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Abstract—Memory caching is a common practice to reduce
application latencies by buffering relevant data in high speed
memory. When the volume of data to cache is too large or a
DRAM-based solution too expensive, several technologies such
as NVM or high speed SSDs could complement DRAM to form
a multi-tier cache. Additionally, most existing policies focus on
categorizing the data based on factors like recency and frequency,
setting aside the fact that applications/customers have varying
Quality-of-Service requirements. This concept is well established
in Cloud environment with Service Level Agreement (SLA).
In this paper, by extending the Adaptive Replacement Cache
(ARC), that uses recency and frequency lists, we propose a QoS-
aware Multi-tier Adaptive Replacement Cache (QM-ARC) policy
with the ability to take into account data applications/customers
priorities through the concept of penalty borrowed from the
Cloud. QM-ARC is generic, as it can be applied whatever
the number of tiers and can accommodate different penalty
functions. Using synthetic and real traces, our solution improved
QoS as compared to state-of-the-art work.

Index Terms—Cache, Storage, ARC, Multi-tier, QoS

I. INTRODUCTION

The demand for high-performance caching in applications
like video streaming has resulted in an urging need for high-
speed memory. However, as Internet data traffic continues
to grow, these applications require larger, costly caches. On
the other hand, the new breakthrough in storage and memory
systems (e.g. Intel Optane) makes it possible to enlarge caches
in cost-effective and energy-efficient ways [1]–[3].

Additionally, users express different levels of service ex-
pectations from their suppliers [4]. This is a well established
practice in the Cloud with the concept of Service Level
Agreement (SLA). Most state-of-the-art caching techniques
are performance-driven and agnostic to variable QoS needs.
Most previous studies focused on differentiating data based
on factors such as popularity (LFU), recency (LRU), without
considering QoS requirements per user or per application [5].

One of the most popular algorithms on caching policies is
Adaptive Replacement Cache (ARC) [6]. ARC maintains two
LRU lists: a recency list and a frequency list. The former
contains objects that were requested only once, whereas the
latter contains objects that were requested at least twice. ARC
dynamically adapts the size of each list according to workload
change. Even if several weaknesses of ARC have been pin-
pointed in state-of-the-art work [7], [8], it is still considered

as a reference strategy that several recent propositions try to
enhance. However, ARC does not take into consideration QoS.

Several state-of-the-art studies explored optimizations for
ARC [9], [10]. However, it was focused on a single-tier
configuration that did not take into consideration the QoS.
Some interesting studies proposed novel so-called multi-tier
caching strategies [11], [12]. However, those did not necessar-
ily consider heterogeneous storage devices. In addition, they
did not consider application QoS. Finally, caching studies that
tried to handle QoS, did not consider multi-tier caches, and
most of them did not evaluate the ability to satisfy QoS while
their QoS model lacks flexibility [4], [13].

In this paper, we propose QM-ARC, a QoS-aware, Multi-
tier ARC policy that upgrades ARC regarding two aspects:

i. QoS-based cache: QM-ARC borrows the concept of SLA
and penalty-based resource management from the Cloud to
help maintain data in the cache according to priority levels.

ii. Multi-tier caches: QM-ARC adapts to several different
cache tiers through size adjustments and index selection for
the insertions and promotions.

QM-ARC has been evaluated against some reference strate-
gies and regarding several metrics related to cost, hit rate in
different tiers and for different levels of priority, and it showed
promising results, a decrease of 23% for penalty and increase
of 40% in cache hit rate for high priority data.

II. BACKGROUND ON ARC

ARC [6] manages two LRU lists, see Figure 1 (gray part
only) a recency list T1 and a frequency list T2. The Most
Recently Used (MRU) objects that were accessed only once
are kept in the recency list T1, while objects that were accessed
multiple times are stored in the frequency list T2. With a cache
size of c, ARC dynamically adjusts the number of pages allo-
cated to each list by updating the size p of the list T1. It does so
by tracking the usage patterns of data using two LRU shadow
lists: B1 and B2, which contain references to data evicted from
T1 and T2, respectively. Virtually, T1+T2+B1+B2 = 2c. As
B1 and B2 are shadow lists, they contain only data references.
The algorithm dictates four cases:

Case 1: If a cache hit occurs in T1 or in T2, data are
promoted to the MRU position in T2.



