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Hafsa Kara Achira∗†, Camélia Slimani ∗, Jalil Boukhobza∗
∗ENSTA Bretagne, Lab-STICC, CNRS, UMR 6285, F-29200 Brest. France
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Abstract—With the surge in data production, Machine Learn-
ing techniques are now commonly used to build intelligent
models. Traditionally, powerful platforms process data collected
from endpoint devices. However, to address security threats
and minimize communication traffic, models can be learned
near endpoint devices, despite their resource shortage. K-means
clustering is among the most common machine learning tasks
used for embedded applications. Because the system is running
on scarce resources, the learning process needs to obey a certain
time limit. Even if current implementations of K-means have been
optimized for embedded devices, they do not consider running
within a predefined time budget. In this paper, we propose a
deadline-aware and energy-efficient version of K-means called
Embedded K-means (EK-means) 1, that relies on two main ideas
: (1) smartly select the right subset of data to train on to meet the
deadline at the expense of the smallest clustering error possible
; (2) by dropping part of the data, slack times are identified
and exploited opportunistically to apply Dynamic Voltage and
Frequency Scaling techniques (DVFS) so as to decrease the energy
consumption of the learning task. EK-means has been built on top
of an I/O optimized version of K-means for embedded devices to
maintain a low I/O proportion regardless of memory constraints.
EK-means allows to cluster data while meeting more than 98%
of the deadlines with a loss of 1.43% of clustering quality, and
an energy reduction of up to 84.26%.

Index Terms—K-means, Edge Intelligence, DVFS, Real-Time
constraint, I/Os, secondary storage.

I. INTRODUCTION

Internet of Things (IoT) Technology has resulted in the rapid
growth of data that need to be processed to extract meaningful
knowledge. For this reason, machine learning (ML) techniques
are now widely used. Traditionally, data were sent to and
processed on powerful platforms to address ML technique
calculation and memory requirements. However, moving data
to remote platforms exposes them to security vulnerabilities
and increases the traffic and energy consumption of the net-
work on the collection devices [15]. Edge Intelligence, is then,
emerging to enable learning near data collection devices. [15].

Edge intelligence presents several challenges due to re-
source constraints of embedded devices. Memory limitations
are particularly troublesome when the volume of training
data cannot fully reside in memory, leading to swapping
on secondary storage [3], [28]–[31]. Meanwhile, the energy
limitations inherent in these devices emphasize the need for
applications that are both fast and energy efficient [23].

1The source code is available on https://github.com/HafsaKaraAchira/EK-
means-Embedded-K-means-.git

One of the most popular clustering ML algorithms used
in IoT is K-means [2] [24]. It aims to partition similar data
together by assigning them to clusters represented by their
mean value which is helpful for applications like anomaly
detection [22] and image segmentation [8]. Considering the
execution deadline in K-means learning phase is important in
various application scenarios. In real-time data analysis [4]
and interactive systems [6], meeting the execution deadline is
crucial for immediate responses and enhanced user experience.
Furthermore, obtaining clustering models quickly is essential
when K-means is used as a preprocessing step before apply-
ing other AI models, such as image processing and pattern
recognition tasks preceding convolutional networks [8].

A notable limitation of K-means is its reliance on scanning
the entire data set during each iteration, added to the need to
execute an indeterminate number of iterations to converge to
its final solution. This becomes problematic when dealing with
large data sets that exceed available memory, leading to an
I/O-bound execution. To address this, the K-MLIO algorithm
(for K-means with Low I/O Overhead) [3] adopts a divide-
and-conquer approach. It divides the data set into chunks that
can fit in the memory workspace, performs independent K-
means clustering on each chunk, and combines the results.
This way, K-MLIO reads the data set only once, regardless of
size, memory, and data set. It reduces the I/O cost while main-
taining similar precision with the original K-means [3]. While
previous studies investigated how to optimize the K-means
inference and training process, to the best of our knowledge,
no study focused on training a model in a predefined amount
of time on resource-constrained devices on the edge.

