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ABSTRACT Vectors are massively used in many domains. Several techniques have been proposed for
comparing two vectors, but they only perform the comparison according to the exact values of the vector
components. Additionally, existing techniques used for comparing two vectors having different dimensions
are limited bymany factors. Furthermore, the problem of comparing two finite sets of vectors has not yet been
specifically addressed. This paper attempts to overcome all these limitations by proposing a new technique
based on hidden Markov models which enhances existing techniques by giving them the ability to compare
two finite sets of vectors, each containing vectors having different dimensions, while precising the set of
targeted properties on which the comparison should be performed. Classification experiments conducted
on three online available custom datasets demonstrated that when the suitable set of targeted properties is
selected, the proposed approach outperforms existing techniques with accuracy gains reaching +82.3%.

INDEX TERMS Vectors, vector comparison, distance between vectors, hidden Markov models.

I. INTRODUCTION
Vector-based descriptors aremassively used inmany domains
including mathematics, physics, computer science, etc. For
this reason, several multidisciplinary repositories containing
datasets where data are represented as vectors are available.
This is the case of the widespread UCI Machine Learning
Repository1 which contains more than 550 datasets from
various domains. A vector −→u = [u1, u2, . . . , un] is basically
an ordered list of n elements belonging to diverse datatypes.
In this paper, the vector components belong to N or to R. The
number n of components of −→u is its dimension.
Vectors can be manipulated by different operations includ-

ing vector comparison which is crucial for popular machine
learning tasks like classification or clustering. Given a dataset
composed of many classes, each class containing several
vectors, classification refers to the process of assigning a class
label to a vector based on its components [1]. Clustering is
a method for organizing vectors into groups with the most
similarity in the same cluster and the most dissimilarity
between different clusters [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Yun Lin .
1https://archive.ics.uci.edu/ml/

Depending on the final goal of the comparison (decision
support, classification, clustering, etc.), several distance [3]
and similarity [4] measures have already been proposed.
These measures are generally suitable for comparing two
single vectors having the same dimension, according to the
exact values of their components. These existing measures
do not enable to explicitly specify the criteria on which the
comparison must be performed. However, the result d(u, v)
of the comparison of two items u and v represented by
vector data is not unique, but rather depends on the set
P of comparison criteria. For example, consider the two
cars u and v respectively depicted in Figures 1a and 1b.
When P = {numberofdoors, carcolor}, the comparison
result is d(u, v) = ’similar’. However, the opposite result
d(u, v) = ’not similar’ is obtained for these same cars when
P = {enginepower, numberofwheels, carweight}. Although
these two comparison results are different, they both remain
fully consistent according to their corresponding sets of
comparison criteria. More generally, the construction of P
must be guided by the final goal of the comparison. But
whatever is the content of P, the comparison result remains
consistent according to P.

In the same way, the comparison of two numeric vectors
can be performed according to many other targeted properties
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FIGURE 1. Example of cars compared according different sets of criteria.

than the exact values of their components. As an example, the
vectors −→u = [44, 156, 84, 548] and −→v = [188, 4, 326, 142]
are very distant according to the exact values of their
components, but these vectors become very close when the
parity of these same components is considered.

Additionally, when arises the problem of comparing two
vectors having different dimensions, existing measures are
unsuitable. A typical scenario in real-world demonstrating the
need of comparing two vectors having different dimensions
can be described as follows: Consider two people u and v,
each being the owner of a unique bank account. Suppose
now that we want to compare u and v according to the
supplies and withdrawals of cash they perform in their
respective bank accounts over a fixed period (one year for
example). To achieve this, we decide to record the actions
(supply/withdrawal) of u in a vector −→u and those of v
in a vector −→v such that the k th component of −→u (resp.
−→v ) contains the k th action performed by −→u (resp. −→v ),
irrespective of the exact moment (date, time) when the action
is performed. A supply of an amount a is recorded positively
as +a, while a withdrawal of an amount a is recorded
negatively as−a. If at the end of the fixed period u performs n
actions and v performsm actions, this leads to the comparison
of two vectors −→u and −→v of different dimensions.

Consider two vectors −→u ∈Rn and −→v ∈Rm such that
(n > m). Existing methods for comparing −→u and −→v
most often consist either in applying zero-padding (ZP)
techniques [5] to augment the dimension of −→v by adding
zeros to each missing dimension or dimensionality reduction
(DR) techniques [6], [7] for reducing the dimension of −→u
such that both vectors finally have identical dimensions. But
proceeding this way systematically implies a pure distortion
of the reality, which may introduce an important bias in
the final interpretation of the comparison result. Indeed,
considering the former example, adding zeros is considered
as the creation of supplies/withdrawals of zero which never
occurred in the reality. For this same example, reducing the
dimension of a vector by using DR techniques implies both,
the deletion and the modification of actions which effectively
occurred in the reality. This is because the components of
a vector resulting from the application of DR techniques
generally differ from those of its corresponding original
vector. Consequently, an account supply may become a
withdrawal and vice versa, or the final amount of a sup-
ply/withdrawalmay become different from the corresponding
original amount.

An interesting alternative for comparing two vectors −→u
and −→v having different dimensions without distorting the
reality is offered by the use of Siamese neural networks
(SNN) [8]. These are two artificial neural networks, working
in tandem and which achieve this task through a parallel
learning process. One of the two neural networks produces
as output a feature vector f (−→u ) associated with −→u , while
the other neural network produces as output a feature vector
g(−→v ) associated with −→v . The two outputted feature vectors
have the same number of components. The final step consists
in comparing f (−→u ) and g(−→v ) using existing measures,
generally the Cosine similarity is preferred.2 Unfortunately,
this solution inherits the following drawbacks generally
embedded by deep learning techniques analyzed in [9]3:

1) They require lots of computing resources.
2) The parameters of the resulting models are difficult to

adjust.
3) The components of the resulting feature vectors are less

interpretable.

Furthermore, all existing techniques for comparing vectors
do not explicitly address the problem of comparing two
finite sets of vectors. Existing distance measures between two
clusters attempt to solve this problem [10], but they do not
consider the individual properties of the vectors in each set
(clusters).

This paper attempts to overcome all the aforementioned
limitations of existing work through the proposal of a new
technique based on hidden Markov models (HMM) which
enhances existing techniques by giving them the ability
to compare two finite sets of vectors, each set containing
vectors having different dimensions, while precising the
set of targeted properties on which the comparison should
be performed. The performance of the proposed technique
is finally evaluated through flat classification experiments
involving three online available custom databases especially
designed for this purpose.

The rest of this paper is organized as follows: the state
of the art is presented in Section II, followed by a synthetic
description of HMM in Section III. The proposed approach
is described in Section IV, while experimental results are
presented in Section V. The last section is devoted to the
conclusion.

