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SUMMARY  

The core knowledge hypothesis postulates that infants automatically analyze their environment 
along abstract dimensions, including number. According to this view, numerosity should be 
encoded quickly, pre-attentively, and in a supra-modal manner by the infant brain. Here, we 
provide a direct test of this idea by submitting the neural responses of sleeping 3-month-old 
infants, measured with high-density electroencephalography (EEG), to decoders designed to 
disentangle numerical and non-numerical information. The results show the emergence, in 
approximately 400ms, of a decodable number representation, independent of physical 
parameters, that separates auditory sequences of 4 versus 12 tones and generalizes to visual 
arrays of 4 versus 12 objects. Thus, the infant brain contains a number code that transcends 
sensory modality, sequential or simultaneous presentation, and arousal state. 
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INTRODUCTION 

Young animals, including human infants, are exposed to a complex physical world where survival depends 

on a fast and accurate understanding of the environment. Although current advances in artificial 

intelligence show that many structural features can be discovered from raw data, this comes at the cost 

of time, memory, and a large training set. Thus, evolution may have internalized, in the developing brain, 5 

strong priors about the most useful and reproducible physical laws. Some of these priors, shared by many 

species facing the same difficulties, constitute an initial core of knowledge 1 that structures perception 

and guides learning. 

Number discrimination has been reported for mammals, birds, fishes and even insects, pointing to an 

ancient component of core knowledge which may have evolved independently in multiple lineages 2,3. 10 

This capacity is only approximate: it does not support exact counting, but allows animals to distinguish 

sets of objects separated by a certain numerical ratio. Concerning humans, psychophysical assessments 

in adults have shown that approximate numerical judgments are susceptible to adaptation, a perceptual 

phenomenon typically observed for basic sensory properties such as color, contrast or speed 4. Moreover, 

recent neuroimaging investigations have revealed that, in the adult brain, the extraction of purely 15 

numerical information from the visual scene is fast, automatic, and independent from the processing of 

other quantitative characteristics 5–7. Taken together, these findings promote the existence of a genuine 

number sense in our species, whereby number is encoded as a primary property of the visual scene 

irrespective of its relevance and by means of dedicated processes.  

Yet, number is inherently and inevitably correlated with other physical quantities such as size, density, or 20 

total surface. For example, a greater number of dots implies more surface occupied or, if the total surface 

is fixed, a smaller size of the dots. In behavioral assessments, despite the clever control conditions 

designed by various investigators (e.g. 8), it remains difficult to disentangle the weight assigned to purely 

numerical information from that assigned to non-numerical dimensions9–11. Behavioral performance is 

modulated not only by the experimental task12 but also, and crucially, by the age of the participants. For 25 

instance, the numerical judgments of younger children are highly susceptible to irrelevant quantitative 

features10,13 and recent observations indicate that, provided balanced discriminability, surface area is 

more salient than number during childhood while the reverse pattern is typical of educated adults14,15 . 

Therefore, despite multiple reports of approximate perception of number in infants11,16 and neonates17,18, 

the hypothesis that humans are born with a number sense remains debated, with authors either asking 30 
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for more evidence19 or proposing that early numerical discrimination is best explained by a holistic, 

generalized and monolithic sense of magnitude 20–22.   

The neurodevelopmental findings available to date remain insufficient to clarify this issue. In agreement 

with a crucial role for the intraparietal sulcus in adult numerical cognition23, an EEG investigation on 3-

month-olds24 and two fNIRs studies on 6-month-olds25,26 reported that numerical changes (relatively to 35 

shape changes) trigger specific activity over the right parietal lobe. The design of these experiments was 

based on unpredictable changes in the numerosity of visual displays while non-numerical dimensions 

were variable and poorly informative when taken across the entire stimulation set. However, such an 

approach has been criticized by the proponents of the generalized magnitude hypothesis20. In fact, a 

number change might only be detected when it correlates with some non-numerical dimension (e.g. total 40 

surface), eliciting a response that might be large enough not to be washed out by other trials in which that 

dimension is decorrelated from number27,20. Because in the parietal region neuronal populations involved 

in the processing non-numerical quantities (e.g. spatial length or object size) are spatially intermingled 

with number-specific ones28–30, it is difficult to counter this argument. In human adults, neuronal 

populations that selectively encode number have been revealed using high-field fMRI 30,31 and intracranial 45 

electrodes32  whereas, relative to the latter, the brain-imaging methods and analytic tools used in infants 

so far could offer only a much coarser precision.  

