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Abstract: This study reports a sustainable approach for developing electrodes for microsupercapac-
itors. This approach includes the synthesis of TiO2 nanoparticles via a green sol–gel method and
the deposition of thin films of that electrochemically active material on three-dimensional (3D) Si
substrates with a high area enlargement factor (AEF) via a simple, fast, and inexpensive spin-coating
pathway. The thickness of the film was first optimized via its deposition over two-dimensional (2D)
substrates to achieve high capacitances to provide high energy density but also to deliver a good
rate capability to ensure the power density required for a supercapacitor device. A film thickness
of ~120 nm realizes the best compromise between the electronic/ionic conductivity and capacitance
in a supercapacitor device. Such layers of TiO2 were successfully coated onto 3D microstructured
substrates with different architectures, such as trenches and pillars, and different aspect ratios. The
spin-coating-based route developed here has been established to be superior as, on the one hand,
a conformal deposition can be achieved over high AEF subtracts, and on the other hand, the 3D
electrodes present higher surface capacitances than those obtained using other deposition techniques.
The rate capability and appreciable cyclability ensure a reliable supercapacitor behavior.

Keywords: TiO2; spin-coating; 3D electrodes; micro-supercapacitors

1. Introduction

The increasing need for miniaturized power sources and the diversification of mi-
crodevices has promoted interest in three-dimensional (3D) integrated energy storage
components [1]. Structuring active materials on 3D supports affords electrochemical de-
vices with advantages, such as a reduced device size and device fabrication cost and
improved reliability and energy-related performances. Therefore, research in this area is
extremely active, particularly in the fields of microbatteries, microsupercapacitors, fuel cells,
solar cells, and metal–insulator–metal (MIM) capacitors [1–25]. In energy storage systems,
such as batteries and supercapacitors, the integration of microsystems enables sustained
and autonomous operation of electronic devices for applications such as wearable gadgets
or wireless sensor networks.

However, decreasing the size of an energy storage device, such as a battery or a su-
percapacitor, requires researching strategies that do so without considerably decreasing its
energy density. Because the energy density depends on the specific surface of the electrode–
electrolyte interface, new advanced concepts have been proposed for nanostructuring
electrodes using 3D templates/substrates such as nanowires (NWs), nanorods, nanosheets,
or nanowalls [1–10]. For example, in the field of Li-ion microbatteries, Golodnitsky et al. [20]
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increased the capacity of a MoOySz thin film by 20–30 times by nanostructuring the elec-
trode active material on a 3D glass microchannel plate (MCP) substrate and exhibited a
reversible discharge capacity of 3.5 mAh cm−2.

The electrochemical performance of a nanostructured 3D electrode depends on the area
enlargement factor (AEF), which represents the ratio between the 3D and two-dimensional
(2D) surface areas (i.e., the gain obtained). To increase the energy performance substantially,
the AEF must attain a high value. Nevertheless, one of the limitations to designing a
high-AEF substrate is the fact that the geometrical structures of the 3D topology must be
sufficiently spaced to allow the deposition of the electrode material thin film initially and
subsequently access for the ions from the electrolyte to the electrode surface.

Among oxides such as MnO2 [15] and RuO2 [5], titanium dioxide, TiO2, is increasingly
used as electrode material in energy storage microdevices, such as microbatteries and
microsupercapacitors.

In addition to the well-known electrochemical properties of TiO2 as an electrode in
energy storage systems, TiO2 has attracted interest primarily because, during the last few
years, synthetic routes for thin films with controlled crystallite sizes and shapes and good
adhesion to different supports have been reported. TiO2 thin films can be obtained via
several methods [26] including sol–gel processes [27,28], spray pyrolysis [29], pulsed laser
deposition [30,31], radio frequency magnetron sputtering (physical vapor deposition (PVD)
method [32,33], and atomic layer deposition (ALD) [34]. Once the synthesis of TiO2 thin
films was established, further structuration of TiO2 thin films on 3D supports was possible,
opening the way for developing high-performance microdevices.

