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ABSTRACT
What is the genetic architecture of local adaptation and what is the geographic scale over which it operates? We investigated
patterns of local and convergent adaptation in five sympatric population pairs of traditionally cultivated maize and its wild relative
teosinte (Zea mays subsp. parviglumis). We found that signatures of local adaptation based on the inference of adaptive
fixations and selective sweeps are frequently exclusive to individual populations, more so in teosinte compared to maize.
However, for both maize and teosinte, selective sweeps are also frequently shared by several populations, and often between
subspecies. We were further able to infer that selective sweeps were shared among populations most often via migration,
though sharing via standing variation was also common. Our analyses suggest that teosinte has been a continued source
of beneficial alleles for maize, even after domestication, and that maize populations have facilitated adaptation in teosinte by
moving beneficial alleles across the landscape. Taken together, our results suggest local adaptation in maize and teosinte has
an intermediate geographic scale, one that is larger than individual populations, but smaller than the species range.
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1

Introduction2

As populations diverge and occupy new regions, they become3

locally adapted to the novel ecological conditions that they en-4

counter. Decades of empirical work have carefully documented5

evidence for local adaptation, including the use of common6

garden and reciprocal transplant studies demonstrating that7

populations express higher fitness in their home environment8

(Clausen et al. 1948) as well as quantitative genetic approaches9

that show selection has acted on individual traits to make or-10

ganisms better suited to their ecological conditions (Savolainen11

et al. 2013). It is clear from these studies that local adaptation is12

pervasive in natural populations.13

One important but understudied aspect of local adaptation is14

its geographic scale. Empirical studies have documented adap-15

tation at multiple scales, from microgeographic differentiation16

among mesic and xeric habitats along a single hillside (Ham-17

rick and Allard 1972) to regional (Lowry et al. 2008; Whitehead18

et al. 2011) and even global scales (Colosimo et al. 2005). A key19

factor determining the geographic scale of local adaptation is20

the distribution of the biotic and abiotic challenges to which21

organisms are adapting, as these features place limits on the22

1 For correspondence, Dept. of Evolution and Ecology, University of California, Davis,
CA, USA E-mail: stittes@ucdavis.edu; rossibarra@ucdavis.edu

locations over which an allele remains beneficial. Environmental23

features overlap with each other to varying degrees (Tuanmu24

and Jetz 2015). The degree of overlap between environmen-25

tal features may be important if mutations are pleiotropic, as26

an allele may not be beneficial when integrating its effect over27

multiple selective pressures (Chevin et al. 2010).28

The geographic scale of local adaptation depends, too, on29

population structure. Gossmann et al. (2010) showed that the30

estimates of the proportion of new mutations fixed by natural31

selection across a number of plant species tended to overlap32

with zero, suggesting there is little evidence for adaptation at33

non-synonymous sites (though see Williamson et al. 2014; Geist34

et al. 2019 for more recent non-zero estimates of α in two plant35

taxa). One potential explanation raised by the authors for this36

surprising finding was that natural populations are often struc-37

tured, such that very few adaptations would be expected to38

be common over the entire range of the species’ distribution.39

Indeed, even when selective pressures are shared across popula-40

tions, structure can hinder a species’ adaptation by limiting the41

spread of beneficial alleles across its range (Bourne et al. 2014).42

Consistent with this, Fournier-Level et al. (2011) conducted a43

continent-scale survey across strongly structured populations44

of Arabidopsis thaliana, finding that alleles which increase fitness45

tended to occur over a restricted geographic scale. But it remains46

unclear if the scales identified in Arabidopsis are common to lo-47
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cal adaptation across the entire genome, and how similar the48