Case 2: If a cache hit occurs in B1, it means that the data
was recently evicted from the cache but is still considered
valuable. To prevent evicting the data, the ARC algorithm
promotes it to T2, effectively extending its ”lifespan” in
the cache. Simultaneously, the size p of T1 is increased by
max{1, |B2|/|B1|} to capture and retain these valuable data.

Case 3: If a cache hit occurs in B2, it means that the data
was recently evicted from the cache but is still considered
valuable. To prevent evicting the data, the ARC algorithm
promotes it to T2, effectively extending its ”lifespan” in
the cache. Simultaneously, the size of T2 is increased by
max{1, |B1|/|B2|} to capture and retain these valuable data.

Case 4: If a miss occurs in all lists, data are placed in T1.
When T1 is full (T1 = p) data are evicted in LRU fashion

and their reference moved to the B1 list to make room for new
data. When T2 becomes full (T2 = c− p), data are evicted in
LRU fashion and their reference added to B2. If B1 or B2 are
full, references are evicted and no longer tracked by ARC.

Fig. 1: ARC and QM-ARC global view

III. QM-ARC: QOS-AWARE MULTI-TIER ARC

A. Considering multi-tier

Our approach consists in applying ARC on a multi-tier
cache. Each of the global lists T1 and T2 is sliced into a
set of per-tier local lists, as illustrated in Figure 1. Each tier
maintains its own local T1 and T2 lists, both organized in LRU
fashion. The most efficient tier holds the MRU data.

The global list T1 goes through continuous size p adjust-
ments, and these adjustments are reflected proportionally in
the tiers. This means that the size pi of each local list Ti

varies across tiers, but remains proportional to the size of the
other lists in the different levels.

To achieve this proportional update, we introduce the term
βi, which represents the ratio of the size of the tier i to the
size of the first (top) tier. Let pi denote the size of the local
list T1 in tier i. When there is a cache hit in B1, we increment
the size of each pi by βi if the size of B1 is greater than or
equal to the size of B2. If the size of B1 is smaller than the
size of B2, we increment pi by (|B2|/|B1|) · βi. However,
all increments to pi are bound by the maximum size of tier
i. Similarly, when there is a cache hit in B2, we decrement
the size of each pi by βi if the size of B2 is greater than or

equal to the size of B1. If the size of B2 is smaller than the
size of B1, we decrement pi by (|B1|/|B2|) · βi. However,
all decrements to pi are bounded by a minimum value of 0.
Note that the ratios (|B1|/|B2|) and (|B2|/|B1|) come from
the original ARC, see Section II.

The size p of the global list T1 is updated by β, which
is the sum of all βi values. Specifically, β =

∑
βi =∑

(|tieri|/|tier1|). This ensures that the overall size adjust-
ment of T1 is distributed proportionally among the tiers based
on their relative sizes. By updating the sizes of the local
lists in this manner, QM-ARC maintains a balanced allocation
of cache resources across the tiers, adapting to the changing
dynamics of the cache workload.

Regarding the two history lists, B1 and B2, they are shared
across all tiers. However, in order to enhance the search
efficiency within these lists, they are stored in the most
efficient tier as an index towards indirect entries instead of
being stored directly in each tier.

B. Considering QoS

Regarding the QoS management, QM-ARC assumes that
data are assigned a priority level according to user categories.
QM-ARC assumes that the data are tagged with a certain
priority, and that a penalty function is associated with the
data priorities. The penalty represents a cost to be paid by
the service provider in case of late delivery of data. It can be
a simple or complex function that fixes a penalty according to
a given QoS metric. The penalty function used by QM-ARC
assigns penalties based on the priority level of the data and
the time it takes to retrieve them. Higher-priority data have
higher penalties than low priority data when they undergo the
same latency. We used the penalty concept from the Cloud
and calculate it as in [14], [15] as follows (note that other
functions could be used):

