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ARTICLE OPEN

Prosodic signatures of ASD severity and developmental delay
in preschoolers
Michel Godel 1✉, François Robain1, Fiona Journal1, Nada Kojovic 1, Kenza Latrèche1, Ghislaine Dehaene-Lambertz2 and
Marie Schaer 1

Atypical prosody in speech production is a core feature of Autism Spectrum Disorder (ASD) that can impact everyday life
communication. Because the ability to modulate prosody develops around the age of speech acquisition, it might be affected by
ASD symptoms and developmental delays that emerge at the same period. Here, we investigated the existence of a prosodic
signature of developmental level and ASD symptom severity in a sample of 74 autistic preschoolers. We first developed an original
diarization pipeline to extract preschoolers’ vocalizations from recordings of naturalistic social interactions. Using this novel
approach, we then found a robust voice quality signature of ASD developmental difficulties in preschoolers. Furthermore, some
prosodic measures were associated with one year later outcome in participants who had not acquired speech yet. Altogether, our
results highlight the potential benefits of automatized diarization algorithms and prosodic metrics for digital phenotyping in
psychiatry, helping clinicians establish early diagnosis and prognosis.

npj Digital Medicine            (2023) 6:99 ; https://doi.org/10.1038/s41746-023-00845-4

INTRODUCTION
Prosody refers to the suprasegmental aspects of speech that can
be modulated to enhance meaning and emotions1. The prosody
of an utterance is constituted by its intonation, i.e., whether the
pitch is globally high or low and the dynamic contour it follows
(rising, falling or more complex patterns). Prosody also refers to
the rhythm (fast, slow, jittery), loudness (loud or quiet) and voice
quality (hoarse, nasal, creaky) of a vocalization. Prosody plays a
major role in verbal communication. For instance, it conveys
critical information about the grammatical structure of the
sentence, such as pauses indicating the boundary between
phrases2, the pragmatic context (such as sarcasm3) and the
speaker’s affective state4,5. Thus, impaired prosody production
observed in some neurodevelopmental disorders can signal
different levels of difficulties in communication and social
interaction6–8. In the present study, we explored prosody in early
Autism Spectrum Disorder (ASD). We collected acoustic measures
of prosody in a sample of preschoolers with ASD, an age that is
crucial for the acquisition of speech and its prosodic aspects. Our
aim was to explore how prosody relates to developmental delays
and ASD symptoms within a young autistic sample displaying
heterogeneous clinical profiles.
ASD is defined by difficulties in social interactions and

communication associated with repetitive behaviors and/or
restricted interests9. In his very first clinical report of the disorder,
Leo Kanner depicted the voice of 7 y.o. Elaine C. as “unmodulated”
and “hoarse”10. Since Kanner’s seminal report, clinicians have
consistently described specific prosodic features in individuals
with ASD11,12. Common clinical descriptions include atypical
rhythm (inappropriate stressing), intonation (unusual high pitch,
‘singsong’ voice or monotonous intonation), voice quality
(squeaky or hoarse voice) and loudness (socially inappropriate
shouting or whispering). Nowadays, the Autism Diagnostic
Observation Schedule (ADOS) which is the most commonly used

diagnostic tool for ASD considers prosody as one of the clinically
significant signs for diagnostic decision13.
Over the past two decades, acoustic analyses have been

undertaken to objectively quantify the prosodic specificities long-
time described in ASD. The most robust differences found
between ASD and their typically developing (TD) peers concern
the domain of intonation14–16. Autistic children and adults exhibit
larger pitch range17–21 and higher pitch19–21 compared to TD.
Regarding prosodic rhythm, one study has found that school-aged
children with ASD (n= 41) exhibit slower speech rate when asked
to name pictures compared to TD (n= 42)17. When exploring
voice quality, Bone et al. (2014) have found a correlation between
ASD symptoms and higher jitter (i.e., the fluctuation of the
fundamental frequency between cycles of glottis opening/closure)
as well as higher jitter variability when analyzing short excerpts of
naturalistic social interactions in a group of 28 school-aged
children with ASD22. Moreover, a recent study where 33 children
(13 with ASD and 20 TD) were asked to read words has reported
higher vocalization strength in ASD20.
To sum up, many acoustic measures of prosody have been

reported to differ between ASD and TD. Nonetheless, few studies
have explored prosody within the specific population of autistic
preschoolers and its associations with developmental phenotypes.
Two recent independent studies have reported a correlation
between ASD symptom severity and higher pitch in preschoolers
with ASD23,24. The lack of prosody studies on this population has
been recently identified as a research gap in ASD15,16,25,26. First
reliable ASD diagnosis are generally set during preschool age27,
hence better characterization of the relations between prosodic
and behavioral measures at this age could help develop new
automated diagnostic/prognostic classification tools25. Helping
clinical appreciation using algorithms and individual digital
information such as vocal recording is the scope of digital
psychiatry28,29. This emerging research area has already shown
great potential for ASD and other heterogeneous disorders30,31.
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One reason for the prosody research gap in autistic preschoo-
lers is that vocal recordings at this age can be highly cumbersome
to preprocess. It can be difficult to ask preschoolers with ASD to
name pictures, tell a story or read a text in front of a microphone
as it is commonly done with older populations18,20,32. Hence,
exploring prosody in autistic preschoolers generally requires the
collection of spontaneous vocalizations, such as those occurring
during a naturalistic social interaction with an adult. In this
perspective, authors have often recorded preschoolers during the
ADOS which offers a standardized setting for social interac-
tion33,34. Although social interaction recordings provide ecologi-
cally valid prosody compared to reading texts or naming
pictures12,35,36, they contain noise and adults’ voices requiring to
be manually removed before analyzing participants’ prosody. A
promising alternative to this time-consuming manual preproces-
sing relies on the application of diarization algorithms, i.e.,
techniques that automatically determine who spoke when in
audio recordings37. Commonly used diarization methods are
based on acoustic energy information to infer the spatial position
of each speaker, e.g., using two simultaneous recordings38 or a
single microphone held close to the participant’s mouth23,24,39,40.
However, multi-channel recordings or microphones fixed close to
the mouth are not commonly used when collecting social
interaction recordings in cohorts of autistic preschoolers. Yet, if
diarization algorithms existed and worked on single-channel
ADOS recording, they could be readily used a posteriori on any
previous recording to alleviate the amount of time spent on
extracting the participants’ vocalizations. In the scope of digital
psychiatry, diarization algorithms allowing a large collection of
vocal data in preschoolers with ASD could help train algorithms
identifying early ASD diagnostic/prognostic patterns23,24.
Here, we explored how spontaneous prosody production

relates to developmental delay and ASD symptom severity
phenotypes in autistic preschoolers. With the aim of reducing
manual pre-processing time and in view of the lack of existing
methods, we present a novel diarization pipeline to automatically
extract children vocalizations from single-channel ADOS record-
ings. We applied our original diarization method on a sample of 74
preschoolers with ASD aged 1.5–6 y.o. displaying heterogeneous
levels of development and ASD symptoms. We extracted prosodic
parameters related to intonation, loudness, rhythm and voice
quality using the Geneva Minimalistic Acoustic Parameter Set
(GeMAPS)41 and examined the multivariate relations governing
prosody, developmental measures and ASD symptom severity
using partial least square correlations (PLSC). Finally, we
performed longitudinal analyses on participants who had not
developed speech yet to explore whether some prosodic features
might predict the prognosis 1 year later.