general patterns are across taxa.49

The majority of local adaptation studies are motivated by50

conspicuous differences in the phenotypes or environments of51

two or more populations. As such, many instances of local adap-52

tation that are occurring, as well as the underlying beneficial53

mutations being selected, may go overlooked. This hinders our54

ability to draw more general conclusions about the overall fre-55

quency and impact of local adaptation on a given population’s56

evolutionary history.57

Using population genetic approaches, we can compare the58

observed distribution of beneficial alleles across multiple popula-59

tions to get a more holistic description of the history of selection.60

The patterns of selective sweeps and adaptive fixations that61

are exclusive to or shared among multiple populations can be62

used to measure a beneficial allele’s geographic extent, which63

is influenced by the factors outlined above. If we infer multiple64

structured populations have fixed the same beneficial allele, this65

suggests that pleiotropy has not disrupted the adaptive value66

of the allele across environments or that the populations share a67

sufficiently similar set of selective pressures. Assessment of the68

relative frequency and geographic extent of unique and shared69

beneficial alleles thus allows us to quantify the scale of local70

adaptation. Additionally, when multiple populations do share71

an adaptive allele, we can infer the mode by which sharing oc-72

curred (Lee and Coop 2017), providing further insights about the73

environmental and genetic context of each adaptation as well as74

the processes underlying allele sharing among populations.75

Motivated to improve our understanding about the genetic76

basis of local adaptation and its geographic scale, we set out to77

use population genetic approaches to understand patterns of78

adaptation via selective sweeps in multiple discrete populations79

of domesticated maize Zea mays ssp. mays and its wild relative80

teosinte Zea mays ssp. parviglumis growing across their native81

range in Mexico. Zea mays is an annual grass, native to southern82

Mexico. Maize was domesticated ≈ 9, 000 years ago (Piperno83

et al. 2009) from its common ancestor with the extant annual84

grass teosinte, but traditional open-pollinated populations main-85

tain an extremely large population size and a surprising amount86

of diversity (Bellon et al. 2018). Maize is also the world’s most87

productive crop (Ranum et al. 2014), and an important model88

system for genetics (Nannas and Dawe 2015).89

Previous work in both maize and teosinte has demonstrated90

clear population structure at both regional (Pyhäjärvi et al. 2013)91

and fine (Van Heerwaarden et al. 2010; Hufford et al. 2011)92

scales, and population genetic and common garden studies in93

both subspecies have shown clear signatures of populations be-94

ing adapted to ecological conditions across their native range95

(Janzen et al. 2021). In maize this includes local adaptation to96

high elevation (Fustier et al. 2019; Gates et al. 2019), phosphorous97

(Rodriguez-Zapata et al. 2021), temperature (Butler and Huybers98

2013), and day length (Swarts et al. 2017). Similarly, studies of99

teosinte have documented local adaptation based on features100

such as the differential patterns of microbial community recruit-101

ment (O’Brien et al. 2019), elevation (Fustier et al. 2019, 2017),102

and temperature and phosphorous (Aguirre-Liguori et al. 2019).103

Studying local adaptation of maize and teosinte across the104

same geographic locations presents opportunities to disentangle105

multiple processes that interact with adaptation. For example,106

the effect of the domestication process in maize populations and107

their ongoing interaction and dependence on humans has cre-108

ated changes in the timing and types of selection imposed across109

all populations, as well as changes in demography (Wright et al.110

2005). Based on population structure and differences in the abi-111

otic environment among populations, we anticipated that local112

adaptation would have a small geographic scale. We predicted113

that sweeps would be exclusive to individual populations, and114

that adaptations shared between subspecies would be limited to115

sympatric pairs of populations growing in similar environments116

and with ample opportunity for genetic exchange. Because of117

domestication and the ongoing migration facilitated by humans,118

we expected that maize would show more shared adaptations,119

leading to a relatively larger geographic scale of local adaptation.120

Contrary to our predictions, our results suggest adaptations are121

often shared across two or more populations, and commonly122

between maize and teosinte. We also found that migration and123

standing variation have played an important role as sources of124

beneficial alleles, including many that are shared across the two125

subspecies.126

Results127

We sampled teosinte (Zea mays subsp. parviglumis) individ-128

uals from six locations across its native range, along with a129

nearby (sympatric) population of traditionally cultivated open-130

pollinated maize (commonly referred to as landraces) at five of131

these locations (Figure 1C). We sampled ten individuals from132

each population for each subspecies, with the exception of the133

Palmar Chico populations, where we took advantage of 55 and134

50 individuals previously sampled for maize and teosinte, re-135

spectively (Table S1, Supplement I, Chen et al. 2020). In most136

cases, results for both Palmar Chico populations were down-137

sampled to ten randomly selected individuals to facilitate com-138

parisons to the other populations. We did, however, use a second139

random sample of the Palmar Chico populations to estimate the140

precision of our inference of selective sweeps (see below in Re-141

sults and Methods).142

Rangewide samples for each subspecies were constructed by143

randomly selecting one individual from each population. All 195144

individuals were sequenced at 20 to 25x coverage and aligned145

to version 5 of the Zea mays B73 reference genome (Hufford et al.146

2021; Portwood et al. 2019). Analyses were based on genotype147

likelihoods (Korneliussen et al. 2014) except in cases where called148

genotypes were required (see Methods).149

Subspecies and populations are genetically distinct despite150

evidence of gene flow.151

To assess the relationships among our sampled populations,152

we constructed a population-level phylogeny using Treemix153

(Pickrell and Pritchard 2012 v.1.13). As anticipated from previous154

work (Buckler and Holtsford 1996; Hufford et al. 2012), we found155

clear divergence between two clades composed of maize and156

teosinte populations, though the relationship among geographic157

locations differed between the subspecies (Figure 1B).158

Within subspecies, populations were genetically distinct from159

one another. Using NGSadmix (Skotte et al. 2013), there was little160

evidence of admixture between populations of the same sub-161

species; only two of the sampled individuals revealed evidence162

of mixed ancestry (Figure 1A and 1D).163

Despite the clear phylogenetic separation between the two164

subspecies, there is evidence for gene flow between maize and165

teosinte populations. We conducted f4 tests using Treemix (Pick-166

rell and Pritchard 2012), and found that all populations showed167

some evidence of gene flow with various populations of the168

other subspecies, as measured by the high absolute Z-Scores of169
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the f4 statistic. Overall, we found little evidence of increased170

gene flow between sympatric pairs (Figure 1E), but Z-Scores171

were sensitive to the specific combinations of non-focal popu-172

lations included in each test (Table S2). Specifically, we found173

that elevated f4 tests almost always included the maize popu-174

lation from Crucero Lagunitas (p < 2× 10−10), which was true175

whether or not the f4 test included its sympatric teosinte.176
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Figure 1 | The geographic distribution, population structure,
and gene flow of maize and teosinte populations. (A and D)
Admixture proportions among populations within subspecies.
The dominant cluster in each population is colored by sam-
pling location. (B) The unrooted tree of maize and teosinte
populations. (C) Geographic sampling locations for the stud-
ied maize and teosinte populations. (E) F4 tests to quantify
evidence of gene flow between the subspecies for allopatric
and sympatric population pairs. Each point in (E) reports the
absolute Z-Score for an f4 test, where a given focal population
was partnered with another population of the same subspecies
as a sister node, and two other populations from the other sub-
species as a sister clade (see Methods for further details). Black
points show f4 tests that included maize from Crucero Lagu-
nitas, otherwise points are colored by focal population. The
dotted line corresponds to our chosen significance threshold
(p = 0.001).
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Populations vary in their diversity, demography, and history of178

inbreeding179

180

We estimated pairwise nucleotide diversity (π) and Tajima’s181

D in non-overlapping 100Kb windows along the genome in our182

sampled populations using ANGSD (Korneliussen et al. 2014).183

For all populations, π was in the range of 0.006 to 0.01, consistent184
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Figure 2 | Inbreeding, diversity, and demography. The dis-
tribution of π (A) and Tajima’s D (B) calculated in 100Kb win-
dows for maize and teosinte populations. Dashed lines show
the median values for the two subspecies. Filled white points
show the median values of each statistic generated from coa-
lescent simulations under the demographic history inferred
for each population. Colors for each population are as in Fig-
ure 1 and are shown at the bottom of the figure. (C) The in-
ferred demography for each population. (D) The quantile
of observed Homozygosity By Descent (HBD) lengths (cM)
versus those simulated under each population demography.
Dashed lines shows the 1:1 correspondence between the axes.
(E) The distribution of inbreeding coefficients in each pop-
ulation. Filled white points are the average values for each
population.

with both previous Sanger (Wright et al. 2005) and short-read185

(Hufford et al. 2012) estimates for both subspecies. Variation in186

Tajima’s D and π was greater among populations of teosinte187

than maize (Figures 2 A and B, Table S2).188

We independently estimated the demographic history for189

each population from their respective site frequency spectra190

using mushi (DeWitt et al. 2021 v0.2.0). All histories estimated a191

bottleneck that started approximately 10 thousand generations192

ago (assuming a mutation rate of 3× 10−8 (Clark et al. 2005)193

(Figure 2E).194

Teosinte is a primarily outcrossing grass (Hufford 2010), and195

regional maize farming practices promote outcrossing as well196

(Bellon et al. 2018). To validate our estimated demography and197

characterize the history of inbreeding in each population, we198

compared the empirical quantiles of homozygosity by descent199

(HBD) segments inferred using IBDseq (Browning and Brown-200

ing 2013) to those simulated under the demography of each201

population. With the exception of the smallest HBD segments,202

which are more prone to inaccurate estimation, the simulated203
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quantiles generally resemble the empirical quantiles (Figure 2D).204

This indicates that the inbreeding history of our population is205

adequately captured by the demography. However, consistent206

with previous studies of teosinte (Hufford 2010), we do see207

variation in the distributions of HDB among populations. For208

example, the size distribution of HBD segments in San Lorenzo209

and Los Guajes were consistently larger than those simulated210

from their demographies, particularly for the smallest segments.211

This likely reflects inbreeding caused by demographic changes,212

particularly those further in the past that may not be not as213

accurately captured by our demography inferences. These re-214

sults are consistent with previous studies that found evidence215

for historical inbreeding in teosinte, particularly in individuals216

sampled from San Lorenzo (Pyhäjärvi et al. 2013). Lastly, we esti-217

mated inbreeding coefficients (F) using ngsRelate (Hanghøj et al.218

2019). Although inbreeding coefficients were as high as 0.37, the219

mean value of F was 0.017± 0.001 (SE) and 0.033± 0.001 (SE)220

for maize and teosinte (respectively), (Figure 2E). These values221

are consistent with prior estimates of the rate of outcrossing of222

≈ 3% in teosinte (Hufford et al. 2011) and suggest there has been223

relatively little inbreeding in either subspecies in the recent past.224

Rangewide estimates of the proportion of mutations fixed by225

natural selection (α) are commensurate with that of individual226

populations227

If populations are relatively isolated and adaptation occurs pri-228

marily via local selective sweeps, then we expect that most229

adaptive fixations will happen locally in individual populations230

rather than across the entire species range. This pattern should231

become even stronger if alleles experience negative pleiotropy,232

such that they are only adaptive in one environment and delete-233

rious in others, further inhibiting the ability of such alleles to fix234

rangewide. If adaptation via sweeps is commonly restricted to235

individual populations, using a broad geographic sample to rep-236

resent a population could underestimate the number of adaptive237

substitutions that occur (Gossmann et al. 2010). To test this, we es-238

timated the proportion of mutations fixed by adaptive evolution239

(α) (Smith and Eyre-Walker 2002) across all of our populations240

and the rangewide samples for both subspecies. We estimated241

α jointly among all populations by fitting a non-linear mixed-242

effect model based on the asymptotic McDonald–Kreitman test243

(Messer and Petrov 2013). Across populations, α varied between244

0.097 (teosinte San Lorenzo) and 0.282 (teosinte Palmar Chico),245

with more variation among teosinte populations (Figure 3). In246

contrast to our expectations, rangewide estimates of α were com-247

mensurate with individual populations. We additionally evalu-248

ated estimates of α for specific mutation types, which has been249

shown to be lower at sites mutating from A/T to G/C, due to250

the effects of GC-biased gene conversion in Arabidopsis (Hämälä251

and Tiffin 2020). While we do find some evidence that α predic-252

tions varied by mutation type (see Figure S2, Supplement III),253

the patterns are the opposite of that found in Arabidopsis, per-254

haps because of the increased level of methylation in maize and255

the higher mutation rate at methylated cytosines. Even after256

accounting for differences among mutation types, rangewide257

values remained commensurate with that of the populations.258

259

Teosinte populations have a higher proportion of private260

sweeps261

Our inferences of α are based on substitutions at non-262

synonymous sites. The functional space for selection to act263
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Figure 3 The proportion of mutations fixed by natural selec-
tion. Estimated values of the proportion of mutations fixed by
natural selection (α) by population. Vertical lines show the 95%
credible interval.