In this paper, we designed a version of the K-means that
runs within a time budget and that can opportunistically reduce
energy consumption with as slight as possible impact on
the quality of the clustering. Our approach is based on the
assumption that it is possible to consider only a subset of
data to meet the time constraint with only a minor increase in
clustering error. Inspired from the work done on K-MLIO, we
considered the per-chunk version of the K-means to propose
a method that incorporates two main strategies: (1) executing
an online estimation of the learning process execution time on
each chunk in order to estimate the volume of data to drop to
meet the deadline and (2) adjusting the processor’s frequency
by opportunistically reclaiming slack times to reduce the
frequency after processing each chunk.



The remainder of the paper is structured as follows. In
section II, we provide some background about K-MLIO and
energy basic concepts. Section III motivates the study. Section
IV describes the proposed solution. Section V presents some
experiments. Section VI discusses some threats to the validity
of the study. Section VII highlights some related work and
Section VIII concludes the paper and gives some perspectives.

II. BACKGROUND

As our contribution reuses the concept of divide-and-
conquer employed by K-MLIO to optimize the K-means from
an I/O perspective, in this section we give a brief description of
the strategy. In addition, we give some background information
about Dynamic Voltage and Frequency Scaling (DVFS) as it
was used for energy efficiency sake. Table I summarizes the
notations used in the rest of this paper.

TABLE I
NOTATION TABLE

Notation Description
K Number of clusters
N Data set size
M Chunk size
s Data set element size
i Chunk index
it Number of iterations to converge

itmax Maximum number of iterations
Tload One chunk loading time
Tinit K-means initialization time
Tit K-means one iteration time

Tchunki
Chunk i processing time

Talloc Time allocated for one chunk
WCET Worst-Case Execution Time
Cmax Worst-Case Execution processor cycles

skip chunk Number of chunks to drop
f CPU frequency

A. K-MLIO overview [3]

The main idea behind K-MLIO is to employ a divide-and-
conquer approach. It divides the data set into subsets of M
elements that can fit into main memory (called chunks), and
applies K-means on each of them. The obtained results are
combined by grouping similar obtained clusters and forming
a final chunk that is representative of the data set. K-means is
applied to this representitive chunk to derive the final model.

K-MLIO steps are shown in Fig. 1 and are the following :
(1) Chunk Partial Clustering Step: Each chunk is loaded

into memory and undergoes K-means clustering, resulting in
K centroids for each chunk. (Figure 1, steps 1 and 2).

(2) Grouping Clusters Step: Similar clusters are grouped
together. This aggregation provides valuable information about
the distribution of elements that are likely to belong to the
same cluster across different chunks. Each partial centroid is
associated with a group (Fig. 1, step 3).

(3) Forming the Final Chunk Step: A representative
sample chunk of a size that matches the memory workspace,
is created by selecting elements based on the overall group
composition (Fig. 2, step 4).

(4) Final Chunk Clustering: The K-means algorithm is
applied to the final chunk, resulting in the final clustering
solution for the entire data set (Figure 1, step 5).
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Fig. 1. K-MLIO overview

B. Energy basic concepts

Energy consumption refers to the amount of power used
during a specific time interval. It can be calculated by inte-
grating the power over time using eq. (1):

E =

∫ T

0

P (t) dt (1)

Power, on the other hand, represents the rate at which energy
is consumed. Power can be classified into static power, also
known as leakage power, which refers to power consumption
when there is no circuit activity, and dynamic power, which
is the power dissipated by the circuit during the charging and
discharging of capacitors.

P = Pstatic + Pdyn (2)
Dynamic power can be expressed as:

Pdyn = Ceff · V 2 · f (3)
Where Ceff is the circuit effective capacitance, V is the

supplied voltage and f the clock frequency.
For CPU-bound instructions, the execution time Ton spent

by the processor represents the time required to perform
instructions CPU cycles C with a frequency f :

Ton = C/f (4)
This model is simple as it does not account for cache

hierarchy, but it is commonly used for simple analysis.
DVFS is a power management technique used to adjust

the operating voltage and frequency of the processor dynami-
cally [13]. DVFS adjusts voltage levels using fixed discrete
voltage steps, corresponding to specific frequency values.
These pairs of voltage and frequency are referred to as P-
states. The processor frequency is considered proportional to
the voltage [16]. The dynamic energy is then :

Edyn = K · f3 · t (5)
With K being a constant parameter. Scaling down the

frequency reduces power consumption but increases execution
time while boosting the frequency enhances performance but
increases power dissipation.