The goal of the present study is to clarify the nature of numerical representations in human infancy. With 

this aim, we queried the existence of a genuine number sense in 3-month-olds. To address the challenges 

just described, we exploited the spatial and temporal richness of infant EEG33,34 by combining an unusually 50 

dense coverage of the scalp (custom design net with 256 channels; Fig. S1) with multivariate pattern 

analyses (MVPA).  

We based our design on two postulates. First, if the human brain regards number as a primary sensory 

descriptor, we would expect infants to encode numerical information separately from non-numerical 

parameters, just as adults 5–7. That is, if the infant brain contains neuronal populations specifically tuned 55 

to number, a multivariate decoder trained on EEG signals should be able to discern which number the 

infant saw or heard, independently of the format of presentation. To test such prediction we coupled a 

strategical stimulus design with cross-condition decoding and assessed whether it is possible to retrieve 

the same neural code for number across physical variations. Complementarily, we used representation 

similarity analysis (RSA)35 to separate the significant contributions of each physical parameter as a function 60 
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of time, thereby determining whether number can be effectively separated from the processing of 

concurrent non-numerical magnitudes. 

Second, if the human brain regards number as a primary sensory descriptor, we would expect infants to 

extract numerical information automatically and pre-attentively, just as adults 5–7.  To the best of our 

knowledge such an eventuality has never been probed: in all previous developmental studies active 65 

attendance and artificially enhanced numerical saliency might have led to attentional biases precluding 

the possibility to characterize spontaneous encoding. To overcome such limitation, we evaluated number 

processing during sleep. Furthermore, unlike previous paradigms, our experimental design did not rely on 

change detection, nor elicit any implicit comparison emphasizing the number dimension. We presented 

auditory sequences varied in duration, tone rate, instrument and pitch; and visual displays heterogeneous 70 

for object size, density, identity and color. The stimuli were randomly intermixed, and number was only 

one of their many descriptive features. If the human brain regards numerosity as a primary perceptual 

descriptor since start, we expected very young infants to encode numerical information pre-attentively 

and irrespective of any concurrent non-numerical parameter. 

RESULTS 75 

Three-month-old infants (N=26) were exposed to 24 different types of auditory sequences composed of 

either 4 or 12 identical tones. The tones were chosen from eight possibilities (2 instruments x 4 notes) to 

create sensory variability outside the numerical and non-numerical parameters of interest. The sequences 

were played in a randomized order for a total of ~1900 trials/subject. Crucially, the auditory space (Fig. 

1A) carefully controlled for all the quantitative dimensions involved (Table S1). The fundamental 80 

advantage offered by multivariate decoding consists in the possibility to test estimators on number 

contrasts (i.e. pairs of sequences) where tempos and durations are orthogonal to those used for their 

training, thereby canceling the problematic correlation between numerical and non-numerical 

parameters (Fig. 1C and S2). 

Retrievability of neural codes for number when non-numerical parameters are canceled out 85 

Within three distinct assays, algorithms were trained to separate one experimental condition from a 

composite class that included sequences matched in either rate (50% of cases) or duration. At test, the 

non-numerical quantities distinctive for one particular numerical class during training were prevented 

from yielding above-chance scores since they characterized either both numbers (A1, B1: 4- and 12-tone 

sequences have the same total duration; A2, C2: they have the same rate), the opposite number relatively 90 
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to the training set (B2, C1), or none of the test trials (this was the case of the fastest rate in schema B and 

the longest total duration in schema C). To avoid any confound with the ongoing auditory stimulation, the 

decoding analysis was applied at the end of the sequence, when the brain may compute total 

numerosity36. Specifically, for every schema in Fig. 1C we employed a series of classifiers trained on brief 

(10ms) consecutive windows following of the onset of the last sound. The results (Fig. 2) revealed 95 

significant decoding of number in a broad time window (~400-800ms) following sequence ending. Fig. 2A 

shows that all estimators trained and tested in between 440 and 750ms achieved above-chance scores, 

with the best classification performance observed at 610ms (N=26; M±SD=0.557±0.044, chance=0.5). 