on occurs over many other parts of the genome besides protein264

coding bases, especially for large repetitive plant genomes (Mei265

et al. 2018). To identify signatures of adaptation occurring any-266

where in the genome, we used RAiSD (Alachiotis and Pavlidis267

2018) to identify putative selective sweeps in each population,268

where sweep regions were identified by merging µ summary269

statistic outliers using a threshold defined by coalescent sim-270

ulations under each population’s estimated demography (see271

Methods). Simulations suggest this approach has high accuracy272

and power compared to alternative methods over a broad range273

of scenarios (Alachiotis and Pavlidis 2018). To further assess274

the precision of our sweep inferences, we compared the over-275

lap in sweep regions from a second random sample from both276

maize and teosinte from Palmar Chico. After optimizing over a277

grid of hyperparameters for RAiSD (see Methods), we estimated278

the proportion of sweeps shared between replicates to be 0.67279

and 0.80 for maize and teosinte, respectively. This proportion280

is consistent with the false positive rates for strongly selected281

hard sweeps estimated from simulations under the demographic282

histories (See Supplement IV). As such, a non-trivial number283

of the putative sweep regions we inferred with RAiSD in other284

populations are likely also false positives, though far fewer than285

previously reported using alternative methods for identifying286

sweep regions (Tittes et al. 2021).287

We used the inferred sweep regions to assess the degree to288

which adaptation is shared or locally restricted using the sweep289

regions we identified. We determined how many sweep re-290

gions were exclusive to one population (private), along with291

the number of overlapping sweep regions shared across two292

or more populations within and between the two subspecies.293

Overall, sharing was common, though fewer sweeps were exclu-294

sively shared between teosinte populations (Figure 4A). Across295

teosinte populations, 22% of sweeps were private, which was296

significantly greater than the 14% found in maize (binomial glm,297

p = 0.0026; Figure 4B).298
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Figure 4 The distribution of shared and private selective sweeps. (A) The total number of sweeps inferred in each population. (B)
The proportion of sweeps that are unique to each population. (C) The negative log10 p values for hypergeometric tests to identify
maize-teosinte population pairs that shared more sweeps than expected by chance (see Methods). P values were adjusted for multi-
ple tests using the Benjamini and Yekutieli method. Populations along the y axis are maize (order matches the legend below, with
Amatlán de Cañas at the bottom), while the point color designates the teosinte population each maize population was paired with.
Points with black outline highlight the sympatric population comparisons. Point size is scaled by the number of shared sweeps
identified in each pair. The dotted line indicates our chosen significance level (p = 0.05). (D) Counts of shared and unique sweeps
broken down by how many maize and teosinte populations they occurred in. Grey boxes show sweeps shared across the two sub-
species.

Sympatric population pairs do not share more sweeps299

If local adaptation favors certain alleles in a given environment,300

we might expect to see increased sharing of sweeps between301

sympatric populations of maize and teosinte. To look for evi-302

dence of such sharing, we used a hypergeometric test based on303

the number of sweeps in each population and the number of304

shared sweeps between population pairs, which allowed us to305

test if sympatric population pairs tended to have more sharing306

than expected by chance. In conducting this test, we incorpo-307

rated our estimate of sweep precision (see Methods). Sympatric308

pairs did not tend to have a lower p value than allopatric pairs,309

and no population pair showed more sharing than expected310

by chance (Figure 4). We additionally found that, despite ev-311

idence that sweeps are commonly shared between maize and312

teosinte (Figure 4D), there were zero sweeps exclusive to sym-313

patric pairs; sweeps that were shared between sympatric pairs314

always included at least one other allopatric population.315

Convergent adaptation from migration is common among316

maize and teosinte populations317

In instances when two or more populations shared a sweep re-318

gion, we used rdmc (Lee and Coop 2017; Tittes 2020) to infer the319

most likely mode of convergence. We classified sweeps based on320

which composite log-likelihood model was greatest out of four321

possible models of convergence (independent mutations, migra-322

tion, neutral, and standing variation). Of the 102 sweeps that323

were shared by two or more populations, there were 1, 38, and324

23 sweeps inferred to be convergent via independent mutations,325

migration, or standing variation; and an additional 40 sweeps326

inferred to be neutral (Figure 5C). The high proportion (37%) of327

neutral models inferred by rdmc is consistent with our estimate328

of sweep precision. We have higher confidence, however, that329

regions inferred to be non-neutral with both RAiSD and rdmc330

represent bona fide sweeps. The strength of support (measured331

as the composite likelihood score of the best model relative to the332

next best) varied among sweeps and modes of convergence, but333

in general a single model tended to be clearly favored among334

the alternatives (Figure 5A). Selection coefficients for sweeps335
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Figure 5 Modes of convergent adaptation and affiliated parameters for shared selective sweeps. (A) The difference in composite
likelihood scores for the best supported mode of convergent adaptation (colors in top legend) compared to next best mode (black
points), and best mode compared to the neutral model (other end of each line segment above or below black point). (B) Selection
coefficients colored by the most likely mode of convergent adaptation. (C) Number of shared sweeps for both subspecies that were
inferred to be from each convergent adaptation mode. (D) The most likely source population for shared sweeps that converged via
migration. Bars are colored by population (bottom legend) and are outlined in black for teosinte and grey for maize. (E) Observed
frequency of the inferred time in generations that each selected allele persisted prior to selection for models of convergent adapta-
tion via standing variation. (F) Observed frequency of each inferred migration rate value for models of convergent adaptation via
migration. Panels C, D, E and F are partitioned by which subspecies shared the sweep.

varied among modes, with convergence via migration having336

the highest average estimate (Figure 5B). When migration was337

the mode of convergence and sweeps were shared by both sub-338

species, teosinte El rodeo, and maize from Crucero Lagunitas339

and Palmar Chico were the most frequent source populations340

(Figure 5D). In convergence models with migration, we tested341

migration rates between 10−3 and 10−1. The most likely migra-342

tion rate varied across sweeps, but tended to be 10−1 for the343

majority of sweeps shared by the two subspecies and sweeps344

exclusive to maize. In contrast, the lowest migration rate (10−3)345

was always the most likely for sweeps exclusive to teosinte (Fig-346

ure 5F). Together, these findings indicate that many alleles are347

adaptive in the genomic background of both maize and teosinte,348

and that adaptive alleles are commonly shared between the two349

subspecies.350

Discussion351

Local adaptation occurs at intermediate scales352

Gossmann et al. (2010) hypothesized that population structure353

within a species could limit the fixation of adaptive alleles across354

a species range, causing a reduction in the proportion of muta-355
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tions fixed by positive selection (α). Based on this hypothesis356