Fig. 2. K-MLIO chunk execution time per memory constraint

Fig. 3. K-MLIO EDP metric analysis

Several metrics are used to assess the energy efficiency of an
algorithm design. One of the most commonly used is the EDP
(Energy-Delay Product) metric that takes into account both
energy consumption and processing delay, aiming to find the
optimal frequency that lowers EDP (fopt) value to indicate a
more efficient design [13]. It can be further adapted to platform
constraints or specific needs, such as the EDPC(freqopt)
(Energy-Delay Product with delay constraint C) metric [13],
which selects the most energy-efficient operating point that
still completes the process within a given time constraint C.

III. MOTIVATION

To motivate our study, we performed an experimental anal-
ysis of K-MLIO to outline two phenomena: 1) one cannot
simply reduce the data set to bound the training time, 2) DVFS
can actually help reduce the consumed energy.

First, we measured the average execution time of K-MLIO
under different memory constraints (N/M ), which stands for
the data set volume as compared to the available memory
work-space, applied on a synthetic data set (see Section V-A
for experimental setup). To observe the effect of data volume
on the convergence speed, we ran K-MLIO with decreasing
volumes of data. In the experiment, we used the following
proportions of data as compared to the overall data-set size: 1,
1/2, 1/4, 1/5, 1/7, 1/10. We repeated the measures 10 times to
average execution time values. The results are given in Fig. 2.

Second, we measured K-MLIO execution time and energy
consumption using PyJoules API [21] with different memory
constraints and frequencies. The results are shown in Fig. 3

From the two experiments, we can draw two observations
: 1) The execution time is not simply correlated to the data

set size (see boxplot on Fig. 2), and it does not necessarily
decrease with the reduction of data to process. In fact, it is
due to the versatile character of centers’ initialization quality
of K-means which impacts the number of iterations necessary
for partial clustering steps to converge. This unpredictability
can hinder meeting deadlines for a strategy solely based on the
data set size. 2) For different memory constraint executions,
minimal EDP metric measurements were obtained with execu-
tion frequencies between 1.8Ghz and 2Ghz that are inferior to
the maximum frequency 2.6Ghz which is systematically used
with K-MLIO. Thus, frequency can be leveraged to achieve a
favorable energy-delay trade-off (see Fig. 3).

IV. EMBEDDED K-MEANS (EK-MEANS)

In this section, we describe EK-means. We start by formu-
lating the energy and execution time of K-MLIO to highlight
the levers on which we can act. Then, we give an overview
of the proposed method before describing it in more details.

A. Preamble: K-MLIO energy and delay analysis

The overall K-MLIO execution time can be expressed as :

TK−MLIO =

⌈N/M⌉+1∑
i=1

(Tchunki
) (6)

It can be broken down into the sum of chunks processing
times. The latter can, in turn, be split into the sum of chunk
loading time (Tload), the initialization time of the K-means
(Tinit), and the iteration time of the K-means, where Tit stands
for one iteration time of the K-means and iti the number of
iterations required for convergence for this chunk. iti is bound
by the user-defined maximum number of iterations that K-
means can perform, itmax (iti ≤ itmax).

Tchunki = Tload + Tinit + Tit · iti (7)
For the final chunk processing (Tchunk⌈N/M⌉+1

), in addition
to chunk processing time, all chunks are read once again to
sample points.
Tchunk⌈N/M⌉+1

= Tload ·⌈N/M⌉+Tinit+Tit ·it⌈N/M⌉+1 (8)
So, the worst-case execution time WCET for a given chunk

is reached when the number of iterations before convergence
reaches its maximum itmax.