II. STATE OF THE ART
A. EXISTING DISTANCES
In order to compare two vectors −→u ,−→v ∈Rn, many distances
and similarities have already been proposed. A distance is a
function d which outputs a real number d(−→u ,−→v ) satisfying
the four following axioms [11]4:
1) d(−→u ,−→v )≥0
2) d(−→u ,−→v ) = 0⇔ (−→u = −→v )
3) d(−→u ,−→v ) = d(−→v ,−→u )

2See Figure 1 of [8] for details.
3See the Introduction of [9].
4See Definition 1 of [11].
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4) d(−→u ,−→w )+ d(−→w ,−→v )≥d(−→u ,−→v ), ∀−→w ∈Rn

For a purely statistical comparison, the most used distance
for comparing two vectors of Rn is the Euclidean distance
which evaluates the straight-line distance between them.
Another popular distance is the Manhattan distance which
evaluates the distance traveled by a taxi when it moves
from one vector to the other in a city where the streets
are organized as a grid. One can also use the Chebyshev
distance to evaluate the maximum component-to-component
variation between the two vectors. The Squared χ2 distance
is suitable for evaluating the dependency between two
vectors and the Canberra distance is a weighted version
of the Manhattan distance. The Earth Mover’s distance
offers a good alternative for comparing two vectors which
are probability distributions by evaluating the least amount
of work needed to transport earth or mass from one
distribution to the other [12]. Formal details about more than
60 distance measures (including those listed in this section)
are available in [3]5 and Equation 1 shows how to compute the
aforementioned distances for two vectors −→u = [u1, . . . , un]
and −→v = [v1, . . . , vn].

d1(
−→u ,−→v ) =

√√√√ n∑
i=1

(ui − vi)2 (Euclidean)

d2(
−→u ,−→v ) =

n∑
i=1

|ui − vi| (Manhattan)

d3(
−→u ,−→v ) = max

1≤i≤n
|ui − vi| (Chebyshev)

d4(
−→u ,−→v ) =

n∑
i=1

(ui − vi)2

ui + vi
(Squared χ2)

d5(
−→u ,−→v ) =

n∑
i=1

|ui − vi|
|ui| + |vi|

(Canberra) (1)

B. EXISTING SIMILARITIES
Given two vectors −→u ,−→v ∈Rn, a similarity is a function d
which also outputs a real number d(−→u ,−→v ) satisfying the five
following axioms [11]6:

1) d(−→u ,−→v ) = d(−→v ,−→u )
2) d(−→u ,−→u )≥0
3) d(−→u ,−→u )≥d(−→u ,−→v )
4) d(−→u ,−→v ) + d(−→v ,−→w )≤d(−→u ,−→w ) + d(−→v ,−→v ),
∀
−→w ∈Rn

5) d(−→u ,−→u ) = d(−→v ,−→v ) = d(−→u ,−→v )⇔ (−→u = −→v )
Many similarity measures also enable to compare two

vectors having the same dimension. This is the case of the
Cosine similarity which is the cosine of the angle ̂(−→u ,−→v )
between −→u and −→v . The value of this angle is consequently
obtained by computing the arccos of the Cosine similarity
as shown in Equation 2. When the comparison aims at
discovering any rank correspondence between −→u and −→v ,

5See Tables 1 to 8 and Table 10 of [3].
6See Definition 2 of [11].

several correlation coefficients can be computed. Among the
most popular correlation coefficients, we can list: thePearson
correlation coefficient, the Spearman’s ρ rank coefficient,
the Kendall τ coefficient and the Goodman–Kruskal’s γ

rank correlation. A detailed analysis of these correlation
coefficients is available in [4].7

Cosine(−→u ,−→v ) =

∑n
i=1 ui×vi(√∑n

i=1 ui
2
)
×

(√∑n
i=1 vi

2
)

̂(−→u ,−→v ) = arccos
(
Cosine(−→u ,−→v )

)
(2)

C. ZERO-PADDING
ZP [5] is an obvious solution for comparing two vectors
having different dimensions. This consists in augmenting the
required number of zeros at the beginning/middle/end of the
vector having the lower dimension such that the two vectors
finally have the same dimension.8 As an example, before
comparing −→u = [3,−7] and −→v = [18,−4,−26, 14],
the vector −→u can initially be zero-padded to obtain −→u1 ′ =
[3,−7,0,0], or −→u2 ′ = [0,0, 3,−7] or −→u3 ′ = [3,0,0,−7]
before performing the comparison.

D. DIMENSIONALITY REDUCTION
An alternative to the use of ZP techniques for compar-
ing vectors having different dimensions, is the use of
DR techniques. DR techniques are thoroughly used in
several application domains including face/image/pattern
recognition, image/video classification and clustering, signal
processing, etc.9 In these domains, DR techniques are
generally used for extracting only relevant components while
eliminating redundant and unnecessary components. Given
a dataset U = {

−→u1 , . . . ,−→ux } where −→ui ∈Rn (1≤i≤x),
DR techniques aim at transforming U into the set U ′ =
{
−→u1 ′, . . . ,

−→ux ′} such that −→ui ′∈Rm (1≤i≤x) with (m ≪ n),
while preserving as much as possible a property of the
original vectors. This property can be the distance, the
variance, the classification accuracy, etc.10 Several DR
techniques have yet been proposed and depending on the
technique, one can have the implicit, explicit or inverse
mapping possibility to reconstruct an original vector −→ui ∈Rn

from its low dimensional correspondent −→ui ′∈Rm [13].
DR techniques are organized in many categories, each

category having a specific objective and including many
specific techniques. A total of 12 categories together with
their objectives are presented in [6].11 Among these existing
categories, Linear DR techniques [14], [15], [16], [17],
[18], [19], [20], [21] and Non-linear DR techniques [22],
[23], [24], [25], [26], [27], [28], [29], [30] are the most
popular. Linear DR techniques aim at representing each
reduced dimension as a linear combination of the original

7See Section II-E of [4].
8See Equations 4 to 13 of [5].
9See Table 4 of [6].
10See Table 2 of [6].
11See Table 1 of [6].
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FIGURE 2. Example of vector comparison using SNN.

dimensions. Principal Component Analysis (PCA) [15],
Singular Value Decomposition (SVD) [16], Latent Seman-
tic Analysis (LSA) [17], Locality Preserving Projections
(LPP) [18], Independent Component Analysis (ICA) [19],
Linear Discriminant Analysis (LDA) [20] and Projection
Pursuit (PP) [21] are members of this category. In Non-
linear DR techniques, each reduced dimension results from
a nonlinear transformation of the original dimensions. This
category includes the following specific techniques: Kernel
Principal Component Analysis (KPCA) [23], Multidimen-
sional Scaling (MS) [24], Isomap [25], [26], Locally Linear
Embedding (LLE) [27], Self-Organizing Map (SOM) [28],
Learning Vector Quantization (LVQ) [29] and t-Stochastic
Neighbor Embedding (tSNE) [30].
All the aforementioned DR techniques are generally sep-

arately applied before to perform classification or clustering
on a dataset. However, it is possible to directly perform the
DR within the clustering algorithm as it is the case in [31]
where a feature-reduction multi-view k-Means clustering
algorithm is proposed. In that work, an objective function
which automatically computes the weight associated with
each feature is first designed. Irrelevant features with small
weights are then eliminated in each view.

