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A B S T R A C T   

Prognostics and health management (PHM) plays a constructive role in the equipment’s entire life 
health service. It has long benefited from intensive research into physics modeling and machine 
learning methods. However, in practice, the existing solutions often encounter difficulties caused 
by sparse data & incomplete system failure knowledge. Pure machine learning or physics-based 
methods can sometimes be infeasible in such situations. As a result, there has been a growing 
interest in developing physics-informed machine learning (PIML) models which allow incorpo
rating different forms of physics knowledge at different positions of the machine learning pipe
line. This combination provides significant assistance for detection, diagnostic, and prognostics. 
However, to the best of our knowledge, the bibliometrics analyses and the comprehensive review 
of the existing research concerning PIML in PHM remain vacant. Our review is therefore dedi
cated to filling these gaps. We synthesize the concept of PIML in PHM, and propose a taxonomy of 
PIML approaches from the perspective of “Expression forms of informed knowledge” and 
“Knowledge informed methods”. The findings and discussions presented in this paper enable us to 
clarify the current state of the art and the emerging opportunities of PIML approaches, especially 
for building PHM systems that can work under the “small data and scarce physics knowledge” 
paradigm.   

1. Introductions 

Prognostics and Health Management (PHM) is an interdisciplinary engineering discipline. It ensures the real-time health assess
ment and future state prediction of systems based on up-to-date information and data processing [1] by two main paradigms: 
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data-driven and physics model-based methods (PBM). 
Enabled by machine learning (ML), with a recent surge related to deep learning [2,3], data-driven methods extract features from 

data and identify the underlying degradation processes, showing promising results at different failure scales from macro to micro 
degradation and damages [4]. However, ML in PHM faces three dilemmas:  

1. First dilemma arises from the limited data quality. One can cite: a) sparse & noisy observations caused by limited structural 
conditions and pervasive monitoring instrument costs [5]; b) sparse & noisy failure information due to restricted monitoring time 
and high run-to-failure operation costs [6]; and c) sparse labels caused by limited expert knowledge and high manual labeling cost 
[7].  

2. Second dilemma is the opaque, unexplained nature of ML, leading to the trust deficit [8]. For high investment and risk industrial 
domains, the unobservable process between the ML input data and the output PHM results is viewed as a “black box” with 
interpretability difficulties [9].  

3. Third dilemma in ML arises from the lack of physics consistency. ML generally converges in the direction that best fits the training 
samples which might not absolutely conform to the Physics-constraints [10]. 

In contrast to ML, PBM observes failure phenomena and then establishes mathematical or numerical mechanism models to 
represent faults or degradations [11]. When the failure natures are well understood, PBM needs fewer data than ML [12] and achieves 
better generalization [13]. However, modern engineering systems are complex and influenced by mutual non-linear interactions 
among the subsystems. Thus, the PBM performance can be affected by different factors such as the system scale [14] and complexity 
[15], leading to the following dilemmas: 

1. First dilemma concerns the epistemic uncertainties in the model simplification and the paradox between the computational effi
ciency and the PBM’s credibility [16].  

2. Second dilemma is the sometimes limited understanding of the fault mechanism to construct trustworthy degradation models [17].  
3. Third dilemma arises from the unknown and unobservable parameters of the PBM. 

Due to the above dilemmas, the purely physics-based models are rarely applied in practice [18,19]. 
Regarding limitations of both data-driven and physics-based methods, it is necessary to develop hybrid approaches to overcome the 

drawbacks and inherit the advantage of each one. Fig. 1 shows the motivation for a combination of PBM and ML models. In fact, 
physics-informed machine learning (PIML) is a promising solution in the case of sparse data and incomplete physics knowledge. PIML 
is formally introduced at the Los Alamos PIML workshops during 2016–2020 [20] with the initialization in solving the complex physics 
problems by ML. Particularly, Raissi et al. [21] proposed physics-informed neural network (PINN)-based Partial differential equations 
solution, leading to a boom in “informed NN”. Meanwhile, many industrial partners, including GE [22], IBM [23], Nvidia [24], US 
DARPA [25] and NASA [26], the Argonne National Laboratory [27] and Siemens [28], have paid high attention to the application of 
PIML. 

The motivation behind the development of PIML has been extensively discussed in existing literature, highlighting its inherent 
strengths and advantages as follows:  

1. PIML merges data-driven machine learning and physics principles to boost the precision and interpretability of prognostics and 
health management (PHM) system predictions.  

2. PIML shines in tackling intricate dynamics of complex and nonlinear systems in PHM applications. It achieves this by integrating 
physics-based constraints and equations, thereby enhancing its predictive and modeling abilities. 

Fig. 1. Sparse data and incomplete physics knowledge drive PHM techniques towards the combination of PBMs and ML.  



3. The blend of physics-based knowledge enables PIML to generalize more effectively, offering reliable predictions even beyond 
observed data. This is particularly useful in scenarios with sparse or incomplete training data.  

4. A key advantage of PIML models is their improved interpretability owing to the explicit incorporation of physics. By embedding 
physical constraints and equations, PIML allows to more easily elucidate some of the underlying mechanisms that drive system 
behavior, which aids diagnostic analysis and decision-making.  

5. Despite limited data, PIML’s efficient use of system physics knowledge allows for accurate predictions, reducing the dependence on 
large data-sets and potentially minimizing data acquisition costs.  

6. PIML is robust to noise and outliers due to its enforcement of physical laws, which can filter out erroneous or noisy data, leading to 
dependable predictions.  

7. PIML provides computational benefits by amalgamating physics-based constraints with machine learning algorithms, thereby 
yielding efficient models that reduce computational complexity, suitable for real-time or near real-time applications. 

Inspired by these advances, there have been several studies on PIML for anomaly detection, fault diagnostic, and prognostics [29]. 
Compared to other potential solutions for sparse data, like transfer learning [30], the advantage of PIML in PHM is in assisting 
data-driven insights, utilization of expert knowledge, adaptability and scalability. By leveraging these strengths, PIML can also 
enhance the other methods, and the capabilities of addressing the PHM challenges [31] in limited data availability, complex and 
nonlinear system dynamics, physics consistency related trust, handling of noise and uncertainty, integration of multi-source and 
heterogeneous data, and transferability across systems and domains [32]. Furthermore, PIML is not in competition with these methods, 
but is the icing on the cake to achieve win-win situations, for example through approaches such as PI-transfer learning in aerospace 
anomaly detection [33], and PI-meta learning for machining tool wear prediction [34]. Although many works are exciting, to the best 
of our knowledge, none of the existing papers provides a comprehensive review of PIML in PHM. In addition, no overall qualitative and 
bibliometrics analyses are conducted. Finally, taxonomy and applications in PHM are unclear and waiting discussion in particular with 
respect to: I) Expression forms of Informed Knowledge and II) Knowledge Informed Methods. Therefore, this paper aims to fill the 
above-mentioned gaps. Besides, the open challenges toward the maturity of PIML in PHM are also highlighted. 

The rest of the paper is organized as follows. Section 2 presents a bibliometric analysis of the existing works concerning PIML in 
PHM and thus shows an overview of the research trend on this topic. Section 3 provides a comprehensive and insightful review of PIML 
methods in PHM. Section 4 aims to summarize and discuss the source of physics knowledge, which can be used to derive ML models, as 
well as the corresponding integration methods. Finally, Section 5 summarizes the main contribution of this paper and provides insights 
into potential future research. 

2. Bibliometrics analysis 

This section aims to provide an overview of the research interests of PIML studies in the field of PHM. Firstly, we describe the 
literature research methodology in Subsection 2.1. Then, based on the bibliometric analysis of PIML in PHM, the research trend on this 
topic is discussed in Subsection 2.2. Finally, Subsection 2.3 compiles a statistical analysis of the works on PIML applied to PHM. 

2.1. Literature research methodology 

The bibliographic data investigated in this work covers the period from January 2013 to January 2023. The time span chosen in this 
article is based on the understanding that PIML technology emerged around 2016. However, upon investigating the research trend 
from hybrid frameworks to PIML, we found similar technical concepts dating back to 2013. Consequently, we conducted a literature 
search spanning from 2013 to the present. In the search flowchart presented in Fig. 2, the survey is simultaneously retrieved from Web 
of Science (WoS) and Google Scholar. The search on Google Scholar is to verify the adequacy of the search in WoS. 

Fig. 2. Search methodology flowchart.  



“Topic search strings” are defined as all terms in (Topic 1) AND (Topic 2). where TOPIC 1: “Physics-informed” OR “Physics guided” 
OR “Physics induced” OR “Physics aware” OR “Physics infused” OR “Domain knowledge” OR “Hybrid framework” OR “Hybrid method”. 