Penalty =
∑
k∈m

Pk

Pk(l) = γk ×


0 if 0 ≤ l < lSLAsoft

P0soft if lSLAsoft
≤ l < lSLAhard

P0hard if l ≥ lSLAhard

(1)

Pk represents the penalty function for the class of priority
k, which is proportional by γk ∈]0, 1] to the penalty of the
highest priority 0, i.e., γk = P0

hard
/Pk

hard
. The higher the

priority, the higher the γ, with γk < γk−1 and γ0 = 1
represents the highest priority. The variable m is the total
number of priority levels. l represents the latency it took
to retrieve the data. lSLA is the latency requested from the
SLA per application/customer. As from Equation.1, when l is
smaller than lSLAsoft

, no penalty is applied. When l is between
lSLAsoft

and lSLAhard
, a medium penalty γk ·P0

soft
is applied

and when lSLAhard
is exceeded, a higher penalty γk ·P0

hard
is

applied. γ values are fixed by the service provider according
to the desired QoS.

In the traditional ARC, when inserted, data are always
placed in the MRU position in T1, and when accessed again,



data are promoted to the MRU position in T2. In the context
of QM-ARC, data are treated based on their priority. The data
that are labeled high priority follow the same pattern as in
ARC. However, if the data are labeled with a lower priority,
it is inserted/promoted to a position relative to its priority,
between the MRU and LRU positions of T1 and/or T2. We
use γk as a coefficient to find the right position according to
the current one if the data are already in the list or according
to the beginning of the list. A higher value of γk leads to
the promotion of data priority k closer to the MRU position.
This value equals 1 for highest priority data (promoted to the
MRU position). To fall back to traditional ARC, we can fix all
values of γk to 1, all data get promoted to the MRU position.

This change in the promotion function makes sure that the
cache does not get saturated with low-priority data, while still
giving them the opportunity to remain in the cache and get
promoted if frequently accessed.

IV. EVALUATION

A. Methodology
Several metrics were evaluated for a given set of strategies

on synthetic and real workloads.
1) Tested metrics and strategies: Three metrics were eval-

uated for a set of six strategies: i) the penalty cost generated
by cache misses per priority level, ii) the global hit ratio per
tier, iii) the average hit rate for each priority level per tier. The
six strategies tested are : LRU, LFU, Random, Priority-LRU
[16], M-ARC and QM-ARC.

We used the very popular LRU and LFU strategies. To
compare to state-of-the-art work, we have adapted Priority-
LRU [16], the more recent work related to ours, that uses two
LRU lists, one per priority level. M-ARC consists of removing
the QoS management from QM-ARC, that is managing multi-
tier without considering the QoS. Evaluating QM-ARC with
M-ARC makes it possible to determine the relevance of
considering QoS and the penalty function.

Table I shows the penalty function for each priority level,
high P0 and low P1 [14]. γ1 was set to 0.2.

TABLE I: Penalty Function

Delay (ms) P0 · 10−8$ P1 · 10−8$
< 20 0 0
< 150 50 10
>= 150 75 15

We varied the cache proportion according to the dataset size
to study the efficiency of the approach.

In the experiments performed, we have focused on two-
level priority data for simplicity and on a two-tier storage
architecture. The first tier is supposed to be a DRAM memory
and the second on a high performance SSD (such as the
Optane). The cache size is a proportion (%) of the workload
size. The size of the DRAM is a fifth of the size of the SSD.

2) Traces: We used both synthetic and real traces that have
been widely used to evaluate caching strategies.

Zipf-Like: We use a synthetic trace that follows the Zipf
distribution, where the probability of referencing the data i is

proportional to 1/iα. Zipf approximates many common access
patterns based on the value of α, like 0.8, corresponding to
User Generated Contents (UGC) like YouTube. We created a
trace using α = 0.8.

IBM: We used the object-store released trace by IBM
Research on the SNIA IOTTA repository1, specifically, the
IBMObjectStoreTrace000part0.

Jedi: We generated traces through Jedi2, a synthetic trace
generator that mimics the original traces of Akamai’s produc-
tion CDNs. We chose the class video for our trace.