E. SIAMESE NEURAL NETWORKS
Another alternative for comparing two vectors having
different dimensions consists in using SNN. A recent survey
related to SNN and their applications is proposed in [8].
These models are generally used in audio/speech processing,
image/video analysis, physics, robotics, text mining, etc.12

SNN are two artificial neural networks working parallelly
in tandem, each capable of generating one feature vector
(called hidden representation) of each input vector through a
machine learning process. The two neural networks are both
feedforward perceptrons and perform error back-propagation

12See Section III of [8].

during training. At the end of the training, these models
usually compare their outputs through the computation of the
Cosine similarity presented in Equation 2. As an example,
Figure 2 depicts a SNN where the first artificial neural
network takes as input the five components of a vector −→u
and the second artificial neural network takes as input the
four components of a vector −→v . After the learning process,
the system produces a three-dimensional feature vector for
each input vector. The Cosine distance between the resulting
feature vectors enables to obtain the final result. Table 1
summarizes the main information related to the existing
techniques reviewed in this paper.

F. PROBLEM STATEMENT
Existing distance [3] and similarity [4] measures only
target the exact values of the components of two vectors
for comparing them. However, depending on the selected
application, the comparison may target many other user-
defined criteria. Existing measures are also unsuitable for
comparing two vectors having different dimensions. ZP
techniques [5] and DR techniques [6], [7], [31] which are
most often used in that situation generally distort the reality
through the creation of events that never occurred in the
reality, or the deletion/modification of events that effectively
occurred in the reality. SNN [8] offer an interesting alternative
for avoiding the distortion of the reality. But, they are limited
by several factors. Furthermore, the problem of comparing
two finite sets of vectors has not yet been specifically
addressed.

This paper attempts to overcome all these limitations by
proposing a customizable technique based on HMM for
comparing two finite sets of vectors, each set containing
vectors having different dimensions. HMM are preferred
here because they are suitable for learning sequential data
and a vector can naturally be viewed as a sequential list
of components. The ability of a HMM to learn multiple
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TABLE 1. Main existing techniques for comparing two vectors.

sequences offers the additional possibility of associating one
single HMM to a finite set of vectors. This later enables
deriving one single feature vector for the considered set of
vectors.

III. PRESENTATION OF HMM
A. DEFINITION OF A HMM
A HMM λ = (A,B, π) is fully characterized by [32]13:

1) Its number N of states, the set of states being S =
{s1, . . . , sN }. The state of the model at time t is
generally noted qt ∈ S.

2) Its number M of symbols, the set of symbols being
ϑ = {z1, . . . , zM }. The symbol observed at time t is
generally noted ot ∈ ϑ .

3) Its state transition probability matrix A verifying
A[si, sj] = Prob(qt+1 = sj|qt = si) with 1≤i, j≤N .

4) Its symbols probabilities matrix B verifying B[si, zk ] =
Prob(zk at time t|qt = si) with 1≤i≤N and 1≤k≤M .

5) Its initial state probability vector π verifying π[si] =
Prob(q1 = si) with 1≤i≤N .

B. GENERATION OF SEQUENCE
AHMM λ = (A,B, π) can be used for generating a sequence
O = o1. . .oT composed of T symbols observed following the

13See Section II-B of [32].

FIGURE 3. HMM used as sequence generator.

sequence of states q = q1. . .qT as described in the Markov
chain (MC) shown in Figure 3.

In order to obtain this MC, the following algorithm is
executed:

1) Select the initial state sj according to π and set t = 0.
2) Set t = t + 1 and change the current state to qt = sj
3) Select the symbol ot ∈ ϑ to be observed at state qt

according to B.
4) If (t < T ) go to step 5, else terminate.
5) Select the state transition to be realized from the current

state qt to another state sj ∈ S according to A, then go
to step 2.

C. MANIPULATION OF A HMM
Consider a sequence of symbols O = o1. . .oT and a HMM
λ = (A,B, π). The probability Prob(O|λ) to observe O
given λ is efficiently calculated by the Forward-Backward
algorithm [32]14 which runs in θ (T .N 2). Given a sequence of
symbols O = o1. . .oT , it is possible to iteratively re-estimate

14See Section III-A of [32].
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the parameters of an initial HMM λ̂ = (Â, B̂, π̂ ) in order to
maximize the value of Prob(O|λ), where λ = (A,B, π) is
the re-estimated model. The Baum-Welch algorithm [32]15

is used for this purpose. This algorithm runs in θ (γ.T .N 2)
where γ is the user-defined maximum number of iterations.

The Baum-Welch algorithm can also be used to train
a HMM for learning multiple sequences.16 In this case,
the algorithm maximizes the value of Prob(O|λ) =∑K

k=1 Prob(O
(k)
|λ) where O = {O(1), . . . ,O(K )

} is a set of
K sequences and O(k)

= O(k)
1 . . .O(k)

Tk is the k th sequence
of O. In this context, only the distributions A and B
are re-estimated by the Baum-Welch algorithm because π

can be statistically determined from the initial states of
the K observed sequences. The time cost of the Baum-
Welch algorithm for multiple sequences is approximated by
θ
(
γ.(
∑K

k=1 Tk ).N
2
)
.

D. STATIONARY DISTRIBUTION
A vector ϕ = (ϕ[s1], . . . , ϕ[sN ]) is a stationary distribution
of a HMM λ = (A,B, π) if [33]17:

1) ∀j, ϕ[sj] ≥ 0 and
∑

jϕ[sj] = 1
2) ϕ = ϕ.A⇔

(
ϕ[sj] =

∑
iϕ[si]×A[si, sj],∀j

)
ϕ[sj] estimates the overall proportion of time spent by λ in

state sj after a sufficiently long time. ϕ can be extracted from
any line of the matrix Ar = A×A×. . .×A (r times) when
r→+∞. The computation of ϕ requires θ (r .N 3) arithmetic
operations.