In the literature, several approaches have been reported for combining TiO2 thin films
as active materials with different 3D substrates to form electrodes for microbatteries and
microsupercapacitors. Cheah et al. [35] developed a 3D nano-architectured aluminum-
based metallic current collector with an anatase TiO2 layer deposited via ALD as a negative
electrode for a microbattery. For the same thickness of 17 nm of the TiO2 thin film, they
reported a capacity of 1.1 µAh cm−2 for a planar Al plate substrate and a capacity of
11.2 µAh cm−2 for a 3D substrate based on Al nanorods with an AEF of 10. These results
highlight the importance of the AEF, showing that the capacity values evolve linearly with
the AEF value. The same conclusions were reported by Wang et al. [36], who used lengthy
and small-diameter vertically grown Ni NWs synthesized using a porous anodic alumina
template with a thin TiO2 layer deposited via ALD. For a thin layer of TiO2 with a thickness
of 16 nm, the discharge capacity obtained was only 1.6 µAh cm−2 when using planar Ni
foil as the support; however, the capacity increased up to 160 µAh cm−2 upon using Ni
nanowires as the support with an AEF of ~65. Eustache et al. [17] reported that to optimize
the surface capacity of TiO2-based microelectrodes; a balance must be reached between
the AEF of the 3D topology and the thickness of the electroactive layer. In particular,
Eustache et al. reported a novel 3D silicon microtube scaffold with an AEF of 30 having
adequate space between and within microtubes to allow ALD of a Pt current collector and
a TiO2 layer with a thickness as high as 150 nm. Such a configuration allows for reaching
surface capacities as 200 µAh cm−2.

TiO2 has also been used as an electrode in microsupercapacitors because it exhibits
capacitive behavior in aqueous electrolytes such as H2SO4 or Na2SO4 solutions. When
using gel solutions of aqueous electrolytes, thin film electrodes comprising TiO2/carbon
composites synthesized via a laser-related techniques for interdigitated planar devices
exhibit capacitances from 9.9 mF cm−2 [37] to 27 mF cm−2 [38]. In the literature, two
approaches have been reported for enlarging the electrode surface via 3D structuration:
the use of TiO2 nanotube (NT) arrays [39] or TiO2 coating of Si NWs (SiNWs) [40,41].
Highly ordered TiO2 NT arrays with a diameter of ~170 nm and a length of 17.5 µm
can be synthesized via anodization of a Ti foil. Further introducing oxygen vacancies in
TiO2 increases the capacitance from 2 to 23 mF cm−2 [39], outperforming other TiO2 NTs
in aqueous electrolytes [36,42–47]. TiO2-coated SiNWs with a length of 2–4 µm exhibit
capacitances of ~3.5 mF cm−2. Nevertheless, all these materials have limited energy
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densities because the chosen aqueous electrolyte limits the operating voltage due to the
electrochemical stability window of water. An organic solvent will be more advantageous
in terms of electrochemical stability window allowing the system to operate up to higher
voltages. In fact, the nanotexturation of TiO2 particles at the nanoscale affords the oxide in
Li-based organic electrolytes with a pseudocapacitive character since the charge exchange
can be almost continuous as a function of the potential [48,49]. This pseudocapacitive
character affords fast charge–discharge kinetics, which is compatible with the power
demand of a supercapacitor. To obtain a major contribution of capacitive processes and
to keep a high rate capability, Sallaz et al. [50] reported that the thickness of a TiO2 film
deposited on 2D Pt via ALD should not be more than 6–11 nm to find a balance between
capacitance and rate capability. However, the effect of further structuration of TiO2 thin
films on 3D substrates in the organic electrolyte–based microsupercapacitors has not been
reported in the literature.

Therefore, this study aimed to use high–enlargement area supports deposited with
TiO2 thin films as electrodes for microsupercapacitors with a Li-based organic electrolyte.

Among the various thin film deposition techniques, sol–gel synthesis followed by
spin-coating was chosen because it is sustainable, simple, and inexpensive owing to the
requirement of less equipment and energy compared to other processes as ALD, PVD, laser
related, and so forth. Another advantage of this method is that it affords the flexibility
to control the microstructure of the deposited film. Deposition of TiO2 thin films by spin-
coating on porous structures remains a technical challenge and has seldom been reported
in the literature. Zhang et al. [40] used spin-coating to coat SiNWs with TiO2 prepared
via a sol–gel method—although the AEF of the substrate was not very high (SiNWs had a
length of 2 µm), a nonhomogeneous TiO2 layer with island-like aggregates was obtained,
indicating the difficulty of chemical deposition routes.

A unique strategy for using the spin-coating technique to prepare 3D nanotextured
electrodes with a conformal active material layer was reported previously [51–53]. This
strategy based on soft chemical routes for preparing 3D electrodes is followed in this study
to prepare TiO2-based electrodes for being used in microsupercapacitors operating in an
organic electrolyte. For increasing the surface area of the electrode, 3D Si structures com-
prising trenches or pillars are created using deep reactive ionic etching after the standard
photolithography processes. Thereafter, conformal thin films coating the 3D substrates are
obtained through the penetration of the TiO2 precursors inside the 3D structures and the
uniform coverage of TiO2 over the walls. The electrochemical properties of anatase TiO2
pseudocapacitive thin films were optimized by controlling the microstructure and thickness
of the active material film as well as by synthesizing Si substrates with a high AEF.