AND TOPIC 2:“Machine learning” OR “Deep learning” OR “Data driven” 
In a further filtering, the “Topic filter” consists of “Core vocabulary”, and “Interfering words:” 
Core Vocabulary:“Detection” OR “Diagnostic” OR “Prognostics” OR “Failure” OR “Remaining useful life” OR “Prediction” OR 

“Identification” OR “Classification” OR “SHM” “Damage” OR “Deterioration” OR “Recognition” OR “Fracture” OR “Crack” OR 
“Deformation” OR “Abnormal” OR “Equipment” OR “Bearing” OR “Gear” OR “Power”. 

Interfering words: Not “Language” OR “Medical” OR “Cancer” OR “Face” OR “Emotion” OR “Text”. 
The first search result provides more than 36,632 manuscripts from the two largest databases: Google Scholar and Web of Science. 

Then, we limited the search to the areas where engineering PIML and PHM solutions are usually implemented, such as Electronic, 
Aerospace, Mechanics, Computer Science, Engineering Multidisciplinary, Automation Control Systems, Energy Fuels, Engineering 
Civil, Engineering Manufacturing, etc. After this step, 6239 papers are kept. To yield insight into the published material list, we 
implemented further selection steps like “Thesis Filter”, “Manual screening”, and “Merge duplication”. In “Thesis Filter”, we perform 
topic filtering by the Interfering words and Core Vocabulary mentioned above, and then the results of the filtering are manually 
reviewed in “Manual screening” to determine that the article topic fits within the scope of the review. By doing this, we found that only 
139 papers have the topic with the PIML-related hybrid framework in PHM. Among them, 122 papers discuss PIML in PHM in detail. 
These papers are exploited to draw critical remarks on the research trends as well as interesting statistical results on the development of 
PIML in PHM. 

2.2. Research trend analysis of PIML in PHM 

To have an overview of the research trend from the hybrid frameworks to PIMLs, in this section, one can see that during only a 
decade of development, research related to the combination of model-driven and data-driven methods in the industry has appeared in 
a wide range of conferences and scientific journals, as shown in Fig. 3. One can see that Mechanical Systems and Signal Processing 
(MSSP) journal has published a large number of manuscripts on this hybrid framework with more than 573 papers. IEEE Aerospace is 
the conference attracting the most related hybrid framework studies, with 706 papers. Next, to show an overview of the evolving 
process from the hybrid framework to the PIML methods in PHM, we conducted a bibliometric analysis by using cite space software 
[35]. Particularly, this software allows automatically analyzing the keyword co-occurrence and then generating the clustering network 
of the most widely used keywords (Fig. 4) and its development trend over time (Fig. 5). From the clustering network in Fig. 4, it appears 
that the most widely used keyword is “physics-informed machine learning”. Associated with this keyword, one can cite “active 
learning” and “differential equation” techniques that are used to build the PIML framework. Besides, “physics-informed neural 
network” is also a critical keyword that has co-occurred with “dynamical systems” and “deep neural network”. Looking into the 
relevant studies, one can see that PINN is usually used to capture system dynamic behaviors for damage detection, fault diagnostic, and 
failure prediction. Considering Fig. 5, one can see that the development trend of the keywords, which are used in PIML research, shifts 
from the expert system (in 2011), weighted class association rule mining (in 2014), to PINN in recent years. Meanwhile, one can notice 
an increasing demand for physics knowledge, which is represented by the often-occurred keywords such as “physics-informed sparse 
identification” and “equation-based domain knowledge utilization”. Next, “deep neural networks” and “extended Kalman filter” (or 
“particle filter”) are usually combined to create PIML framework ([36]). Besides, research related to “embedding differential equa
tions” of lifetime degradation in ML is also highlighted through this trend analysis ([37]). 

2.3. Statistical analysis of PIML in PHM 

This section aims to discuss the results of the statistical analysis existing papers relating PIML in PHM. 

Fig. 3. Publication sources on hybrid frameworks considered in this review.  



2.3.1. Existing terminologies 
There are numerous terminologies similar to “physics-informed machine learning” (see Table 1). According to the statistical results 

of all publications relating to PIML in PHM, the distribution of those terms are: “Physics-informed” (47.1%), “Physics based” (19.9%), 
“Physics guided” (18.3%), “Physics infused” (8.8%), and “Physics aware (5.9%)”. 

The heterogeneity of those terms can pose a major obstacle to research on this topic as well as its wide application in practice. 
Therefore, in this Subsection, we seek to clarify the similarities and differences between the existing terminologies. 

Fig. 6 presents the main scope of each terminology, and it can be summarized as follows:  

1. “Physics infused” aims to discover and incorporate physics property constraints in the data preprocessing [54,160], leveraging 
physics-derived parameters and relations to enhance the performance of ML models, especially in sparse data scenarios [161]. 

Fig. 4. Keywords co-occurrence clustering.  

Fig. 5. Development trend of the keywords in Knowledge-assisted PHM studies.  

Table 1 
Summary of the existing terminologies relating PIML in PHM.  

Terminology References Total number 

Physics infused [27,38–48] 12 
Physics based [10,14,32,49–71] 26 
Physics guided [72–94] 23 
Physics aware [95–102] 8 
Physics-informed [20,21,37,81,103–109,109–117,117–123,123–159] 64  



2. “Physics based” focuses on the integration of physics models or constraints in the model-data hybrid framework [68,162], 
incorporating physical principles in feature engineering, system modeling, and constraint-based approaches [101].  

3. “Physics aware” emphasizes perceiving the intrinsic behavior and structural features of the system [95], aligning the ML algorithm 
structure or interaction structure with the physical system to achieve consistency in physics.  

4. “Physics guided” expands the focus of “Physics aware”on visually representing degradation states or using physics knowledge to 
guide the data processing [79,163], the design of ML structures, algorithmic weights and biases [92], or empirical loss functions 
[89].  

5. “Physics-informed” refers to the broadest framework [164] that covers the entire machine learning process, incorporating physics 
knowledge in various aspects along the machine learning pipelines. 

Therefore, in this review, the term “PIML” (Physics-informed Machine Learning) is chosen as the discussed terminology to 
encompass the integration of physics knowledge within machine learning approaches. 

2.3.2. Application areas, main motivations, and methods’ evaluation metrics 
Fig. 7 presents the distribution of application areas and data sources of the studies on PIML in PHM. From Fig. 7 (a), one can see that 

most of the current PIML studies in PHM focus on materials damage (41.2%) because there already exists in this area numerous studies 
in mathematical and physical modeling of material dynamic behaviors. These studies provide a solid foundation for the rapid 
development of PIML models. Other applications such as aviation structure and equipment (20.0%), production equipment (13.0%), 
bearing and gearbox (15.0%), and power grid (9%) also attract more attention from the research community in recent years. Besides, 
considering data sources Fig. 7 (b), we find that most data sources for PIML studies come from simulation (30%). Also, the most used 
bench-marking datasets are Turbo engine simulation dataset (C-MAPSS and AGTF30) and battery dataset (Oxford and NASA). The 
studies of PIML models for real systems are limited to small experimental platforms (16%). Those observations can be explained by the 
lack of exploitable physics-based knowledge of real systems that are usually difficult to model. Fig. 8 shows the number of publications 
concerning PIML in PHM per year. It highlights an increasing interest of the research community in this topic. One can see that the 
number of publications per year significantly increased after 2020. The research in materials, bearings, gears, aerospace structures, 
and power systems has garnered significant attention. 

Fig. 9 presents statistical results of relevant research with respect to data quality. One can see that a large proportion of PIML 

Fig. 6. Different terminologies’ focus.  

Fig. 7. Statistical results of main application areas and data sources of PIML in PHM.  



research focuses on solving the PHM tasks in the presence of sparse (26%) or noisy data (38%). This remark highlights the relevance of 
the PIML over the purely data-driven models when it comes to such data quality issues. Table 2 lists the metrics used in the literature to 
train and evaluate the performance of PIML methods. It also shows the specific PHM tasks to which these metrics correspond, as well as 
the types of monitoring measurements. 

From Table 2, we can derive the following remarks:  

1. This table summarizes the training and testing metrics used in various PHM tasks for evaluating PIML models. Metrics such as Mean 
Square Error (MSE), Mean Absolute Error (MAE), Precision, Recall, F1-score, and others are employed to assess the performance of 
these models in condition monitoring, fault diagnostics, Remaining Useful Life (RUL) prediction, and degradation prediction tasks. 
MSE, MAE and RMSE are the most commonly used training metrics in the collected literature, accounting for 35.7%, 20.0% and 
10% respectively.  

2. In paper [76], the metric (binary cross-entropy), commonly employed for classification, is used for degradation prediction. This is 
because the prediction of degradation states is transformed into a classification of degradation levels.  

3. One important aspect worth discussing is the embedding knowledge related to PIML models. In most studies, the choice of which 
type of knowledge to embed tends to be more based on subjective intentions. In practice, the knowledge embedded is strongly 
related to the monitoring signals used, e.g., the relationship between strain signals and deformation and damage growth, the 
relationship between temperature and fatigue, the relationship between vibration and modalities, so collecting knowledge in this 
area from the available monitoring signals for use in informed machine learning would be a good place to start. 