IV. THE PROPOSED APPROACH
A. MAIN IDEA
Consider a vector−→u = [u1, . . . , un] and let note

−→ek (1≤k≤n)
the vector of Rn whose components are all equal to 0, except
the k th component which is equal to 1. In these conditions,
−→u =

(∑n
k=1 uk .

−→ek
)
. In R3 for example, −→e1 = [1, 0, 0],

−→e2 = [0, 1, 0] and −→e3 = [0, 0, 1]. Given a user-defined
targeted property p, the main idea of the current work is that
−→u can be characterized by the adherence of its components
to p.

To achieve this goal, we behave like a photograph who
sequentially browses −→u from its first dimension to its
last dimension, and in each dimension k (1≤k≤n), the
photograph takes a suitable position for capturing the value of
p(uk ) which materializes the adherence of the k th component
uk to property p. In the current work, this suitable position
is the angle ̂(−→u ,−→ek ) which is computed using Equation 2.
Proceeding this way, the pseudo MC depicted in Figure 4 is
obtained.

Any property p related to the k th component uk of a vector
−→u = [u1, . . . , un] having (n ≥ 2) components can be
targeted during vector comparison. Properties p1 to p5 listed
below are examples of such properties:

1) p1(uk ) = uk

15See Section III-C of [32].
16See Section V-B of [32].
17See Definition 9.1 of [33].

FIGURE 4. Pseudo MC associated with −→u = [u1, . . . , un] according to
property p.

TABLE 2. Property p6. The symbols e and o respectively stand for ’even’
and ’odd’.

2) p2(uk ) = 1 if |uk | is even, 0 otherwise.
3) p3(uk ) = 1 if |uk | is a first number, 0 otherwise.
4) p4(uk ) = (|uk | mod 10)
5) p5(uk ) = 100. |W |(n−1) whereW = {ui|i ̸= k, ui ≥ uk}

Property p1 returns the exact value of uk , while property
p2 returns the parity of |uk |. Property p3 checks if |uk | is
a first number and property p4 returns the last digit of |uk |
(when uk is an integer). Finally, property p5 returns the
proportion of components of−→u which are greater or equal to
uk . The targeted property pmay not only be related to the k th

component of−→u , but also to its immediate eventual left/right
neighbor(s). Properties p6 and p7 respectively presented in
Tables 2 and 3 are examples of such properties. Properties
p2 and p6 both target the parity of |uk |, but p6 is finer
because it considers the neighbors. Similarly, properties
p3 and p7 both aim at verifying if |uk | is a first number or
not, but p7 is finer because it consider the neighbors.
An important issue arising from Figure 4 is that the states

are angles belonging to the continuous interval [0,180] (in
degrees), however the set of states of a HMM must be finite.
Another issue can occur when property p returns a real
number, however the set of symbols of a HMM must also be
finite. This is the case for properties p1 and p5. Solutions for
these issues are proposed in Section IV-C.

B. METHODOLOGY
As it can be observed in Figure 5, traditionalmachine learning
techniques for vector comparison generally take as inputs two
vectors of different dimensions and learn the exact values
of their components in order to extract two feature vectors
having the same dimension, before to perform the comparison
using existing measures. SNN are examples of existing

96944 VOLUME 11, 2023



E. D. Madiga, S. Iloga: Enhancing Vector Comparison Using HMMs

TABLE 3. Property p7. The symbols + and − respectively stand for ’first’
and ’not first’.

FIGURE 5. Traditional methodology for vector comparison using machine
learning.

techniques following the traditional methodology presented
in Figure 5. On the contrary, the methodology presented in
Figure 6 shows that the proposed approach rather takes as
inputs two finite sets of vectors having different dimensions
and requires the additional specification of a set of targeted
properties before to generate one feature vector for each input
set. The final comparison result is also obtained by comparing
the generated feature vectors using existing measures. More
formally, given a user-defined finite set P = {p1, . . . , pl} of l
targeted properties, the proposed methodology for generating
the final feature vector

−→
UP associated with a set of vectors

U = {−→u1 , . . . ,−→ux } is composed of two main steps:
1) For each p ∈ P, generate the single feature vector Up

as described in Figure 7.
2) Generate the final feature vector

−→
UP by concatenating

all its corresponding single feature vectors as described
in Figure 8.

For each p ∈ P, the generation of the single feature vector
is realized as follows:

1) Transformation into MC: The adherence of the
components of every−→ui ∈ U (1≤i≤x) to p is evaluated
and saved into the MC δp(

−→ui ).
2) HMM initialization and training: The resulting

set {δp(
−→u1 ), . . . , δp(

−→ux )} is used for initializing and
training the HMM λUp associated with U according to
p.

3) Meta-data extraction: Meta-data extracted from λUp
are finally used for generating the single feature vector
Up associated with U according to p. These meta-data

are related to the overall time spent by λUp observing
each symbol after a sufficiently long time.

C. TRANSFORMATION INTO MC
Given a vector −→u = [u1, . . . , un], a user-defined integer
N and a user-defined property p, the MC δp(

−→u ) associated
with −→u according to property p is constructed as described
in Figure 4. In order to solve the first issue related to the
fact that the states are angles belonging to the continuous
interval [0,180] in Figure 4, we first split the interval [0,180]
into (N + 1) slices {s0, s1, . . . , sN } as defined in Equation 3
following [34]18 where the authors split the interval [0, 100]
into (N + 1) slices using a similar technique. s0 = {0}

sj =
]
180
N
×(j− 1),

180
N
×j
]

, (1≤j≤N )
(3)

If the value of N used for splitting the interval [0, 180] is
high, then the length of each slice sj becomes tiny and all the
elements in sj become very near to one unique value which
is 180

N ×j. The elements of sj can therefore be considered as
one single element that we identify here by the index j of the
slice sj. This reasoning allows us to derive the MC δp(

−→u )
associated with −→u according to property p by replacing
each angle appearing in Figure 4 by the index j of the slice
sj to which it belongs. When this principle is applied to
the content of a set U = {

−→u1 , . . . ,−→ux } of vectors, each
−→ui (1≤i≤x) having its specific dimension, the set 1U

p =

{δp(
−→u1 ), . . . , δp(

−→ux )} of MC is obtained.
As an example, consider the singleton U = {−→u } where
−→u = [17, 47, 81, 20] and suppose that N = 10 for
splitting the interval [0, 180] into the 11 following slices:
s0 = {0}, s1 =]0, 18], s2 =]18, 36], . . ., s10 =]162, 180].
In these conditions, if properties p4, p6 and p7 are individually
selected,−→u is first transformed into the pseudoMCpresented
in Figures 9a, 9c and 9e respectively, before deriving its final
MC depicted in Figures 9b, 9d and 9f respectively.