RESULTS
Prosodic patterns in preschoolers with and without phrase
speech
We investigated prosody in two independent groups, each of
them displaying relatively homogeneous types of vocal produc-
tions, namely a speech group (Sp, n= 32) that includes children
assessed with the ADOS Module 2 or 3, and a Prespeech group
(PreSp, n= 42) comprising children assessed with the ADOS
Toddler Module or Module 1. Modules 2 and 3 are administered to
participants who use spontaneous and meaningful three-word
utterances that occasionally include a verb (i.e., “phrase speech” as
defined by the ADOS). Toddler Module and Module 1 were
administered to participants who have not reached this stage of
language production. We explored the associations between
prosodic measures and behavioral phenotype within each group
separately by applying Partial Least Square Correlation (PLSC, see
Methods). We used developmental quotients (DQ) and ASD

calibrated severity scores (CSS) from the ADOS as behavioral
variables and analyzed their multivariate correlation patterns with
prosodic measures related to intonation, loudness, voice quality
and rhythm. Age, gender and the type of microphone used were
regressed out within each group. PLSC resulted in a single
significant correlation component in PreSp (p= 0.028, r= 0.65,
Fig. 1A) and another one in Sp (p= 0.004, r= 0.63, Fig. 1B). In both
PreSp and Sp groups, prosodic measures were strongly associated
with DQ and, to a lesser extent (i.e., lower Bootstrap Ratios or BSR),
to ASD symptom severity.
In PreSp, lower DQ and higher ASD symptom severity were

associated with intonation (flatter and higher pitch), voice quality
and rhythmic (slower pseudo syllable rate) metrics (Fig. 1A). More
specifically, decreased pitch excursion (i.e., local variations in pitch
measured in semitones per second, BSR=−6.227) and higher
pitch (BSR= 2.276) were associated with higher ASD symptom
severity and lower DQ (all BSR are reported in Supplementary
Table). Our results extend previously published positive correla-
tion between pitch and ASD symptom severity in preschoolers
with heterogeneous levels of language production23,24. In terms of
PreSp rhythmic metrics, we found an expected association
between lower DQ with higher ASD symptom severity and
indicators of weaker use of words and/or babbling (decreased
pseudo syllabic rate, BSR=−3.717, and increased vowel length
variability, BSR= 5.281). Our finding on decreased pseudo syllabic
rate in PreSp is in line with the results of Wetherby (2007) showing
reduced consonants inventory in toddlers with ASD and lower DQ.
Finally, we found that in PreSp, DQ and ASD symptoms were
associated with various voice quality measures. More specifically,
lower DQs with higher ASD symptom severity were associated
with lower harmonic to noise ratio (HNR) variability (BSR= 4.405)
as well as with jitter and shimmer that were globally decreased
(BSR for jitter=−2.478 and −7.758 for shimmer) and more
variable over time (BSR= 5.798 for jitter variability and 5.725 for
shimmer variability). An alteration of the same measures has been
reported in preschoolers16,24 and older individuals22,42 with ASD
compared to TD.
In the Sp sample, lower DQ and higher Restricted and Repetitive

Behavior (RRB) were linked to voice quality and rhythmic (faster
pseudo syllable rate) measures (Fig. 1B). On the whole, prosody
was associated with Restricted and Repetitive Behavior (RRB)
(BSR= 2.353) but not with Social Affect (SA, BSR= 0.771), a
contrast that has been previously reported by Eni M et al. (2020) in
a similar population24. Unlike in PreSp, we found no association
between intonation metrics and behavior in the Sp group, as
previously reported by Diehl et al. (2009) and Nadig and Shaw
(2012)18,43. In terms of rhythmic measures, Sp participants with
lower DQ showed increased pseudo syllabic rate (BSR= 7.251)
with less variable vowel length (BSR=−15.361), i.e., a reverse
pattern compared to our PreSp results (Fig. 1A). Finally, the pattern
of association between voice quality parameters and behavior in
Sp was highly similar to the one we reported in PreSp, namely
lower DQ and higher ASD symptoms associated with lower HNR
variability (BSR=−17.016), decreased jitter (BSR=−12.139) and
shimmer (BSR=−17.494), more variable jitter (BSR= 9.852) and
shimmer (BSR= 13.072). In addition, Sp participants showed an
association between developmental difficulties and higher varia-
bility of second formant (BSR= 3.890), a result that has been
previously reported in older autistic children20.
Furthermore, we found no association between loudness

measures and behavior in either PreSp or Sp (BSR < 2.3 for all
loudness measures in both groups PLSC). This result is in line with
many null findings of previous studies exploring loudness metrics
in ASD (see Fusaroli et al., 2017 for a systematic review).
Nonetheless, loudness measures highly depend on the standardi-
zation of the recording setting, i.e., controlling for the distance
between microphone and participant during the evaluation,
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which was not the case in our protocol. Thus, this null result might
reflect an insufficiently standardized recording setting.

Language production stage influences some prosodic
measures, age does not
We first explored the prosody-developmental associations within
each group to avoid a potential confounding effect between the
level of vocal production (ability to produce utterances with more
than two words or not) and prosodic metrics. In a second step, we
applied PLSC on the whole sample (n= 74) using speech
production level (PreSp or Sp) as the single behavioral contrast
(See Methods) to explore the possible confounding effect of
language production stage on prosodic measures. Age, gender
and the type of microphone used were regressed out within each
group. PLSC resulted in a single significant correlation component
(p < 0.001, r= 0.56, Fig. 2).
When using language production stage as the behavioral contrast

(i.e., Sp versus PreSp), we found differences between PreSp and Sp
groups in intonation, voice quality and rhythmic measures (Fig. 2).
Higher production abilities (i.e., phrase speech) were associated with
lower pitch (BSR=−9.556), increased pitch excursion (BSR= 4.187),
increased pseudo syllable rate (BSR= 3.598) and decreased

variability of vowel length (BSR=−2.656). In PreSp, a higher DQ
was associated with increased pitch excursion and pseudo syllabic
rate (Fig. 1A). The association we found between those measures
and the stage of language production (Fig. 2) suggests that
associations between behavior, rhythm and intonation in PreSp
(Fig. 1A) could have been partly influenced by more advanced
stages of language production in participants with higher DQ. In
contrast, associations between behavior and rhythmic prosody in Sp
(Fig. 1B) did not follow the same directionality as the association
between prosody and language production stage (Fig. 2). This
contrasting finding suggests that faster syllabic rates in Sp
participants with lower DQ (Fig. 1B) were driven by prosody itself
and not by decreased complexity of language productions. Finally,
the voice quality alterations that were shared by both groups (jitter,
shimmer and HNR, Fig. 1A and B) were not linked to language stage
(Fig. 2).
We also wanted to rule out a potential confounding effect of

age on prosodic measures, even though age had been regressed
out from all analyses. To do so, we ran a PLSC on the whole
sample using prosodic metrics with age as the single behavioral
variable. Gender, the type of microphone used, and the language
production stage (PreSp or Sp) were regressed out. We found no
significant correlation component (the most significant