4. Table 2 also outlines the specific information about the corresponding monitoring signals utilized in each task, such as displace
ment, voltage, vibration, temperature, stress, current, and more. The vast majority of studies (94.3%) focuses on processing time- 
series or one-dimensional monitoring signals, with only 5.7% of studies involving two-dimensional image signals.  

5. The applications of PIML are mainly in the field of structures. The majority of processed signals in these applications are derived 
from vibration (25.7%) and stress (27.1%). In addition, certain non-destructive detection measurement methods, such as guided 
wave or acoustic emissions, are also utilized. Upon examining Table 2, one can see that a wide array of metrics and monitoring 
signals are employed across various PIML studies. This diversity reflects the intricate and multidimensional nature of PHM tasks, 
highlighting the necessity for tailored approaches that align with specific applications and system characteristics. Gaining an 

Fig. 8. Overview on applications of PIML in PHM.  

Fig. 9. Statistical results of relevant research on data quality problem.  



Table 2 
Summary of the training, testing metrics and monitoring signals for PIML according to PHM tasks.  

Ref. Train metric Test metric PHM tasks Signals 

[161] MSE MSE Condition monitoring Displacement and voltage 
[124,131] MSE MSE Condition monitoring Vibration 
[165] MSE MSE Condition monitoring Currents, voltages and time 

measurements 
[106] MAE, MSE, RMSE Precision, recall, F1-score Condition monitoring & 

Fault diagnostic 
Vibration, acoustic, image, 
temperature 

[53,74,151] MSE MSE Condition monitoring & 
Fault diagnostic 

Stress 

[126,132, 
166] 

MAE, Cross-entropy loss Precision, recall, f-k value, accuracy, macro 
F1, and G-mean 

Condition monitoring & 
Fault diagnostic 

Power, voltages, current 

[13] Customized design loss RMSE Condition monitoring & 
Fault diagnostic 

Temperature, pressure, vibration, 
and air flow 

[167,168] Cross-entropy Relative percentage error Condition monitoring & 
Fault diagnostic 

Vibration 

[169] MAE Confusion matrix Fault diagnostic Temperature 
[170] Maximum cross entropy MAE Fault diagnostic Vibration 
[171,172] Binary cross-entropy Categorical cross-entropy Fault diagnostic Vibration 
[173] MAE, similarity distance Precision, recall, f-measure, confusion matrix Fault diagnostic Temperature, pressure, and fuel 

coefficient 
[14] Customized design 

metrics 
Test false positive rate, MAE. Fault diagnostic Vibration, acoustic signal, and 

temperature 
[6] MAE Confusion matrix, recall, precision Fault diagnostic Vibration 
[50] MSE MSE, Pearson correlation coefficients test Fault diagnostic Vibration 
[112,146] Cross-entropy loss Confusion matrix Fault diagnostic Vibration, strain, torque, acoustic 

emission 
[130] MSE MAE Fault diagnostic Magnetic flux leakage image, 

stress 
[117] Customized loss Confusion matrix Fault diagnostic Far-field loads, stress ratio and a 

corrosivity index 
[129,133] MSE MAE Fault diagnostic Stress 
[81] MSE, Kernel norm Relative percentage error Fault diagnostic Ultrasonic signal 
[27] MSE MSE Fault diagnostic Stress, temperature 
[143] Cross-entropy loss MAE Fault diagnostic Vibration 
[150] Customized loss Customized metric Fault diagnostic Wave data 
[174] Cross-entropy Confusion matrix Fault diagnostic Stress 
[175] Softmax loss test Relative percentage error, Fault diagnostic Guided wave signal 
[37] MSE MSE, Pearson correlation coefficients test Fault diagnostic Acoustic signal 
[84] Cross-entropy, MSE, 

Softmax loss 
MAE Fault diagnostic Mode shapes signal 

[154] Customized loss F1 score Fault diagnostic Proposed access location, error 
locations 

[176] MAE Relative percentage rate Fault diagnostic Stress 
[70] Cross-entropy loss 

function 
MAE Fault diagnostic & RUL 

prediction 
Phase field images 

[36] 
MAE α λdistribution accuracy RUL prediction Vibration 

[51] 
MAE One σ tolerance interval RUL prediction Voltage and current 

[16,54,155, 
177,178] 

RMSE RMSE RUL prediction Temperature, pressure, flow 

[55,110] Relative error rate Relative error rate RUL prediction Stress or strain 
[113,179] MSE RMSE RUL prediction Current, voltage, temperature 
[180] F_norm RMSE RUL prediction Capacities and voltage 
[123] MSE RMSE RUL prediction Vibration 
[181] MSE MSE, MAE, R2 RUL prediction Vibration 

[182] 
Similarity distance Prognostic horizon, αλ distribution, CRA, 

convergence, normalized RMSE 
RUL prediction & 
Degradation prediction 

Stress, crack length, pressure 

[78,123] 
MAE, MSE MAE, RMSE Degradation prediction Forces, vibrations and acoustic 

signal 
[183] RMSE MAE Degradation prediction Vibration 
[184] MSE RMSE Degradation prediction Stress 
[77,114] MAE MSE, test point-wise errors, relative error Degradation prediction Stress 
[76] Binary cross-entropy F1-score Degradation prediction Cutting speed, temperature 
[115,118, 

185] 
MSE MAPE Degradation prediction Stress or image 

[116] MSE RMSE Degradation prediction Stress, viscosity, wind speed, and 
temperature 

[43] NMSE NMAE Degradation prediction Spindle motor current 

(continued on next page) 
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understanding of the different combinations of physics knowledge, metrics, and signals utilized can serve as a valuable guide for 
researchers and practitioners when selecting appropriate evaluation measures and sensor inputs for their respective PHM 
applications. 

3. Synthetic review of PIML studies in PHM 

The physics involved in research subjects in the field of PHM are often diverse and can be expressed in different forms such as 
algebraic equations, differential equations, simulation results, logic rules, and probabilistic relations along with limited monitoring 

Table 2 (continued ) 

Ref. Train metric Test metric PHM tasks Signals 

[186] MSE MSE Degradation prediction Far-field stress 
[187] Discretization error MAE Degradation prediction Stress 
[188] RMSE RMSE Degradation prediction Rise time, displacement 
[93] Negative log likelihood Sensitivity analysis, MAE, and absolute error 

variance 
Degradation prediction Stress, temperature  

Table 3 
Existing review articles on PIML.  

Authors Topics of interest Main Challenges Taxonomy 

Rai, Rahul, and Chandan K. 
Sahu. [72] 

• Cyber-physical system’s dynamic 
behavior modeling 

• Discretization approximation of the 
continuous system behavior in a chaotic 
environment. 
• Scenario-oriented PIML hybrid 
framework. 
• Efficient extraction of causal and model 
parameter relationships in big data. 

• Physics-based data pre-processing. 
• Physics-guided ML algorithm structure 
design. 
• Physics-based ML regularization item. 

Willard, J., Jia, X.,Xu, S., 
Steinbach, M. [32] 

• Engineering and environmental 
systems modeling. 
• Model solving methods. 

• Embedding incomplete physics 
knowledge. 
• Keeping physical consistency in data 
mining. 
• Sparse data and uncertainty quantitative 
identification. 

• Physics-based regularization item in ML 
algorithm. 
• Physics-guided ML initialization. 
• Physics-informed ML algorithm 
architecture design. 

Kim, S. W., Kim, I., Lee, J., 
Lee, S. [189] 

• Physics-informed deep learning in 
dynamical systems behavior 
modeling. 
• PHM is mentioned 

• Designing prior informed deep learning 
framework. 
• ML training data scarcity. 
• Keeping physical consistency. 

• Physics-informed Feature engineering. 
• Physics-informed NN structure. 
• Physics-informed loss function. 

Jan Hagendorfer, Elias. [190] Condition monitoring • ML black-box nature explanation. 
• Training data scarcity. 
• Keeping physical consistency. 

• Parallel/Series physics-ML combination 
structure. 
• Physics-based regularization item in ML 
objective function. 

Finegan, D. P., Zhu, J.,Feng, 
et al. [71] 

Battery cell state prediction. Keeping physical consistency. • Physics-based data pre-processing. 
• Physics-guided ML algorithm 
architecture design. 
• Physics-based regularization item in ML 
algorithm. 

Jianjing Zhang., Robert X. 
Gao. [191] 

• Data curation and model 
interpretation for smart 
manufacturing. 
• PHM is mentioned. 

• Non-interpretable prediction logic in 
deep learning. 
• Error or imbalance training data. 
• Data and data labels scarcity. 

• Physical model bias compensation and 
unknown parameters estimation via deep 
learning. 
• Involving Physics-constraints into deep 
learning training. 