and the strong population structure we observed (Figure 1), we357

expected that rangewide samples would have smaller estimates358

of α. Instead, α for the rangewide samples of both maize and359

teosinte were commensurate with that of individual populations360

(Figure 3), a pattern that persisted even when we considered361

α estimated from several different mutation types (Figure S2).362

This is inconsistent with the patterns we would expect fine-scale363

local adaptation to generate, where adaptive substitutions for a364

given population should not be shared by other populations ex-365

periencing their own distinct local selective pressures and antag-366

onistic pleiotropy suppresses rangewide fixation in alternative367

environments. Our findings makes sense in the light of other368

work studying pleiotropy’s impact on adaptive evolution in369

Arabidopsis, which found that most mutations impact few traits370

and that the genetic architecture was largely non-overlapping371

when studied across multiple environments (Frachon et al. 2017).372

Our results are consistent with models in which locally bene-373

ficial alleles are simply neutral elsewhere, a process thought374

to be more common when overall levels of gene flow are low375

(Wadgymar et al. 2022) but one that could nonetheless augment376

the rangewide spread of such alleles.377

We found a similar pattern from our analysis of shared ver-378

sus unique selective sweeps, which were more often shared by379

at least one other allopatric population. Similar to our predic-380

tions for α, we expected that local adaptation would lead most381

sweeps to be exclusive to individual populations. Instead, the382

average proportion of sweeps exclusive to a single population383

was low to moderate for maize and teosinte populations, re-384

spectively (Figure 4). We also expected that maize and teosinte385

populations growing in close proximity would share similar386

local selective pressures and would therefore share more sig-387

natures of adaptation. However, no pairs showed evidence of388

sharing more sweeps than would be expected by chance, and389

overall sympatric pairs did not show increased sharing of se-390

lective sweep regions compared to allopatric pairs (Figure 4).391

This regional scale of local adaptation is consistent with patterns392

seen in maize adaptation to the highlands (Calfee et al. 2021),393

where sympatric maize and teosinte populations show little evi-394

dence of adaptive gene flow, and adaptive teosinte introgression395

appears widespread among highland maize.396

There are a number of considerations to make in the inter-397

pretation of our results. The two methods we used to identify398

signatures of adaptation, estimating α and identifying signatures399

of selective sweeps, are best-suited for adaptation that leads to400

fixation of beneficial alleles, and/or mutations of large effect.401

For the moderate population sizes and selection coefficients ob-402

served here, fixation of new beneficial mutations takes a consid-403

erable amount of time, on the order of 4log(2N)/s generations404

(Charlesworth 2020). Compared to the sojourn time of adaptive405

mutations, our populations may have occupied their current406

locations for relatively few generations. As a result, the selective407

sweeps underlying local adaptation to the selective pressures408

that populations currently face are more likely to be incomplete,409

so may be more difficult to detect (Xue et al. 2021; Pritchard410

et al. 2010). Likewise, the adaptive sweeps that have completed411

may have been under selection in ancestral populations that412

occupied different environments than the sampled individuals,413

and their signatures may no longer be detectable (Przeworski414

2002), placing a limit on the temporal resolution with which415

we can make inference about instances of local adaptation. An-416

other complication in detecting local adaptation relates to the417

size and complexity of plant genomes. Large genomes may418

lead to more soft sweeps, where no single mutation driving419

adaptive evolution would fix (Mei et al. 2018). Like incomplete420

sweeps, soft sweeps are harder to identify (Schrider and Kern421

2016; Pritchard et al. 2010), which could obscure the signatures422

of local adaptation. Even if our populations have occupied their423

current locations for a sufficient duration for local adaptation424

to occur, the completion of selective sweeps may be hindered425

by changes and fluctuations in the local biotic and abiotic con-426

ditions. Relatively rapid change in local conditions could also427

result in fluctuating selection, such that most alleles do not re-428

main beneficial for long enough to become fixed (Rudman et al.429

2021).430

While our focus has been on the trajectory of individual ben-431

eficial alleles, the genetic basis of many adaptive traits may be432

highly polygenic. Allele frequency changes underlying poly-433

genic adaptation are more subtle than those assumed under434

selective sweeps, making them harder to detect (Pritchard et al.435

2010). Evaluating local adaptation in maize and other systems436

will be facilitated by studying the contribution of polygenic437

adaptation to the evolution of complex traits. However, if adap-438

tation across our studied populations were strictly polygenic,439

and especially if it were acting on alleles with small effect sizes,440

we would expect to find few to no shared sweeps. The fact that441

we find many instances of sharing across populations supports442

that a non-trival amount of local adaptation is occurring via443

selective sweeps, or through polygenic adaptation acting on a444

few loci with large effects that leave a signature similar to that445

of a selective sweep.446

Differences in diversity and demography influence adaptation447

in maize and teosinte448

While our results were generally similar between the two sub-449

species and among the sampled populations, there are several450

important differences. The most obvious difference between451

the subspecies is the ongoing interaction and dependence of452

maize on humans via domestication and farming. Compared453

to teosinte, maize had lower average genomewide estimates of454

diversity (Figure 2A). These differences are consistent with the455

previously discovered pattern that diversity tends to be lower456

in crops compared to their wild relatives (Doebley 1989; Huf-457

ford et al. 2012), a pattern putatively driven by domestication458

bottlenecks (Eyre-Walker et al. 1998). In line with this argument,459

the few teosinte populations with lower diversity than those in460

maize (El Rodeo and San Lorenzo) were inferred to have the461

most substantial bottlenecks and historical inbreeding (Figure 2).462

More generally, we found that π and Tajima’s D were more463

variable among teosinte populations, indicative of differences in464

their demographic histories.465

Our demographic inferences suggest that all populations had466

signatures of a bottleneck, the timing of which coincides with the467

beginning of maize domestication ≈ 9, 000 years ago (Piperno468

et al. 2009). The severity of the bottleneck varied considerably469

across populations, particularly for teosinte. While finding a470

bottleneck in the maize populations is consistent with domes-471

tication, it is less clear why we found a similar bottlenecks for472

the teosinte populations at approximately the same time. One473

possibility is that the teosinte bottlenecks reflect land use change474

induced by human colonization. For example, evidence from475

Mesoamerican phytolith records in lake sediment show evidence476

of anthropogenic burning as early as 11K years B.P. (Piperno477

1991). The establishment and spread of human populations478
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over the subsequent millenia would require an ever increasing479