Consider a setU = {−→u1 , . . . ,−→ux } of vectors where each
−→ui

(1≤i≤x) has its specific dimension noted here as αi. For the
particular case where property p returns a real number which
can be positive or negative (e.g: properties p1 and p5), the
following procedure is proposed for deriving the MC δp(

−→ui )
associated with every vector −→ui = [ui1, . . . , uiαi ] according
to property p:
1) Generate the pseudo MC associated with −→ui following

Figure 4.
2) Use Equation 3 for splitting the interval [0, 180] into

(N + 1) slices {s0, s1, . . . , sN }.
3) Replace every angle by the index of the slice to which

it belongs.
4) Replace p(uik ) by its normalized value p(uik )

with (1≤k≤αi) using Equation 4 following [34]19

where such a normalization was also performed.

18See Equation 7 of [34].
19See Equation 6 of [34].
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FIGURE 6. Proposed methodology for vector comparison using machine learning.

FIGURE 7. Generation of the single feature vector Up associated with U according to p.

FIGURE 8. Generation of the final feature vector
−→
UP associated with U according to P .

FIGURE 9. Transformation of −→u = [17, 47, 81, 20] into MC when p4, p6 and p7 are individually
selected.

Thereafter, all the p(uik ) belong to the interval
[−100, 100]. If property p exclusively returns positive

(resp. negative) real numbers like property p5, all
the p(uik ) rather belong to the interval [0, 100]
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(resp. [−100, 0]) after the normalization.
p(uik ) =

100
maxi
×p(uik ), (1≤k≤αi) where

maxi = max
1≤i≤x

{
max

1≤k≤αi
{|p(uik )|}

} (4)

5) Given a user-defined integer M , split the interval
[−100, 100] into (2M + 1) slices {z0, z1, . . . , z2M }
using Equation 5. If p exclusively returns positive (resp.
negative) real numbers, the interval [0, 100] (resp.
[−100, 0]) is split into (M + 1) slices using only the
second (resp. the third) line of Equation 5.
z0 = {0}

zj =
]
100
M
×(j− 1),

100
M
×j
]

, (1≤j≤M )

zj+M =
[
−100
M
×(j),

−100
M
×(j− 1)

[
, (1≤j≤M )

(5)

6) Finally, replace every p(uik ) by the index of the slice to
which it belongs.

As an example, consider now the singleton U = {−→u }
where −→u = [13,−137,−72, 55,−11]. Suppose that N =
M = 10 for splitting the interval [0, 180] into the 11 slices
obtained in the former example and the interval [−100, 100]
into the 21 following slices: z0 = {0}, z1 =]0, 10], z2 =
]10, 20], . . ., z10 =]90, 100], z11 = [−10, 0[, z12 =
[−20,−10[, . . ., z20 = [−100,−90[. In these conditions:
1) The pseudo MC associated with −→u according to

property p1 is shown in Figure 10a.
2) When each angle is replaced by the index of the slice

to which it belongs, the modified pseudoMC presented
in Figure 10b is obtained.

3) The resulting values of p1 are then replaced by their
corresponding normalized values p1 calculated for
(maxi = 137) for deriving the modified MC presented
in Figure 10x.

4) Finally, each p1 is replaced by the index of the slice
to which it belongs to obtain the final MC δp1 (

−→u )
depicted in Figure 10d.

D. HMM INITIALIZATION
Consider a set U = {−→u1 , . . . ,−→ux } of vectors and a property p
belonging to a user-defined set P = {p1, . . . , pl} of targeted
properties. Given a small positive user-defined constant ε,
the parameters of the initial HMM λ̂Up = (ÂUp , B̂Up , π̂U

p )
associated with U according to p are calculated as described
below for statistically capturing the state transitions and the
symbol probability distributions from the content of the set of
MC 1U

p = {δp(
−→u1 ), . . . , δp(

−→ux )}:
1) Equation 3 enables to derive the set {s0, . . . , sN }

composed of (N + 1) slices. Each slice is considered
here as a state of the model. Thus, the set of states is
S = {0, 1, . . . ,N }.

2) The content of the set ϑ of symbols depends on
the possible values returned by property p. If the

FIGURE 10. Construction of the MC associated with −→u = [13, −137, −72,

55, −11] according to p1.

returned values of p are taken from a finite set
Z , then (ϑ = Z ). If p returns real numbers that
can be positive or negative, Equation 5 enables to
derive the set {z0, z1, . . . , z2M } composed of (2M +
1) slices. Each slice is considered here as a symbol
of the model. Thus, the set of symbols is ϑ =

{0, 1, . . . , 2M}. If p exclusively returns positive (resp.
negative) real numbers, ϑ only contains (M + 1)
symbols corresponding to the slices generated when
only one of the two last lines of Equation 5 is used.

3) The probability of transiting from state si to state
sj is calculated in Equation 6. In that equation,
transit(si, sj, 1U

p ) is the number of transitions from
state si to state sj in 1U

p and transit(si,−, 1U
p ) is the

number of transitions from state si to any destination
in 1U

p .

ÂUp [si, sj] =
transit(si, sj, 1U

p )

transit(si,−, 1U
p )+ ε

(6)

4) The probability to observe symbol zk at state sj is
calculated in Equation 7 where observe(zk , sj, 1U

p ) is
the number of times symbol zk is observed from state
sj in 1U

p , and observe(−, sj, 1U
p ) is the number of

occurrences of state sj in 1U
p .

B̂Up [sj, zk ] =
observe(zk , sj, 1U

p )

observe(−, sj, 1U
p )+ ε

(7)

5) The probability of starting with state si is calculated in
Equation 8, where start(si, 1U

p ) is the number of MC
in 1U

p starting with state si.

π̂U
p [si] =

start(si, 1U
p )

|1U
p | + ε

(8)

The parameters of λ̂Up are not probability distributions.
This inconvenience is intentionally introduced by adding ε

to the denominators of its various components in order to
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avoid eventual divisions by zero and zero probabilities in
the initial HMM. We experimentally fixed ε = 1.0 and an
equitable redistribution of the missing quantity is applied
to each element of each line in the model λ̂Up to obtain

the readjusted initial model λ
U
p = (A

U
p ,B

U
p , πU

p ) whose
parameters are calculated in Equation 9.

A
U
p [si, sj] = ÂUp [si, sj]+

1
N + 1

(
1−

N∑
h=0

ÂUp [si, sh]

)

B
U
p [sj, zk ] = B̂Up [sj, zk ]+

1
|ϑ |

1−
|ϑ |−1∑
h=0

B̂Up [sj, zh]


πU
p [si] = π̂U

p [si]+
1

N + 1

(
1−

N∑
h=0

π̂U
p [sh]

)
(9)

E. HMM TRAINING
If |U | = 1, then the readjusted initial HMM λ̄Up is trained
using the Baum-Welch algorithm for one single sequence,
otherwise λ̄Up is trained by the same algorithm for multiple
sequences. In both situations, the resulting final HMM is
λUp = (AUp ,BUp , πU

p ) and the training sequences are the
sequences of symbols appearing in 1U

p . For example, the
initial HMM associated with the set {δp1 (

−→u )} presented in
Figure 10d will be trained with the following sequence of
symbols: 1, 20, 16, 5, 11.