Fig. 1 Prosody in autistic preschoolers with and without phrase speech. A Partial Least Square Correlation (PLSC) in preschoolers with ASD
without phrase speech (PreSp, n= 42). PLSC explored the association between behavioral (ADOS CSS in blue and DQ in pink) and prosodic
measures relating to intonation (blue), loudness (purple), quality of voice (pink) and rhythm (green). Behavioral and prosodic saliencies of the
first principal component are displayed. Error bars represent 5–95th percentiles of 500 bootstrap samples, and robust results are highlighted
in yellow. B PLSC in autistic preschoolers with phrase speech (Sp, n= 32). ADOS Autism Diagnostic Observation Schedule, CSS Calibrated Severity
Score, DQ Developmental Quotient, RRB Repetitive and Restricted Behaviors.
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component had a p value equal to 0.200). This suggests that in
autistic preschoolers, age has a minimal influence on prosodic
metrics compared to DQ, ASD symptoms and the language
production stage.

Prosody as prognostic marker
Finally, in the PreSp group for which ADOS and DQ had been
collected 1 year later (n= 32), we analyzed the relation between
prosodic parameters on the first visit and behavioral rates of
change during the following year. Age, gender and the type of
microphone used were regressed out. In this subsample, the PLSC
analysis revealed a single significant correlation component
(p= 0.003, r= 0.62, Fig. 3).
In PreSp, some measures of intonation, voice quality and rhythm

were associated with better outcome in DQ and RRB (Fig. 3). We
found a specific pattern of prosody associated with a better
developmental outcome 1 year later, namely the improvement in
DQ (except for expressive language, BSR= 1.148) and a decrease in
the RRB symptom severity (BSR=−5.429). A pitch that was more
variable throughout the recording was correlated with better
developmental and RRB outcome (pitch variability, BSR= 4.245).
Moreover, better DQ and RRB prognosis in PreSp were linked to
less dense use of syllables, i.e., a rhythmic pattern that is similar to
the one we found in Sp with higher DQs (See Fig. 1B).

DISCUSSION
Here, we applied an original diarization pipeline on a large sample
of autistic preschoolers engaged in a semi-structured naturalistic
social interaction with an adult male examiner (n= 74). Our
algorithm showed robust performance in automatically classifying
recorded children voices (87.5% sensitivity on a validation sample,
see Supplementary Methods), thus drastically decreasing the
amount of time required to manually extract preschoolers’ vocal
productions. In our sample, intonation modulation, voice quality
and rhythm were related to developmental delay and ASD
symptom severity at the time of the recording, as well as the
following year. Firstly, we discuss in this section how multivariate
approaches in heterogeneous autistic samples provide a fine-
grained understanding of prosodic development in early ASD,
especially in the rhythmic domain. Secondly, we discuss in more
detail our findings in the participants without speech (PreSp) and
how they could fit with existing models of autistic prosody, with a

special focus on fine motor and intonation results. Thirdly, we
discuss the potential contribution of our work to the field of digital
psychiatry, given the performances of our diarization method as
well as the ASD prosodic markers of prognosis that we found.
Most prosody studies to date have focused on relatively

homogeneous ASD populations with preserved cognitive and
language abilities, an issue raised by different authors15,16,26. For
instance, previous studies exploring rhythmic prosody have
reported no difference between ASD without language or
cognitive impairment and their TD peers43,44. However, by
restricting analyses to autistic children with higher level abilities,
these studies might have missed protracted atypical prosody
observed in more heterogeneous groups as ours. Our original
diarization algorithm allowed us to collect large samples of vocal
production in preschoolers that are representative of the full ASD
developmental heterogeneity. In contrast to Grossman et al. (2010)
and Nadig and Shaw (2012), both our PreSp and our Sp groups
exhibit alterations of rhythmic prosody in relation to develop-
mental level and ASD symptom severity. Not only did we discover
a link between rhythmic prosody and developmental measures in
early ASD, but we also highlighted a fine-grained dissociation in
the rhythmic prosody-development association according to the
language production stage (Fig. 1). Namely, PreSp participants with
lower DQ produced syllables with less density and more variable
length (i.e., slow and unstable syllables), whereas Sp participants
with the same developmental profile (lower DQ) showed the exact
opposite prosodic pattern, i.e., syllables that were denser and more
stable in length. This rhythmic contrast between PreSp and Sp
exhibiting lower DQ suggests that once speech production is
established in ASD (i.e., Sp), higher developmental abilities allow
more modulated rhythmic control, thus resulting in slower syllabic
rate with more variable vowel length. Conversely, before the
emergence of speech (i.e., PreSp), higher DQ might be associated
with more frequent babbling and/or use of single words, thus
resulting in increased pseudo syllable rate measure45,46. We also
found that pseudo syllable rate globally increased with speech
acquisition (Fig. 2), probably because of the high temporal density
of syllabic production in phrase speech. Taking everything into
consideration, these results suggest that prosodic rhythmic
measures in ASD are greatly affected by language production
stage, as phrase speech acquisition was associated with globally
denser syllable use and a full reversal of DQ-rhythmic correlations.
This conclusion converges with the claim of Vargason et al. (2020)
insisting on the importance of using multivariate statistical

Fig. 2 Association between prosody and language production stage. Significant correlation component of Partial Least Square Correlation
(PLSC) in 74 preschoolers with ASD is displayed. PLSC explored the association between behavioral contrast (Sp versus PreSp) and prosodic
measures relating to intonation (blue), loudness (purple), quality of voice (pink) and rhythm (green). Behavioral contrast and prosodic
saliencies of the first principal component are displayed. Error bars represent 5–95th percentiles of 500 bootstrap samples, and robust results
are highlighted in yellow. PreSp: without phrase speech; Sp: with phrase speech.
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approaches including many behavioral variables on populations
expressing the full ASD spectrum when exploring potential
physiological markers of ASD47.
Our results shed some light on the early mechanistic under-