area for farming, dwellings, transportation, and trade (Haines480

et al. 2000). Such land use changes would likely encroach on481

the habitat available for teosinte and drive species-wide cen-482

sus size declines. Given the success of maize breeding and483

domestication, we anticipated a recent expansion for maize pop-484

ulations as previously seen (Beissinger et al. 2016; Wang et al.485

2017). However, with only 10 individuals per population, recent486

expansions will be difficult to detect with approaches based on487

the site frequency spectrum (Keinan and Clark 2012; Coventry488

et al. 2010). The demography of the rangewide samples for both489

subspecies showed little evidence of the bottleneck inferred in in-490

dividual populations, likely due to the reduced sampled size (5491

and 6 individuals) for the rangewide data. We additionally used492

strong regularization penalties to avoid over-fitting (see Meth-493

ods), which limits the detection of rapid and dramatic changes494

in population size. The near-constant size of the rangewide sam-495

ples and the lack of recent expansion in maize are both likely496

influenced by this modeling choice.497

Finally, demographic inferences are known to be sensitive498

to the effects of linked selection (Ewing and Jensen 2016), and499

our demographic models have likely underestimated effective500

population sizes and the variation in changes over time therein.501

However, all populations independently converged to similar502

values in the oldest generation times, around the time when we503

would expect the ancestral lineages would have coalesced (Fig-504

ure 2C). This suggests any biases in the estimated population505

sizes that are specific to maize, which has had recent explo-506

sive population growth, are occurring in the more recent past507

(Beissinger et al. 2016). Similarly, although the asymptotic MK508

method we employed has been shown to provide reliable esti-509

mates of α when fixations are due to strong beneficial mutations510

(Messer and Petrov 2013), it does not account for the influence of511

background selection and the rate of fixation of weakly beneficial512

mutations (Uricchio et al. 2019).513

Differences in adaptation between maize and teosinte, and514

among populations, were apparent based on differences in the515

patterns of selective sweeps. Maize had a higher proportion516

of selective sweeps shared with at least one other population517

(Figure 4). The greater number of shared sweeps in maize popu-518

lations is likely the result of their recent shared selective history519

during the process of domestication, resulting in a set of phe-520

notypes common to all maize (Stitzer and Ross-Ibarra 2018). In521

comparison, the higher proportion of unique sweeps in teosinte522

suggests local adaptation has played more of a role in shap-523

ing their recent evolutionary history. Teosinte grows untended,524

and did not undergo domestication, leaving more opportunity525

for divergence and local selection pressures to accumulate dif-526

ferences among populations. This is reflected in the inferred527

population history, which had longer terminal branch lengths528

for teosinte (Figure 1B), suggesting there is increased genetic529

isolation among teosinte populations due to longer divergence530

times, reduced gene flow, or both.531

Convergent adaptation is ubiquitous532

We found convergent adaptation to be common among pop-533

ulations and subspecies (Figures 4 and 5). The frequency of534

convergence further suggests there are a large number of muta-535

tions that are beneficial in more than one population, even when536

placed in the different genomic backgrounds of the two sub-537

species. Our approach allowed us to distinguish between multi-538

ple potential modes of convergence, including a neutral model539

that models allele frequency covariance by drift alone (Lee and540

Coop 2017). The distribution of most likely selection coefficients541

of the inferred beneficial alleles suggests the strength of selection542

is moderate to strong, though this estimate is likely biased as543

strong positive selection will be easier to detect. Convergence544

via independent mutations was by far the least frequent mode.545

This is consistent with previous analyses of domestication (Huf-546

ford et al. 2012) and adaptation (Wang et al. 2021) in maize, and547

unsurprising given evidence for ongoing gene flow (Figure 1E),548

the relatively short evolutionary time scales, and the low proba-549

bility that even strongly selected new mutations can overcome550

drift multiple times independently.551

For convergent sweeps that occurred via standing variation552

within maize or shared between maize and teosinte, the distribu-553

tion of generation times that the selected variant was standing554

before the onset of selection tended to be bimodal, with both555

long and short standing times. In contrast, sweeps exclusive to556

teosinte were consistently inferred to be standing variation for557

more generations (Figure 5E). Sweeps that occurred via standing558

variation and shared between subspecies were often found in559

only a subset of maize populations. Many of these sweeps likely560

reflect the presence of structure in ancestral populations, sug-561

gesting different alleles beneficial to maize were likely derived562

from more than one teosinte population. The bimodal features563

of sharing seem at face value surprising. How can an allele be564

standing variation for so many generations after divergence but565

prior to selection when the populations diverged less than ten566

thousand generations ago? We speculate that ancestral popu-567

lation structure and limited sampling of 6 populations could568

explain the pattern. For example, extremely long standing times569

that predate domestication may reflect divergence between our570

sampled teosinte populations and the populations most closely571

related to those that gave rise to domesticated maize. This is yet572

another area in which more comprehensive sampling could help573

resolve patterns of local adaption.574

The most common mode of convergent adaptation was via575

migration, and frequently occurred between geographically dis-576

parate populations (Figures S6). This included a relatively large577

number of shared sweeps via migration between maize and578

teosinte (Figures 5 and S7). There is ample evidence that maize579

and teosinte are capable of hybridizing (Wilkes et al. 1967; Ell-580

strand et al. 2007; Ross-Ibarra et al. 2009), and previous work has581

identified gene flow between geographically disparate popula-582

tions of maize and Zea mays mexicana (Calfee et al. 2021). Further,583

convergence via migration between geographically disparate584

maize populations has been inferred during adaptation to high585

elevations (Wang et al. 2021).586

Our findings on convergence via migration point to an in-587

triguing hypothesis, namely, that some number of alleles that588

are beneficial to teosinte may have originally arisen in another589

teosinte and maize populations and moved between populations590

via gene flow with maize, an idea suggested by Ross-Ibarra et al.591

(2009) based on allele sharing at a small set of loci. Our inference592

that migration is a frequent source of beneficial alleles in teosinte593

populations suggests that they may be mutation limited. Con-594

sistent with this, the three teosinte populations that most often595

shared sweeps with maize (El Rodeo, San Lorenzo, and Amatlán596

de Cañas) (Figure S7) also showed the strongest signatures of597

bottlenecks (Figure 2C), which would limit the rate of new and598

beneficial mutations. It is worth noting that the total number of599

shared sweeps is much lower than previously reported (Tittes600

et al. 2021), and only four of fifteen instances of convergence via601
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migration include two or more teosinte and maize populations602

