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Abstract
Random forests is a widely used classification algorithm. It consists of a set of decision trees
each of which is a classifier built on the basis of a random subset of the training data-set. In an
environment where the memory work-space is low in comparison to the data-set size, when
training a decision tree, a large proportion of the execution time is related to I/O operations.
These are caused by data blocks swap-in from the storage device to the memory work-space.
In traditional methods, data blocks contain elements that will be accessed and processed at
different moments, thus, the spatial locality is low. In this paper, we seek to reduce the number
of data-blocks swap-in operations by enhancing spatial locality. The idea is to re-order data-
set blocks such as each block contains elements that are likely to be accessed together. Our
experiments show that this method reduces random forest build time by 55% to 89%.

Mots-clés : Forêts Aléatoires, Stockage, Systèmes Embarqués, Hiérarchie Mémoire

1. Introduction

According to the International Data Corporation, the volume of data created between 2020 and
2024 will surpass the one created over the last 30 years [9]. This is mainly due to the billions of
end-point devices used in transportation, medicine or entertainment [1]. These devices collect
and analyze huge amounts of data to extract meaningful information [6]. Analysis are tradi-
tionally performed on the cloud to exploit high computation power. However, this requires to
send collected data on the cloud, that is exposing them to security threats and increasing the
network traffic and energy consumption [5]. While this is not considered as an issue for several
applications, it can cause serious problems for critical data applications.
Processing data directly on embedded devices can be a solution for such an issue. Nevertheless,
this solution struggles from the limitation in size of the main memory. In fact, memory capacity
can hardly scale as fast as the volume of data to process [7]. In addition, embedded devices
may be battery-backed, which makes energy consumption a major challenge to consider when
executing such resource-hungry applications.
One of the wide spread data analysis algorithms is classification. Their objective is to assign a
category to a recorded information according to observed features [6]. A classification model is
trained on a learning set (data-set) of elements characterized by features and labeled with their
real classes [6]. Among the classification algorithms, Random Forests (RF) [2] is a powerful and
widely used one. It individually trains a set of decision trees. Each of them is a set of conditions
based on the feature values which group elements that are in the same classes together. Thus,
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the decision tree building process consists of identifying the best features that make it possible
to obtain this grouping [13]. This process is iterative and requires to try a set of features.
Most of random forest implementations assume that the data-set can entirely fit into the main
memory. As a consequence, when it is larger than the available memory work-space, a signifi-
cant volume of data is swapped in and out of memory (from and to the storage device) accor-
ding to the sequence of data requested during the tree building process.
Previous experiments measured that building a decision tree with a memory work-space 8
times smaller than the size of the data-set is 25 times slower than the case where the data-set
can fit in memory [11]. This is due to two main reasons : (1) The same memory page can move
several times since the elements that it contains are needed on different decision tree nodes, the
temporal locality is poorly exploited in the traditional algorithms. We tackled this issue in our
previous work [11]. (2) A weak spatial locality of the memory accesses ; the same memory page
contains elements that are needed on different nodes, thus, it moves several times between
main memory and the storage device as it contains data requested for processing different
nodes.
To address this issue, our contribution consists in reorganizing the data-set on the storage de-
vice in a way that data that are likely to be accessed together during the tree building process
(on the same decision tree nodes) are stored in neighbor blocks (thus enhancing spatial locality
of data). This idea is motivated by a random forest decision trees property that we observed
experimentally on some data-sets : if a pair of data elements are accessed in a small time frame
during one decision tree building, they have a high probability to be accessed in a small time
frame for the building of the other decision trees. Based on this property, we have used the first
random forest tree building process to infer elements that will probably be accessed together.
Then, we reorganized the data-set such as to group these elements on the same blocks. Once
the new data-set written, it is used to build the remaining decision trees.
We evaluated our method on three real data-sets while varying the memory pressure (data-set
size over the available memory work-space) and observed an enhancement on execution times
of 55 to 89% in comparison to state-of-the-art method Ranger [12].
The remainder of this paper is as follows : Section 2 gives a brief background about random
forests. The proposed method is detailed in Section 3. In Section 4, we evaluate the proposed
method. Finally, Section 5 concludes this work and gives some perspectives.