2. Materials and Methods
2.1. Preparation of 3D Substrate Materials

3D Si substrate preparation was performed according to the literature [51]. In brief, the
silicon substrate was a 150 mm diameter, p-type (100) silicon wafer (Sil’tronix, Archamps,
France) with a thickness of 600–650 µm and an electrical resistivity of 0.001–0.002 Ω cm. To
synthesize high-aspect-ratio (AR) structures on Si substrates, the Bosch process was used.
The Bosch process, preferred for industrial applications, comprises alternating isotropic
etching (SF6 plasma) and deposition steps (C4F6 plasma) at an ambient temperature [54].
Trench or pillar structures with an AR of 9 and 29 were obtained, respectively. The Si
substrates were cleaned after the Bosch process to remove chemical residues by washing
with a 40 wt% hydrofluoric acid (HF) solution, followed by the Radio Corporation of
America (RCA) method [55]. In the RCA method, the Si substrates were immersed in a
5:1:1 mixture of H2O, H2O2, and NH4OH and heated at ~75–80 ◦C for 10 min.

2.2. Synthesis and Deposition of TiO2 Layers on 2D and 3D Substrates

For TiO2 preparation, a simple and scalable sol–gel method reported in the literature
was used [26]. Briefly, 2.86 mL of tetrabutyl titanate (Acros Organics, Fisher Scientific
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SAS, Illkirch, France), 0.86 mL of acetylacetone (Merck KGaA, Darmstadt, Germany, 99%
purity), and 1.14 mL of water were mixed. Propanol (Honeywell, Charlotte, North Carolina,
US, purity ≥ 99.8%) was added to the mixture to obtain 20 mL of sol and to achieve a Ti
concentration of 0.42 mol L−1 (sol S1). Two other mixed sols with different Ti concentrations
were prepared as described above (sol S2 with a Ti concentration of 0.21 mol L−1 and sol
S3 with a Ti concentration of 0.105 mol L−1). These sols were magnetically stirred for a
few minutes. The sols were deposited on the 2D or 3D Si substrate via spin-coating using
a particular method we developed for other materials [51–53]. The procedure includes
adding a polyester resin (PE-NORSODYNE S 2010 V) to the S1, S2 or S3 solutions in a
4:1 mass ratio. The resin/sol mixtures were deposited on a 2 cm × 2 cm 2D or 3D silicon
substrate using a spin coater (SPS-Europe Spin150) with a ramp rate of 2000 rpm/s and a
spin speed of 3000 rpm for 30 s. This resin/sol mixture deposition was followed by thermal
treatment on hot plates to remove the resin and solvents (175 ◦C for 5 min and 375 ◦C for
10 min) and rapid thermic annealing at 700 ◦C to crystalize the oxide layer.

The above procedure using sols S1, S2, and S3, allows the formation of TiO2 thin films
with a thickness of 50 nm, 40 nm, and 20 nm, respectively. A layer with a thickness of
90 nm was formed by coating sol S1 and after sol S2. For a TiO2 layer thickness of 120 nm,
200 nm, and 300 nm, the process has been repeated two, four and five times, respectively,
using sol S1.

To ensure good electrical contact between the electrode and the current collector
during electrochemical characterizations, a 200 nm-thick Ti layer was deposited by PVD
(Plassys MP650s) on the backside of the samples (sputtering rate = 1.7 nm/s, time = ~120 s).

2.3. Physico-Chemical and Electrochemical Characterization

Scanning electron microscopy (SEM) was performed on cross-sectional samples using
Zeiss Ultra plus and Mira3 TESCAN microscopes with a very low accelerating voltage
(4–5 kV).

The presence of the anatase phase and its phase purity in the TiO2 thin films were
confirmed by X-ray diffraction (XRD) [Bruker D8 advance diffractometer with CuKα

radiations; λ = 1.5418 Å]. XRD patterns were collected with a step size of 0.02◦ in an angular
range from 20◦ to 60◦ at room temperature.