Xu, Yanwen and Kohtz, et al.  
[29] 

• Reliability analysis and risk 
assessment. 
• Uncertainty quantification. 
• PHM is mentioned. 

• Scenario-oriented PIML hybrid 
framework and its computational 
efficiency. 
• Incompleteness of physics knowledge 
and limited representatives of the training 
dataset. 

• Physics-informed architecture 
• Physics-informed loss function 

Thelen Adam, Zhang Xiaoge 
and Fink Olga, et al.,  
[192,193] 

• Physical system modeling • The need for accurate and reliable data 
to create an accurate digital twin model. 
• Integrating data from different sources 
and formats. 
• Selecting the appropriate modeling 
technique for a given physical system. 
• Scaling up the digital twin model to 
larger and more complex systems. 
• Validating the digital twin model against 
the physical system it represents. 

• Modifying the loss function. 
• Generating synthetic data. 
• Pre-training on physics-based data. 
• Correcting models with unmodeled 
physics. 
• Correcting models with prediction 
residuals. 
• Learning to predict inputs.  



data. Therefore, it is necessary to provide a synthetic review of PIML studies in PHM from both perspectives: I) Expression forms of 
Knowledge and II) Knowledge Informed Methods. Expression forms of Knowledge in Physics-Informed Machine Learning refers to the 
following knowledge expression forms:  

1. Mathematical Equations: Knowledge is expressed through the formulation of mathematical equations that govern the underlying 
physics of the problem. These equations represent fundamental principles, physical laws, and constraints relevant to the problem 
domain. 

2. Conservation Laws: Knowledge about conservation principles such as mass, momentum, and energy conservation can be incor
porated into physics-informed machine learning models. These laws provide important constraints that guide the learning process.  

3. Differential Equations: Physics problems often involve differential equations that describe the relationships between variables. 
Expressing knowledge in the form of differential equations helps to enforce the physical behavior and relationships in the machine 
learning models.  

4. Constitutive Relations: Knowledge about the material properties, constitutive equations, or parameterization specific to the 
problem domain can be incorporated. These relations provide insights into how different variables interact and influence each 
other. 

The Knowledge Informed Methods are considered as the different embedding ways of the usage of different knowledge expressions, 
the details are discussed in Subsection 3.2. Analyzing the knowledge expression forms involves examining how domain knowledge, 
physical laws, equations, and constraints are integrated into machine learning algorithms, providing insights into the underlying 
physics-ML convertibility. Knowledge-informed ways more specifically seek to leverage domain knowledge in designing and training 
machine learning models. However, it is crucial to also consider the broader perspective of analyzing knowledge expression forms, 
which is often overlooked in existing reviews. By analyzing both knowledge expression forms and knowledge-informed ways, re
searchers can gain a comprehensive understanding of the strengths and limitations of PIML approaches in PHM. This dual perspective 
enables a more rigorous assessment of methods and facilitates improvements in the design and implementation of physics-informed 
machine learning models. 

3.1. Related review papers 

To our knowledge, there is no meticulous review of PIML studies in the field of PHM but there are related works on the PIML topic. 
These works provide additional information that help getting an overview of the PIML taxonomy as well as understanding more about 
the research challenges on this topic. 

The existing reviews, shown in Table 3, argued that PIML is a promising solution to address the ML issues relating to physics 
consistency, data scarcity, and model interpretability, which are also valuable to PHM. They share a similar taxonomic view of PIML, 
describing that physics knowledge can be incorporated into data pre-processing, ML algorithm design, and regularization of the loss 
function. 

We greatly acknowledge the valuable perspectives and contributions presented in the existing reviews. However, it is important to 
note that these reviews tend to have specific disciplinary focuses, which may limit their comprehensive coverage of all critical tasks in 
PHM. Furthermore, while these reviews address the embedding of physics knowledge into ML approaches, they often lack a holistic 
analytical perspective throughout the entire ML process. Although they provide insights into how to incorporate physics knowledge, 
they do not fully explore the various sources of knowledge that can be utilized. Moreover, the existing reviews predominantly 
emphasize applications related to specific NN architectures, such as PINN, rather than embracing the broader framework of Physics- 
Informed Machine Learning (PIML). A recent study in provides a qualitative analysis and a comprehensive review of the role, tax
onomy, and cases of PIML in the field of reliability [29]. PHM is part of the topics in the application Subsection. Our work complements 
their findings by providing a comprehensive quantitative analysis from the standpoint of knowledge in PHM, combining the complete 
qualitative analysis on the most advanced researches. Additionally, we not only review taxonomic and informed methodology but also 
examine the various forms and sources of informative knowledge. Besides, the studies in [192,193] provide a systematic review of 
hybrid modeling in digital twins and briefly discuss the significance of PIML technology. However, these studies primarily focus on the 
analysis of modeling system responses and dynamic behaviors in the context of digital twins, and only partly include the qualitative 
and quantitative aspects of PIML in the specific context of PHM. Our paper, on the other hand is specifically dedicated to PHM delving 
much deeper into these aspects, while of course not being as exhaustive in terms of the other aspects of digital twins. Considering the 
limitations of the existing papers, this review aims to address the gaps in the state of the art by providing a more thorough and 
analytical perspective on PIML methods within the realm of PHM. By integrating both qualitative and quantitative approaches, our 
research endeavors to contribute to a holistic comprehension of PHM and its practical applications. Furthermore, it aims to elucidate a 
broader understanding of the entire machine learning process, encompassing all critical tasks involved in the integration of 
physics-based knowledge. 

In summary, this paper aims to bridge these gaps by offering a more comprehensive and analytical view of PIML methods within the 
context of PHM. combined with a an extensive qualitative analysis on the most advanced researches, our work endeavors to contribute 
to a more holistic understanding of PHM and its applications. It clarifies a broader understanding of the entire ML process, encom
passing all critical tasks involved in the integration of physics knowledge. 



3.2. Taxonomy of PIML in PHM 

Depending on the role of physics knowledge and its informed position in the hybrid model, we propose to classify PIML methods 
into three categories. The first category uses physics knowledge to guide the construction of the input space, i.e., “Physics-informed 
inputspace”. The second category named “Physics-embedded algorithm structure” incorporates physics knowledge into the model 
architecture in machine learning process. The third category embeds Physics-constraints on the ML objective function to conduct 
“Physics-constrained learning”. These three categories correspond to three typical solutions to ML problems: input data optimization, 
model architecture optimization, and objective function optimization. Based on the combined roles of physics knowledge in different 
parts of the ML pipeline, we have summarized the 8 types of informed patterns, including “Simulator”, “Gauge”, “Extractor”, 
“Operator”, “Structure blueprint”, “Initializer”, “Consistency check”, and “Conflict check”, as shown in Fig. 10, which covers all as
pects of ML data flow. Their corresponding implementations, and the related ML technical frameworks for achieving these imple
mentations are also summarized. It can be seen that NN are the most widely used modeling tool. To assist in the understanding of the 
methodology, the same knowledge with different informed ways are shown in https://github.com/pimlphm/Physics-informed-ma
chine-learning-based-on-TCN. 

3.2.1. Physics-informed input space 
Data preparation generally occupies the most workload in PHM [194]. Regarding the category “Physics-informed input space”, 

PIML seeks to gain physics information in the ML input space, distilling the multi-sources and heterogeneous monitoring data [45,46] 
by assisting data augmentation, feature transformation, feature selection, dimensionality reduction [155], and information fusion 
[40]. “Physics-informed input space” can be seen as an extension of the traditional “feature engineering” or “simulation-based data 
augmentation” processes by using physics knowledge to drive data processing and augmentation, including three paradigms: 
“Simulator”, “Gauge”, and “Extractor”, which are shown in Fig. 11. The technologies “Simulator” and “Gauge”, which occur in the 
“Data preparation” step, aim to generate and transform data. Meanwhile, the “Extractor” in the “Data preprocessing” step is dedicated 
to extracting useful features. A brief summary of these three technologies in the existing works is shown in Table 4. 

Physics-informed simulators 
The works in this group focus on the construction of simulators that capture the physical behaviors of the studied system to generate 

data for training ML models. The data generated by those simulators provides richer information that covers different health states of 
the system and reduce the knowledge blindness of ML and thus enhance ML performance. To construct the simulator, various models 
with different degrees of simulation can be exploited such as structure-based and process-based digital twin models [192,193],engine 
performance models, or components’ finite element models. The challenge when implementing a physics-informed simulator is to find 
a balance between simulation accuracy and speed. Its basic paradigms is shown in Fig. 12. 

