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Abstract 27 
 28 

The North Atlantic marine ecosystem was expected to adjust imminently to a 29 

negative phase of the Atlantic Multidecadal Oscillation (AMO). Recent results 30 

suggest however, that the AMO is not a regular internal source of variability but has 31 

been driven by both volcanism and sulphate aerosol emissions that have influenced 32 

temperature negatively and a period of greenhouse gas accumulation causing 33 

temperatures to be higher than normal. The demise of the AMO removes the 34 

expected and imminent cyclical change from the current warm phase to a negative 35 

cool phase in the North Atlantic. Here, we discuss the implications of this new finding 36 

for the near-future of North Atlantic marine ecosystems in a context of rapid climate 37 

warming.  38 

Main text 39 

For centuries, humans have tried to recognise patterns in natural systems and 40 

determine their controlling mechanisms, not least in marine ecosystems (Cheung et 41 

al. 2009, Rombouts et al. 2012, Raybaud et al. 2013, Schickele et al. 2021) where it 42 

helps to enhance predictability and especially, with regard to commercial fisheries, 43 

e.g. the European herring Bohuslän periods (Alheit & Hagen 1997) or the 44 

multidecadal fluctuations of sardines and anchovies in different oceans (Chavez et 45 

al. 2003).  46 

 47 

Until now, an inherent large-scale oceanic phenomenon called the AMO was thought 48 

to explain periodic changes observed in key physical and biological systems in the 49 

North Atlantic, with a periodicity of ~60 years (Mann et al. 1995, Kerr 2000, Enfield et 50 

al. 2001, Edwards et al. 2013). Climate change biologists have documented 51 

significant correlations between the cyclical nature of the AMO index and North 52 

Atlantic biological systems to try to understand the ecosystem and how it might 53 

evolve, even postulating that the next negative AMO phase could alleviate or 54 

momentarily reverse the current warming trend (Frajka-Williams et al. 2017). For 55 

example, in the English Channel, the Russell Cycle that describes an alternation of 56 

periods dominated by cold-water (i.e. herring, Clupea harengus, and the 57 
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chaetognath Sagitta elegans) and warm-water species (i.e. pilchard, Sardina 58 

pilchardus, and the chaetognath S. setosa) has been related to the AMO (Russell et 59 

al. 1971, Edwards et al. 2013). Sardine (and S. setosa) dominates during positive 60 

phases and herring (and S. elegans) during negative phases of the AMO. In the 61 

North Atlantic, bluefin tuna has been shown to exhibit a long-term, quasi-cyclical, 62 

north to south, seesaw-like population movement and changes in abundance driven 63 

by climatic variation that correlates with the AMO: when the AMO phase is positive 64 

or negative, bluefin tuna are distributed further north or further south, respectively 65 

(Faillettaz et al. 2019).  66 

 67 

While previous studies attributed the AMO to internal climatic processes, a recent 68 

study by Mann et al. (Mann et al. 2021) showed that positive (warm) and negative 69 

(cool) phases of the AMO have been due to external forces, such as volcanic 70 

activity, sulphate aerosol cooling, and greenhouse-gas-induced warming. The last 71 

negative AMO phase was mostly caused by the negative forcing exerted by the 72 

increasing sulphate aerosol emission, and the current warm phase by the 73 

predominant effect of increasing greenhouse gases at a time of diminishing sulphate 74 

aerosol emission (Mann et al. 2021). The AMO-like pattern has therefore, never 75 

been governed fully by internal hydro-climatic variability and this new knowledge is of 76 

profound importance for our understanding of the regional climate and marine 77 

ecosystems.  78 

 79 

To illustrate the strong influence of multidecadal changes in temperature on extra-80 

tropical North Atlantic marine resources, we have updated a previous Principal 81 

Component Analysis (PCA) on Sea Surface Temperature (SST) (Beaugrand et al. 82 

2002) for the region 20°N-65°N and 100°W-20°E using SST data from the COBE 83 

interpolated 1°x1°dataset from 1891 to 2020 (Ishii et al. 2005). Expectedly, this 84 

analysis shows two cold and two warm phases superimposed on a long-term 85 

positive SST trend for most areas of the North Atlantic except for the central and 86 

south-western regions (Figure 1a-b). Detrending the first principal component (PC1, 87 

49.8% of the total variance) gives a pattern similar to the classic AMO index, albeit 88 
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the AMO index is usually based on a larger area than the one we considered here 89 

(Enfield et al. 2001, Mann et al. 2021, Murphy et al. 2021).  90 

 91 

When we include long-term changes in an index of phytoplankton concentration in 92 

the North Sea (Reid et al. 1998), Norwegian spring spawning herring (Toresen & 93 

Østvedt 2008) and bluefin tuna distribution in the north-east Atlantic (Faillettaz et al. 94 

2019), we see that changes across three trophic levels in different regions correlate 95 

with long-term changes in North Atlantic SST, exhibiting a clear oscillation (Fig. 1c-96 

e). High North Sea phytoplankton concentration, high Norwegian Sea herring and 97 

north-east Atlantic tuna abundance are observed during a positive (warm) phase of 98 

the AMO and inversely. Because the AMO is considered to cause these changes in 99 

addition to other factors (e.g. overfishing of North-east Atlantic tuna and Norwegian 100 

Spring-Spawning herring at the beginning of the 1960s) (Lorentzen & Hannesson 101 