Their generalization performance across time37 yielded a square-shaped matrix, indicating an essentially 

stationary code (Fig. 2B). Further, classification dynamics were qualitatively similar across all tests (Fig. 2C 100 

and 3).  

We also considered the non-numerical features, rate and duration, and trained new sets of estimators to 

separate pairs of conditions differing in tone rate but matched for sequence duration (“4L” vs “12M”) and 

differing in total duration but matched for rate (“4M” vs “12M”). At test, the numerical distinctions 

characterizing the training sets were inverted (“12L” vs “4M” and “12S” vs “4L” respectively) to obtain 105 

classification scores attributable exclusively to rate or duration (Fig. 3). We observed no overlap between 

number and rate decoding (Fig. 3A), nor between number and duration decoding (Fig. 3B), demonstrating 

that successful performance in the main analysis (Fig. 2) was not driven by the fact that, on average, 

sequences of 4 tones were slower or shorter. 

Number is encoded separately from other magnitudes 110 

So far, we have demonstrated that “4” and “12” can be reliably discerned from infant neural responses 

during sleep, when the effects of specific non-numerical parameters are canceled out. This result 

highlights that the infant brain keeps track of numerical information in a pre-attentive, automatic manner. 

However, the nature of this mechanism remains somewhat unclear: does successful classification rely on 

a generalized code where numerical and non-numerical cues are fused20,22? Or are these dimensions 115 

factorized in neural signals? To evaluate the separability of the neural codes for number and non-

numerical magnitude, we used RSA which enables to assess the effect of multiple dimensions at once 31. 

At every time point from sequence offset onwards, we computed the correlational distance between the 

average responses evoked by each pair of auditory conditions. Next, using multiple regression, we 

modeled the resulting neural dissimilarity matrices as a linear combination of three theoretical matrices 120 

(Fig. 4A-top) depicting the dissimilarity of the sequences along their defining quantitative dimensions. 
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With this approach, we obtained three series of beta weights reflecting unique portions of the neural 

variance that each quantitative dimension explained independently from the other two.  Fig. 4A (bottom) 

shows how rate, duration and number could be effectively disentangled.  Crucially, number exerted the 

strongest degree of modulation over a relatively late time-window with a peak in beta weights observed 125 

at 600ms (N=26, 525-805ms: pclust=0.0001; Fig. 4A). In full agreement with the time-course of the decoding 

performance (Fig. 2), this finding confirms the numerical nature of the neural patterns underlying 

classification by demonstrating that the infant brain estimates number separately from the other 

magnitudes, just as adults. 

Additionally, number coefficients were significantly above zero over an earlier window (105-280ms: 130 

pclust=0.0001), indicating the existence of a preliminary process not captured by the decoders. Considering 

that the auditory ERP was still unfolding during this period, a superimposition of neural sources pertaining 

to numerical information and other sensory parameters might explain the difference in sensitivity 

between decoding and RSA analyses. We hypothesized that, during the sequence itself and before 

reaching a representation of total number, the brain might constantly keep track of each additional 135 

sequence item. This could be implemented via the update of an analog accumulator 38, through a 

hippocampal “event code” 39, or by a matrix-based successor function in neuronal vector space 40. 