2. Background on RF and Decision Tree Building

Here, we introduce RF and the decision tree building process. Table 1 gives the notations used.
RF is a supervised machine learning algorithm used for classification and regression [13]. It is
composed of (T) decision trees. The input of the learning phase of a RF is a data-set, that is a
set of N observed data elements characterized by d features and labeled with their real class.
Each decision tree is trained on a subset of this data-set according to the method explained in
the next section. The objective of a decision tree is to predict the class of an element knowing
its observed features. RF builds a set of decision trees to limit the prediction error. The final
predicted class of the elements is the predominant class among the predicted classes of the T

trees of the forest. In what follows, we will focus on binary decision trees.
A binary decision tree is a tree-like graph where each node represents a boolean condition that
depends on a feature of the learning set. This boolean condition allows to split the elements of
the learning set into two subsets : a subset of elements for which the condition is ’true’ ; and
another for which the condition is ’false’. The topmost node of the tree is called the root node.
All the elements of the learning set are assigned to this node at the beginning of the decision
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tree building process. The bottom nodes of a tree, called leaf nodes, are pure meaning that all
elements assigned to them are from the same class. Thus, the objective of the training process
is to find the sequences of conditions that allow to obtain pure nodes.

Notation Description
D Data-set
N Number of elements of the data-set
T Number of decision trees
M Memory work-space size
d Number of features of an element
F Set of features to be tested

TABLE 1 – Notation table
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FIGURE 1 – Bagging Algorithm Illustration

A decision tree is built according to the bagging Algorithm [2]. To illustrate this process, we
use the following example. We assume a data-set, given in Table 2, composed of 8 elements
characterized by 4 features {f1, f2, f3, f4}. Figure 1 shows the steps of building a decision tree on
the basis of this data-set :
1. Creation of the bootstrap (step 1) : A subset of the data-set, called bootstrap, is formed by
a random sampling with replacement (i.e., each element can be sampled multiple times). Ele-
ments of the bootstrap are assigned to the root node.
2. Split trial (step 2) : The second step consists of splitting the elements of the bootstrap ac-
cording to boolean conditions based on a random subset F of features. Once F is formed, the
elements of the bootstrap are distributed according to their value for each feature, resulting in
|F| potential trees. In Figure 1, the sampled features are f1 and f4. Elements of the bootstrap are
distributed according to each of these features resulting in two possible trees.
3. Effective split (step 3) : This step consists of choosing the best splitting feature among the
previous subset F. That is the one that allows to group the most elements of the same class to-
gether. Then, the node is effectively split according to the best feature. In Figure 1, f1 is chosen
since it already gives a pure leaf node as all the elements assigned to it are from the same class.

Storage Block Label f1 f2 f3 f4 Class

(1)
A 0 0 0 0 0
B 1 0 1 0 1

(2)
C 0 1 0 1 0
D 0 0 0 0 0

(3)
E 1 1 1 1 1
F 0 1 1 0 1

(4)
G 1 0 0 1 0
H 0 1 0 1 0

TABLE 2 – An example Data-set

Node Elements Accessed blocks Percentage of used data
in each block

N0 {A,A,B,C,C, E, F,H} (1), (2), (3), (4) 100%, 50%, 100%, 50%
N1 {A,A,C,C, F,H} (1), (2), (3), (4) 50%, 50%, 50%, 50%
N2 {B, E} (2), (3) 50%, 50%
N3 {A,A,C,C,H} (1), (2), (4) 50%, 50%, 50%
N4 {F} (3) 50%

TABLE 3 – I/O access pattern for splitting
each node
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Step 1, 2 and 3 are repeated with the resulting impure nodes until obtaining pure nodes.

3. Data Storage Reorganization for Random Forest

In this section, we give a motivational example. Then, we show that for a pair of elements
assigned to the same leaf node in a given decision tree, the probability that they belong to the
same node on another one is high. Finally, we describe our contribution based on this principle.