2004, Fromentin et al. 2014, Cort & Abaunza 2015), and because the nature of the 102 

phenomenon was cyclical, a reversal of the AMO was soon expected to occur 103 

(Frajka-Williams et al. 2017) with its putative consequences for the marine 104 

ecosystem and its exploited resources. Results from Mann et al. (Mann et al. 2021) 105 

imply that an imminent reversal to a cool period is now unlikely and so we should not 106 

expect an imminent shift in the North Atlantic marine ecosystem and provisioning 107 

services.  108 

 109 

While overfishing has been an important component of the collapse of North-east 110 

Atlantic tuna or Norwegian Spring-Spawning herring and so management actions 111 

may have played an important role in the rebuilding of the different stocks (Lorentzen 112 

& Hannesson 2004, Toresen & Østvedt 2008, Fromentin et al. 2014, Cort & Abaunza 113 

2015), it often interplayed with changing environmental conditions (Beaugrand et al. 114 

2003, Faillettaz et al. 2019). A shift in the state of the AMO from positive to negative 115 

could have caused another rapid retreat of bluefin tuna southwards as was observed 116 

notoriously at the beginning of the 1960s together with another biological shift in the 117 

Russel cycle bringing a new period of high productivity to the English Channel. So, 118 

while the demise of the AMO does not negate the climatic modulation of North 119 
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Atlantic biology, it does have significant implications for our understanding of the 120 

drivers of change and how ecosystems and provisioning services may change in the 121 

future. Consequently, the recent northward shift of bluefin tuna is likely due to 122 

greenhouse gas-induced global warming and the well-known Russell Cycle is not 123 

necessarily a cycle anymore (McManus et al. 2016), and there is now, no a priori 124 

reason that the North Atlantic region will return soon to the negative AMO phase that 125 

has been anticipated (Frajka-Williams et al. 2017, Mann et al. 2021).  126 

 127 

The latest IPCC report includes the influence of anthropogenic and volcanic activity 128 

on Atlantic multidecadal variability (Masson-Delmotte et al. In press). Climatologists 129 

now also use the term Atlantic Multidecadal Variability (AMV) instead of the AMO 130 

because multidecadal variability in the Atlantic may result from broad, low-frequency 131 

signals (Lapointe et al. 2020, Murphy et al. 2021, Masson-Delmotte et al. In press). 132 

The AMV includes the influence of the North Atlantic Oscillation (NAO) that is a 133 

natural source of atmospheric variability (Hurrell 1995) and which interacts with the 134 

AMOC, although the mechanisms involved and their relative strengths are still 135 

unclear (Masson-Delmotte et al. In press).  As a result, we also think it is better to 136 

replace the AMO by AMV in climate change biology and to therefore recognise that 137 

the oscillatory behaviour of Atlantic multidecadal variability observed during the last 138 

two centuries may not continue. Consequently, we cannot predict a return to a lower 139 

temperature regime with all that entails, i.e. rapid shift in the marine ecosystems with 140 

its consequences for exploited resources.  141 

 142 

A fundamental question in ecology is, why is what where? (Berry 1989). Sea surface 143 

temperature is a key determinant of the abundance and distribution of marine pelagic 144 

species. Of course, knowing that an anticipated and imminent climate reversal in the 145 

North Atlantic will not now occur due to the AMO neither invalidates previous 146 

environment-driven, cyclical variation seen in species such as bluefin tuna (Faillettaz 147 

et al. 2019) nor helps predict the future direction of marine ecosystems, but it does 148 

help us focus on those drivers of change that are important. While climatic surprises 149 

remain possible (e.g. the slow-down of the Atlantic Meridional Overturning 150 



6 
 

Circulation and its negative influence on North-east Atlantic climate (Boers 2021, 151 

Caesar et al. 2021)), if the results of Mann et al. (Mann et al. 2020, Mann et al. 2021) 152 

are confirmed, and recent works suggest, at least in part, that they are (Murphy et al. 153 

2021, Masson-Delmotte et al. In press), they have now eliminated the AMO as one 154 

variable thereby simplifying a complex world where ecosystem shifts are moving 155 

towards a warmer dynamic regime in response to anthropogenic climate change 156 

(Beaugrand et al. 2002).  157 

 158 

 159 

  160 
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 253 

 254 
 255 

Figure legend 256 

Figure 1. Relationships between changes in North Atlantic annual SST and pelagic 257 

life. A) First standardised eigenvector (49.8% of the total variance) showing the long-258 

term changes in annual SST and the first principal component (SST PC1). B) The 259 

long-term changes in SST PC1 and an AMO index (Spearman correlation rsp 0.68, 260 

p<0.01), and long-term changes in global sulphate aerosol emissions. C) The long-261 

term changes in SST PC1 and the CPR phytoplankton colour index (PCI) in the 262 

North Sea (rsp 0.66, p<0.01) (Reid & Hunt 1998). D) The long-term changes in SST 263 

PC1 and Norwegian spring spawning herring (rsp 0.43, p<0.01) (Toresen & Østvedt 264 

2008). E) The long-term changes in SST PC1 and a bluefin tuna occurrence index 265 

(rsp 0.75, p<0.01) (Faillettaz et al. 2019). Although based on temperature, the 266 

occurrence index has been validated with the observed changes in tuna abundance 267 

that took place in the North-east Atlantic (Faillettaz et al. 2019). The given rsp is the 268 

coefficient of Spearman correlation and values are based upon a Montecarlo test 269 

with 10,000 simulations. 270 
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