2021 Discovery of ongoing selective sweeps within anopheles mosquito populations using deep learning. Molecular biology and evolution 38: 1168-1183.

Supplement I

Population sampling locations

Table S1 Population sampling location information.

Population	Subspecies	Sample size	Latitude	Longitude	Elevation (meters)	Accession ID
Crucero Lagunitas	Maize	10	16.98	-99.28	201	2373-GRO-294
Amatlán de Cañas	Maize	10	20.82	-104.41	760	$5054-N A Y-310$
Los Guajes	Maize	10	19.23	-100.49	985	TC-300
San Lorenzo	Maize	10	19.94	-103.99	982	RMM-15
Palmar Chico	Maize	55	18.64	-100.35	1008	JSG-RMM-LCL-529
Crucero Lagunitas	Teosinte	10	16.85	-99.06	590	JSG-RMM-LCL-487
Amatlán de Cañas	Teosinte	10	20.82	-104.41	880	JSG-JRP-ERG-543
El Rodeo	Teosinte	10	16.35	-97.02	982	JSG-RMM-LCL-486
Los Guajes	Teosinte	10	19.23	-100.49	851	JSG Y RMM-454
San Lorenzo	Teosinte	10	19.94	-103.99	982	RMM-13
Palmar Chico	Teosinte	50	18.64	-100.35	983	JSG-RMM-LCL-528

Supplement II

Further assessment of $\mathfrak{f} 4$ statistic inferences

Figure S1 $\mathbf{f 4}$ tests including the maize Crucero Lagunitas population are significantly elevated compared to those without.

Table S2 Significant F4 tests. Each row of the table reports the number of significant $\mathfrak{f 4}$ tests that occurred with a given focal and secondary population, where the two other tip positions were filled with each of the remaining populations for each subspecies. Rows that are left blank in the secondary column are used to report the total number of significant trees for a given focal population.

Focal population	Secondary population	Count
Maize Amatlan de Canas		5
Maize Amatlan de Canas	Maize Crucero Lagunitas	5
Maize Amatlan de Canas	Teosinte Amatlan de Canas	3
Maize Amatlan de Canas	Teosinte El Rodeo	2
Maize Amatlan de Canas	Teosinte Palmar Chico	2
Maize Amatlan de Canas	Teosinte San Lorenzo	2
Maize Amatlan de Canas	Teosinte Los Guajes	1
Maize Crucero Lagunitas		15
Maize Crucero Lagunitas	Teosinte Amatlan de Canas	9
Maize Crucero Lagunitas	Teosinte Crucero Lagunitas	6
Maize Crucero Lagunitas	Teosinte El Rodeo	6
Maize Crucero Lagunitas	Maize Palmar Chico	5
Maize Crucero Lagunitas	Maize Los Guajes	4
Maize Crucero Lagunitas	Teosinte San Lorenzo	4

Maize Crucero Lagunitas	Maize Amatlan de Canas	3
Maize Crucero Lagunitas	Maize San Lorenzo	3
Maize Crucero Lagunitas	Teosinte Palmar Chico	3
Maize Crucero Lagunitas	Teosinte Los Guajes	2
Maize Los Guajes		6
Maize Los Guajes	Teosinte Amatlan de Canas	4
Maize Los Guajes	Maize Crucero Lagunitas	3
Maize Los Guajes	Teosinte Crucero Lagunitas	3
Maize Los Guajes	Maize San Lorenzo	2
Maize Los Guajes	Teosinte Palmar Chico	2
Maize Los Guajes	Maize Palmar Chico	1
Maize Los Guajes	Teosinte El Rodeo	1
Maize Los Guajes	Teosinte Los Guajes	1
Maize Los Guajes	Teosinte San Lorenzo	1
Maize Palmar Chico		9
Maize Palmar Chico	Teosinte Amatlan de Canas	7
Maize Palmar Chico	Maize Crucero Lagunitas	5
Maize Palmar Chico	Teosinte Palmar Chico	4
Maize Palmar Chico	Teosinte El Rodeo	3
Maize Palmar Chico	Maize Los Guajes	2
Maize Palmar Chico	Maize San Lorenzo	2
Maize Palmar Chico	Teosinte San Lorenzo	2
Maize Palmar Chico	Teosinte Crucero Lagunitas	1
Maize Palmar Chico	Teosinte Los Guajes	1
Maize San Lorenzo		6
Maize San Lorenzo	Teosinte Amatlan de Canas	4
Maize San Lorenzo	Maize Crucero Lagunitas	3
Maize San Lorenzo	Maize Los Guajes	2
Maize San Lorenzo	Teosinte Crucero Lagunitas	2
Maize San Lorenzo	Teosinte El Rodeo	2
Maize San Lorenzo	Teosinte Palmar Chico	2
Maize San Lorenzo	Maize Palmar Chico	1
Maize San Lorenzo	Teosinte Los Guajes	1
Maize San Lorenzo	Teosinte San Lorenzo	1
Teosinte Amatlan de Canas		11
Teosinte Amatlan de Canas	Maize Crucero Lagunitas	9
Teosinte Amatlan de Canas	Maize Palmar Chico	4
Teosinte Amatlan de Canas	Maize Amatlan de Canas	3
Teosinte Amatlan de Canas	Maize Los Guajes	3
Teosinte Amatlan de Canas	Maize San Lorenzo	3
Teosinte Amatlan de Canas	Teosinte Los Guajes	3
Teosinte Amatlan de Canas	Teosinte Palmar Chico	3
Teosinte Amatlan de Canas	Teosinte San Lorenzo	3
Teosinte Amatlan de Canas	Teosinte Crucero Lagunitas	1
Teosinte Amatlan de Canas	Teosinte El Rodeo	1
Teosinte Crucero Lagunitas		9
Teosinte Crucero Lagunitas	Maize Crucero Lagunitas	6
Teosinte Crucero Lagunitas	Maize Los Guajes	5
Teosinte Crucero Lagunitas	Teosinte Amatlan de Canas	4
Teosinte Crucero Lagunitas	Teosinte El Rodeo	4
Teosinte Crucero Lagunitas	Maize Palmar Chico	3