WCETchunki
= Tload + Tinit + Tit · itmax (9)

The WCET of K-MLIO happens when the maximum num-
ber of iterations is reached for each chunk. It can be expressed
from equations (6) to (9), as:

WCETK−MLIO = ⌈N/M⌉ ·WCETchunk1
+

WCETchunk⌈N/M⌉+1

(10)

WCETK−MLIO = 2 · Tload · ⌈N/M⌉+
(⌈N/M⌉+ 1)(Tinit + Tit · itmax)

(11)

Eq. (11) shows that two levers can exploited to reduce the
execution time or the energy consumption of K-MLIO : (1)
Reduce the time by reducing the number of chunks ⌈N/M⌉: if
the number of chunks is decreased, the overall execution time
decreases at the expense of clustering error. (2) Reduce energy
by reducing the frequency when processing a chunk: frequency
modulation allows one to control the execution time of an
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Fig. 4. EK-means overview

iteration Tit. Lowering the frequency decreases the energy
consumption at the expense of a larger execution time.

Our contribution is based on these two principles. It ensures
deadline satisfaction first and tries, whenever possible, to
reduce the frequency to decrease energy consumption.

B. EK-means Overview

In this section, we present an overview of EK-means (see
Fig. 4). Our approach relies on these two principles :

(1) Dropping a certain number of chunks to meet the
deadline : it consists in estimating the necessary time to
process one chunk, which allows to estimate the WCET (see
Eq. 10) necessary to complete K-MLIO at the maximum
frequency. The number of chunks to drop to meet the deadline
is, then, deduced (see (1) and (2) in Fig. 4).

(2) Opportunistic adjustment of the processor fre-
quency: If the number of iterations effectively performed dur-
ing a chunk processing is less than itmax,the chunk processing
is expected to complete before the predicted time limit. This
slack time is exploited to reduce the frequency to an optimal
frequency fopt, thus reducing energy consumption. Otherwise,
the execution continues at the maximum frequency fmax to
ensure that the deadline is met. (see (3) and (4) of Fig. 4). Note
that the final chunk is excluded from the chunks candidate to
be dropped since it plays a key role in calculating the final
results of K-MLIO (see Fig. 4).

C. EK-means Description

In what follows, we describe each EK-means step.
(1) Chunk delay online analysis (step 1 in Fig. 4): we

start by measuring the first chunk execution time with the

maximum frequency, say Tchunk1(fmax). This step allows us
to deduce two information:
1− The time spent by the processor waiting for chunk to be

loaded Tload. As stated in Section II, this time is assumed to
be independent from the processor frequency as it represents
the needed I/O to load the data chunk ;
2− The number of CPU cycles performed during one

iteration C: the rest of the time spent on the first chunk,
say Ton, after removing Tload (see eq. 7), is related to the
initialization Tinit and processing for each iteration Tit:

Ton = Tinit + Tit · iti (12)

By measuring Tload, Tinit of the first chunk and the number
of iterations effectively performed, and according to eq. (4)
we can deduce the number of cycles required for one iteration
of chunk processing.

(2) Estimation of the number of chunks to drop (step
2 in Fig. 4): we use the information inferred from step 1 to
estimate the WCET of the remaining chunks WCETchunki

according to eq. (9). We aim to meet a deadline Tdeadline :
TK−MLIO ≤ Tdeadline (13)

Combined with eq. (10), to guarantee that EK-means execu-
tion will meet the deadline, we must find the minimum number
of partial chunks to drop, noted skip chunk, it should satisfy:

(⌈N/M⌉ − skip chunk) ·WCETchunki
+

WCETchunk⌈N/M⌉+1
≤ Tdeadline

(14)

Where 0 ≤ skip chunk ≤ N
M − 1.

WCETchunk⌈N/M⌉+1
stands for the final chunk’s WCET

We deduce that :

skip chunk ≥ ⌈N/M⌉ −
Tdeadline −WCETchunk⌈N/M⌉+1

WCETchunki

(15)

To minimize the clustering quality degradation, we set
skip chunk to the ceiling value that satisfies eq. (15).