pinnings of prosody in autistic children, especially in the period
before speech emergence. Given our results, it appears that fine
motor abilities and intonation both play an important role during
PreSp stages of ASD. In Presp (Fig. 1A), fine motor (i.e., motor
planning and control of hands48) was the developmental domain
showing the highest salience in the multivariate correlation
component governing prosody-behavior associations. This finding
fits well with previous results suggesting that atypical prosody in
ASD could be partly caused by broader fine motor difficulties49–51.
According to this view, impaired prosody regulation would result
from a poor control over the complex motor units implicated in
language production. Around 100 muscles should be perfectly
coordinated at a fast pace for an adequate modulation of vocal
production52. Thus, any deficit in cerebral and/or cerebellar motor
areas underlying fine motor might impact the coordination of
agonist and antagonist muscles required for both adequate vocal
modulation and hands motor control and planning. This complex
entanglement between vocal and hand motor control is particu-
larly relevant in ASD in which fine motor abilities are known to
greatly affect expressive language development, especially before
the emergence of speech53–55. A recent study has found a causal
relationship between fine motor delay and poor language
intelligibility in a subgroup of autistic children without speech56.
Our results in PreSp suggest that intelligibility in this population
could be affected by fine motor delay through its effects on
prosody. Prosody, which is a subdomain of expressive language,
could therefore be a sensitive measure of fine motor delays that
could be used in digital phenotyping approaches, a topic that we
will discuss later in this section. Moreover, we observed that in
PreSp, decreased intonation modulation (captured by pitch
excursion and pitch variability measures) was related to concurrent
as well as to later developmental delay severity (Figs. 1A and 3).
Such associations were no longer found once phrase speech was
acquired (Fig. 1B), thus suggesting a mechanism that is specific to
PreSp. More specifically, locally increased modulation (i.e., higher
pitch excursion) was associated with higher DQs and less ASD
symptoms, although a potential confounding effect of language
production stage cannot be ruled out (Fig. 2). Furthermore, higher

pitch variability was associated with higher DQ and less RRB 1 year
later (Fig. 3). The altered intonation patterns in PreSp participants
might reflect the persistence of prosodic features that have been
reported in infants who later develop ASD57,58. Moreover, early
intonation modulation in TD constitutes a marker of later speech
production abilities59,60 that can be used to estimate language
outcome61,62. Our findings thus extend these TD characteristics to
the ASD population in which the PreSp ability to modulate
intonation could represent a marker of concurrent and later
developmental difficulties and ASD symptom severity. We would
also like to highlight some limitations of the interpretation of our
PreSp results. As a first limitation, we didn’t label vocal productions
of PreSp according to their qualitative type - e.g., screams, “jargon”,
laughs or syllable reduplications that are frequent in PreSp ASD.
Hence, we cannot fully grasp the relative contribution of each
specific type of vocal production to the prosodic measures. For
instance, one could speculate that increased pseudo syllable rate in
a PreSp recording segment could be a marker of the preverbal RRB
consisting in self-stimulating reduplication of syllables. Thus,
applying an approach similar to ours that would include vocal
qualitative typology, one would bring a more fine-grained
interpretation of our results. The second limitation relies on the
absence of a control TD sample, thus precluding the estimation of
how specific to ASD the relation we found between intonation
modulation and behavioral trajectories is. Oller et al., (2010) have
showed for instance that prosodic rhythm and voice quality
correlate with age in TD, but not in ASD, suggesting that TD and
ASD could experience distinct patterns of interactions between
development and prosody39. It is worth noting that since we did
not have a control group of individuals with non-autistic
developmental delays, we cannot rule out the possibility that the
associations we observed between prosody and developmental
delays are not unique to ASD. Future studies including preverbal
non-autistic children with delays in fine motor skills are crucial to
further explore the relation between motor control and atypical
prosody. But despite these limitations, our results in PreSp
converge with the hypothesis of an association between fine
motor control and prosody acquisition in ASD, even suggesting
that this association could be particularly relevant in the early stage
of speech acquisition. Our findings also suggest that a poorer
intonation control during the PreSp stage could serve as a marker

Fig. 3 Associations between prosody and subsequent behavioral rates of change. PLSC in a subsample (n= 32) of preschoolers without
phrase speech (PreSp). PLSC explored the association between the prosodic measures at the first visit and the behavioral rates of change (SPC)
in ADOS CSS (in blue) and DQ (in pink) during the following year. Prosodic measures comprised intonation (blue), loudness (purple), quality of
voice (pink) and rhythm (green). Behavioral and prosodic saliencies of the first principal component are displayed. Error bars represent 5–95th
percentiles of 500 bootstrap samples, and robust results are highlighted in yellow. ADOS Autism Diagnostic Observation Schedule, CSS
Calibrated Severity Score, DQ Developmental Quotient, RRB Repetitive and Restricted Behaviors, SPC Symmetrized Percent Change.
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of concurrent and later developmental difficulties, an association
that has already been demonstrated in TD populations.
Finally, our original diarization pipeline as well as the

associations we found between prosodic and behavioral pheno-
types could inspire concrete applications in digital phenotyping
approaches28,29. Up to now, digital phenotyping in ASD has mostly
focused on computer vision analysis, showing great potential in
efficiently stratifying various clinical dimensions of early ASD63,64.
In contrast, attempts to obtain digital phenotypes from pre-
schoolers with ASD using vocal metrics have remained scarce,
partly because of the lack of effective diarization methods
applicable on common recording settings23,24. Our original
diarization approach could thus facilitate the development of
vocal digital phenotyping tools. In this study, we restricted our
diarization pipeline to recordings of preschoolers interacting with
a male adult to maximize the performance of the classifier as a
first approach. However, future development of our approach
could rely on its extension to recordings including adult female
examiners and/or more than two speakers. When we tested our
classifier (i.e., that had been trained with male examiners) on
female adults, the resulting tracks contained approximatively five
times more incorrect data that would need to be manually
removed (with the same amount of children voice data kept for
analyses, see Methods). Alternatively, training a classifier using
only adult female voices resulted in tracks with far less incorrect
data to be cleaned, but at the cost of important loss of children
voice data that were incorrectly classified. Finally, training a
classifier with all three types of voices yielded performances that
were a compromise between the two first approaches, i.e., less
child voice data loss than when trained only on female adults, but
more incorrectly classified adult voice compared to classifier
trained only on adult males. Although our diarization approach
performances were poorer when trained and/or applied using
adult female voices, they would still result in far less preprocessing
time compared to full manual extraction of children voice data
from a recording. In addition, there are multiple strategies to
improve our diarization model when applied on adult female
voice. For instance, one could include more acoustic parameters in
the discriminant analysis. Beyond the classic age-related para-
meters of fundamental frequency and formants that we used here,
other measures such as the Cepstral/Spectral Index of Dysphonia
or the Degree of Subharmonics have been recently identified as
vocal markers of age in both males and females65. Alternatively,
deep machine learning approaches could be used to determine
without any a priori what are the best acoustic measures to
include in our diarization model to classify adult female versus
children voices. Despite this methodological limitation, we found a
specific prosodic pattern associated with a better outcome 1 year
later in PreSp (Fig. 3). For instance, in PreSp, some rhythmic
characteristics prefiguring the specific prosody of Sp participants
with higher developmental levels (e.g., slower pseudo syllable
rate) were indicative of better developmental prognosis. This
suggests that some prosodic features that are specific to higher
DQ autistic speech might already be noticeable in pre-speech
vocal productions and thus serve as prognostic markers. Studies
using longitudinal designs are required to further confirm this
hypothesis. Altogether, this result highlights the potential of
automated vocal analyses in individualized prognostic estimation.
Furthermore, we found a set of three voice quality parameters
(jitter, shimmer and harmonic to noise ratio, HNR) associated with
DQ and ASD symptom severity that was consistent across two
independent groups displaying different levels of language
production (PreSp and Sp, Fig. 1A and B). Jitter, shimmer and
HNR have previously been found to be atypical in ASD16,22,24,42.
Moreover, none of these measures were affected by participants’
language production stage (Fig. 2), further indicating that they
could be used as developmental markers in ASD regardless of
individuals’ expressive level. To sum up, this overall similarity