F. META-DATA EXTRACTION
Consider a set U = {−→u1 , . . . ,−→ux } of vectors and a property p
belonging to a user-defined set P = {p1, . . . , pl} of targeted
properties. When the values of p are taken from the finite
set Z = ϑ = {z0, z1, . . . , z|ϑ |−1}, the single feature vector
Up = [U0

p ,U1
p , . . . ,U |ϑ |−1p ] associated with U according

to p is derived from λUp by analyzing its behavior regarding
each symbol analogically to [9]20 where the authors realized
human activity recognition using HMM. More precisely, U k

p
(0≤k≤|ϑ |−1) is considered as the overall proportion of time
spent by λUp observing symbol zk after a sufficiently long
time, irrespective of the state from which this observation is
realized. In our context, this roughly corresponds to the rate of
apparition of a specific value of property p (corresponding to
symbol zk ) in the training data. In order to compute the value
of U k

p , the overall proportion of time spent by λUp observing
symbol zk from each state si after a sufficiently long time is
first evaluated as follows:

1) Evaluate the overall proportion of time spent by λUp in
state si after a sufficiently long time. This proportion
is given by the ith component ϕUp [si] of the stationary
distribution of λUp .

2) Multiply the result obtained at step 1 by the probability
of observing zk from state si which is BUp [si, zk ].

20See Section IV-E and Equation 7 of [9].

The value of U k
p is finally obtained by repeating this

process for every state si and summing the resulting
proportions as shown in Equation 10.
Up = [U0

p ,U1
p , . . . ,U |ϑ |−1p ] where

U k
p =

∑N

i=0

(
ϕUp [si]×B

U
p [si, zk ]

)
with (0≤k≤|ϑ | − 1)

(10)

If p returns a real number, in which case the vectors in
U have been normalized using the value maxi calculated in
Equation 4, the value of maxi is inserted as the last additional
component of Up in order to consider the effect of this
normalization as shown in Equation 11.Up = [U0

p ,U1
p , . . . ,U |ϑ |−1p ,maxi] where

U k
p =

∑N

i=0

(
ϕUp [si]×B

U
p [si, zk ]

)
with (0≤k≤|ϑ | − 1)

(11)

Given that the proposed approach is applicable to finite sets
of vectors, we conventionally adopt Property 1 for deriving
the single feature vector associated with the empty set.
Property 1: The single feature vector associated with ∅

according to any property p is ∅p =
−→
0 ∈R|ϑ |.

The fixed size of each single feature vector is the number of
symbols of the corresponding HMM. A symbol is a discrete
information describing a process and that can be ’observed’
by a HMM in order to capture the overall ’behavior’ of this
process after a sufficiently long time. Consequently, a low
number of symbols may induce a lack of information during
the model training, which leads to an incomplete behavior
description of the process. On the contrary, a high number of
symbols may lead to overfitting during themodel training and
generate an inconsistent behavior description of the process.

G. FINAL FEATURE VECTOR GENERATION
The final feature vector

−→
UP associated with U according to

all the properties in the user-defined set P = {p1, . . . , pl} of
targeted properties is constructed by sequentially concatenat-
ing in this order the components of the single feature vectors
Up1 , . . . ,Upl as described in Algorithm 1 where βi is the
dimension of Upi with (1≤i≤l).

H. VECTOR SETS COMPARISON
Consider two sets U = {−→u1 , . . . ,−→ux } and V = {

−→v1 , . . . ,−→vy }
of vectors, each vector −→ui (1≤i≤x) and

−→vj (1≤j≤y) having
its specific dimension. Given a user-defined set P =

{p1, . . . , pl} of targeted properties and any existing distance
(resp. similarity) measure d between two vectors having the
same dimension, we define in Equation 12 the corresponding
σ -distance (resp. σ -similarity) noted σ dP between U and
V obtained by computing the distance/similarity d their
respective associated feature vectors

−→
UP and

−→
VP.

σ dP (U ,V ) = d(
−→
UP,
−→
VP) (12)
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TABLE 4. σ -Euclidean and σ -Manhattan distances between the singletons U = {
−→u1} and V = {

−→v1} according to P , with −→u1 = [17, 47, 81, 20] and
−→v1 = [13, −137, −72, 55, −11].

TABLE 5. σ -Euclidean and σ -Manhattan distances between the sets U ′ = {
−→u1,

−→u2} and V ′ = {
−→v1,

−→v2} according to P , with −→u1 = [17, 47, 81, 20],
−→u2 = [44, 156, 84, 548], −→v1 = [13, −137, −72, 55, −11] and −→v2 = [188, 4, 326, 142].

Algorithm 1 FinalFeatureVector

Inputs: U ,P = {p1, . . . , pl}, {λUp1 , . . . , λ
U
pl }

Output:
−→
UP

1: k ← 1
2: for (i← 1; (i ≤ l); i← i+ 1) do
3: Compute(Upi )
4: for (j← 1; (j ≤ βi); j← j+ 1) do
5:

−→
UP[k]← Upi [j]

6: k ← k + 1
7: end for
8: end for
9: return

−→
UP

I. PRACTICAL EXAMPLES
To illustrate how the proposed approach can be used
in practice, we first computed the σ -Euclidean and the
σ -Manhattan distances between the singletons U = {−→u1 }
and V = {

−→v1 }, where −→u1 = [17, 47, 81, 20] and
−→v1 = [13,−137,−72, 55,−11] are the vectors used for
the examples presented in Section IV-C. The comparison is
respectively realized according to the sets {p1}, {p4}, {p6} and
{p7} of properties. For this example, we also fixed N = M =
10 as it was the case for the examples of Section IV-C. The
final feature vectors and the comparison results are presented
in Table 4.
In identical conditions, we also computed the σ -Euclidean

and the σ -Manhattan distances between the sets U ′ =
{
−→u1 ,−→u2 } and V ′ = {

−→v1 ,−→v2 }, where −→u1 and −→v1 are

unchanged, while −→u2 = [44, 156, 84, 548] and −→v2 =

[188, 4, 326, 142] are the two vectors taken as examples
in the paper Introduction. The final feature vectors and
the comparison results are presented in Table 5. All the
comparison results presented in Tables 4 and 5 are consistent
since they represent the Euclidean and the Manhattan
distances between U and V calculated according to different
sets of criteria. The generation of each final feature vector
computed in this section experimentally required less than
200 ms.