(3) Applying DVFS (steps 3 and 4 in Fig. 4): Once the
number of chunks to skip to meet the deadline is known,
we opportunistically adjust the processor frequency to reduce
energy consumption. To do so, for each chunk, we estimate the
time allocated for processing it Talloci . This time is calculated
by subtracting from the deadline the measured processing time
of the already processed chunks and the WCET of the last one
(for which we allocate the maximum time) and dividing the
whole by the number of remaining chunks to consider :

Talloci =

Tdeadline −
i−1∑
j=1

Tchunkj
−WCETchunk⌈N/M⌉+1

⌈N/M⌉ − skip chunk − i− 2
(16)

The idea is to take advantage of the time freed up from
previous chunks that converge before reaching the number of
iterations itmax and reuse the slack time to reduce frequency.
The slack time resulting from one chunk processing is noted:

slacki = WCETchunki − Tchunki (17)



Essentially, if the evaluation of Talloc shows that it is higher
than WCETchunki , it indicates the existence of an optimal
frequency fopt. This frequency allows for reducing energy
consumption while still remaining within the allocated time
Talloc. In the following, we describe the development that
allows us to find this frequency.

Using eq. (12) in eq. (9), we get:

WCETchunki = Tload + Ton (18)

Using eq. (4), we make the frequency appear in WCETchunki

expression as follows :

WCETchunki
= Tload +

Cmax

f
(19)

Where Cmax is the number of CPU cycles for the WCET.
Therefore, finding the optimal frequency fopt that reduces
energy consumption while chunk execution time does not
exceed Talloc is equivalent to solving this inequality :

Tload +
Cmax

f
≤ Talloc (20)

Which is :
f ≥ Cmax

Talloc − Tload
(21)

The optimal frequency is, then, the operational frequency
available on the processor that is immediately greater to the
f lower bound, expressed as follows :

fopt = sup
fi∈{fmin,...,fmax}

Cmax

Talloc − Tload
(22)

This calculation is repeated before each chunk processing
since Talloc has to be re-evaluated. In fact, if the number
of iterations performed for a chunk is lower than itmax, the
remaining time before reaching the deadline increases, which
allows to better adjust frequency for the remaining chunks.
(4) Final chunk processing (step 5 in Fig. 4): The last step
of EK-means consists in constituting and processing the final
chunk as in K-MLIO. The optimal frequency is identified and
applied using the same process as for the other chunks.

D. Illustrative Example

In this section, we illustrate each step of EK-means through
the example shown in Figure 5. Here, we consider a memory
constraint N

M = 10 (that is the data set contains 10 chunks)
performed by a processor having 12 operating points freq0 ≥
freq1 ≥ . . . ≥ freq11. The execution time is limited by the
deadline barrier shown in the figure.

The clustering begins with the execution of the first
chunk with maximum frequency freq = freq0 assuming
skip chunk = 0 (Figure 5 (a) step 1). In this first step,
the estimation of the number of chunks to drop to meet
the deadline is run. We find that we can only process 3
more chunks plus the final chunk, so skip chunk = 6.
Then, the frequency is adjusted for the remaining chunks to
freqopt = freq5 (Figure 5 (a) step 2).

After processing the second chunk which spent all its
WCET2(freq5), applying DVFS will result in the same
optimal frequency value freqopt = freq5 (5 (b) step 3).

The 3rd chunk converges within less than itmax. So, a
slack time appears as an opportunity to decrease the optimal
frequency when applying DVFS before the 4th chunk to
freqopt = freq7 (Figure 5 (c) step 4).

The 4th chunk processing is also completed before reaching
WCET4(freq7). The partial clustering phase is complete by
executing only 4 chunks out of 10. The slack time of the
4th chunk is exploited to decrease the frequency for the final
chunk processing to freqopt = freq10 (Figure 5 (d) step 5).

V. EVALUATION

This section presents an evaluation of EK-means. We first
describe our methodology, then show and discuss the results.