between PreSp and Sp patterns advocates for a robust voice
quality signature of developmental delay and ASD symptom
severity that is shared across ages and levels of language
production in autistic preschoolers. In the future, this set of voice
quality measures could be selected a priori to develop digital
phenotyping tools using acoustic data.
In conclusion, we present here a new diarization approach to

extract preschoolers’ vocal productions from naturalistic interac-
tions between a child and a male adult. Using this new method,
we were able to collect a large sample of voices from autistic
preschoolers with highly heterogeneous levels of ASD symptoms
and developmental difficulties. We applied multivariate statistical
analyses on this population that has been scarcely studied in
terms of age and clinical profile. We highlighted some fine-
grained patterns of associations between prosody, developmental
delays, ASD symptoms and language production stage. Before the
emergence of speech, intonation control and fine motor control
appeared to play a major role, whereas rhythmic prosody
exhibited a complex pattern of evolution that highly depended
on the language production stage. Furthermore, voice quality
appeared as a robust marker of developmental difficulties in ASD,
regardless of the level of language expressive abilities. In the
future, studies that include preschoolers with TD and/or non-
autistic developmental delays are needed. Increased general-
ization performances of our diarization algorithm when used with
female adults would widen the potential applications of our
approach. Altogether, our study highlights the importance of
exploring prosody at early stages of ASD within the full
heterogeneity of the spectrum using multivariate strategies. It
also brings new perspectives in the use of prosodic metrics in
digital psychiatry, notably to assist prognostic evaluation.

METHODS
Participants
Participants were part of the ongoing longitudinal Geneva Autism
Cohort study (see Franchini et al., 2018 for a description of the
longitudinal design66). Preschoolers with either typical develop-
ment (TD) or Autism Spectrum Disorder (ASD) were recruited
through parent associations, clinical centers and announcements
throughout the Geneva community. ASD diagnosis was confirmed
by a licensed child psychiatrist (MS) using the Diagnostic and
Statistical Manual of mental disorders, 5th edition9 criteria,
combined with the Autism Diagnostic Observation Schedule
(ADOS) diagnostic cut-off13,67. Parents of all participants gave
their written and informed consent. Informed consent for the
photograph displayed on Fig. 4 was signed by the participant’s
parents. All signed consent forms are stored in compliance with
local confidentiality laws. The research protocol was approved by
the review board of the University of Geneva. In the present
manuscript, we use both identity-first language (e.g., “autistic
preschoolers”) and person-first language (e.g., “participant with
ASD”) to reflect the diversity of semantic preferences in the ASD
community68.
Participants assessments comprised the Mullen Scales of Early

Learning (MSEL)48, the Psychoeducational Profile – third edition
(PEP-3)69 and the ADOS. MSEL and PEP-3 allow the computation of
individual developmental quotients (DQs)70,71.
The Mullen Scales of Early Learning (MSEL) is designed for

children aged from birth to 68 months. The MSEL is a standardized
assessment that measures the participant’s development in five
distinct domains of development. The evaluated domains consist
in receptive language (RL), expressive language (EL), fine motor
(FM), and visual reception (VR). Gross motor (GM) is also evaluated
but is not considered in the computation of the composite score
that reflects the overall child’s level of development.
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The Psychoeducational Profile – third edition (PEP-3) is another
standardized developmental evaluation designed for children
aged from 2 to 7 years. Evaluated domains include EL, RL, FM, GM,
visuo-motor imitation, and cognitive verbal and preverbal (CVP).
We computed the Developmental quotient scores (DQ) for each

domain of the MSEL by dividing individual developmental age by
chronological age multiplied by 10070. Each participant’s compo-
site DQ was computed by averaging his/her DQs in FM, VR, RL and
EL. MSEL was not collected for 6 participants (4 PreSp and 2 Sp).
To increase sample size, we included these 6 participants by using
their DQ derived from the PEP-3. For the PEP-3 composite DQ
computation, VR was replaced by CVP which is the domain
showing the most overlap in tested items71. Compared to
standard scores, DQ offers the advantage of limiting the
truncation of scores from very low performing participants.
The ADOS is a standardized semi-structured evaluation that

aims to recreate as much as possible a naturalistic interaction
between a child and an adult13. The ADOS usually takes between
30 and 60min to be administered. There are five different
modules according to participant’s age and level of language.
Namely, Module 2 and above are designed for individuals using
“phrase speech”, defined as spontaneous and meaningful three-
word utterances that occasionally include a verb. Module 1 and
Toddler are administered to individuals who don’t use “phrase
speech”, i.e., with no word to two-word combinations. The ADOS
allows a quantification of ASD symptoms by computing a
Calibrated Severity Score (CSS) in Social Affect (SA) and in
Restricted and Repetitive Behavior (RRB)72,73. CSS can be

compared across modules. In our participants, either ADOS G74

or ADOS-213 was administered.
For the longitudinal analyses, we computed ADOS and DQ rates

of changes using symmetrized percent change (SPC). We used the
formula that is displayed in Eq. 171,75.

SPC %=year½ � ¼ 100 ´
ðBy � BxÞ=½ðBx þ ByÞ=2�

ðagey � agexÞ (1)

Bx and By are the measures (ADOS CSS or DQ) at agex and agey ,
respectively. Each participant’s SPC thus expressed his/her rate of
change in either the ADOS or the MSEL as a percentage of his/her
mean score across the two timepoints. Furthermore, SPC was
normalized for the time difference between the two timepoints,
resulting in a yearly rate of change. Using SPC instead of simple
absolute difference (such as the raw difference By � Bx ) to
represent longitudinal changes presents many advantages over
other measures. These advantages are discussed in Berry & Ayers
(2006)76 and include decreased sensitivity to outliers, higher
statistical robustness, and higher reliability in small samples.
We included participants aged from 1.5 to 6 years old with at

least one videotaped ADOS administered by a male examiner (126
recordings across 88 participants). We excluded female examiners
to maximize the acoustic difference between child and adult
voices and increase the diarization performance. From the 126
recordings, only 10 were collected in typically developing children
(TD). We excluded these children because of low sample size,
resulting in 116 longitudinal recordings from 78 participants with