For electrochemical measurements, half-cells were prepared in an argon-filled glove
box using Swagelok-type cells. The working electrode was dried Si/TiO2 materials, and the
counter and reference electrodes were lithium foil. The working electrodes had a rectangu-
lar shape with a 0.49 cm2 surface. The working electrode and the Li foil were separated with
two glass microfiber membranes (Whatman GF/C, FisherbrandTM, Fisher Scientific SAS, Il-
lkirch, France) impregnated with 1 mol L−1 lithium hexafluorophosphate (LiPF6) dissolved
in a 1:1:3 mixture of ethylene carbonate (EC, Sigma Aldrich®, Merck KGaA, Darmstadt, Ger-
many, 99% purity), propylene carbonate (PC, Sigma Aldrich®, 99.7% purity), and dimethyl
carbonate (DMC, Sigma Aldrich®, >99% purity) by mass. Electrochemical measurements
were made performed using a VMP3 multichannel potentiostat (Biologic, Seyssinet-Pariset,
France). Cyclic voltammetry (CVs) was performed at a scan rate of 1 mV s−1 between 1.0
and 3.0 V versus Li/Li+ for TiO2 electrodes. Galvanostatic charge–discharge cycling was
performed at different current densities with potential limits cut-off between 1.0 V and
3.0 V versus Li/Li+ at charges densities from 0.02 to 0.5 mA cm−2. Impedance spectroscopy
measurements were performed by applying an ac signal of 20 mV in the range from 10 kHz
to 1 mHz. Surface capacitance values were obtained from galvanostatic charge–discharge
cycling using the following equations:

I∆t
S

(
in Ah cm−2

)
I∆t

∆V S

(
in F cm−2

)
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where I is the current (amperes), ∆t is the discharging time (seconds), ∆V is the potential
window after removing the ohmic drop (volts), and S is the geometrical surface of the
sample (cm−2). Average values from three to five cells are presented.

3. Results and Discussion
3.1. 2D Electrodes

TiO2 layers were first deposited on 2D structured Si wafers to validate the deposition
process and determine the optimal thickness of the active material layer in the electrode for
optimal electrochemical performance.

Figure 1 shows the SEM images of the 2D electrodes obtained after the deposition of
TiO2 layers of different thicknesses on the Si substrate.
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Figure 1. SEM images of 2D Si-coated with TiO2 films of different thicknesses and top view of the
120 nm TiO2 film (down left picture).

Figure 1 shows how the deposition of the sol in the presence of a PE resin, followed by
the calcination step, affords homogeneous TiO2 films without cracks and fissures. The films
comprise small and interconnected oxide nanoparticles and exhibit good adhesion to the
Si substrate. The SEM images of the 2D electrodes confirm that the thickness of the TiO2
film can be precisely controlled between 20 and 60 nm by varying the sol concentration
or layer-by-layer coating to obtain thicker films. The SEM images for the 120 to 300 nm
films reveal any dead space between the deposited layers. Even if TiO2 layers with a
thickness of 120 nm, 200 nm, and 300 nm are obtained by depositing sol S1 two, four, and
five times, respectively, a continuous and homogeneous oxide layer without any interface
is observed. Therefore, Figure 1 confirms the efficiency of depositing a TiO2 sol by spin-
coating for obtaining homogeneous TiO2 layers without cracks and fissures (see the top
view in Figure 1) of a desired thickness on a Si substrate.

To determine if the presence of PE resin during the sol deposition process affects the
structure and crystallinity of TiO2, XRD of TiO2 films was performed, and the spectra of
TiO2 films were compared to those of a TiO2 powder obtained using the same synthesis
procedure in the absence of PE resin. Figure 2 shows that the XRD pattern of the TiO2
powder obtained via the sol–gel method is consistent with the anatase crystalline phase
(reference PDF 01-013-1764) [56]. The XRD pattern of a 300 nm-thick TiO2 film deposited
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on a Si supports the XRD presents, in addition to the reflections of Si metal (XRD pattern of
the Si support included in Figure 2), a visible anatase phase ((101) peak). Therefore, the
deposition method does not impact the structure or crystallinity of TiO2, and the desired
anatase phase was obtained for the TiO2 thin films.
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3.2. Electrochemical Characterization of 2D Electrodes

Figure 3 shows the CV profiles (Figure 3a) and the galvanostatic charge–discharge
(Figure 3b) curves for TiO2 films of different thicknesses deposited on a planar substrate
obtained in a half-cell using an organic electrolyte (1 mol·L−1 LiPF6 in 1:1:3 EC:PC:DMC).
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Figure 3. (a) Cyclic votammograms at 1 mv s−1 and (b) galvanostatic charge–discharge profiles at
0.1 mA cm−2 obtained in a three-electrode cell using TiO2 layers with 20, 50, 90, 120 and 200 nm
thickness over 2D Si in LiPF6 EC:DMC as electrolyte.