3.1. Motivational Example
In our study, we focus on storage device accesses that occur during the RF learning process. We
consider the case where the data-set is larger than the available memory work-space.
Let’s assume the data-set given in Table 2, and a memory work-space that can hold 4 elements
with storage blocks of 2 elements each. The distribution of data-set elements within each blocks
is given on the first column of Table 2.
Table 3 shows, for each node in the final tree in Figure 1, the elements that need to be acces-
sed, the blocks that need to be swapped in (memory), and for each block the percentage of
effectively used data. We draw two observations from this example : (1) When a data block is
swapped in, its data are partially used (50% for most blocks) ; (2) the elements of each node are
distributed on multiple data blocks.
So, the decision tree (we can extrapolate for multiple trees) building process poorly exploits
spatial locality in several cases, and a substantial proportion of data are swapped in uselessly.
These observations can be generalized to the data-sets where elements are uniformly distribu-
ted on the data blocks (that is data-set elements distribution on the blocks does not depend on
the class information).

3.2. Measure of Similarity between RF decision trees
In what follows, we try to show that in a RF, if a pair of data elements are classified in the
same leaf node in one tree, they are likely to be classified together in another tree. With such a
property, the data-set can be reorganized on the storage device so that to reduce the number of
swap-in operations. We formalize this property and evaluate its relevance.
Decision Trees Similarity : We assume a bootstrap B that contains N elements. T1 and T2 are
two decisions trees built on the basis of the bootstrap B. Each decision tree results in a set of leaf
nodes that group elements of the bootstrap that share the same features. Thus, each leaf node
can be defined as a cluster of the bootstrap elements. Let’s assume that tree T1 (resp. T2) gives
the clustering P1 (resp. P2). To know if a pair of elements classified in the same leaf nodes of a
decision tree are likely to be classified together in another one, we can compare the similarity
of obtained clusterings P1 and P2.
In the literature, there exists several metrics to evaluate similarity between clusters [4]. We
relied on the Adjusted Rand Index (ARI), which is a widely used one. Its value ranges between
-1 and 1 ; a high ARI value means that the clusterings are similar.
Experimental measurement of the ARI : In order to check if this property is relevant, we mea-
sured the ARI index of the clusterings obtained using two decision trees, with multiple real
data-sets picked from UCI Data-set Repository [3] : Wearable, Adult and Covertype. The ob-
tained ARI values are : 0.27, 0.26 and 0.12, respectively. In order to evaluate the relevance of
these results, we compared them to the ARI values considered as satisfactory in state-of-the-
art work [4] [10]. The reference values were obtained by comparing clusterings obtained from
algorithms (such as K-Means, Birch, GMM, etc), to the real clustering. All of the ARI values ob-
tained in our experiment are included in the range of values considered as satisfactory which
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is 0.1 to 0.29 [10] (exposing similarity). Thus, we consider that the similarity property between
decision trees is relevant for the tested data-sets. We are working towards the generalization of
this property with other data-sets to be generalized.

3.3. Data-set Reorganization Method
Our objective is to reduce swap-in operations when building a RF. As shown in the motivational
example, when building a decision tree, elements that need to be accessed to split each node
are distributed on multiple data blocks, and the swapped-in blocks are poorly exploited. Thus,
our approach is to re-organize data-set blocks such as each of them contains elements that are
likely to be accessed during the split of the same node. To do so, we take advantage of the
property explained in the previous section. In fact, since the probability of similarity between
leaf nodes is high, we extract information about elements clustering from the first tree, and
then exploit this information to reorganize the data-set to be used for the remaining decision
trees. This induces an additional full data-set write operation on the storage device, but it is
profitable in view of the several trees to be built. The steps are explained hereafter.
1. Build the T0 Tree : The objective of this first step is to build a decision tree that would allow
to get a clustering of data-sets elements, where tree leaf nodes represent the clusters. In order
to get a clustering of all data-set elements and not only the bootstrap, the decision tree T0 (and
only this one) is built on the basis of the whole data-set. As a consequence, the decision tree
T0 is deeper (more elements), thus slower to build, than ordinary decision trees. In addition, it
is more subject to over-fitting. Thus, in our method, T0 is a "disposable" tree used to partition
data-set elements, it is not saved in the RF decision trees that are used for the inference step.
2. Re-write the data-set on the storage device : Once the decision tree T0 obtained, we dispose
of the clustering of all the data-set elements. The information about the clustering is used to
rewrite the whole file in the storage device (we assume there is space on the storage device for
such a write operation). A new data-set is written which is organized such as the elements of
the same cluster (leaf node) are on the same (sequential) blocks. This way, elements of a block
are likely to be accessed altogether during the building of the other trees. Note that, if the size
of a block cannot contain all the elements of a cluster, they are stored on sequential blocks.
3. Effective Random Forests Trees Building : Once the data-set blocks are written according to
the clustering obtained from the tree T0, the remaining decision trees of the RF are formed on
the basis of the newly stored data-set.