Teosinte Crucero Lagunitas	Maize San Lorenzo	3
Teosinte Crucero Lagunitas	Maize Amatlan de Canas	1
Teosinte Crucero Lagunitas	Teosinte Palmar Chico	1
Teosinte Los Guajes	Maize Crucero Lagunitas	3
Teosinte Los Guajes	Teosinte Amatlan de Canas	3
Teosinte Los Guajes	Maize Los Guajes	3
Teosinte Los Guajes	Maize Palmar Chico	1
Teosinte Los Guajes	Maize San Lorenzo	1
Teosinte Los Guajes		1
Teosinte Palmar Chico	Maize Crucero Lagunitas	8
Teosinte Palmar Chico	Teosinte Amatlan de Canas	5
Teosinte Palmar Chico	Maize Palmar Chico	5
Teosinte Palmar Chico	Maize Los Guajes	4
Teosinte Palmar Chico	Maize San Lorenzo	3
Teosinte Palmar Chico	Teosinte El Rodeo	3
Teosinte Palmar Chico	Maize Amatlan de Canas	2
Teosinte Palmar Chico	Teosinte Crucero Lagunitas	1
Teosinte Palmar Chico	Maize Crucero Lagunitas	1
Teosinte San Lorenzo	Teosinte Amatlan de Canas	5
Teosinte San Lorenzo	Maize Palmar Chico	5
Teosinte San Lorenzo	Teosinte El Rodeo	3
Teosinte San Lorenzo	Maize Amatlan de Canas	2
Teosinte San Lorenzo	Maize Los Guajes	2
Teosinte San Lorenzo	Maize San Lorenzo	1
Teosinte San Lorenzo		1
Teosinte San Lorenzo		1

Supplement III

Predicting α by mutation type

Estimates of α may be effected by differences in the mutation rates of different nucleotides and genomic regions. GC biased gene conversion has been shown to reduce α by making it harder to purge slightly deleterious alleles Hämälä and Tiffin (2020). Likewise, the higher mutation rates observed at methylated cytosine bases increases the rate of $C \rightarrow T$ mutations Ossowski et al. (2010), which is another mechanism that could result in variation in α by changing the ability to purging deleterious alleles, or by changing the probability of fixation of new adaptive mutations.

To study this, we used the same approach as Hämälä and Tiffin (2020), where we separated the site frequency spectra based on mutation types according to whether the ancestral and derived nucleotides had a single (weak) or double (strong) hydrogen bond between the DNA strands. As such, we studied three mutations types: $A / T \rightarrow G / C$ mutations (WS), $G / C \rightarrow A / T$ (SW) and $C / G \rightarrow G / C$ or $A / T \rightarrow T / A$ (SS_WW).

Unlike patterns found in Arabidopsis (Hämälä and Tiffin 2020), α was highest for WS mutations, although there was considerable overlap between the credible intervals for all mutation types.

Figure S2 Predicted values of α across mutation types. Grey bands for each mutation type show the 95% credible intervals averaged over each population.

Supplement IV

Further assessment of sweep inferences and precision

We found that only 67% and 80% of sweeps were shared between the two random subsamples for maize and teosinte populations from Palmar Chico, respectively (see Results). While our updated method to identifying sweeps improved precision over our previous one (which shared 40% and 50% (Tittes et al. 2021)), the low precision still warrants further exploration.