The CVs shown in Figure 3a present the typical signature of a nanosized TiO2 film in
organic electrolytes exhibiting a capacitive contribution and Ti4+/Ti3+ redox peaks, which
may originate from multiple lithium sites in the TiO2 structure [57]. The galvanostatic
charge–discharge profiles presented in Figure 3b at a moderately high charge density of
0.1 mA cm−1 show a typical capacitive behavior, confirming the pseudocapacitive character
of the nanosized TiO2 comprising the thin films where diffusion-controlled lithium-ion
intercalation processes are replaced by surface reactions [48,49].
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The effect of the thickness of TiO2 film on the electrochemical performance of the
2D electrodes was studied. Figure 3 exhibits that the capacitance of TiO2 increases when
the thickness of the film increases from 20 to 90 nm, as shown by an increase in the area
of the CV (Figure 3a). This increase in capacitance can be associated with an increase
in TiO2 content taking part in the surface lithiation/delithiation process. However, the
capacitance stabilizes for thickness going up to 120 nm for a strong decrease when the
thickness of the film is increased up to 200 nm. The same observations can be made
from the galvanostatic charge–discharge profiles shown in Figure 3b, where the discharge
time increases for films with a thickness of 20–120 nm and then decrease for films with a
thickness of 200 nm. Therefore, there are some limitations in charge diffusion when the film
thickness is increased. To assess the optimal thickness of the TiO2 film, it is necessary to
find a good compromise between surface capacitance and rate capability, and it is essential
to evaluate their electrochemical performance at different charge densities.

Figure 4a shows the surface capacitance as a function of TiO2 thickness, obtained
from galvanostatic charge–discharge experiments by applying current densities from
0.01 mA cm−2 to 0.2 mA cm−2.
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Figure 4. (a) Evolution of the surface capacitance of the 2D electrodes with the TiO2 film thickness
obtained from galvanostatic charge–discharge experiments at charges densities from 0.01 mA cm−2

to 0.2 mA cm−2, and (b) Nyquist plot obtained with the 2D electrodes having TiO2 thicknesses of
200 nm or 120 nm.

Figure 4a shows the same tendency of the surface capacitance versus the TiO2 film
thickness discussed above for 0.1 mA cm−2 (Figure 3b) for all the current densities. We
observed an increase in the surface capacitance when the thickness of the film increased
from 20 to 120 nm, followed by a noticeable decrease in the surface capacitance for the
film with a thickness of 200 nm at low current densities, where faradic reactions have an
important contribution toward the capacitance, or at high current densities, where the main
processes are capacitive. These results indicate that the decrease in surface capacitance of
the TiO2 when the thin films have a thickness of 200 nm is due to limitations from electronic
and ionic conductions. That affirmation was confirmed using impedance spectroscopy
over cells having electrodes with different thicknesses. Figure 4b shows the Nyquist plots
obtained using electrodes with 120 nm and 200 nm-thick TiO2 layers. In the Nyquist plot of
the electrode with a 200 nm-thick TiO2 layer, the electrical series resistance obtained at high
frequencies related to the electronic resistance of materials and interfaces, and the electric
distributed resistance obtained at lower frequencies related to the diffusion of ions at the
electrode–electrolyte interface, increase. These results indicate that for a 200 nm-thick layer
of the active material, the electrons have difficulty reaching the interface owing to the low
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electrical conductivity of TiO2, which also hinders the diffusion of lithium ions. Therefore,
120 nm is the optimal film thickness that realizes a suitable compromise that leads to good
capacitance while imposing limited constraints on the electric/ionic conductivity. The
capacitance values of ~8.1 mF cm−2 at 0.01 mA cm−2 (corresponding to ~4.5 µAh cm−2) for
the 120 nm-thick film are similar to the values reported in the literature for 2D electrodes
operating in organic electrolytes with TiO2 films prepared using ALD, making a substantial
contribution to the development of capacitive processes to be used in supercapacitors [50].

Finally, an aging test was conducted to assess the integrity of the film and the quality
of the substrate/active material interface. For instance, Figure 5 shows the evolution of
the surface capacity for a 120 nm-thick TiO2 layer coated onto a Si planar substrate via
the galvanostatic charge–discharge cycles performed at a current density of 0.1 mA cm−2.
After an initial decrease in the values of the surface capacitance, the system is stabilized,
and the quality of the deposited film and the Si/TiO2 interface is established.
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Figure 5. Evolution of the surface capacitance for a 2D electrode with a 120 nm-thick TiO2 layer
through galvanostatic charge–discharge cycles at a current density of 0.1 mA cm−2.

In conclusion, the results show that the proposed method presented is efficient at
depositing homogeneous thin films of TiO2 exhibiting good adhesion to the Si substrate
for use as electrodes in supercapacitors. From the above results, a TiO2 layer having a
thickness of 120 nm is selected to be deposited over 3D supports having high surface areas
for optimal performance.

3.3. 3D Electrodes
3.3.1. 3D Substrates

Figure 6 shows SEM images of the 3D supports with different topologies and ARs.
The topologies used were trenches with ARs of 29 and 9 (Figure 6a,b) and pillars with an
AR of 29 (Figure 6c).