A. Experimental methodology

1) Evaluation Metrics: For the clustering quality, we used
the ARI (Adjusted Rand Index) metric [25], which measures
the agreement between the clustering results and the true
labels of the data points. A value close to 1 indicates a high
agreement between the clustering and the true labels, while a
value close to 0 suggests random assignments. The objective
of EK-means is to provide the best clustering possible as
compared to K-means, while meeting the time deadline.

For energy efficiency, we relied on the frequencies used to
infer an estimation based on an analytic model.

2) Experiments : A series of experiments were conducted
to assess the effectiveness of EK-means.

Experiment 1, clustering quality and deadline meeting:
to estimate the clustering quality of EK-means, we calculated
the ARI reduction it incurs as compared to K-MLIO on several
execution scenarios. We set the memory constraint ⌈N/M⌉
to 10 (that is the data set is 10x larger than the memory
workspace). The deadlines utilized for each test case are
relative to their respective K-MLIO worst-case execution time
WCETK−MLIO (which is higher than the actual execution
time of K-MLIO as it hardly uses the maximum iterations
for each chunk). The used deadline proportions relative to
WCETK−MLIO are as follows: {2/7, 3/7, 4/7, 5/6, 6/7, 1}.
In order to better observe the impact of skipping chunks on
the final clustering quality, we used 3 data sets with different
degrees of overlap described hereunder. All measurements
were ran 5 times, and the obtained results were averaged. We
also measured the execution time of EK-means to compare
them to the imposed deadlines, to assess deadlines satisfaction.

Experiment 2, energy consumption : for this experiment,
we estimated the energy consumption reduction performed
by EK-means as compared to K-MLIO. The deadlines im-
posed represent the following proportions to the WCET
: {2/7, 3/7, 4/7, 5/7, 6/7, 1}. These proportions (especially
those that are close to 1) might give deadlines that are actually
higher than K-MLIO effective execution time, since WCET is
calculated with the assumption that all the chunks run the
maximum number of iterations. We knowingly allowed it to
occur to observe the frequency modulation behavior of EK-
means when not timely constrained.
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3) Experimental data sets: We performed experiments on
synthetic data sets generated using the ClusterGeneration
package [26] of the R platform. This package allows the gen-
eration of a data set of N elements that belong to K clusters in
a given dimension. We set the number of dimensions to 10 and
the number of clusters to 10. We used data sets of size 256MB,
and applied a memory constraint of ⌈N/M⌉ = 10, by setting
the work-space size to 75MB to contain both a chunk of data
(the size of the M observation is 25.6MB) and the intermediate
data structures necessary to K-MLIO execution.The cluster
separation index (sepVal) is a parameter that allows to tune
the degree of overlap between data. It is between -1 and 1:
The closer to 1, the more separated are the clusters. We set
the index to 0.2 for separated clusters, 0.0 for mildly separated
clusters, and -0.2 for overlapping clusters.

4) Hardware platform : We used an ODROID XU4
board [27] equipped with a a Samsung Exynos5422 Cortex™-
A15 and a Cortex™-A7 Octa core. The main memory is a 2GB
LPDDR3. We used a 1 GB partition on an SD card as a swap
area. It ran the Ubuntu 22.04 LTS (Jammy Jellyfish).

B. Results and Discussion

Hereafter, we discuss the results of our experiments.
1) Experiment 1, clustering quality and deadline meeting:

Fig. 6 shows the ARI values obtained by EK-means and K-
MLIO. We observe that the EK-means ARIs are 1.43% lower
than K-MLIO ARIs, which indicates that skipping chunks does
not considerably affect clustering quality. One could expect to
have a higher error with strict deadlines but our experiments
did not highlight such a behavior. This is due to two factors:
1) the random nature of the initialization process that makes it
hard to compare executions. 2) Our frequency scaling process
participates in smoothing executions by increasing frequency
in case of strict deadlines (see next experiment), which reduces
the overall error for those cases.