V. EXPERIMENTAL RESULTS
As it can be observed in Equation 12, the current work
does not propose any new similarity or distance measure for
comparing vectors. It rather enhances existing measures by
giving them the ability:

1) To perform the comparison according to a specific set
P of targeted properties.

2) To compare two finite sets of vectors, each containing
vectors of various dimensions.

The goal of this section is to demonstrate that there
are situations where it is preferable to compare vectors
according to other criteria than the exact values of their
components and to evaluate the performances of the pro-
posed approach in these conditions. In order to show how
the proposed approach can efficiently enhance existing
techniques when the suitable set of targeted properties
is selected, flat classification experiments were conducted
on three synthetic datasets especially constructed for this
purpose.
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TABLE 6. Properties in Modulo10. For each vector −→u = [u1, . . . , u10], the
item located at line c and column uk defines the value of (|uk | mod 10) in
class c .

TABLE 7. Properties in OddOrEven. For each vector −→u = [u1, . . . , u10],
the item located at line c and column uk indicates if |uk | is even e or odd
o in class c .

TABLE 8. Properties in FirstOrNot. For each vector −→u = [u1, . . . , u10], the
item located at line c and column uk indicates if |uk | is a first number +

or not − in class c .

A. EXPERIMENTAL DATABASES
The three synthetic datasets are Modulo10, OddOrEven and
FirstOrNot. Each dataset contains 10 classes composed of
100 vectors, each having 10 components. The components
of the vectors in Modulo10 are integers from the interval
[−200, 200], while those of the two remaining datasets are
integers from the interval [0, 200]. Tables 6 to 8 describe the
properties verified by the components of each vector for each
class respectively inModulo10, OddOrEven and FirstOrNot.
All the data used during the current experiments are available
online as ’.arff’ files21 taken as input by the soft WEKA [35].

B. EXPERIMENTAL SETTINGS
The classification experiments performed in this work were
realized on a personal computer having 16 GB of main

21https://webperso.etis-lab.fr/sylvain.iloga/Vectors/index.html

memory and the following processor: Intel(R) Core(TM) i7-
8665U CPU @ 1.90 GHz 2.11 GHz.

The maximum number of iterations γ = 100 was selected
here for the Baum-Welch algorithm22 and the constant
r = 100 was selected here for computing the stationary
distributions of our HMMs23 following [9].

Each vector −→u of each dataset was considered as the
singleton U = {

−→u }. Given that the three synthetic
experimental datasets contain vectors having components
belonging to N, Equation 10 was used for the generation of
the final feature vectors.

It is not systematically necessary to determine the most
relevant and informative content of the set P of targeted
properties when using the proposed approach since the
comparison result always remains consistent according to P,
whatever it contains. It is only the final goal of the comparison
which indicates the necessity of determining the best content
of P. As an example, for pure decision support as comparing
sets of items (e.g: cars) represented by vector data in order to
select the set which matches the best with some user-defined
preferences (e.g: number of doors ≤ 4, engine power ≥
50, etc.), it is not necessary to determine the best content
of P. Indeed, the user-defined preferences fully determine
the content of P in that context. However, the discovery of
the best content of P becomes necessary and challenging
for classification purposes for example. It is for this reason
that the sets {p4}, {p6}, {p7}, {p4, p6}, {p4, p7}, {p6, p7} and
{p4, p6, p7} have been objectively selected for the current
experiments. Testing several sets of properties for each
experimental dataset enables to observe how the selected
set of properties impacts the classification results. The value
(N = 20) was selected for splitting the interval [0, 180] using
Equation 3. All our codes were written in C language and are
also available online 21.

C. CLASSIFICATION RESULTS
Classification experiments were realized in WEKA [35]
through a 10 fold cross-validation. The four following
classifiers were selected with their default parameters in
WEKA for this purpose, their corresponding names in
WEKA are shown in brackets:

1) Nearest Neighbor (IBk) with k = 1, which was used
for the Euclidean and for theManhattan distances.

2) Support Vector Machines (SMO) with the following
parameters: c = 1, ε = 10−12 and kernel= polynomial
kernel.

3) Decision trees (J48) with the following parameters:
confidence factor = 0.25,Minimum number of objects
= 2, Binary splits = False.

The selected classifiers have been previously used in [9]
and [34] for analogue purposes. In particular, the use of
the Nearest Neighbor classifier is important here because it
enables to evaluate the behavior of existing distances when

22See Section III-C of [9].
23See Section V-B of [9].
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TABLE 9. Best classification results considering the four selected
classifiers when the final feature vectors are used. Accuracies are in (%).
The best accuracies are in bold in each column.

TABLE 10. Comparison of the best classification performances when the
original vectors are used and when the final feature vectors are used.
Accuracies are in (%). The best accuracies are in bold.

they compare original vectors on the one hand, and when
they compare the final feature vectors generated by the
proposed approach on the other hand. Classification results
are presented in Table 9 where each cell contains the best
classification performance for the considered dataset and
considering all the four selected classifiers. These results
experimentaly demonstrate that the final feature vectors
generated by the proposed approach according the sets of
selected properties enable to obtain good performances for
the three experimental datasets.

D. COMPARISONS
In order to compare the proposed approach to existing
techniques, we evaluated the flat classification performances
when each original vector −→u of each dataset is directly used
as input for the classifier. The resulting best classification
performances are extremely poor for the three synthetic
datasets. When the best accuracies obtained by existing
techniques are compared to those exhibited by the proposed
approach in Table 10, we observe that the proposed approach
outperforms existing techniques with accuracy gains reaching
+82.3%.

E. TIME COST
1) THEORETICAL TIME COST
According to the methodology presented in Figure 8, the
time cost of the proposed approach is approximated by
the time required for the generation of one single feature
vector, multiplied by the number l of properties in P =
{p1, . . . , pl}. For each property p ∈ P, Figure 7 reveals that
the generation of each single feature vector is composed of
the three following steps:

1) Transformation into MC: Let us note ξ the time
required for an angle computation and κ the maximum
time required for the evaluation of any property p ∈ P.
The transformation into MC roughly only requires n

computations of angles (states) and n evaluations of
property p (symbols) for a vector −→u = [u1, . . . , un].
Thus for one vector, this step requires n.(ξ + κ).
In these conditions, the transformation of the vectors
belonging to a set U = {−→u1 , . . . ,−→ux } into MC runs in
θ
[
(ξ + κ).

(∑x
i=1 αi

)]
where αi is the dimension of−→ui .