Fig. 4 Summary of the preprocessing pipeline. A Recording of the ADOS administered by a male examiner with either a Shure© MX202
Microflex® overhead microphone or the GoPro© Hero7 built-in microphone. B After pre-emphasis filtering and denoising (not illustrated), a
voice detection algorithm was applied on the complete audio track. Noise was removed and voiced segments were concatenated. C Then, we
applied our original diarization algorithm to automatically identify, extract and concatenate the segments of children vocalizations. The
resulting concatenated audio track was carefully inspected and edited by an examiner (not illustrated). D Ultimately, a set of prosodic
parameters were extracted from the isolated children vocal productions using the GeMAP pipeline. Illustration of prosodic features (above
right) was obtained using WaveSurfer.js for illustration purposes. Here, we display pitch contour (below) and formants trajectories on a
spectrogram (above) of a 3 s excerpt from a single participant. Informed consent for the photograph displayed was signed by the participant’s
parents. F0 relates to fundamental frequency (or pitch) and F1, F2 and F3 relate to first, second and third formants respectively. ADOS Autism
Diagnosis Observation Schedule.
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ASD. Recordings in which total child’s vocalizations did not exceed
30 sec after complete audio preprocessing were excluded (7
recordings from 4 children), resulting in 109 recordings from 74
participants.
To avoid the potential confounding effect of utterances’

linguistic complexity on prosodic measures, we split the sample
in two groups, each with a relatively homogeneous level of
language. We separated participants according to speech
production status defined by the ADOS module they were
administered, i.e., either with Phrase Speech (Sp, Modules 2 and
3) or without (PreSp, Module 1 and Toddler). Only one recording
per participant was included by applying following inclusion
criteria: first, we prioritized Module 2 and 3 (i.e., with Phrase
Speech) when available as they were less administered (37
recordings) than PrSp modules (72 recordings) to build more
balanced groups in number. Then, when more than one recording
of the same speech acquisition status were available (e.g., one
Module 2 and one Module 3 for the same participant), we selected
the one performed at the youngest age given that we aimed to
explore the earliest possible prosody. This resulted in a final
sample of 74 participants (32 Sp, aged 4.4 y. ± 0.9, range 2.4–5.9, 4
females, and 42 PreSp aged 3.5 y. ± 1.1, range 2.0–6.5, 7 females).
All ADOS were conducted in French and all participants were
exposed to French. Detailed sample characteristics can be found
in Table 1.
Two recording devices were used: either a Shure© MX202

Microflex® overhead microphone hanging from the ceiling in the
middle of the room, or the in-built microphone of the GoPro©
Hero7 set in the corner of the room. Analyzing prosody using the
ADOS comes with many advantages. Firstly, the ADOS reproduces
a naturalistic social interaction, thus eliciting spontaneous
prosodic production in a social context. Secondly, compared to
home-recordings for instance, the semi-structured setting of the
ADOS presents the advantage of greatly reducing variability due
to the recording context in terms of physical (e.g., room versus
open-air) and social environments (e.g., number of speakers, type
of activities engaged, etc.). Finally, the ADOS is the gold standard
diagnostic tool used worldwide, making results more general-
izable and easily reproducible.

Filtering and automatic voice detection
The whole preprocessing pipeline of auditory files is summarized
in Fig. 4. Firstly, audio tracks from ADOS recordings were extracted
with 16-bit and a sampling rate of 48000 Hz. Secondly, voice

enhancement was applied to improve voice detection and
diarization performance. Voice enhancement comprised a pre-
emphasis filter with parameters displayed in Eq. 277 and the
spectral subtraction algorithm for speech enhancement imple-
mented in the VOICEBOX toolbox78–80.

P zð Þ ¼ 1� 0:68z�1 (2)

Finally, we applied the automatic voice detection algorithm
described in Giannakopoulos (2009)81. Segments that were not
labeled as voice by the algorithm were eliminated from the track.
We used Matlab® 2018b for all the preprocessing steps described.

Speaker diarization algorithm
We built an algorithm trained to classify recorded voice as coming
from an adult or a child speaker (i.e., diarization). Importantly, our
objective was to get vocal segments classified as belonging to
children with minimal misclassification rates, to then alleviate
manual editing required to get tracks containing only children’s
voices. Thus, correctly classifying audio chunks coming from adult
speakers (e.g., to compute adult-child turn-taking) was not the
scope of the present method.
To train our classifier, the fundamental frequency (F0) and the

first two formants (F1 and F2) were chosen a priori as discriminant
acoustic features between child and male adult voices based on
the literature82,83. For each participant, the audio track that had
first undergone voice enhancement and detection was then
chunked into 250ms segments and F0, F1 and F2 were computed
within each of those chunks. The F0 was extracted using the in-
built Matlab® F0 function. F1 and F2 were computed for each
segment of 5 ms using a linear predictive coding (LPC)
approach84. When LPC failed to compute the formants (e.g., in
unvoiced chunks), values from the previous chunk were used.
Moreover, chunks with F1 value superior to 1500 Hz and/or F2
value superior to 6000 Hz were considered as highly improbable85

and replaced by the F1 and F2 values of the previous chunk. Then,
F1 and F2 values were averaged over chunks of 250ms to get one
F1 and one F2 value for each 250ms chunk. Finally, values of F0,
F1 and F2 of each 250 ms chunk were converted into mel
frequencies using the VOICEBOX Toolbox86.
To build the diarization algorithm, we first built a training

sample consisting of 18 min of voices that had been previously
manually classified (9 min of three TD children voices and 9min of
three male adult examiners). To create this training dataset, we
randomly selected 3 ADOS recordings of typically developing (TD)

Table 1. Sample characteristics with statistical comparison between participants without phrase speech (PreSp) and those with speech (Sp).

MEASURE Total sample PreSp Sp P-Val

Number of participants 74 42 32

Chronological age [years Mean (SD)] 3.9 (1.1) 3.5 (1.1) 4.4 (0.9) p < 0.001

Gender [females Number (percentage)] 11 (14.9%) 7 (16.7%) 4 (12.5%) p= 0.747 (χ2)
ADOS CSS total [Mean (SD)] 7.4 (1.6) 7.6 (1.7) 7.0 (1.5) p= 0.047 (MW)

ADOS CSS SA 6.0 (1.8) 6.3 (1.9) 5.7 (1.6) p= 0.17 (MW)

ADOS CSS RRB 9.3 (1.0) 9.6 (0.8) 9.0 (1.0) p= 0.006 (MW)

Total DQ [Mean (SD)] 75.0 (27.7) 59.7 (22.8) 95.2 (19.5) p < 0.001

Receptive Language DQ 70.0 (34.3) 51.8 (29.8) 93.8 (23.6) p < 0.001

Expressive Language DQ 63.5 (30.9) 46.3 (24.1) 86.1 (23.5) p < 0.001 (MW)