Regardless of the exact mechanics involved, the occurrence of such a process implies that the gradually 

evolving number should be discernible from neural signals while successive tones are played. To test the 

latter eventuality, we focused on “12” trials and applied RSA to the neural signals following tones whose 140 

ordinal number was separated by a certain ratio. Supporting our interpretation, Fig 3B (bottom) shows 

that beta coefficients for number were significantly positive over an early time window (160-335ms; 

pclust=0.0007) following the 3rd vs. 7th tone (ratio 1:2.33). We found a similar effect following the 4th vs 9th 

tones (ratio 1:2.25) but not the 3rd vs. 5th tones (ratio 1:1.67; Fig. S3). This range of successes and failures 

indicates that early numerical encoding is imprecise and shaped by Weber’s law, corroborating previous 145 

behavioral observations in 6-month-olds 41,42. 

Cross-decoding reveals a supra-modal neural code for number in the infant brain 

Our results demonstrate that the infant brain treats number as a basic property of auditory sequences, 

not reducible to other non-numerical variables. Is this representation bounded to audition or is it more 

abstract? We examined whether the same numerical code extends across sensory modalities, 150 

presentation formats (sequential vs simultaneous), and vigilance/arousal state. We took advantage of the 

fact that some infants (N= 16) were awake and attentive before or after the sleeping auditory session. 
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During these periods, we presented them visual displays of 4 and 12 simultaneous objects (Fig. 1B). Object 

size, density, total visual occupation and luminance were controlled across images. We selected the 

decoders successful in isolating a number-specific neural pattern from the auditory trials (Fig.2), optimized 155 

their learning by training them iteratively on all possible auditory schemas (Fig. 1C/S2, see STAR Methods), 

and assessed their performance on visual responses (Fig. S4). Strikingly, estimators trained between 440 

and 610ms from the last tone composing the auditory sequences performed reliably above chance from 

~300 to 580ms relatively to image onset (Fig. 5, N=16: pclust=0.005), with the best performance obtained 

at 370ms (e.g. for the classifier trained at 500ms: M±SD=0.588±0.076, chance=0.5). This result did not 160 

depend on the type of control used over non-numerical visual attributes, since similar scores were 

achieved on trials that equated extensive parameters (N=16; training 490-510ms, test 360-380ms: 

M±SD=0.565±0.092) or intensive parameters (mean M±SD=0.605±0.148; no significant difference: t=-

0.853, p=0.41). 

DISCUSSION 165 

In the current study, we exposed preverbal infants to an auditory space composed of sequences of musical 

tones with balanced numerical and non-numerical quantitative parameters. We used multivariate 

analyses to isolate purely numerical processes from any modulatory effect ascribable to the other 

quantitative characteristics of the stimuli (single tone duration and inter-tone intervals, rate, sequence 

duration and total amount of sound/silence). Our results reveal that the infant brain encodes numerical 170 

information automatically and separately from other non-numerical dimensions, indicating that number 

is a fundamental and key dimension for representing the auditory environment. Such a finding is 

somewhat counterintuitive: after all, number encapsulates a discretization process, just as rate, and a 

cumulative aspect, just as duration. What could be the benefit of a primary neural mechanism specifically 

dedicated to the accumulation of discretized sensory evidence? The answer may lie in the unique 175 

representational flexibility number affords: unlike the other quantitative parameters, number can be 

abstracted away from sensory modalities, time and space 43. Coherently with this conception, our cross-

decoding analysis revealed that at ~12 weeks of age our brain engages a neural mechanism for number 

processing that transcends wakefulness state, input modality, and temporal versus spatial distribution.  

While numerical behaviors have been well documented from the 6th month of age, less is known about 180 

younger infants. According to a recent habituation study, 4-month-olds are unable to detect a numerical 

change with ratio 1:3 unless they are provided with redundant multimodal stimuli 44. Such an observation 
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favors the proposition that, if at all, young infants might encode numerical quantity only in particular 

circumstances of enhanced saliency 11. In contrast, our analyses revealed numerical representations in the 

context of a rich and varied sensory stimulation (the sequences were composed of different musical notes 185 

played by two orchestral instruments) in which number discriminability, and thus saliency, was equated 

to that of the other quantitative dimensions (duration and rate). As with other dissociations  between EEG 

and behavior in the literature 24, different outcomes might arise from two factors. First, our experiment 

benefits from a large number of trials and therefore optimal sensitivity relatively to the few measures 

obtainable with behavioral habituation paradigms. Second, while overt behaviors result from an intricate 190 

combination of multiple neural/cognitive processes and developmental immaturities, brain measures 

provide a more direct index of a given representational mechanism. 