(Figure S7). Despite the lower totals, the evidence still supports603

this hypothesis. Firstly, we found relatively few shared sweeps604

exclusive to teosinte populations (Figure 5C), which is what we605

would expect if maize populations facilitate the movement of606

beneficial teosinte alleles. However, it is important to note that607

there are fewer sweeps exclusive to teosinte for all modes of con-608

vergence, not just via migration, so this alone is not sufficient evi-609

dence. Thirdly, sweeps shared via migration that were exclusive610

to teosinte were always inferred to be the lowest migration rate611

(1× 10−3) (Figure 5F), where those shared by both subspecies612

or exclusive to maize were primarily inferred to be the highest613

migration rate (1× 10−1). This indicates alleles that are only614

beneficial in teosinte move between populations more slowly.615

Despite the patterns of population structure in both subspecies,616

there is evidence of gene flow based on f4 tests. In particular, f4617

tests that included maize from Crucero Lagunitas were consis-618

tently elevated across both subspecies (Figure 1E and S1). This619

is in accordance with our finding that Crucero Lagunitas maize620

was one of the most commonly inferred source populations of621

migration sweeps that were shared between maize and teosinte622

(Figure 5D). Together, these results suggests that geographically623

widespread varieties of maize such as Celaya (Crucero Laguni-624

tas) (Orozco-Ramírez et al. 2017) may have played a prominent625

role as a source of and/or transport for beneficial alleles among626

maize and teosinte populations. However, teosinte populations627

were often the source of beneficial alleles for sweeps shared be-628

tween both subspecies (Figure 5C). As such, teosinte populations629

may have also commonly been the source of adaptive variation630

for both other teosinte and maize populations.631

Materials and Methods632

Samples and whole genome resequencing633

We sampled seeds from five populations of Zea mays ssp. parvig-634

lumis and four populations of Zea mays ssp. mays from plants635

growing across the species’ native range. We additionally in-636

cluded populations of parviglumis and maize from Palmar Chico637

which were previously analyzed and reported in (Chen et al.638

2020) for a total of 6 and 5 populations of maize and teosinte (See639

Supplement I for accession IDs and further sample details). All640

maize and teosinte populations from each named location were641

less than 1km from one another, with the exception of Crucero642

Lagunitas, which were separated by approximately 18km.643

DNA extraction for teosinte followed (Chen et al. 2020). Ge-644

nomic DNA for landraces was extracted from leaf tissue using645

the E.Z.N.A.® Plant DNA Kit (Omega Biotek), following manu-646

facturer’s instructions. DNA was quantified using a Qubit (Life647

Technologies) and 1ug of DNA per individual was fragmented648

using a bioruptor (Diagenode) with 30 seconds on/off cycles.649

DNA fragments were then prepared for Illumina sequenc-650

ing. First, DNA fragments were repaired with the End-Repair651

enzyme mix (New England Biolabs). A deoxyadenosine triphos-652

phate was added at each 3’end with the Klenow fragment (New653

England Biolabs). Illumina Truseq adapters (Affymetrix) were654

then added with the Quick ligase kit (New England Biolabs).655

Between each enzymatic step, DNA was washed with sera-mags656

speed beads (Fisher Scientific). The libraries were sequenced to657

an average coverage of 20 to 25x PE150 on the Xten at Novogene658

(Sacramento, USA).659

We additionally grew one individual of Zea diploperennis from660

the UC Davis Botanical Conservatory as an outgroup. DNA for661

Zea diploperennis was extracted and libraries prepared as above,662

and then sequenced to 60X coverage using PE250 on 3 lanes663

of Illumina 2000 rapid run (UC Davis Genome Center, Davis,664

USA).665

Sequencing reads have been deposited in the NCBI Sequence666

Read Archive under project number (to be submitted).667

Sequencing and variant identification668

All paired-end reads were aligned to version 5 of the maize B73 reference669

genome (Hufford et al. 2021) using bwa-mem (v0.7.17) (Li 2013). Default670

options were used for mapping except -M to enable marking short hits671

as secondary, -R for providing the read group, and -K 10000000, for672

processing 10 Mb input in each batch. Sentieon (v201808.01) (Freed et al.673

2017) was used to process the alignments to remove duplicates (option674

–algo Dedup) and to calculate various alignment metrics (GC bias, MQ675

value distribution, mean quality by cycle, and insert size metrics) to676

ensure proper mapping of the reads.677

All downstream analyses were based on genotype likelihoods esti-678

mated with ANGSD (v0.934) (Korneliussen et al. 2014) using the follow-679

ing command line flags and filters:680

-GL 1681

-P 5682

-uniqueOnly 1683

-remove_bads 1684

-only_proper_pairs 1685

-trim 0686

-C 50687

-minMapQ 30688

-minQ 30689

690

Genetic Diversity691

We estimated per base nucleotide diversity (π) and Tajima’s D (D) in692

non-overlapping 1kb, 100kb and 1,000kb windows with the thetaStat util-693

ity from ANGSD, though estimates did not substantively differ between694

window sizes. To estimate π and the unfolded site frequency spectra695

for each population, we polarized alleles as ancestral and derived us-696

ing short-read sequence data for Zea luxurians and Zea diploperennis as697

outgroups. Zea luxurians sequence from Tenaillon et al. (2011) was down-698

loaded from The NCBI Sequence Read Archive (study SRR088692). We699

used the alignments from the two species to make minor allele frequency700

(MAF) files using ANGSD. We used the MAF files to construct a table701

of genotypes found at each locus. Sites with minor allele frequency esti-702

mates greater than 0.001 were treated as heterozygous. Sites that were703

homozygous in both species were imputed onto the maize v5 reference704

and assumed to be the ancestral allele. As there were substantially more705

called bases in Zea luxurians than in Zea diploperennis, we also assumed706

sites that were homozygous in luxurians and missing in diploperennis707

were ancestral, but excluded sites that were missing from luxurians.708

Sites that were classified as heterozygous were treated as missing and709

imputed onto the maize reference as ’N’.710

Population Structure and Introgression711

We used ngsadmix (Skotte et al. 2013) to assess population struc-712

ture within subspecies. To do so we used a SNP-calling pro-713

cedure in ANGSD with the same filters as listed above, along714

with a SNP p-value cutoff of 1 × 10−6. We looked for evidence715

of gene flow between subspecies using f4 statistics and Z-scores716

calculated with blocked jackknifing, implemented using treemix717

(Pickrell and Pritchard 2012). Trees for f4 tests were always718

of the form (Maize_X, Maize_Y; Teosinte_ f ocal, Teosinte_Z), or719

(Maize_ f ocal, Maize_Y; Teosinte_W, Teosinte_Z); with each unique720

combination of populations was considered to be the " f ocal" and "_X"721

positions of the tree. We considered any tree with a Z-score greater than722

or equal to 3 significant, indicating a departure from the allele frequency723

differences expected if population history matched the hypothesized724

tree. We assessed Z-scores separately based on whether the focal pop-725

ulation was maize or teosinte, and for trees that include the sympatric726

pair of the focal population.727

Demographic and Inbreeding History728

We inferred each population’s demography using a single unfolded site729

frequency spectrum with mushi (v0.2.0) (DeWitt et al. 2021). In efforts730

to reduce overfitting given our modest samples sizes, we increased the731
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regularization penalty parameters to alpha_tv=1e4, alpha_spline=1e4,732

and alpha_ridge = 1e-1.733

We assessed homozygosity by descent (HBD) in each population734

using IBDseq (v2.0) (Browning and Browning 2013). We compared735

empirical results to simulations in msprime (Kelleher et al. 2016) using736

each population’s inferred demographic history. We performed ten737

replicates of each of these simulations. Replicates were similar across all738

populations; only one replicate was chosen at random for visual clarity.739

We estimated recent inbreeding using ngsrelate (Hanghøj et al. 2019)740

with default parameters. Input files were generated using ANGSD with741

the same filters as listed above, along with a SNP p value cutoff and maf742

filter of743

-SNP_pval 1e-6744

-minmaf 0.05,745

respectively.746

Estimating the Rate of Positive Selection, α747

We modeled the rate of positive selection, α of 0-fold nonsynonymous748

mutations using the asymptotic extension of the McDonald–Kreitman749

(MK) test (Messer and Petrov 2013), where α is calculated at each al-750

lele frequency bin of the uSFS (from 1/n to (n− 1)/n). At each allele751

frequency bin, each α was calculated as752

α = 1− d0

d
p
p0

where d0 and d are the number of derived fixed differences for selected753

and putatively neutral sites, respectively, and p0 and p are the number of754

selected and putatively neutral polymorphic sites. We identified 0-fold755

and 4-fold sites using Python (https://github.com/silastittes/cds_fold).756

We fit the Asymptotic MK extension as a nonlinear Bayesian mixed-757

model using the R package brms (Bürkner 2017, 2018).758

αij ∼ aj + bje
−cj xij

where αij is the value of α calculated at the ith allele frequency bin of759

the jth population and xij is the corresponding allele frequency bin. The760

nonlinear brms model was coded as761

alpha ~762

a + b * exp(-c * allele_frequency)763

where all three free parameters of the asymptotic function (a, b, and c)764

were treated as random effects of population and nucleotide type (see765

Supplement III), and the subspecies was treated as a fixed effect. These766

effects were coded in brms as767

a + b + c ~768

1 + allele_frequency +769

(1 + allele_frequency | pop) +770

(1 + allele_frequency | nuc_type) +771

ssp772

Identifying Selective Sweeps773

We used RAiSD (Alachiotis and Pavlidis 2018) to infer signatures of774

selective sweeps in each population, including the rangewide samples.775

Across all populations, we used a minor allele frequency threshold of776

0.05 and a window size of 24 SNPs. We called SNPs and generated VCF777

files for each population using the dovcf utility from ANGSD, using a778

SNP calling p-value cut off of 1× 10−6. We used the Python package779

mop (https://pypi.org/project/mop-bam/) to exclude SNPs that fell in re-780

gions with low and excessive coverage and/or poor quality. Here we781

required each locus to have at least 70% of individuals with a depth be-782

tween 5 and 100, and to have a phred scaled quality scores above 30 for783

base and mapping quality. We additionally used mop to rescale the µvar784

sub-statistic in each population based on the proportion of high quality785

bases available in each of the RAiSD SNP windows, after which we re-786

calculated the overall µ statistic as the product of the three sub-statistics787

(Alachiotis and Pavlidis 2018).788

Individual SNP windows in RAiSD are small and spatially auto-789

correlated with neighboring windows, implying that a sweep signature790

is distributed over multiple windows. This makes it difficult to compare791

shared RAiSD outliers across populations, which may have experienced792

the same sweep, but may differ in how the µ statistic is distributed across793

windows. To compare sweep signatures across populations we collected794

outliers into "sweep regions" by fitting a cubic spline modeling the ad-795

justed µ statistic by position along the chromosome using smooth.spline796

function in R, which uses cross validation to choose the optimal smooth-797

ing parameter for the cubic spline. We compared the empirical cubic798

spline fit to the those simulated under each populations’ demography799

using msprime (Kelleher et al. 2016), and selected windows with fitted800

values greater than 99.9th percentile from the simulations as outlier re-801

gions. We merged outlier regions within 50,000 Kb of one another and802

treated as a single sweep region. The custom R functions for a defining803

outlier regions is available at https://github.com/silastittes/sweep_regions.804

For the above steps, we selected the best combination of parameters805

by conducting a grid search that optimized on the highest proportion of806

sweeps shared between the two Palmar Chico replicates, averaged over807

both subspecies. For the grid search we considered RAiSD snp windows808

of 10, 24, 50, 100, 200, and 500; outlier quantiles of 0.8, 0.9, 0.95, 0.99, and809

0.999; and merge windows of 50K, 100K, 200K, and 500K BPs.810

Assessing the precision of sweep inferences and the number of811

shared sweeps expected by chance812

To assess precisions of sweep inferences, we used a second random813

sample of non-overlapping individuals from the two Palmar Chico pop-814

ulations. False positives were assessed based on the number of sweep815

regions that did not overlap between the 2 replicate Palmar Chico sam-816

ples from each subspecies. To account for differences in the total number817

of sweep regions for each replicate, we averaged the two proportions818

P = 1− (
nS

nP1
+

nS

nP2
)/2

where nS is the number of sweeps shared between the replicates,819

and nP1 and nP2 were the number of sweeps in the first and second820

replicates, respectively. In downstream analyses, we used the average821

value of P for the two subspecies, although it was higher for teosinte822

than for maize (0.67 and 0.80, respectively).823

We evaluated the number of sweeps that we would expect popu-824

lations to share by chance using a simple statistical test based on the825

hypergeometric distribution,826

Pr(x ≥ X) =
n1

∑
x≥X

(n2
x )(

N
n1−x)