Traditionally, to construct a physics-informed simulator, the numerical model’s output is used as the input of the ML model. 
However, high-fidelity simulations are computationally costly. Therefore, most research has focused on the use of a reduced order 
model (ROM) or a surrogate model to lower the simulation cost. The former are the simplifications of huge scale models for estab
lishing an approximate description of multidimensional physical processes in low dimensions. The combination of ROM and virtual 
sensors can create dynamic model calibration [58], which is actually the basis of many simulation software (e.g., Ansys and Modelica). 
Digital twin-based physics-informed input models in the collected literature also augment the input space of ML by simulating certain 
types of physical signals based on a ROM of the system’s specific behavior. Besides, surrogate models compute the response of the 
original high-fidelity model at a chosen finite number of points. In fact, it is a proxy for the real system at finite operating states [202]. 
In existing PIML methods, building ROMs usually reduces the amount of the unquantified variables in the model by adding constraints. 
This increases the preconditions for device operation and specifies the state space involved, which relies on the user’s understanding of 
a specific failure. In contrast, surrogate models in existing PIML studies tend to complete the modeling by fitting a ML model to the 
relationship between operating conditions and system response under finite operating conditions. For example, in the simulation of the 
meshing vibration behavior of a gear train, the ROM-based PIML simulator specifies the operating conditions of the gear train (load, 
speed, etc.). It uses a simplified physical model (e.g. a time-varying stiffness spring-damping model for meshing gear pairs) to represent 
the components and a simplified data flow connection to represent the shaft structure. It models the system mass as a centralised inertia 
module, ignoring the non-linear coupling, electromechanical coupling, and changes in dynamic states under different operating 

Fig. 10. Taxonomy of existing PIML methods in PHM.  



conditions. The effect of tooth wear and tooth breakage on the meshing stiffness are the only factors to be considered. In contrast, the 
PIML simulator based on the surrogate model uses a grey box model to fit the relationship among the excitation, responses and the 
structural parameters. It assumes that the corresponding mappings of the grey box model are constant and applicable in different 
working state spaces, thus further increasing the number of samples. 

Physics-informed gauges 
In some specific case studies, e.g., complex structural systems, it is inevitable to use simplified physical models for the construction 

of “Simulators”. However, this simplification might lead to significant deviations in model behavior as well as in estimated values 
compared to the true values of the system [80]. Then, model updates can not inherently correct modeling errors. To overcome this 
issue, data transferring is an alternative solution for enhancing the data space. In this light, some studies focus on applying physics 
knowledge as a “Gauge” to evaluate the similarity between the source and target database. This technique migrates feature knowledge 
from the source domain to the target domain by designing a physically based transfer criterion between them. It allows enhancing the 
ML robustness and improving the efficiency and accuracy of ML models. 

The two basic ways to implement “Gauge” are shown in Fig. 13. Its principle consists of finding the invariant variable or invariant 
relationship between the source and target domains, such as feature symmetry, conservation, transformation invariance, and 
monotonicity [139,203]. The source domain, which has a large amount of data and information, is then selectively transferred to the 
target domain according to physical similarity criteria [159]. 

Physics-informed extractor 
In addition to data augmentation, data processing is another crucial task that directly affects the performance of ML models. To 

ensure that the input space contains as many fault-related features as possible, it is necessary to create a physics-informed extractor to 
guide the data preprocessing according to physics knowledge. For example, the proposed physics-informed extractors allow selecting 
suitable domain transformation methods [204] to get the relevant aggregated features [155], or fusing heterogeneous information 
from multiple sources [40,65]. In [88], the taut string model equation standardizes the principal component analysis method for 
extracting the specified modal frequency bands of cable vibration. The study in [79] develops a physics-guided ML model to conduct 
the feature extraction process that can generate particular features directly reflecting the performance of electric vehicles. 

Following feature extraction, the ML module incorporates an embedding component that functions as a set of sub-feature ex
tractors. Subsequently, information fusion takes place, with a primary focus on merging physical health indicators with virtual health 
indicators. The former pertains to fault physics and typically carries significant interpretability in terms of the indicators. For the latter, 
there are two implementations in existing PIML studies [205]:  

• Information fusion from multiple physics domains to obtain “sensory data” with less redundancy and representing all original 
information. For example, multiple regression [132], elevated space projection [206], and other supervised and unsupervised 
learning methods are used to perform signal-level data fusion and feature-level data fusion [42].  

• Cross-physics domain relations fusion through physics relationships to get “perceptual data”, where the physics relationships of 
the various parts of the data are prominent [207,208], as shown in Fig. 14. For example, in crack growth prediction, information on 
the structural response, such as displacement and phase fields, obtained by the Newton-Raphson solution, are preserved in the form 
of images of the current state of the crack to build spatial structural knowledge [70]. 

3.2.2. Physics-embedded algorithm structure 
Regarding “Physics-embedded algorithm structure”, PIML seeks to make the traditional physics-agnostic ML become physics aware 

so that the governing processes are added to the design of ML algorithm structures and the parameters searching process. It is prone to 
integrate the “Hard Constraint Projections (HCP)” [90] with ML, including the three following paradigms: “Basic operator”, “ML 
Structure blueprint”, and “Parameter initializer”, as shown in Fig. 15. 

The “Basic Operato” is responsible for enforcing physically resolved relationships in machine learning processing. On the other 
hand, the “ML Structure Blueprint” is dedicated to designing ML modules or inter-layer connections based on physically derived re
lationships, thereby endowing sparsity. These components are implemented in the algorithm’s structural design. Additionally, the 
“Parameter Initializer” focuses on identifying the ML parameters. A brief summary of these three approaches used in the existing 
literature is shown in Table 5. 

Physics-informed operator 

Fig. 11. Three ways to construct a physics-informed input space.  
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Table 4 
Summary of physics-informed input space studies in PHM.  

Ref. Application Knowledge source Informed ML framework PHM tasks 

[195, 
196] 

Aeronautical structure Component-based digital twin Simulator Classification tree and SVM Fault diagnostic 

[170] Triplex pump Component-based digital twin Simulator Auto-encoder transfer learning Fault diagnostic 
[58] Oil productionline Production-based digital twin model Simulator Autoencoder & LSTM Condition monitoring 
[197] Rotor A priori evaluation of feature space separability of loads Simulator Hamiltonian autoencoder NN, PCA, & random forest Fault diagnostic 
[188] Electro-Hydrostatic Actuator 

degradation 
Physical degradation model Simulator LSTM Degradation 

prediction 
[13] Tubofan engine Engine air path performance model Simulator DNN RUL prediction 
[53,55] Composite structure Bonded joints fatigue FE or lattice surrogate model Simulator FCN Fatigue prediction 
[198] Bearing Time domain statistical feature generation model Simulator SVM Fault diagnostic 
[174] Aircraft composite structure A numerical solutions of Lamb waves Simulator CNN Fault diagnostic 
[144] Industrial production Time-series derivative weighting for perturbation values Simulator VAE Fault diagnostic 
[199] Building Invariable characteristics of building structure Gauge Physics-informed multi-source domain adversarial 

networks 
Fault diagnostic 

[59] Additive manufacturing monitoring Geometry invariant in thermal history features and trend Gauge Tree-based regression Condition monitoring 
[171] Gearbox Implicit physical association between unlabeled and labeled data Gauge Deep convolutional generative adversarial network Fault diagnostic 
[200] Gearbox Vibration inherent cyclostationary characteristics Extractor Autoencoder Fault diagnostic 
[183] Bandsaw Vibration modal analysis and finite element analysis Extractor PINN and DCNN Fault diagnostic 
[167] Gearbox Health-adaptive physics time-scale representation embeded input 

module 
Extractor CNN Fault diagnostic 

[201] Electro-mechanical load Feature space load separability prior evaluating Extractor SVM & DNN Fault diagnostic 
[169] Air handling units Importance feature selection based on the semantics of the physical 

model 
Extractor isserstein generative adversarial network Fault diagnostic  



The principle of the “Operator” is to use physics-knowledge of failure mechanism to build ML modules that allow better capturing 
input-output relationships. To do this, there are two ways proposed by the existing studies: 1) Replacing ML modules with physical 
input-output models, 2) Custom layer and neuron to express physics equation, as shown in Fig. 16. 

The first approach, replacing ML modules with physical input-output models, performs a physically meaningful transformation of the 
raw data into health indicators required by the subsequent ML modules. Then through integrating ML module for fusion of information 
across physics models and ML modules. For example, in the papers [172,213], the customized wavelet transformation layers are 
designed to guide the feature extraction and health indicator construction tasks by assigning the appropriate coefficients and weights 
for NN layers. The overall structure includes both series and parallel fusion methods for the output from the physical embedding part 
and the output from the ML module processing [116]. The serial architecture selects the best method for each data characterization and 
decision-making step. Compatibility between successive methods is crucial for sequential re-evaluation of previous outputs, reducing 

Fig. 12. Three ways to construct a simulator for physics-informed input space.  

Fig. 13. Two ways to construct a gauge for physics similarity metric-informed learning.  