The dimensions of the 3D structures are given in Table 1. The depth and width of the
structures were estimated using SEM after etching.

The increase of the surface area enlargement depends on the width and depth of
trenches or pillars and the spacing between these structures.
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Table 1. Dimensions and surface area enlargement for µtrench structures with aspect ratios 9 and 29
and µpillar structures with aspect ratio 29. The surface area enlargement presented in the table is
calculated using Equations (1) and (2).

Topology Aspect Ratio Etched Depth
µm

Width
µm

Spacing
µm

Footprint
Length

cm

h
µm

ν

µm
Surface Area
Enlargement

Trenches 9 52 6 3 0.7 - - 12.6
Trenches 29 117 4 3 0.7 - 34.4

Pillars 29 144 5 - - 9 8 32.4

Taking into account a straight 3D template of a trench topology, as presented in
Figure 6d, the surface AEF for trenches can be calculated according to the following
equation [58]:

AEF (trench) =
S3D
S2D

= 1 + 2 × depth × L − s
L (w + s)

(1)

where S2D and S3D stand for the surface area of the 2D and 3D topology having the same
footprint area, L is the overall length of the sample, w is the trenches width, and s is the
spacing between trenches, as shown in Figure 6d.

For pillars, the surface AEF can be calculated according to the following equation [17]:

AEF (pillar) =
S3D
S2D

= 1 +
πwd
hv

(2)
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where w and d are the pillar diameter and the etched depth, respectively, and h and v are
the horizontal pitch and vertical pitch, respectively, as shown in Figure 6d. The AR is the
ratio of the pillar depth to the pillar width.

Figure 6 shows that the trenches with an AR of 29 are deeper (117 µm) than those
with a lower AR of 9 (52 µm). Therefore, based on Equation (1), for trenches with ARs of
9 and 29, a footprint area of 1 cm2 is developed into 12.6 and 34.4 cm2 of useful surface
area, respectively (Table 1). For pillars with an AR of 29, the depth is 144 µm, being higher
than that for trenches with the same AR. Using Equation (2), for those pillars with an
AR of 29, a footprint area of 1 cm2 is developed into 32.4 cm2 of useful surface area. The
AEF uncertainty values are 3% after introducing the experimental values of the different
parameters used in Equations (1) and (2).

3.3.2. TiO2 Coating on 3D Substrates

The same sustainable liquid route used for depositing homogeneous TiO2 layers on 2D
Si supports was used for coating the 3D supports. This particular route was developed as
an alternative to techniques used for coating 3D structures, such as ALD or PLD [56–58]. In-
deed, when depositing films on high-AR 3D structures, conventional liquid routes become
inefficient: the capillary force proportionally increases with the AR, where AR = etching
depth ÷ trench or pillar width. Therefore, the challenge is to achieve a conformal deposi-
tion of an electrochemically active thin film on a 3D substrate having a high AEF via the
liquid route.

The capillary process follows the Jurin law and can be expressed by Equation (3):

h =
2γcosθ

rρg
(3)

where h is the height of the liquid, γ is the surface tension of the liquid, θ is the contact
angle of the liquid on the substrate, ρ is the solution density, r is the tube radius, and g is
the gravitational acceleration. The contact angle and good wettability with Si substrates
can be controlled by changing the solvent and/or adding additives. However, to obtain a
good TiO2 coating on 3D substrates with aspect ratios as high as 29, the viscosity of the
precursor solution is the key parameter. Herein, a polyester resin was added to the solution
containing TiO2 precursors, that is, an 80% polyester and 20% precursor solution [52]. The
addition of polyester increases the viscosity of the TiO2 precursors solution (85 mPa s),
which increases the adhesion of the mixture to the substrate during deposition via simple
spin-coating.

The cross-sectional views after solution deposition and the following thermal treat-
ments confirm that the solution penetrated inside the 3D structures, and a TiO2 layer
uniformly covering the walls was created (Figure 7). The general view of the three different
electrodes shows that even for the subtracts with an AEF of 29, the TiO2 layer is homoge-
neous and does not form large agglomerates, as has been observed for low AEF subtracts
prepared without the addition of a resin for adjusting the sol density [40]. Moreover, using
this method, no cracks or fissures are observed (Figure 7f,i) as for the 2D supports (Figure 1),
which is contrary to what has been predicted by Seemann et al. [59].