Our results do fit with two seminal reports pertaining to newborns. Namely, after a brief familiarization 

phase, 0- to 4-day-olds were found to preferentially look at visual arrays that matched an auditory 

sequence in number of items, provided that the numerical ratio between test displays was at least 1:3 195 

17,18. Still, such a preference might have reflected an instinctive mapping between two arbitrary 

quantitative dimensions, such as rate and density, similar to those observed in both neonates 45 and older 

infants 46,47 and similar to other intuitive auditory-visual mappings connecting, for instance, shape 

spikiness to vowels48. If that was the case, detection of a correspondence between auditory temporally-

distributed information and visual ensembles might arise from a generalized magnitude representation 200 

20,22. The neural evidence provided by the current study, however, supports the alternative interpretation 

according to which newborns can detect a genuine supramodal numerical correspondence; that is: they 

“perceive abstract numbers” 17. Interestingly, these behavioral observations also suggest that the abstract 

neural code isolated by our analyses in 3-month-olds is likely to be operational since birth. Such a 

conclusion is corroborated by the computational demonstration that cells tuned to the numerosity of 205 

visual sets emerge automatically in untrained neural networks 40,49,50 and enable them to perform number 

discrimination tasks, even in the presence of misleading non-numerical quantitative parameters 50. Such 

mechanism, extended to cross-modal stimuli, could explain the present findings. Furthermore, inspecting 

the internal dynamics of the neural networks uncovered the existence of number-sensitive and number-

selective response profiles 49, whereby tuning emerges from monotonic increases and decreases of 210 

neuronal activity in the earlier layers of the network 50. It is intriguing to notice how such “summation 

coding” is consistent with the accumulator captured by our RSA analysis (Fig. 4B).  
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Numerical representations in human infants appear similar to those reported for non-human animals. As 

mentioned in the introduction, the ability to rely on quantities is widespread across the animal kingdom, 

among bees51, fishes52, birds and mammals. In line with our observations neurons tuned to approximate 215 

number irrespective of other physical parameters, such as item size or density, have been discovered in 

the intraparietal sulcus of the macaque3, in the nidopallium of naïve chicks 53 and in the pallium of 

zebrafish54. Within the intraparietal sulcus of the monkey, sequential numerosities are processed by two 

distinct neuronal populations. The first encodes intermediate numbers, with neurons progressively 

increasing their firing rates while stimuli presentation is ongoing. At the end of the enumeration process, 220 

the final cardinality is accomplished by a different neuronal population engaged by numerical information 

spread across both time and space36. These findings are consistent with both our retrieval of an early and 

late number effect (Fig. 4) and the biphasic dynamic of the neural networks mentioned above49,50. Lastly, 

the numerical representations of the rhesus macaque have been proven to be partially cross-modal55,56. 

Overall, these observations confirm that number constitutes a basic dimension that helps organisms 225 

structure the environment. We reported neural separability for 4 vs. 9 (Weber fraction=0.55) but not 3 vs 

5 (Weber fraction=0.4) in congruency with the notion that the ratio between two discriminable quantities 

narrows down from 1:3 at birth 17,18 to 1:2 over the first semester41,42 and continues to decrease with age. 

Similar Weber fractions (i.e. ~0.5) have been observed in crows57 and monkeys58, although using a 

different paradigm. Whereas for monkeys numerical acuity can be enhanced with training59, that of 230 

humans might increase due to exposure, education, and brain maturation60–62. 