Fig. 14. PIML based information fusion: Extending and distilling multiple heterogeneous sensory signals into perceptual signal.  



ambiguity and improving accuracy. However, accumulating errors from incomplete physics information is a potential drawback. The 
parallel fusion structure combining physics models and machine learning (ML) modules offers the advantage of leveraging the 
strengths of both approaches simultaneously. It plays the role of compensators in enhancing accuracy, robustness, and interpretability 

Fig. 15. Three ways to construct a physics-embedded algorithm structure. The different coloured lines represent different implementations, earthy 
yellow represents embedding physical knowledge into a local module of ML such as a neuron, purple Beal is designing inter-module connections 
such as layer connections based on physical knowledge, black represents initialising ML parameters. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 

Table 5 
Summary of the studies on physics-embedded algorithm structure in PHM.  

Ref. Application Knowledge source Informed ML framework PHM tasks 

[182] Crack growth and 
filter clogging 

Paris laws for fatigue crack and pressure 
drop analog formula 

Operator ANN RUL prediction 

[165] Motor bar broken Fault frequency and square envelope 
threshold 

Operator CNN Fault diagnostic 

[209] Drill pipe Embedding hydraulic coefficient 
relationship between two DNNs 

Operator DNN  

[113] Lithium-ion battery 
battery 

Reduced-order model based on Nernst and 
Butler-Volmer equations 

Operator RNN RUL prediction 

[43] Tool wear Sipos empirical wear-time Operator Adaptive neuro-fuzzy 
inference system 

Degradation 
prediction 

[81,130] Material defect Topology of wave-guided electromagnetic 
acoustic sensor systems 

Operator Siamese CNN Fault diagnostic 

[149] Bearing fatigue Paris-laws based corrosion Operator NN  
[114,129] Structure crack Damage differential equations & Dirichlet 

boundary based growth laws 
Structure 
blueprint 

DeepONet Degradation 
prediction 

[37,210] Crack identification Differential equation for crack extension Structure 
blueprint 

Stacked auto-encoder Degradation 
prediction 

[115,121, 
179, 
186] 

Aviation structure 
crack 

Crack extension or vibration anomaly 
models 

Structure 
blueprint 

RNN Degradation 
prediction 

[91,115, 
120] 

Structure fatigue Eulerian integration for fatigue crack 
extension 

Structure 
blueprint 

RNN or CNN Degradation 
prediction 

[113] Batteries RUL 
prediction 

Governing differential equations based on 
measured capacity & voltage curves 

Structure 
blueprint 

RNN RUL prediction 

[156,178] Structure damage Structural changes due to damages Structure 
blueprint 

Stacked NODE Fault diagnostic 

[20,95,166, 
211, 
212] 

Grid and Buses FD Physics spatial or spectrum associativity Structure 
blueprint 

Graph NN Fault diagnostic 

[154] DRAM error Spatial dependence of the DRAM Initializer SVM, NN, Boosted Trees, Naive 
Bayes, Random forest 

Fault diagnostic 

[168] Bearing Interpretable weights based envelope 
spectrum 

Initializer Supervised learning dichotomy Fault diagnostic 

[57] Casting defect One-dimensional heat transfer equation Initializer Non-negative matrix 
factorization 

Condition 
monitoring 

[142] Materials cracks/ 
fractures 

Geomechanical alteration index cluster basis Initializer K-Means cluster Fault diagnostic 

[76] Tool wear Decision space parameterized by cutting 
speed and temperature 

Initializer CNN Degradation 
prediction 

[149] Power grids Wind oscillation equations and grid 
equations 

Initializer Gaussian Process Regression Fault diagnostic 

[187] Offshore wind turbine Degradation excess matrix Initializer Bayesian network Degradation 
prediction  



while enabling a comprehensive understanding of complex systems’ degradation behavior [179]. However, challenges include 
complexity, data requirements, compromised interpretability, potential conflicts between models and algorithms, and the need for 
expertise and resources in development and maintenance. 

In the second approach of using ML modules to express physical functions, the ML module acts as a forcing actuator to derive the 
physics model output and provide additional physical information. This approach involves utilizing mathematical approximations 
through the ML’s intrinsic functions. For instance, in the paper [181], a linear summation of a NN is employed to represent the 
relationship between vibration amplitude and rotational speed. The activation function and connections between NN layers 
approximate the relation between features and RUL values. Trainable weights, biases, and nonlinear activation functions represent the 
unknowns and parameters in the formula. 

Physics-informed ML Structure blueprint 
Compared to the “PIML operator”, “PIML Structure blueprint” is a physics aware method which focuses more on guiding the 

building of data flow similarity between ML and physics knowledge, including modeling the physical processes, measurement pro
cesses, derivation processes, geometric structures, and so on, as shown in Fig. 17. 

Due to the fact that the essence of this class of methods lies in designing the structure of machine learning, including module design 
and inter-module connections, we propose to use “Structure blueprin” to represent physical reasoning processes or physical structural 
relationships informed machine learning algorithm structure. It aims to find topological similarities and the unit dependencies 
mappings from the geometric structure, system behavior, or internal material interaction [101] to ensure the physical priority of the 
reasoning process when training ML models. The conjecture and the abstraction of the system behavior in PBMs are useful sources to 
optimally guide the training process of ML. For example, the NN is designed according to the topology and physical laws of an electric 
grid in [95]. The underlying physical model governs the operation of the distribution network to sparse the learning model’s structure 
where the pruning is done in a deterministic manner during the training process [132]. As a result, load anomalies and grid damage can 
be indicated by changes in the output of the network nodes. Besides, in reference [102], the NN gradient models a potential energy 
function that is exploited to represent the dependency of the interference between quad-copters and their distance. 

Several special structures can be utilized to model physically derived relationships. In Fig. 3.2.2, each step of a Runge-Kutta nu
merical integration process is represented by a NN layer, and the integration path calculation is completed based on the physical 
summation relation. The dynamic behavior changes, such as damage growth in RNN [120], are expressed through a recursive pre
diction structure (see Fig. 18). Each formula within the recursive relationship for damage growth is represented by a custom NN layer, 
and the inter-layer structure enables the realization of the recursive relationship. In representing the derivation process in terms of 
structure, much physics knowledge is further de-analyzed [50]. For example, in the paper [37,156,178], the specific physical re
lationships are non-analytical. The embedding of physics knowledge is accomplished by two NN sharing parameters in a CODEC 
(Coder-Decoder) structure. The latter is a proxy for the linear second-order partial differential equation for acoustic wave propagation, 
while the former is used to approximate the solution of the model from the measurements to the latter surrogate NN. In summary, 
“PIML Structure blueprint” defines ML reasoning process as part of the physics derivation form where the ML modules retain their 
original computational structure, but acts as a mapping of certain types of the physics equations solving process by constraining the 
inter-module relationships. 

Physics-informed ML parameters initializers 
Unlike the focus on both “PIML operator” and “PIML Structure blueprint”, the research on “PIML parameters initializers” is more 

concerned with the selection and assignment of ML parameters and hyper parameters. For example, the weight selection is imple
mented based on physical energy minimum state completion in Markov random fields (MRF) [154]. In [36], wavelet-based features of 
the multi-scale envelope spectrum are fused by a statistical health index generating model, and the observation function between the 
defect state and the fused features is assumed to be a linear fitting. The empirical model for a spalling propagation based on the Paris 
formulation is a predictive model for which the initial parameters are set as probability distributions. Besides, the average value of the 

Fig. 16. Two ways for embedding physics knowledge in the form of operator.  



Fig. 17. Building PIMLs with similar derivation processes or structures to PBMs.  

Fig. 18. Building PIMLs with similar derivation processes or structures to PBMs.  



one-dimensional heat transfer equation solution is used as the initial parameter for the factorization of the non-negative matrix for 
casting defect monitoring [57]. In summary, the initialization of ML parameters in these studies is usually based on the physical model 
solution. 

3.2.3. Physics-constrained learning 
In contrast to the hard constraints of “Physics-embedded algorithm structure”, PIML also includes soft constraints that enable ML to 

produce an approximate satisfaction of a given set of physics through the design of the objective function. Its approximate satisfaction 
can be introduced in the form of integration, differentiation, probability, logic rules, and other forms of physics-based deviations. 
According to the relationship between the informed physics objective function and the original ML objective function, this paper 
groups “Physics-constrained learning” into two paradigms: “consistency check”, and “conflict test”, which are shown in Fig. 19. The 
total error of the PIML model includes a traditional ML prediction error (“Error1”) and a physical consistency error (“Error2”). In 
general, the numerical best fit to the available data (residual loss) and the consistent satisfaction of physics principles (boundary loss) 
show discrepancies [147]. Designing an objective function based on “consistency check”, or “conflict test” error is dedicated to the 
convergence of ML results towards physical consistency. The related literature is summarized in Table 6 

From Table 6, one can see that physics knowledge is used directly in the ML target design by modifying the target function in such a 
way as to influence the parameter changes during the ML optimization-seeking learning process. For specific PIML frameworks, the 
“consistency loss” strives to ensure that the ML output conforms to the physical fact, while the “conflict loss” is built by the conflicts 
between the ML output and the physical model output. 