The second observation that can be drawn is that the ARIs
obtained for overlapping clusters (sep = −0.2) are low as
compared to mildly and well-separated ones. However, EK-
means remains comparable to K-MLIO and the low obtained
ARIs are inherent to K-means clustering quality that degrades
when clusters are overlapped as discussed in [3].

Table II gives EK-means execution times with respect to
the imposed deadlines. The second column gives the deadline
while the third gives the minimum and maximum time (from
the 5 runs) with the given deadline. The last column highlights
the deadline satisfaction percentage. We observe that in all but
one case (that is 1 case from 90 experiments, around 1%), the
deadlines were met (more than 98% of cases). We observe that
we miss the deadline when sep = −0.2 and T deadine =
750s. This is due to K-MLIO calculations that we considered
negligible but reveal to be, in some rare cases, considerable
when each chunk reaches the WCET.

The variation in the time executions that we notice (differ-
ence between minimum and maximum) is mainly due to the
initialization process that induces a high variability. Despite
this variation, EK-means satisfied most of the deadlines thanks
to its conservative estimations.

2) Experiment 2, energy consumption: In Table III, we
show the times spent by EK-means on each of the platform
operational frequencies with respect to the imposed deadline.
K-MLIO for its part uses the default platform frequency, which
is the maximum frequency 2GHz. As stated in the experi-
ment description, we allowed for the deadlines to be higher
than K-MLIO execution time to observe EK-means frequency
modulation when not timely constrained. From Table III, we
observe that this occurs when Tdeadline ≥ 4/7 · WCET .
We observe that the higher the deadline, the more EK-means
uses low frequencies. For example, when the deadline is equal
to K-MLIO WCET, EK-means spends 41.89% of its overall
time on a frequency of 400MHz which is relatively low given
the available frequencies, and only 7.8% of its time on the



Fig. 6. EK-means and K-MLIO precision by deadline comparison

TABLE II
EK-MEANS EXECUTION TIME FOR DIFFERENT DEADLINES

Sep Tdeadline EK-means interval (s) Tdeadline satisfaction (%)

-0.2

300 95.82 - 250.6 100
450 294.7 - 406.01 100
600 424.38 - 514.37 100
750 572.38 - 766.69 80
900 744.19 - 899.37 100
1050 822.63 - 957.52 100

0.0

300 55.08 - 134.99 100
450 191.94 - 229.15 100
600 286.99 - 337.86 100
750 370.98 - 436.43 100
900 482.21 - 591.01 100
1050 578.3 - 660.63 100

0.2

300 56.67 - 248.73 100
450 192.73 - 324.65 100
600 247.41 - 561.85 100
750 358.34 - 529.82 100
900 404.72 - 821.24 100
1050 558.44 - 812.79 100

TABLE III
EXECUTION TIME PER FREQUENCY FOR DIFFERENT DEADLINES

fi
Tdeadline K-MLIO2/7 3/7 4/7 5/7 6/7 1

2.0 29.29 8.59 26.03 8.66 21.58 47.39 302.05
1.9 0 0 0 21.85 28.83 0 0
1.8 0 20.54 24.74 0 0 21.85 0
1.7 0 0 0 26.96 25.61 0 0
1.6 25.10 0 0 0 28.61 22.97 0
1.5 0 28.78 28.91 25.78 0 30.37 0
1.4 0 0 0 0 0 0 0
1.3 0 0 0 0 28.90 32.33 0
1.2 0 0 32.26 29.29 0 29 0
1.1 0 33.05 0 0 44.07 0 0
1.0 0 0 0 37.12 0 54.15 0
0.9 59.24 0 47.25 0 66.91 0 0
0.8 0 0 0 0 0 50.67 0
0.7 0 0 0 49.88 54.35 0 0
0.6 0 125.70 0 0 0 62 0
0.5 0 0 157.63 0 0 0 0
0.4 0 0 0 206.50 214.60 252.99 0
0.3 0 0 0 0 0 0 0
0.2 0 0 0 0 0 0 0
Σ 113.63 216.66 316.81 406.03 513.45 603.90 302.05

maximum frequency. This is because EK-means has enough
time to process the chunks and so it reduces the frequency
drastically. In contrast, when the deadline constraint is the
strongest (2/7 of K-MLIO WCET), EK-means spends 52.13%
of its time on a frequency of 900MHz and 25.7% of its time
on the maximum frequency to be sure not to miss the deadline.