Different locations (top, middle, and bottom) inside the trenches and micropillars
were inspected at high magnifications to determine the thickness of the TiO2 films after
performing a minimum average of 12 observations. Under such magnifications, it can
be observed that the proposed coating method allows the active materials to penetrate
inside the 3D structures and cover the walls from the top to the bottom of the substrate
homogeneously. The thickness of the TiO2 layers is ~110 nm for the trenches with AEF
values of 9 and 29 (Figure 7a–c or Figure 7d–f, respectively) and ~130 nm for the pillars with
an AEF of 29 (Figure 7g–i). Therefore, the values are in the range of the optimal thickness
determined when exploring the electrochemical performance with respect to 2D substrates.
The SEM images also reveal that the different 3D-coated architectures have sufficient space
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between the trenches and pillars to facilitate the diffusion of the liquid electrolyte during
electrochemical measurements.
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Figure 7. SEM images of TiO2 layer over 3D trenches with AR 9: (a) general view, (b) detail of a
trench wall and (c) detail of the bottom of a trench. SEM images of TiO2 layer over 3D trenches with
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3.3.3. Electrochemical Performance of 3D Electrodes

Figure 8a shows the CV profiles of electrodes having a TiO2 layer of the same thickness
but with a 2D or 3D support with an AR of 29. The CV profiles for 3D electrodes exhibit the
same shape as those for 2D electrodes having a capacitive and Faradic contribution with the
different reduction and oxidation waves appearing at the same potentials (compare with
Figure 3 for more details in 2D electrodes). Therefore the structuration of the Si substrate
does not have any influence on the chemical nature or structure of TiO2 prepared via the
sol–gel route. However, increasing the AR of the Si support from 1 to 29 considerably
affects the area inside the CV profile. Increasing the specific surface area of the electrode up
to 34.4 cm2 leads to a substantial increase in its surface capacitance.
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Figure 8. (a) Cyclic voltammograms (second cycle) at 1 mV s−1 of 2D and 3D AR 29 TiO2 electrodes
with 120 nm active material thickness (b) Surface capacity at different current densities for electrodes
with a layer of 120 nm of TiO2 over 2D Si, 3D Si AR9 trenches, 3D Si AR29 trenches and 3D Si AR29
pillars subtracts.

This effect was well established when the surface capacitance and rate capabilities of
the 3D electrodes were quantified based on the galvanostatic charge–discharge cycles at
current densities ranging from 0.01 to 0.5 mA cm−2 (Figure 8b and Table 2).

Table 2. Surface capacity at different current densities for electrodes with a layer of 120 nm of TiO2

over 2D Si, 3D Si AR9 trenches, 3D Si AR29 trenches and 3D Si AR29 pillars subtracts.

Current Density
mA cm−2

Surface Capacitance mF cm−2

2D 3D AR9 Trenches 3D AR29 Trenches 3D AR29 Pillars

0.01 8.1 46.5 85.0 73.7
0.05 2.4 22.7 60.8 38.4
0.1 1.6 16.5 51.9 23.9
0.2 1.0 10.5 42.5 9.0
0.3 0.7 7.5 36.6 2.3
0.5 0.4 5.3 28.8 0.2

Figure 8b shows that for a low current density, i.e., 0.05 mA cm−2, the surface discharge
capacitance follows the trend of the AEF. The surface capacity is multiplied by factors of
9.5 and 25.2 when switching from 2D to 3D electrodes, with trench topologies having
AEFs of 12.6 and 34.4, respectively. For the 3D electrodes having the pillar topology,
the capacitance enhancement at low current densities is less than expected because it is
multiplied by a factor of 16.0 even when the AEF is 32.4. Regarding the rate capability,
Figure 8b shows that the topology in trenches is more efficient than that in pillars. The
electrode with the pillars topology does not operate at current densities >0.3 mA cm−2,
while the electrode with the trench topology, having the same aspect ratio of 29, is able
to retain a surface capacitance of 28.8 mF cm−2 as the charge density increases 10-fold
from 0.05 to 0.5 mA cm−2. Therefore, the topology in the trenches allows a simultaneous
improvement in the energy density, as the surface capacitance increases, and the power
density, thereby addressing the requirements of a supercapacitor. The differences observed
between the topologies could be owing to the quality of the TiO2/Si interface. Depositing a
layer of TiO2 nanoparticles over the straight surface of the trenches can lead to superior
adhesion compared to deposition over the curved surfaces of the pillars. Such interfacial
issues have a substantial impact on the electrochemical performance when operating with
low-conductive active materials, such as TiO2.
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Figure 9 exhibits the advantages of using the 3D trench topology for supercapacitor
applications. In Figure 9, the experimental and theoretical surface capacitances obtained at
different charge densities are plotted against the surface AEF.
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Figure 9. Surface capacitances as a function of the surface area enlargement factor. Black squares: ex-
perimental values; Red circles: theoretical values calculated from values obtained with 2D electrodes.