(N
n1
)

where N is the total number of loci tested; n1 and n2 are the number of827

outlier loci in the first and second populations, respectively; and x is the828

number of shared outliers between the two populations. The population829

with the larger number of outliers was always designated at the first830

population. We accounted for false positive by multiplying the raw831

values of N, n1, n2, and x by the FP value described above.832

We corrected p-values for multiple tests using the Benjamini and833

Yekutieli method implemented with the R function p.adjust (Benjamini834

and Yekutieli 2001).835

Inferring modes of convergent adaptation836

For sweep regions that were overlapping in 2 to 9 of the 11 populations,837

we used rdmc to infer the most likely mode of convergent adaptation838

(Lee and Coop 2017; Tittes 2020). To ensure a sufficient number of839

loci were included to estimate decay in covariance across the sweep840

regions, we added 10% of each sweep region’s total length on each of841

its ends prior to fitting the models. To reduce the computation time,842

we exclude sites that had an allele frequency less than 1/20 across all843

populations. As sweep regions differed in size, we subset from their844

total number of sites to maintain approximately similar densities, with845

a lower and upper bound of 1K and 100K SNPS, respectively. Sweep846

regions near the ends of chromosomes for which we could not estimate847

the number of centiMorgans for were subset to 10K SNPs. To contrast848

allele frequency covariance in sweep regions to neutral expectations, we849

first sampled allele frequencies at 100K random loci. When fitting rdmc,850

we assumed the effective population size was 50K for all populations.851

The recombination rate was approximated for each sweep region as the852

median interpolated value based on a previously generated genetic map853

for maize that was lifted on to the v5 reference genome (Ogut et al. 2015).854

The rdmc function includes arguments that control the grid of parameter855

values over which composite likelihoods were computed were:856

n_sites = 20,857

num_bins = 1000,858

sels = 10^seq(-5, -1, length.out = 15),859

times = c(1e2, 1e3, 1e4, 1e5),860
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gs = 10^seq(-3, -1, length.out = 3),861

migs = 10^(seq(-3, -1, length.out = 2)),862

cholesky = TRUE863

We compared composite likelihoods over four convergent adaptation864

modes, ”neutral”, ”independent”, ”standing”, and ”migration”. We865

assigned each sweep to the mode with the highest log composite likeli-866

hood. To assess the overall performance of the method to distinguish867

between the four modes, we computed differences between the highest868

composite likelihood and the next highest for each sweep.869

All wrangling to prepare input data for statistical analyses was done870

using R (R Core Team 2020) with appreciable reliance on functions871

from the tidyverse suite (Wickham et al. 2019). Figures were made872

using ggplot2 (Wickham 2016), patchwork (Pedersen 2019), and cow-873

plot (Wilke 2019). Bam files that all downstream analyses are based874

on are available https://datacommons.cyverse.org/browse/iplant/home/875

aseetharam/B73v5-deduped-alignments. The processed data used for876

generating figures and analyses are available from https://datacommons.877

cyverse.org/browse/iplant/home/silastittes/parv_local_data. Code and in-878

structions for the entirety of the analyses, including Jupyter notebooks879

for reproducing figures, is available from https://github.com/silastittes/880

parv_local.881
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Supplement I1158

Population sampling locations1159

Table S1 Population sampling location information.
Population Subspecies Sample size Latitude Longitude Elevation (meters) Accession ID
Crucero Lagunitas Maize 10 16.98 -99.28 201 2373-GRO-294
Amatlán de Cañas Maize 10 20.82 -104.41 760 5054-NAY-310
Los Guajes Maize 10 19.23 -100.49 985 TC-300
San Lorenzo Maize 10 19.94 -103.99 982 RMM-15
Palmar Chico Maize 55 18.64 -100.35 1008 JSG-RMM-LCL-529
Crucero Lagunitas Teosinte 10 16.85 -99.06 590 JSG-RMM-LCL-487
Amatlán de Cañas Teosinte 10 20.82 -104.41 880 JSG-JRP-ERG-543
El Rodeo Teosinte 10 16.35 -97.02 982 JSG-RMM-LCL-486
Los Guajes Teosinte 10 19.23 -100.49 851 JSG Y RMM-454
San Lorenzo Teosinte 10 19.94 -103.99 982 RMM-13
Palmar Chico Teosinte 50 18.64 -100.35 983 JSG-RMM-LCL-528
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Supplement II1160

Further assessment of f4 statistic inferences1161
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Figure S1 f4 tests including the maize Crucero Lagunitas population are significantly elevated compared to those without.

Table S2 Significant F4 tests. Each row of the table reports the number of significant f4 tests that occurred with a given focal and
secondary population, where the two other tip positions were filled with each of the remaining populations for each subspecies.
Rows that are left blank in the secondary column are used to report the total number of significant trees for a given focal popu-
lation.

Focal population Secondary population Count

Maize Amatlan de Canas 5

Maize Amatlan de Canas Maize Crucero Lagunitas 5

Maize Amatlan de Canas Teosinte Amatlan de Canas 3

Maize Amatlan de Canas Teosinte El Rodeo 2

Maize Amatlan de Canas Teosinte Palmar Chico 2

Maize Amatlan de Canas Teosinte San Lorenzo 2

Maize Amatlan de Canas Teosinte Los Guajes 1

Maize Crucero Lagunitas 15

Maize Crucero Lagunitas Teosinte Amatlan de Canas 9

Maize Crucero Lagunitas Teosinte Crucero Lagunitas 6

Maize Crucero Lagunitas Teosinte El Rodeo 6

Maize Crucero Lagunitas Maize Palmar Chico 5

Maize Crucero Lagunitas Maize Los Guajes 4

Maize Crucero Lagunitas Teosinte San Lorenzo 4
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Maize Crucero Lagunitas Maize Amatlan de Canas 3

Maize Crucero Lagunitas Maize San Lorenzo 3

Maize Crucero Lagunitas Teosinte Palmar Chico 3

Maize Crucero Lagunitas Teosinte Los Guajes 2

Maize Los Guajes 6

Maize Los Guajes Teosinte Amatlan de Canas 4

Maize Los Guajes Maize Crucero Lagunitas 3

Maize Los Guajes Teosinte Crucero Lagunitas 3

Maize Los Guajes Maize San Lorenzo 2

Maize Los Guajes Teosinte Palmar Chico 2

Maize Los Guajes Maize Palmar Chico 1

Maize Los Guajes Teosinte El Rodeo 1

Maize Los Guajes Teosinte Los Guajes 1

Maize Los Guajes Teosinte San Lorenzo 1

Maize Palmar Chico 9

Maize Palmar Chico Teosinte Amatlan de Canas 7

Maize Palmar Chico Maize Crucero Lagunitas 5

Maize Palmar Chico Teosinte Palmar Chico 4

Maize Palmar Chico Teosinte El Rodeo 3

Maize Palmar Chico Maize Los Guajes 2

Maize Palmar Chico Maize San Lorenzo 2

Maize Palmar Chico Teosinte San Lorenzo 2

Maize Palmar Chico Teosinte Crucero Lagunitas 1

Maize Palmar Chico Teosinte Los Guajes 1

Maize San Lorenzo 6

Maize San Lorenzo Teosinte Amatlan de Canas 4

Maize San Lorenzo Maize Crucero Lagunitas 3

Maize San Lorenzo Maize Los Guajes 2

Maize San Lorenzo Teosinte Crucero Lagunitas 2

Maize San Lorenzo Teosinte El Rodeo 2

Maize San Lorenzo Teosinte Palmar Chico 2

Maize San Lorenzo Maize Palmar Chico 1

Maize San Lorenzo Teosinte Los Guajes 1

Maize San Lorenzo Teosinte San Lorenzo 1

Teosinte Amatlan de Canas 11

Teosinte Amatlan de Canas Maize Crucero Lagunitas 9

Teosinte Amatlan de Canas Maize Palmar Chico 4

Teosinte Amatlan de Canas Maize Amatlan de Canas 3

Teosinte Amatlan de Canas Maize Los Guajes 3

Teosinte Amatlan de Canas Maize San Lorenzo 3

Teosinte Amatlan de Canas Teosinte Los Guajes 3

Teosinte Amatlan de Canas Teosinte Palmar Chico 3

Teosinte Amatlan de Canas Teosinte San Lorenzo 3

Teosinte Amatlan de Canas Teosinte Crucero Lagunitas 1

Teosinte Amatlan de Canas Teosinte El Rodeo 1

Teosinte Crucero Lagunitas 9

Teosinte Crucero Lagunitas Maize Crucero Lagunitas 6

Teosinte Crucero Lagunitas Maize Los Guajes 5

Teosinte Crucero Lagunitas Teosinte Amatlan de Canas 4

Teosinte Crucero Lagunitas Teosinte El Rodeo 4

Teosinte Crucero Lagunitas Maize Palmar Chico 3
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Teosinte Crucero Lagunitas Maize San Lorenzo 3