To estimate the impact of frequency modulation, we used a
simple analytic estimation of the processor energy consump-
tion of EK-means as compared to K-MLIO. As stated on
eq. (5), the dynamic energy of the processor when executing
an application is the product of K, f3 and the execution

Fig. 7. EK-means processor energy reduction compared to K-MLIO for
different deadlines and data set complexities

time of the application t. Thus, given the data of table III,
we can infer the energy consumption reduction. The results
are given in Fig. 7. It shows that overall, EK-means reduces
energy consumption by 61.33% to 84.26%. This reduction is
higher when the deadline is strong since EK-means takes up
to 5/7 less time than K-MLIO. This energy evaluation does
not consider memory and I/Os. Indeed, their energy is also
minimized as the overall computation process is shortened.

VI. THREATS TO VALIDITY

Reliance on K-MLIO: EK-means was designed on top of
K-MLIO as the latter implements a per-chunk version of K-
means that first optimizes the I/O behavior without loss of
accuracy, and second makes it possible to run only on part
of the data. To builds on top of the original K-means, one
way would be to tune the number of iterations, but the overall
performance would be degraded.

Use of governors: their use was excluded from this work
as we needed to get full control of the time duration of the
different operations performed by EK-means. If a governor
tends to reduce the frequency of the processor while executing
EK-means, there is a risk of missing the deadline. As for now,
the frequency needs to be tuned explicitly in EK-means.

VII. RELATED WORK

In recent studies, researchers have focused on reducing
computation in real-time AI models to improve their efficiency
and responsiveness for both training and inference step. [5]
presents a stereo depth estimation with CNN on GPU that
performs depth inference in stages. Each stage corrects the
depth estimation of the previous one, allowing the model
to provide ongoing estimates when queried. [9] proposes a



fast inference framework that learns to speed up inference
at run-time by combining a flexible sampling technique with
deterministic message passing to reduce computations in gen-
eral regressors such as random forests. In [10], the authors
propose an energy-efficient optimization for Hoeffding trees’
online training based on adjusting the minimum number of
observations read from a data stream before determining the
best attribute for node splitting. This allows better control
over the computations required to achieve a desired level of
precision within confidence intervals. Another optimization
for building Hoeffding trees [14] is based on setting the
nodes’ splitting criteria depending on the fraction of instances
that a particular node has observed so far. These studies
aforementioned highlight the need for a predictible learning
process on embedded platforms. However, to the best of our
knowledge, K-means was not optimized in this direction.

Considerable research efforts have been dedicated to task
scheduling for real-time embedded systems, focusing on the
use of different DVFS-enabled techniques. Integration of
scheduling and DVFS can be achieved in two ways. The first
involves independent slack reclamation, where DVFS relies on
safe upper bound estimations of WCET to schedule tasks such
as in GRUB-PA [17]. Other approaches try to limit the task
makespan and energy at the same time, such as [18], [19],
and [20]. Our contribution cannot directly use those studies,
as it is very specific to the way K-means works. EK-means
corresponds to the first type of study as it optimizes the energy
opportunistically after ensuring that the deadlines are met.

VIII. CONCLUSION

This paper presents EK-means, a deadline-aware and energy
efficient strategy for training K-means tailored for resource-
constrained devices on the edge. EK-means runs on a subset
of data that depends on the deadline imposed. This subset
is calculated online. Whenever some slack time is available
because the algorithm converges faster than expected, the
frequency is reduced to save energy. EK-means reduce the
accuracy very slightly as compared to traditional K-means
while respecting the imposed deadline in more than 98% of
cases, in addition to saving energy. We expect to work on
another version that makes it possible to determine both a time
and energy budget for the K-means to run. Also, we expect
to study the interference with the Linux governors.
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