In all traces, the number of objects is 10 000, the percentage
of high-priority content is 20% and the rate of incoming re-
quests is 200 requests per second. Note that cache distribution
over several nodes is out of the scope of this paper, as such,
only one node was considered.

B. Results and Discussion

Penalty: Figure 2 show the penalty of the six strategies.
Overall, QM-ARC reduces the penalty the most compared
to other strategies, especially for the IBM trace, up to 83%
compared to Priority LRU. In addition, QM-ARC scales well
with the growth of the cache proportion, as it enhances penalty
in a better way as compared to the other strategies. With
the synthetic trace, it decreased by 80%, from 0.5% to 10%
proportion of cache, compared to the others.

When analyzing the Jedi trace, we observe that the results
of the six strategies are quite similar. However, there is a
slight difference between Priority LRU and QM-ARC, with
Priority LRU performing 2% better. This divergence can be
attributed to the nature of the Jedi traces, which have a longer
tail compared to the IBM and synthetic traces. This means
that there are more frequently accessed data items. Since 20%
of the data have a high priority level, the low priority items
tend to remain longer in the cache because they are accessed
more frequently. This phenomenon contributes to the slightly
better performance of Priority LRU compared to QM-ARC,
as the former bounds the position of low priority data while
QM-ARC allows them to compete with high-priority ones.

Cache hit Ratio: Figure 3 shows the global cache hit ratio,
the high priority data hit ratio and the low priority data hit ratio
with the synthetic workload. Overall, we notice that the higher
the cache proportion, the higher the hit rate for all strategies,
which is a predictable behavior.

For the global hit ratio, M-ARC and QM-ARC gave the best
results, an increase of 48% compared with LRU and Priority-
LRU. QM-ARC improves the hit rate for the high priority data
by 67% compared to Priority LRU and M-ARC and LFU, and
by 181% compared to LRU and Random. We notice that for
the hit rate of low priority data, M-ARC dethroned QM-ARC,
because QM-ARC privileges the high priority data in spite of
the low priority ones, which proves the efficiency of the QoS
management strategy.

Another interesting result is that QM-ARC takes, the most,
advantage of the fastest tier for high priority data. The hit rate

1http://iotta.snia.org/
2https://github.com/UMass-LIDS/Jedi



(a) Synthetic trace (b) IBM Trace (c) Jedi trace

Fig. 2: Penalty cost

(a) Global cache hit ratio (b) High priority cache hit ratio (c) Low priority cache hit ratio

Fig. 3: Synthetic trace

for low priority data in SSD with Priority LRU is zero because
the low priority data never access the DRAM tier as they are
only promoted in the SSD.

1) Solution Overhead: ARC policy has a constant-time
complexity per request. QM-ARC introduces an additional
overhead due to the calculation of two extra parameters. First,
a penalty function is used to assess the priority of the data and
their position of insertion. Second, the tier sizes are taken into
account when changing the size p of the list T1. The inclusion
of these additional factors introduces some negligible overhead
in terms of computational complexity and memory usage. The
memory usage is negligible, but the computational complexity
of the index of insertion is O(n) with n being the number of
tiers (which is small enough and gives negligible overhead).

V. CONCLUSION

In this paper, we designed a generic policy for a multi-tier
caching architecture that considers QoS. Our policy is based
on ARC, one of the most efficient and popular cache archi-
tectures. Our strategy uses the cache tiers in a proportional
way to strike a balance between recency and frequency, as
in the original ARC. It also borrows the concept of QoS and
SLA from the Cloud to implement a cost-benefit strategy in
regard to data management for different priority levels. The
proposed strategy demonstrated that it can efficiently consider
QoS by reducing the penalty compared to other state-of-the-art
work. A service provider can fine-tune the penalty function to
prioritize certain applications or users. Further work will be
achieved by incorporating Reinforcement Learning to consider
a deeper history than only immediate past accesses. Another
direction we are studying is about distributing multi-tier caches
on distant nodes for large systems. In this context, one needs
to study how we can make several multi-tier caches work in
a collaborative way.
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