Teosinte Crucero Lagunitas Maize Amatlan de Canas 1

Teosinte Crucero Lagunitas Teosinte Palmar Chico 1

Teosinte Los Guajes Maize Crucero Lagunitas 3

Teosinte Los Guajes Teosinte Amatlan de Canas 3

Teosinte Los Guajes 3

Teosinte Los Guajes Maize Los Guajes 1

Teosinte Los Guajes Maize Palmar Chico 1

Teosinte Los Guajes Maize San Lorenzo 1

Teosinte Palmar Chico 8

Teosinte Palmar Chico Maize Crucero Lagunitas 5

Teosinte Palmar Chico Teosinte Amatlan de Canas 5

Teosinte Palmar Chico Maize Palmar Chico 4

Teosinte Palmar Chico Maize Los Guajes 3

Teosinte Palmar Chico Maize San Lorenzo 3

Teosinte Palmar Chico Teosinte El Rodeo 2

Teosinte Palmar Chico Maize Amatlan de Canas 1

Teosinte Palmar Chico Teosinte Crucero Lagunitas 1

Teosinte San Lorenzo Maize Crucero Lagunitas 5

Teosinte San Lorenzo 5

Teosinte San Lorenzo Teosinte Amatlan de Canas 3

Teosinte San Lorenzo Maize Palmar Chico 2

Teosinte San Lorenzo Teosinte El Rodeo 2

Teosinte San Lorenzo Maize Amatlan de Canas 1

Teosinte San Lorenzo Maize Los Guajes 1

Teosinte San Lorenzo Maize San Lorenzo 1
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Supplement III1163

Predicting α by mutation type1164

Estimates of α may be effected by differences in the mutation rates of different nucleotides and genomic regions. GC biased gene conversion has been1165

shown to reduce α by making it harder to purge slightly deleterious alleles Hämälä and Tiffin (2020). Likewise, the higher mutation rates observed at1166

methylated cytosine bases increases the rate of C → T mutations Ossowski et al. (2010), which is another mechanism that could result in variation in α1167

by changing the ability to purging deleterious alleles, or by changing the probability of fixation of new adaptive mutations.1168

To study this, we used the same approach as Hämälä and Tiffin (2020), where we separated the site frequency spectra based on mutation types1169

according to whether the ancestral and derived nucleotides had a single (weak) or double (strong) hydrogen bond between the DNA strands. As such,1170

we studied three mutations types: A/T → G/C mutations (WS), G/C → A/T (SW) and C/G → G/C or A/T → T/A (SS_WW).1171

Unlike patterns found in Arabidopsis (Hämälä and Tiffin 2020), α was highest for WS mutations, although there was considerable overlap between1172

the credible intervals for all mutation types.1173
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Figure S2 Predicted values of α across mutation types. Grey bands for each mutation type show the 95% credible intervals aver-
aged over each population.
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Supplement IV1174

Further assessment of sweep inferences and precision1175

We found that only 67% and 80% of sweeps were shared between the two random subsamples for maize and teosinte populations from Palmar Chico,1176

respectively (see Results). While our updated method to identifying sweeps improved precision over our previous one (which shared 40% and 50%1177

(Tittes et al. 2021)), the low precision still warrants further exploration.1178

One explanation for the low sweep precision could be substructure within the Palmar Chico populations, leading to replicates with slightly different1179

histories. This could create unequal power to detect sweeps if, for example, the subpopulations had different progress towards fixation of the beneficial1180

allele. However, this explanation is unlikely as individuals were randomly assigned to subpopulations, so any substructure is likely to be distributed1181

evenly between the two samples. This is further supported from the two samples showing relatively short branch lengths in the population phylogeny1182

(Figure S3). The branch lengths separating the two subsamples (cophenentic distance) was 0.00835 and 0.00962 for maize and teosinte respectively,1183

compared to the within subspecies means of 0.0170 and 0.0559.1184
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Maize
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Figure S3 Treemix phylogeny including both subsamples of Palmar Chico.

Another potential explanation for lowered sweep sharing between replicates is that sweeps vary in their detectability based on their characteristics.1185

Namely, sweeps that were weakly selected, incomplete, and/or ones that started at a high initial frequency prior to the onset of selection (soft sweeps)1186

may vary in their detectability using the methods we employed. We conducted a simulation experiment to better understand the potential causes of the1187

low shared proportion, and to measure performance to detect different kinds of sweeps more generally. We used discoal (Kern and Schrider 2016) to1188

simulate sweeps in a 400Kb region using the average genome-wide maize mutation and recombination rates under the inferred demographic history1189

of the maize population from Palmar Chico (Figure 2). We simulated four distinct scenarios: classical hard sweeps, where selection acts to fix an an1190

adaptive mutation; soft sweeps, where selection is initiated after the adaptive allele reaches a specified frequency; and incomplete sweeps, where a hard1191

sweep simulation is stopped at a specified frequency, and neutral simulations without selection. For soft sweeps, we varied the initial by drawing from1192

a beta distribution with shape parameters 1 and 20 . Incomplete sweeps finished when the adaptive allele reached a frequency of 0.5. For all three types1193

of sweeps, we also varied the strength of selection using the parameter α = 4N0s to be 10, 50, or 100, where N0 is the present day effective population1194

size and s is the selection coefficient. In addition to matching demography and other parameters, we used the same sampling scheme, simulation 501195

individuals, than randomly choosing two non-overlapping subsets of 10 individuals (https://github.com/silastittes/ms_sub). From the simulations we1196

assessed the True/False Positive/Negative Rates for each combination of sweep type and strength of selection (α), as well as the distribution of base1197

pair overlap between sweep regions inferred in the the two random subsamples. The same sweep inference methods and parameters were used for1198

these simulations and the empirical samples (see methods). Overall, we found that sweep characteristics we explore indeed impacted our overall1199

power to detect them, and the about of overlap between the sweep regions. Namely, weakly selected sweeps had consistently lower True Positive Rates1200

(Table S3).1201

18 Tittes et al.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 30, 2023. ; https://doi.org/10.1101/2021.09.09.459637doi: bioRxiv preprint 

https://github.com/silastittes/ms_sub
https://doi.org/10.1101/2021.09.09.459637
http://creativecommons.org/licenses/by/4.0/


Table S3 Performance to detect simulated hard, soft, and incomplete sweeps under varying strengths of selection under the
maize Palmar Chico population demography. TPR, TNR, FNR, and FPR stand for true postive, true negative, false negative, and
false positive rates, respectively.

4Nes simulation type TPR TNR FNR FPR

10 hard 0.14 0.67 0.86 0.33

50 hard 0.92 0.75 0.08 0.25

100 hard 0.99 0.84 0.01 0.16

10 incomplete 0.04 0.67 0.96 0.33

50 incomplete 0.06 0.67 0.94 0.33

100 incomplete 0.05 0.63 0.95 0.37

10 soft 0.13 0.71 0.87 0.29

50 soft 0.75 0.74 0.25 0.26

100 soft 0.81 0.76 0.19 0.24

AUC = 0.855

AUC = 0.8336

AUC = 0.734

AUC = 0.9157

AUC = 0.9218

AUC = 0.8642

AUC = 0.951

AUC = 0.9139

AUC = 0.9555
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Figure S4 Performance to detect simulated hard, soft, and incomplete sweeps under varying strengths of selection under the
maize Palmar Chico population demography. Each panel shows a combinations of sweep type (hard, soft, or incomplete) and
strength of selection (α = 4Nes = 10, 50, or 100)
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Figure S5 Degree of overlap between simulated sweep regions takenfrom two downsampled replicates under the maize Palmar
Chico population demography. Positive values show the amount of overlap in basepairs between sweep regions, while negative
values represent a the space between them. Panel structure follows that of S4.
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Figure S6 Frequency of each population as the mutation source for sweeps shared via migration. The order of populations along
the x axis matches that of the source populations labeled for each strip along the top.
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Figure S7 Inferred sweeps shared between subspecies via migration. The x axis is sorted by the number of populations each
sweep was found in. Populations are sorted along the y axis first by subspecies then by their number of sweeps.
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