For the very low current density of 0.01 mA cm−2 (Figure 9a,b), the surface capac-
itance does not increase with the enlargement of the surface as expected. The surface
capacitance value increases from 8.1 mF cm−2 to 85.0 mF cm−2 when the surface area
increases from 1 cm2 to 34.4 cm2 instead of reaching the theoretical value of 278.6 mF cm−2.
These results indicate that the diffusion-controlled processes arising in the bulk of the
particles on the application of low current densities are favored in a 2D topology. When
the current density increases, the measured surface capacitance approaches the theoretical
capacitance and a perfect correlation between the values is obtained for current densities
of 0.1–0.2 mA cm−2 (Figure 9c,d). For illustration, at 0.1 mA cm−2, the experimental and
theoretical surface capacitance values for a 3D electrode with a surface area of 34.4 cm2

are 51.9 and 54.3 mF cm−2, respectively. These results are in line with the fact that the
contribution of surface capacitive processes increases with current density. Figure 9e,f
shows that these surface capacitive processes are favored in a 3D trench topology for high
current densities. For current densities >0.2 mA cm−2, the experimental surface capacitance
values obtained for the high surface area 3D electrodes are higher than the theoretical ones
calculated from the capacitances obtained with the 2D electrodes. Therefore, trenches are
the ideal topology for developing high-energy and high-power microsupercapacitors.

Moreover, the quality of the TiO2 adhesion layer over this high-AR 3D support with
trench topology is demonstrated by a remarkable cycle life. Figure 10 shows the change
in surface capacitance with galvanostatic charge–discharge cycles at a current density of
0.1 mA cm−2. After an increase in capacitance during the initial cycles, a stable capaci-
tance is recorded for more than 400 cycles with an average surface-specific capacitance of
45.0 mF cm−2.
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Figure 10. Evolution of the surface capacitance for a 2D electrode with a 120 nm-thick TiO2 layer
through galvanostatic charge–discharge cycles at a current density of 0.1 mA cm−2.

The particular topology of the electrode with trenches having a high surface area and a
homogeneous layer of 120 nm of TiO2 allows electrochemical performances to outperform
the ones shown in the literature. For comparison, TiO2 heterogeneously deposited via a
classical chemical route or spin-coating over 2 µm depth SiNWs exhibited a capacitance of
3.55 mF cm−2 at 0.1 mA cm−2 [40], whereas a capacitance of 51.9 mF cm−2 was recorded in
this study at the same current density.

Moreover, the surface capacitance achieved at a low current density for the TiO2 over
the trenches, i.e., 85.0 mF cm−2 at 0.01 mA cm−2, is superior to those achieved for an
ALD-deposited H-doped TiO2 layer of 20-nm thickness over SiNWs, i.e., 3.36 mF cm−2 at
0.035 mA cm−2 [41] and even to the high capacitance values O-doped TiO2 nanotube arrays
with a surface capacitance of 23.24 mF cm−2 reported in a previous study [39]. Moreover,
the specific capacitance values extracted from the literature and discussed above have been
achieved using Na2SO4-based aqueous electrolytes, while a LiPF6-based organic electrolyte
has been used herein. Operating in organic electrolytes affords the possibility of increasing
the operating voltage and energy stored in comparison to systems using aqueous ones.

4. Conclusions

A sustainable approach to depositing TiO2 layers onto 3D Si substrates with different
aspect ratios using a liquid route and spin coating has been developed herein. This
method was selected because it is relatively simple, rapid, and inexpensive. Moreover, it
could be used in industrial applications. The proposed method is effective in achieving a
homogenous TiO2 thin film coating on 3D substrates with aspect ratios as high as 29 because
the precursor solution with a modulated viscosity penetrates inside the 3D structures and
uniformly covers the walls. The thickness of the active material layers can be controlled
by monitoring the solution concentration and the number of layers. For a low conductive
material, such as TiO2, the thickness of the active layer that helps in realizing the best
compromise between the surface capacitance and rate capability over a 2D support has been
found to be ~120 nm. For a coating of similar thickness, a trench 3D topology of the substrate
increases the surface capacitance by 27-fold at low current densities to reach a surface
capacitance as high as 85.0 mF cm−2. Therefore, an increase in the electrode surface area is
efficient at increasing the energy density. Moreover, at high current densities, the 3D trench
topology realizes a 69-fold increase in the surface capacitance with a capacitance value of
28.8 mF cm−2 at 0.5 mA cm−2. The proposed method for depositing TiO2 over a high aspect
ratio support is efficient for developing high-energy and high-power microsupercapacitors
possessing a promising cycle life.
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