Visual Reception DQ 85.9 (30.9) 71.9 (26.6) 104.3 (26.4) p < 0.001

Fine Motor DQ 79.9 (22.2) 68.6 (18.8) 94.8 (17.14) p < 0.001

ADOS duration [minutes Mean (SD)] 50.9 (13.6) 42.4 (8.2) 62.1 (10.8) p < 0.001 (MW)

Children vocal production duration [minutes Mean (SD)] 3.0 (2.8) 1.7 (1.4) 4.7 (3.2) p < 0.001 (MW)

Mann–Whitney was used instead of T-Tests when normality was not assumed according to Shapiro–Wilk test.
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children (1 male aged 2.5 y.o. and 2 females aged 3.1 and 3.0) in
the database of the Geneva Autism Cohort study. In addition, we
randomly selected three ADOS recordings performed by three
different male examiners. We first applied voice enhancement and
automatic voice detection on these tracks. MG then manually
extracted 3min of each child’s voice (9 min in total) and 3min of
each adult male eaminer’s voice (9 min in total) using Audacity®
2.4.2. Segments with overlapping adult and child voice were
discarded. Quadratic Fisher Discriminant (QFD) was applied on the
training dataset to classify each 250ms chunk as belonging to
either adult or child speaker. Mel frequencies of F0, F1 and F2
were used. Using this approach, the QFD correctly classified 66.0%
of the true children chunks and 89.7% of the true adult ones. In
general, 79.7% of chunks that were classified as child were true
child voice. We enhanced the performance of the classifier by
applying the following adjustment: we decided to consider as
misclassified all the sequences shorter than 500 ms that had been
classified in one condition (child or adult). I.e., a vocalization that
lasted <500 ms was not considered as possible. The 500 ms
threshold is close to the 600ms that has been used by Oller et al.
(2010)39 to define the minimal duration of a human vocalization—
this value roughly corresponds to the duration of either two short
or one long syllables. The algorithm thus considered as adult voice
all sequences shorter than 500ms that had initially been classified
as child voice (and reciprocally). Applying this adjustment, the
model correctly classified 70.9% of the true children voice and
98.3% of the true adult ones. In total, 96.1% of the chunks
classified as child were true child voice.
We then built a validation sample consisting of 12min of voices

(6 min of children voices from three different TD children and
6min of three different male adult examiners, extracted manually
by MG). Children were not the same as in the training sample (one
male aged 3.8 y and two females aged 2.5 y and 2.6 y) whereas
adult examiners were the same. After the application of voice
enhancement and voice detection on the full audio tracks, MG
manually extracted the three adult male examiners and the three
TD children voices (2 min of voices for each ADOS, resulting in a
total of 6 min of child and 6min of adult voice). The validation
sample was then segmented into 250 ms chunks on which we
applied our classifier (that had been first trained on the training
sample, and using the adjustment for re-classification of vocaliza-
tions shorter than 500ms). Our classification model showed great
generalization performance on the validation dataset. In this
sample, 81.6% of the true child voice segments were correctly
classified, and 87.5% of segments classified as child voice were
true child voice. This means that 12.5% of the data classified as
child voices would have to be manually removed before the
prosodic analyses (i.e., true adult voice misclassified as child voice),
and that 18.5% of the child voice data would be lost for the
analyses (i.e., true child voice misclassified as adult voices).
Performances of the classifier on the validation sample are
displayed on Supplementary Fig. 1.
Here, we limited our sample to ADOS recorded with a single

male adult examiner. This restriction aimed at optimizing the
diarization algorithm performance as a first approach. Never-
theless, we also explored how our diarization method could apply
on recordings of a child interacting with a female adult. F0, F1 and
F2 also exhibit differences between female adults and children
and could thus be used to diarize these populations. Nonetheless,
lower accuracy is expected given that these parameters in adult
females are less different from children compared to adult males,
making discrimination more difficult. We explored three different
approaches.
First, we applied the classifier that had been first trained to

classify adult male/children voices on a validation sample that
consisted in child and female adult voices. The aim was to
estimate how well the initial classifier generalized to female adult
voice. We randomly selected three ADOS performed by three

different adult women and MG manually extracted their voices
(2 min for each examiner, 6 min in total). The same three TD child
participants as the ones used in the validation sample described
above were used. Using this approach, 81.6% of the true child
voice and 32.6% of the true adult female voice were correctly
classified. The chunks classified as child were correct 40.6% of the
time. This means that 59.4% of the resulting audio track would
have to be manually removed before analysis when using this
approach. Moreover, 81.6% of the true children voices were
correctly identified, meaning that there was no data loss
compared to the same classifier applied on recordings with
adult males.
As a second approach, we trained a whole new classifier on a

sample consisting of children and adult female examiners voice
(i.e., using female voices in both the training and the validation
datasets). To build the training sample, we randomly chose three
ADOS recordings performed by three different female examiners
and MG extracted 3min of each examiners’ voice (9 min in total).
QFD was trained on these voices using the same three children
participants as the ones used in the training sample for the adult
male/child classifier (9 min of children voice). On this training
sample, 40.5% of the true child voice and 91.3% of the true adult
female voice were correctly classified. The chunks classified as
child were correct 73.6% of the time. The resulting classifier was
then applied on the validation sample with children voices and
adult female voices in which 11.6% of children voices were
correctly classified (meaning that 88.4% of the true child voice
data would be lost) and the chunks classified as child were correct
41.0% of the time.
Finally, we trained a three-way classifier using all three voice

categories (children, adult female, and adult male). We mixed the
children, adult female, and male true voices of all training samples
(9 min of isolated voices for each voice category) and trained the
three-way QFD to classify them. On the training sample, 87.5% of
the true adult female voice, 76.9% of the true adult male voice and
27.6% of the true children voice were correctly identified. The
validation sample then consisted in the 6min of each voice
category that we had already used in the approaches described
above. Performances of the three-way classifier on the validation
sample are displayed on Supplementary Fig. 2. The model
correctly identified 64.7% of the true adult male voice, 78.5% of
the true adult female voice and 44.7% of the true children voice.
Altogether, 44.7% of the true children voices were correctly
identified (i.e., 55.3% of true child voice data loss), and the
resulting track contained 30.8% of incorrectly classified true adult
voice data that would have to be manually removed.

Manual editing
MG carefully inspected all the segments classified as child voice by
the diarization algorithm. Audacity® 2.4.2 (Audacity® software is
copyright © 1999–2021 Audacity Team, the name Audacity® is a
registered trademark) was used to remove all segments mistaken
for a child voice but being either adult voice or background noise
that had not been removed by the voice detection algorithm.
Segments consisting of child’s voice overlapping with background
noise or the examiner’s voice were also removed.