3.4. New I/O Access Pattern
The proposed method allows to form data-set blocks that are likely to contain elements that
will be accessed together and thus better exploit spatial locality and reduce I/O accesses. To
illustrate this optimization, we apply our method on the small example given in Section 2,
considering the same bootstrap. We first form the tree T0 ; the obtained tree is shown on Figure 2.
The new I/O access pattern for the rest of the trees is given in Table 4. When comparing Table 3
to Table 4, we observe that the number of accessed data-set blocks in the proposed method is
lower than that of the original bagging algorithm. The average percentage of effectively used
data per blocks is 72% compared to 57% in the original method.

4. Evaluation

In this section, we first give our experimental methodology, then, we discuss the results.
Experimental Methodology : We compared the proposed method to the Ranger Framework [12]
which is widely used. Ranger Framework proposes two methods of data indexations respecti-
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FIGURE 2 – T0 Tree
Node Elements Accessed blocks Percentage of used data

in each block
N0 {A,A,B,C,C,H, F, B, E} (1), (2), (3), (4) 100%, 50%, 50%, 100%
N1 {A,A,C,C,H, F} (1), (2), (3) 100%, 50%, 50%
N2 {B, E} (4) 100%
N3 {A,A,C,C,H} (1), (2) 100%, 50%
N4 {F} (3) 50%

TABLE 4 – New I/O access pattern
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TABLE 5 – Evaluation Results

vely suitable for nodes that contain a lot or a few elements. The objective of ranger is to reduce
memory footprint. To do so, we built a random forest with 20 trees, the default number of trees
to build in Ranger is 100. If the proposed method is efficient for a limited number of trees (20), it
means that it will be even more profitable for a higher number of trees. We ran the experiment
under different memory constraints N/M = {1, 2, 4, 8}, such as N is the size of the data-set and
M is the volume of available memory. The experiment is run with multiple data-sets : Real
data-sets available on UCI Data-set Repository [3], and a synthetic one consisting of 64 features
and 100.000 elements, generated using Scikit-Learn Framework [8].
Results : Figure 5 shows the results. The execution time reduction ranges between 55% and
89%. One must note that the execution time measured with our method includes the building
of the first tree and the rewriting of the whole data-set on the storage device. The execution
time reduction is due to the fact that blocks contain elements that are likely to be accessed
together, thus, the number of blocks to be swapped-in to process a given node is reduced. The
second observation that can be drawn is that the execution time reduction decreases when the
memory constraint is increased. In fact, when the available memory work-space is very low in
comparison to the volume of data to process, even if the spatial locality is better exploited, data
blocks movements between memory work-space and swap space is substantial which slows
down RF building. As N/M increases, both methods would reach an upper bound in term of
swap-in operations for processing a given node. Since Ranger is not I/O optimized, it reaches
this bound for lower N/M values than our method. Once this bound reached, the execution
time of Ranger stabilizes while it continues to increase for our method. Then, the execution
time difference between both methods decreases even if it remains good enough.

5. Conclusion

In this paper, we seek to reduce data movements from the storage device to the main memory
when building a RF in a memory constrained device. The proposed method reorganizes the
data-set in a way to group elements that will probably be accessed together on the same blocks,
thus enhances spatial locality. Even though the proposed algorithm needs to rewrite the whole
data-set into the storage device, the execution time reduction is substantial as several trees
need to be created in RF. The evaluation of this method shows an execution time reduction of
up to 89% as compared to a state-of-the-art method. As perspective, we aim to generalize this
method to other Ensemble-Learning methods such as Boosting.
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