One explanation for the low sweep precision could be substructure within the Palmar Chico populations, leading to replicates with slightly different histories. This could create unequal power to detect sweeps if, for example, the subpopulations had different progress towards fixation of the beneficial allele. However, this explanation is unlikely as individuals were randomly assigned to subpopulations, so any substructure is likely to be distributed evenly between the two samples. This is further supported from the two samples showing relatively short branch lengths in the population phylogeny (Figure S3). The branch lengths separating the two subsamples (cophenentic distance) was 0.00835 and 0.00962 for maize and teosinte respectively, compared to the within subspecies means of 0.0170 and 0.0559 .

Figure S3 Treemix phylogeny including both subsamples of Palmar Chico.

Another potential explanation for lowered sweep sharing between replicates is that sweeps vary in their detectability based on their characteristics. Namely, sweeps that were weakly selected, incomplete, and/or ones that started at a high initial frequency prior to the onset of selection (soft sweeps) may vary in their detectability using the methods we employed. We conducted a simulation experiment to better understand the potential causes of the low shared proportion, and to measure performance to detect different kinds of sweeps more generally. We used discoal (Kern and Schrider 2016) to simulate sweeps in a 400 Kb region using the average genome-wide maize mutation and recombination rates under the inferred demographic history of the maize population from Palmar Chico (Figure 2). We simulated four distinct scenarios: classical hard sweeps, where selection acts to fix an an adaptive mutation; soft sweeps, where selection is initiated after the adaptive allele reaches a specified frequency; and incomplete sweeps, where a hard sweep simulation is stopped at a specified frequency, and neutral simulations without selection. For soft sweeps, we varied the initial by drawing from a beta distribution with shape parameters 1 and 20 . Incomplete sweeps finished when the adaptive allele reached a frequency of 0.5 . For all three types of sweeps, we also varied the strength of selection using the parameter $\alpha=4 N 0$ s to be 10,50 , or 100 , where $N 0$ is the present day effective population size and s is the selection coefficient. In addition to matching demography and other parameters, we used the same sampling scheme, simulation 50 individuals, than randomly choosing two non-overlapping subsets of 10 individuals (https://github.com/silastittes/ms_sub). From the simulations we assessed the True/False Positive/Negative Rates for each combination of sweep type and strength of selection (α), as well as the distribution of base pair overlap between sweep regions inferred in the the two random subsamples. The same sweep inference methods and parameters were used for these simulations and the empirical samples (see methods). Overall, we found that sweep characteristics we explore indeed impacted our overall power to detect them, and the about of overlap between the sweep regions. Namely, weakly selected sweeps had consistently lower True Positive Rates (Table S3).

Table S3 Performance to detect simulated hard, soft, and incomplete sweeps under varying strengths of selection under the maize Palmar Chico population demography. TPR, TNR, FNR, and FPR stand for true postive, true negative, false negative, and false positive rates, respectively.

$4 N_{e} s$	simulation type	TPR	TNR	FNR	FPR
10	hard	0.14	0.67	0.86	0.33
50	hard	0.92	0.75	0.08	0.25
100	hard	0.99	0.84	0.01	0.16
10	incomplete	0.04	0.67	0.96	0.33
50	incomplete	0.06	0.67	0.94	0.33
100	incomplete	0.05	0.63	0.95	0.37
10	soft	0.13	0.71	0.87	0.29
50	soft	0.75	0.74	0.25	0.26
100	soft	0.81	0.76	0.19	0.24

Figure S4 Performance to detect simulated hard, soft, and incomplete sweeps under varying strengths of selection under the maize Palmar Chico population demography. Each panel shows a combinations of sweep type (hard, soft, or incomplete) and strength of selection ($\alpha=4 N_{e} s=10,50$, or 100)

Figure S5 Degree of overlap between simulated sweep regions takenfrom two downsampled replicates under the maize Palmar Chico population demography. Positive values show the amount of overlap in basepairs between sweep regions, while negative values represent a the space between them. Panel structure follows that of S4.

Figure S6 Frequency of each population as the mutation source for sweeps shared via migration. The order of populations along the x axis matches that of the source populations labeled for each strip along the top.

Figure S7 Inferred sweeps shared between subspecies via migration. The x axis is sorted by the number of populations each sweep was found in. Populations are sorted along the y axis first by subspecies then by their number of sweeps.

[^0]: ${ }^{1}$ For correspondence, Dept. of Evolution and Ecology, University of California, Davis, CA, USA E-mail: stittes@ucdavis.edu; rossibarra@ucdavis.edu