2) HMM initialization and training: The time required
for initializing a model was experimentally very low.
Thus this step is dominated by the model training
phase, which according to Section III-C, runs in
θ
[
γ.(N + 1)2.

(∑x
i=1 αi

)]
where N is the user-defined

constant used for splitting the interval [0, 180] into
(N + 1) slices and γ is the user-defined maximum
number of iterations of the Baum-Welch algorithm.

3) Meta-data extraction: The main time consuming oper-
ation realized during this step is the computation of
the stationary distribution of the HMM which runs in
θ
[
r .(N + 1)3

]
as stated in Section III-D.

When these 3 partial results are gathered, we deduce
that the time required for the single vector genera-
tion is θ

[
r .(N + 1)3 +

(
ξ + κ + γ.(N + 1)2

)
.
(∑x

i=1 αi
)]
.

When N is high, this time cost can simply be reduced to
θ
[
r .N 3
+
(
ξ + κ + γ.N 2

)
.
(∑x

i=1 αi
)]
. The time needed for

the generation of the final feature vector
−→
UP is obtained by

multiplying this expression by l as shown in Equation 13.

Time(
−→
UP) = θ

[
l.r .N 3

+ l.
(
ξ + κ + γ.N 2

)
.

(
x∑
i=1

αi

)]
(13)

This time complexity can become high if the values of the
parameters ξ , κ , αi, r , γ and N are also high. The parameters
ξ , κ and αi are not user-dependent. Therefore, they cannot be
modified for reducing the time cost. However, the values of
r , γ and N which are user-defined can be gradually reduced
without necessarily having an important negative impact on
the final comparison results. Indeed:
1) If the stationary distribution is discovered after r0 iter-

ations with (r0 < r), this distribution will remain
unchanged during the (r − r0) remaining iterations.

2) Similarly, the Baum-Welch algorithm may discover
a model very close to the local optimum after
γ0 iterations with (γ0 < γ ), in which case it is not
absolutely necessary to perform the remaining (γ −γ0)
iterations.

2) EXPERIMENTAL TIME COST
As it can be observed in Table 11 the experimental time cost
required by the proposed approach is reasonable. This table
shows the maximum time costs (in milliseconds) required for
eachmain step of the proposed approach in each experimental
dataset. Table 11 reveals that the most time consuming steps
of the proposed approach are:
1) The ’HMM initialization and training’ whose time

cost can be reduced if the Baum-Welch algorithm is
executed in parallel.
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TABLE 11. Maximum experimental time costs (in milliseconds) required
for each main step of the proposed approach in each experimental
dataset, with Step 1 = ’Transformation into Markov chain’, Step 2 =

’HMM initialization and training’ and Step 3 = ’Feature vector
generation’.

2) The ’Feature vector generation’ whose duration can be
reduced if the stationary distribution is discovered after
a low number of iterations as explained at the end of
Section V-E1.

F. MAIN ASSETS
The technique proposed in the current paper:

1) Enables to compare two finite sets of vectors.
2) Enables to compare vectors having different dimen-

sions without distorting the reality, unlike ZP and DR
techniques.

3) Requires the explicit specification of a finite set P of
targeted properties according to which the comparison
is performed. No existing technique offers this option.

4) Unlike SNN, it takes a reasonable time for associating
a HMM λUp with a set U of vectors according to each
property p ∈ P. The parameters of this HMM can be
easily modified and the resulting single feature vector
−→
Up is interpretable. Indeed, the k th componentU k

p of
−→
Up

is the overall proportion of time spent by the model λUp
observing the k th symbol after a sufficiently long time,
irrespective of the state from which this observation is
realized.

5) When the suitable set of property is selected, it seri-
ously outperforms existing techniques for the flat
classification of the three experimental datasets with
accuracy gains reaching +82.3%.

6) Can be easily implemented in parallel in order to reduce
its time cost.

VI. CONCLUSION
This paper addresses the problem of vectors comparison
which is very important for popular tasks like classification
and clustering. Existing distance and similarity measures
used for this purpose are unsuitable when the input vectors
have different dimensions. ZP and DR techniques are most
often used in that case to augment/reduce the dimensions
of the inputs vectors such that they finally have the same
dimension before performing the comparison. But these
techniques distort the reality. SNN enable to avoid the
distortion of the reality, but they are limited by several factors
(lots of computing resources, less interpretable outputs, etc).
Additionally, the problem of comparing two finite sets of
vectors remains an open field of research.

The current paper has attempted to overcome these draw-
backs by proposing a customizable technique based on HMM

for comparing two finite sets of vectors, each set containing
vectors having different dimensions, while precising the
set of targeted properties on which the comparison should
be performed. Flat classification experiments conducted on
three online available custom datasets demonstrated that
when the suitable set of targeted properties is selected,
the proposed approach outperforms existing techniques with
accuracy gains reaching+82.3%. The following perspectives
can be considered in future work:

1) Future work can analyze the impact of the gradual
modification of the user-defined parameters r , γ ,N and
M on the performances of the proposed approach.

2) Future work must focus on the objective discovery of
the most relevant and informative set of properties by
analyzing the vector components using machine learn-
ing or data mining techniques when it is required by the
final goal of the comparison. Given two finite vector
sets U and V , future work can analyze the content of
U in order to discover of the subset PU of targeted
properties that is suitable for the characterization of
the vectors in U . The same process will be used for
the discovery of the subset PV of targeted properties
that is suitable for the characterization of the vectors in
V . Finally, the comparison between U and V will be
done using the proposed approach according to the set
P =

(
PU
⋃
PV
)
.

3) The time cost of the proposed approach can be
reduced in future work if the single feature vectors are
generated in parallel. More precisely, if the targeted
set of properties is {p1, p2, . . . , pL}, then L processors
{proc1, proc2, . . . , procL} can be used for this purpose,
each processor prock (1≤k≤L) being responsible of the
generation of the single feature vector associated with
property pk . This time cost can be further reduced
if a parallel version of the Baum-Welch algorithm is
additionally executed. This can be implemented using
Message Passing Interface (MPI) following [36] or
using a Field-Programmable Gate Array (FPGA) chip
following [37].

4) A taxonomy is an efficient navigating and browsing
mechanism of a dataset. It organizes the content of the
dataset into a hierarchy where broad concepts are at the
top andmore specific concepts are further down. Future
work must explore the possibility of designing datasets
taxonomies based on the feature vectors generated by
the proposed approach. More formally, given a dataset
composed of many classes, a unique feature vector
can be generated for each class using the proposed
approach. The resulting feature vectors can be finally
taken as input by a hierarchical clustering algorithm in
order to generate a taxonomy of the dataset.

5) Future work must focus on the implementation of an
extension of the proposed approach that will consider
vectors having nominal components or a mixture of
numeric and nominal components.
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