Consistency loss design 
In tool wear prediction [78], the empirical knowledge (that wear increase as the number of cuts increases) is then compiled into a 

function that detects trend information in the output sequence. 
In the case of ultrasonic detection of damage to metal sheets, consistency is expressed in the ability of the algorithm to identify 

results that are close to the analytical model corresponding to the damage cluster and satisfy the regular term generated by the residual 
from the governing equation [37]. In the K-SVD method for metal damage identification, the article [150] builds an ultra-complete 
dictionary with an additional one-dimensional wave equation based regularization term for the atomic update process of the 
dictionary. 

In these studies, the output of the ML needs to satisfy the regular term or lower the punishment function value of the governing 
equation for physical consistency, in addition to the original fitting accuracy as possible. And this governing equation can be a partial 
derivative relation that represents an approximation [37]. It can also be whether certain explicit physical equations are met within the 
required tolerances. For example, the rotational trajectories of the voltage and current need to satisfy the elliptic equation in 
auto-encoder based high impedance fault detection [132]. In some cases, the design of consistency loss does not require a fully known 
analytical physics model. It is equally feasible to enforce the differential equations through a NN as a trial solution to the degradation 
differential equations and through additional iterative pathways outside the NN [133]. 

Conflict loss design 
Based on the inconsistency between the physics model and the ML output, it is also possible to design a “conflict test”, which only 

optimizes the relevant parameters of the ML in the error propagation process. 
In [143], the results of a diagnostic conflict based on an artificial fault threshold model with a deep CNN are used to design the loss 

function that aims to improve the discrimination of the severity of bearing faults. A physics-based loss function is designed to evaluate 
the difference between the output of a NN model and the output of a finite element model update in steel building damage detection 
[84]. This idea can be seen as a traditional fusion approach, which combines the outputs of different approaches [216] in the ML 
training process. The main difference between them is that the physics-based outputs are used here primarily to correct the behavior of 
ML rather than enhance decision-making. 

4. Discussion of PIML studies in PHM according to the form of physic knowledge 

The previous sections summarized the different PIML frameworks in PHM. They initially answer the question of “how to inform 
physics knowledge in ML”. However, physics knowledge is an extremely complex abstract concept, and the question of “what kind of 
physics knowledge can be used for informing ML” has not been addressed yet. This question is then considered in Subsection 4.1. Next, 

Fig. 19. Two ways to construct physics-constrained learning.  



Table 6 
Summary of Physics-constraint learning in PHM.  

Ref. Application Knowledge source Informed ML framework PHM tasks 

[177] Turbo engine Loss based on PDE residuals Consistency Stacked CNN RUL prediction 
[96] Deformation identification Normalized physics model’s modal residual Consistency DNN Fault diagnostic 
[133] Material damage Finite Element Analysis Consistency DNN Fault diagnostic 
[123] Bearing Reliability model based on Weibull Consistency ANN Fault diagnostic 
[214] Vehicle sensor Residue generation based on transferable operators Consistency Neyman-Pearson test Fault diagnostic 
[132] High impedance fault detection Elliptic equation of rotational trajectories of the voltages and currents Consistency Autoencoder Fault diagnostic 
[215] Building Attribute-category matrix Consistency MatConvNet Fault diagnostic 
[146] Ocean current turbine Characteristics in frequency domain of the mean water flow velocity in the fan balance Consistency PCA and CNN Fault diagnostic 
[150] Metal damage Atomic update based on the regularization term of the one-dimensional wave equation Consistency K-SVD Fault diagnostic 
[131] Workshop machinery Fault frequency domain feature loss related Pearson correlation coefficient Consistency Deep convolutional autoencoders Fault diagnostic 
[176] Damage stress prediction FEM based stress distribution Conflict LSTM Fault diagnostic 
[143] Bearing Expert experience-based fault degree threshold model Conflict CNN Fault diagnostic 
[84] Steel building damage Output of a finite element model Conflict DNN Fault diagnostic 
[126,173] Wind farm & gas turbine Physically complete historical dataset Conflict ANN Fault diagnostic  



Subsection 4.2 is intended to synthesize the informed way of that knowledge in literature. 

4.1. Physics knowledge categories 

Physics knowledge is the prerequisite for implementing PIML. In review [141], the authors propose categorizing the knowledge 
sources according to their origin. However, the PIML implementation methods depend on the form of knowledge rather than the source 
of knowledge. For example, the proposed PIML frameworks in papers [84] and [133] come from different fields (building construction 
and material industry) with different knowledge sources, but both of them use the same knowledge form, i.e., finite element methods, 
to build the “consistency check” loss function. Therefore, this Subsection focuses on synthesizing the form of physics knowledge 
instead of its source. From the existing studies on PIML in PHM, the physics knowledge forms can be classified into three categories, as 
shown in Fig. 20. 

1) First category: Explicit knowledge related to analytical failure models. The explicit knowledge is represented by analytical 
models or equations of system dynamic behaviors, such as generator inertia constants, damping coefficients, and rotating speed in 
rotor dynamics [140]. They are mathematically and physically unambiguous, formal, symbolic and structured. Particularly, in the field 
of PHM, they demonstrate the quantifiability of the failure processes, including algebraic, governing equations, and probabilistic 
relations. 

2) Second category: Embeded knowledge related to a structure or specific process. It is locked into the physics derivation process, 
system convention, structure, or layout. It provides information related to the sequence orders and the requirements of each process 
step or each component structure. It uses ML modules to express information concerning the system structure [132], the unit de
pendencies [154], or the system topology framework. In particular, some knowledge is non-symbolic and non-explicit, being merely an 
input-output or mutual verification relationship between the derivation procedures. 3) Third category: Tacit knowledge relating wide 
range of physical information. It involves hypotheses, expert rules and experiences, and also diverse underlying physical properties. It 
refers to knowledge about the deterioration process which is somewhat intuitive and difficult to quantify. 

4.2. Discussion of physics-informed ways according to knowledge forms 

Table 7 summarises different forms of knowledge for PIML in PHM and presents their corresponding embedded way into ML. From 
this table, we can note that:  

1. Due to explicit analytical equations or models that define clear input-output mathematical relationships, explicit knowledge is the 
most common way for building PIML. It is widely used in the construction of “simulators”, “extractors”, “operators”, and “con
sistency checks”. It can often be used independently or collaboratively in several data flow sessions in a ML pipeline. It changes the 
input and output of the corresponding link on the data stream but does not change the data flow direction.  

2. Embedded knowledge studies focus on serving as the physics-informed ML structure design guidance. They seek to build the entire 
ML structure such that the information flow inferred through the ML model resembles the one passed through a real physical model, 
structure, or derivation process. In typical circumstances, when there are unknown terms in the process of physical derivation, 
making it difficult to establish a formulaic model, and when there exists a quantifiable relationship between physical structures, 
one may employ paradigms such as Structure blueprint (Designing the structure and parameters of ML model solely based on 
physical structural relationships or deductive processes), or alternatively, embedding limited known steps or models as local op
erators within the ML framework.  

3. A large part of “Embedded knowledge” studies actually points to interchangeability between ML and physical derivations. For 
example, the Eulerian solution of Ordinary Differential Equations (ODE) is implemented as a special case of RNN which is applied in 
Dynet [218]. Although the current research still focuses on the relevant area of neural differential equations (NDEs), i.e. the use of 
ML to derive or embed the differential equation for failure as in the paper [156,178,217], the trend of operator learning, led by 
Deeponet, has recently gotten a lot of attention. For illustration, the transmissible operators, which characterize the relationship 
between the outputs of an underlying vehicle sensor system, have been proposed in the paper [217].  

4. Although “Tacit knowledge” is the most widespread knowledge, only a small number of studies have been conducted on it. In these 
studies, “Tacit knowledge” is usually transformed into a parsable form in order to be embedded in the objective function and 
derivation process. It enables the design of a physics similarity test metric [171,199] to assess whether the distribution or trend of 
results conforms to certain physical properties [177,214], as well as the construction of a conflict loss [126,143,173].  

5. For the use of tacit knowledge, the physics knowledge is often not given in advance, but it is obtained by designing a ML model in a 
reasonable way to discover the fault-related information. For example, in [118] the authors use dynamic mode decomposition to 
extract signal characteristics. These characteristics are used as labels for training the ML on how to automatically discover the 
information related to crack growth. The implementation of this type of knowledge discovery process should lie in stacked ML 
architectures, i.e., one ML model for knowledge discovery and one for proofreading or extending knowledge. For illustration, one 
can consult the associated two-stage graph NN architecture in [132].  