Prosodic parameters
We used the Geneva Minimalistic Acoustic Parameter Set
(GeMAPS)41 to extract acoustic features related to prosody.
GeMAPS was run via audEERING® opensmile v2.4.287. GeMAPS
automatically quantifies a set of prosodic parameters and has
already been used in ASD88,89. For each participant, GeMAPS
automatically chunks the audio recording and computes various
acoustic parameters (e.g., pitch) within each chunk. Then, it gives
statistics for each parameter (e.g., mean and standard deviation of
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pitch over all chunks for a given participant). Here, we extracted
the following parameters related to intonation from the GeMAPS:

● Pitch (semi-tone scale starting at 27.5 Hz)
● Pitch variability
● Rising Pitch (Mean of the slope of the rising pitch segments)
● Rising Pitch Variability
● Falling Pitch
● Falling Pitch Variability

To this GeMAPS set of intonation-related parameters we added
the pitch excursion. We used the formula introduced by De Pijper
(1983)90 as this metric has been found to be increased in ASD21.
Briefly, within each chunk (1 s duration) we computed the
logarithm of the maximal F0 divided by the minimal F0, multiplied
by 39.863 and divided by the chunk duration. This gives a value in
semitone/second that captures the magnitude of local intonation
changes.
We computed the following parameters related to loudness:

● Rising Loudness (Mean of the slope of loudness of the
segments with rising loudness)

● Rising Loudness Variability
● Falling Loudness
● Falling Loudness Variability

As the distance between the child and the microphone was not
kept constant during recording (stationary microphone and child
freely moving in the room), we did not use the mean loudness
parameter as it would not be standardized between children. In
contrast, rising and falling loudness parameters are based on the
loudness slope within very short chunks. We can approximate that

the child is static within one chunk so that the inconsistent
distance between the child and the microphone is less affecting
these two dynamical loudness parameters.
We used the following parameters related to voice quality:

● Jitter (variability in the length of the consecutive F0 period
lengths)

● Jitter variability
● Shimmer (variability in the amplitude of consecutive F0

periods)
● Shimmer variability
● Harmonic to Noise Ratio (HNR) (Energy of harmonic

components divided by noise-like ones)
● H1-H2 (Energy of the first F0 harmonic divided by the

second one)
● H1-H2 variability
● H1-A3 (Energy of the first F0 harmonic divided by the energy

of the highest harmonic found in the range of F3)
● H1-A3 variability
● F1, F2 and F3 (Three first formants)
● F1, F2 and F3 variability

We used the following parameters associated to rhythm:

● Pseudo Syllable Rate (number of voiced segments
per second)

● Vowel length
● Vowel length variability
● Loudness peaks/second

Partial least square correlations
We explored the multivariate relations between behavior and
prosody by applying partial least square correlations (PLSC)91,92.
We used the myPLS toolbox93 with Matlab® 2018b. The toolbox is
publicly available (https://github.com/danizoeller/myPLS). PLSC
first computes a correlation matrix between prosodic features
and behavior measures. In PLSC, behavior measures can consist of
either continuous measures (e.g., DQs) or discrete contrasts (e.g.,
group belonging). The correlation matrix is then decomposed into
singular values and several correlation components are derived
from singular values. Each of these correlation components results
from the combination of behavior and prosodic saliences, that
reflect how much each variable contributes to the multivariate
behavior-prosody correlation component. We used permutation
testing to determine the statistical significance of each correlation
component (1000 permutations). We only considered significant
correlation components with p < 0.05 after permutation testing.
Then, we used bootstrapping with 500 bootstrap samples and
replacement to determine the stability of each behavior and
prosody variable saliency. Saliencies were considered stable when
their bootstrap ratio (BSR, mean divided by standard deviation of
saliency bootstrapping result) were >2.3, corresponding to a
confidence interval of 99% that does not cross zero, thus indicating
a stable contribution of the measure to the correlation compo-
nent91. Age, gender, and the type of microphone used were
regressed out as nuisance factors. When PLSC was applied using a
behavioral discrete contrast (when comparing prosody between
PreSp and Sp), nuisance factors were regressed out within each
group separately, whereas normalization, bootstrapping and
permutation were performed across all subjects. We kindly refer
the reader to Zöller et al. (2019) for a more detailed description of
the PLSC algorithm and parameters we applied94.
We first measured how prosody relates to behavior within each

group separately (PreSp and Sp). We thus ran a PLSC on the PreSp
sample (n= 42) and a second one on the Sp sample (n= 32) using
autism symptom severity (measured with ADOS CSS) and
developmental level (measured with DQ) as behavioral variables.

Table 2. Demographic and behavioral measures in the subsample of
PreSp participants with ADOS and DQ collected 1 year after the
recording (n= 32).

MEASURE PreSp longitudinal sample

Number of participants 32

Chronological age [years Mean (SD)] 3.3 (0.9)

Gender [females Number (percentage)] 7 (22%)

ADOS CSS total [Mean (SD)] 7.7 (1.8)

ADOS CSS SA 6.3 (2.1)

ADOS CSS RRB 9.7 (0.8)

Composite DQ [Mean (SD)] 56.2 (21.6)

Fine Motor DQ 64.6 (19.8)

Visual Reception DQ 67.0 (24.3)

Expressive Language DQ 44.2 (22.8)

Receptive Language DQ 49.0 (28.7)

Composite DQ SPC [%/yr Mean (SD)] 10.7 (25.4)

Fine Motricity DQ SPC [%/yr Mean (SD)] 5.3 (28.1)

Visual Reception DQ SPC [%/yr Mean (SD)] 11.0 (30.1)

Expressive Language DQ SPC [%/yr Mean
(SD)]

19.2 (32.6)

Receptive Language DQ SPC [%/yr Mean
(SD)]

6.9 (39.3)

ADOS CSS total SPC [%/yr Mean (SD)] -1.0 (24.2)

ADOS CSS SA SPC [%/yr Mean (SD)] 2.7 (37.2)

ADOS CSS RRB SPC [%/yr Mean (SD)] -0.6 (12.5)

ADOS duration [minutes Mean (SD)] 43.0 (8.9)

Children vocalizations duration [minutes
Mean (SD)]

1.9 (1.6)

SPC relates to symmetrized percent change, a measure of rate of change
within the subsequent year (see supplementary material).
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We then explored the effect of potential confounding factors on
prosodic metrics, namely linguistic complexity of utterances and
age. We defined linguistic complexity according to the speech
acquisition status and we ran PLSC on the whole sample (n= 74)
using group belonging (PreSp or Sp) as the single behavioral
contrast. Furthermore, we ran a PLSC on the whole sample using
age as the single behavioral variable.
Finally, we examined how prosody in preschoolers without

phrase speech (PreSp) predicted behavioral rates of change in
the subsequent year. We isolated a subgroup within the PreSp
group for which ADOS and DQ had been collected 1 year later
(n= 32, aged 3.3 y.o. ± 0.9, range 3.3–5.2, 7 females, see Table 2).
Yearly rates of change were computed using the symmetrized
percent change (SPC) described above76. We ran PLSC on this
longitudinal subsample using prosody metrics and SPC values
for DQ and ADOS CSS.
Age, gender, and the type of microphone used were regressed

out as nuisance factors in all analyses.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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