6. In practice, analytical and quantifiable explicit knowledge is certainly restricted, and knowledge regarding fault processes is still 
largely perceptual or qualitative. Hence, tacit knowledge can be transformed into embedded knowledge through a deeper un
derstanding of mechanisms and structures. For instance, the node and connection in the graphical NN can be constructed based on 
an understanding of the current and voltage distribution in the electrical grids [149]. Furthermore, the understanding of the basic 
physics properties and relations can be described in terms of a formula and translated into explicit knowledge. For illustration, an 



embedded transfer learning model based on the physical attributes of buildings’ damage patterns is trained by minimizing the loss 
of the damage attribute that is measured via L2-norm and angular loss [215]. Besides, the aforementioned building-related 
knowledge can also be used to introduce a new physics guided weighted design. In [199], the authors use physical similarity to 
the target to measure the importance of each source and thus decide the data of which source to transfer.  

7. The same physics knowledge can be informed in different ways. For example, dynamic mode decomposition capturing system 
characteristics can be used to design operators for image reconstruction to identify cracks [118], or to design an extractor that 
generates input feature maps for time-delay-system diagnostic [169]. In particular, knowledge in the form of self-contained 
input-output relationships and derivations such as finite elements can be used as 1) embedded knowledge to guide the network 
design for simulating the physics derivation such as the dynamic convolution for accelerating CNN [218], 2) explicit knowledge for 
data augmentation by designing the failure surrogate model [55], or 3) metric to design conflicting loss between ML and physical 
predictions [176]. 

Fig. 20. Physics knowledge forms present in existing studies of PIML in PHM.  

Table 7 
Summary of the knowledge informed ways according to the knowledge forms.  

Ref. Knowledge forms Informed ways 

Explicit Embeded Tacit 

[13,53,55,58,144,170,174,188,195–198] 
✓   Simulator 

[59,171,199],   
✓ Gauge 

[59,167,169,171,183,199,200,201] 
✓   Extractor 

[36,62,63,113,149,172,182,213] 
✓   Operator 

[43,51,118,165]   
✓ Operator 

[81,130,209]  
✓  Operator 

[37,113,210,217] 
✓   Structure blueprint 

[20,50,91,95,107,114,115,120,121,129,156,166,178,179,186,211,212]  
✓  Structure blueprint 

[57,76,142,149,187] 
✓   Initializer 

[154,168]  
✓  Initializer 

[96,123,132,133,150] 
✓   Consistency 

[177,214]  
✓  Consistency 

[131,146]   
✓ Consistency 

[84,176] 
✓   Conflict 

[126,143,173]   
✓ Conflict  



8. About when to use what form of knowledge. According to the analysis of the existing research in Table 7, this paper suggests When 
dealing with explicit knowledge, the system behaviors can be described by mathematical equations or analytical models with clear 
input-output relations. If the physics signal variables involved in the equations are available, we can use them to customize NN 
layers or units based on analytical formulas or system physics characteristics. When explicit knowledge of the system behaviors is 
unavailable, but we have information about system physical structures or behavior model derivation knowledge, along with 
handling inference relations for the involved signals, we can construct a physics-informed structure. Embedded knowledge is then 
utilized to customize the data flow in the NN structure or employ custom-designed NNs as surrogate models for specific steps in the 
physics model derivation. In the case of tacit knowledge, where quantitative information about system behaviors is lacking, but 
there exist physical relations between system inputs and outputs or constraints on the system outputs, these relations can be 
employed to customize the ML objective function or regulate the output of hidden layers. 

It is important to note that these forms of knowledge are not mutually exclusive, and they can often be combined or integrated within a 
PIML framework. The choice of which form to use, or whether to combine them, depends on the specific requirements and objectives of 
the problem at hand. A comprehensive approach to PIML may involve utilizing a combination of explicit, embedded, and tacit 
knowledge to capture the full range of system characteristics and optimize model performance. Ultimately, the selection of the 
appropriate form (s) of knowledge requires careful consideration of the problem domain, available expertise, data availability, and the 
desired level of interpretability and accuracy in the modeling process. 

5. Challenges and future research directions: Toward PHM in the context of “small data and scarce physics knowledge” 

Although PIML can bring numerous alternative solutions for diverse applications in PHM, as mentioned in previous sections, the 
development of PIML in PHM still comes with some particular limitations and challenges. Some of these limitations and challenges are 
presented in this section. 

5.1. Limitations and challenges of PIML 

The challenges related to sparse and noisy data, data availability, and incomplete physic models have been highlighted in other 
reviews [18,29,32]. In addition, there is a need for further research into the collection of more representative data, the selection of an 
appropriate benchmark model, and the determination of the weighting parameters or hyperparameters for the informed ML part. This 
paper argues that the fundamental problem underlying these challenges is how to convert various forms of knowledge into the type 
necessary for the ML framework, that is, to adjust knowledge to ML models rather than selecting ML models to fit physics knowledge. 
Consequently, one can highlight the challenges in two aspects:  

1. Building a physics aware ML framework 
In the current research on the design of PIML, the inter-conversion between physics knowledge and ML, as well as the assessment 

metric for ML physical inconsistency, remains an under-explored and challenging topic. Therefore, there is a need to construct a 
physics-aware ML framework that can automatically incorporate physics knowledge into various parts of the ML pipeline based on 
the form of knowledge according to the physics-ML inter-conversion mechanism and the inconsistency evaluation results.  

2. Construction of knowledge basis 
The construction of effective PIML frameworks requires a thorough comprehension of the physical characteristics of the system 

under investigation. This necessitates that the researcher possesses comprehensive knowledge and skills in both computer science 
and physics (e.g. mechanics). Thus, this leads to significant barriers for junior researchers without interdisciplinary experience in 
the implementation of PIML techniques. Furthermore, due to the fact that most knowledge can be ambiguous, mathematical ex
pressions and physics modeling are not always well-developed for PHM case studies. Consequently, it is essential to construct a 
knowledge basis for PIML from ambiguous information. 

5.2. Future directions 

Although it is difficult to determine which direction will lead to transformative discoveries, the PHM community can make a 
substantial contribution to the future of PIML by taking into account the challenges outlined in the previous section in the following 
areas:  

1. Compiling fault mechanisms in ML 
There is a lack of studies regarding how ML can better use integrated physics knowledge from multiple sources. Establishing the 

cognitive mechanisms for PIML when different forms of knowledge are embedded in different ML frameworks thus appears as a 
meaningful work.  

2. From the perspective of metric learning 
Another track that appears worth investigation is the development of ML objective functions with more multidimensional metrics 

that can cover model complexity, physics consistency, computational cost, and result accuracy.  
3. Further building suitable benchmark problems 

A set of well-defined benchmark problems can facilitate the evaluation and comparison of different algorithms and thus 



contribute to the development of research on this topic. The physics knowledge corresponding to public datasets is usually not 
available because of a deep-domain background requirement. This often leads to numerous obstacles in developing PIML methods 
because of the knowledge shortage. The development of open-source benchmark problems with shared the encoded knowledge, 
such as the synthetic fatigue damage database presented in [219], or similar developments in other domains would be welcome.  

4. Combining flexible twin model to build life cycle tool The modeling techniques and twinning enabling technologies in [192, 
193] present an appealing opportunity to integrate with PIML. This combination has the potential to develop a robust life-cycle 
management tool that incorporates flexible fidelity models and maintains physics consistency. Additionally, it enables the inclu
sion of indeterminate quantitative assessment evaluations by building twin framework.  

5. Adaptation to sparse run-to-failure data and sparse label data 
Most of the research on PIML in PHM focuses on sparse observations or information bias in the dataset. However, unlabeled data 

and non-complete failure process data accounts for the vast majority. Therefore, the theoretical and applied research of PIML for 
sparse and noisy data is worth exploring. Development of new PHM paradigms such as physics-informed unsupervised learning, 
self-supervised learning, and semi-supervised learning is expected.  

6. PIML in “small data and scarce physics knowledge” 
One of the ultimate development purposes of PIML in PHM is to be able to work under “small data and scarce physics knowledge” 

conditions, which will greatly extend the scope of potential PHM application. Following from the above-mentioned research di
rections, combining PIML with knowledge discovery and ML architecture search techniques has the potential for emerging 
breakthrough methods. 

6. Conclusion 

This paper presented bibliometric results and a state of the art review of physics-informed machine learning for prognostics and 
health management. An overview of its basic paradigm from the innovative perspective of “How to inform” and “What to be informed”, 
is summarized and provided. The existing approaches are grouped according to where and how the physics knowledge is embedded in 
the ML pipeline. The challenges of applying PIML to solve PHM problems and future research directions are also discussed. The main 
contribution of this paper is to provide a concise and comprehensive overview of PIML in PHM and to focus on the fundamental 
challenge of translating the appropriate form of knowledge for PIML utilization. It is hoped that this paper will encourage further 
works to expand the potential of PIML in the field of PHM. 
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