What about human adults? Paralleling our observations, steady-state visual evoked potentials disclosed 

the occurrence of spontaneous numerical encoding even for complex and heterogeneous stimuli that 

depart from the artificial-appearing dot arrays classically used in this research field63. Further, 

electrophysiological evidence indicates that the adult visual cortex might extract numerical information 235 

through a series of two processing stages, compatible with those highlighted by our RSA analysis 64. Yet to 

our knowledge, an abstract neural code for non-symbolic, non-verbal numerosity as that isolated by our 

classifiers (i.e. a code that transcends format, modality and arousal state) has never been observed in 

humans. Two separate fMRI studies on adults have reported overlapping neural activations in response 

to visually and auditorily presented sequential numerical displays65 and to sequentially and 240 

simultaneously presented visual numerical displays 66. However, subsequent fMRI investigations failed to 

replicate these findings, suggesting a role for active comparison processes in the previous results 67,68. 

Thus, the neuroimaging evidence alone leaves open the possibility that numerical representations 

become modality and format specific as we grow older. Nevertheless, adult psychophysics offer 
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meaningful insights in this regard. Adaptation of numerosity estimates 4 generalizes across formats and 245 

sensory modalities, from sequential streams to spatial arrays (and vice versa), and from auditory 

sequences to visual displays (again in a bidirectional fashion). Such cross-format and cross-modal 

adaptation effects are nearly as large as those observed within-format and within-modality, revealing that 

to be adapting is an abstract quantity system 69. Further, adaptation remains spatially specific in all cases 

indicating a relatively basic encoding mechanism rather than a higher-level cognitive construct 70. Overall, 250 

this pattern of behavioral findings provides a glimpse of a discrete number system in adults that parallels 

the one isolated here within a developmental neuroimaging setting.  

In conclusion, our observations show the existence, early in life, of a spontaneous, specialized and 

modality-independent neural mechanism that encodes number as a basic sensory descriptor; that is to 

say: a primitive and abstract number sense. Given the widespread idea that approximate numerical 255 

computations function as a “start-up tool” for the acquisition of mathematics 71, our findings are likely to 

have practical repercussions in the context of educational and rehabilitative interventions 72. 
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MAIN FIGURES CAPTIONS 

Fig. 1 Experimental paradigm for number decoding. (A) Sleeping 3-month-old infants were exposed to 

five types of auditory sequences containing 4 and 12 tones while recording 256-channel EEG. All 

quantitative parameters were controlled (see Table S1). (B) When feasible and in a separate session, 

infants were presented with images of 4 and 12 colorful objects. Object size, density, total occupation 

area and luminance were controlled (ISI=inter-stimulus-interval). (C) Scheme for training and testing 

number decoders. Each decoder was first trained to separate numerosities 4 versus 12 based on EEG data 

from three conditions (triangle), equalized for either total duration (x axis) or individual tone duration (i.e. 

rate, y axis). Each decoder was then tested for generalization on new trials, again matched for one or the 

other parameter. Tests B2 and C1 provide the strictest control for non-numerical quantities as they 

exclusively involve new conditions never seen during training; the latter are matched for one non-

numerical parameter (tone duration for B2, total duration for C1) whereas the value on the other 

parameter would assign them to the wrong number class. For an alternative visualization of these 

schemas see Fig. S2. 
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Fig. 2 Classification of “4” vs “12” from infant neural responses. (A) Average decoding performance of all 

classifiers (Fig. 1C). Time 0 corresponds to the onset of the last tone composing the sequence. Shaded 

areas indicate the standard error (SEM) across subjects (N=26) and dotted black lines mark theoretical 

chance level. (B) Generalization-across-time (GAT) matrix. Dashed contours delimit statistical significance, 

calculated by means of a cluster-based permutation t-test against chance (pclust=0.0001). Right panel: 

slices through the GAT matrix show the performance of classifiers trained every 50ms between 450ms 

and 800ms. (C) Average performance of classifiers sorted as a function of whether they did or did not 

share any specific stimulation condition between training and testing (see Fig1C). Note that all classifiers 

were always cross-validated with a separate set of trials not used for training. 
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Fig. 3. 

Classification of non-numerical parameters (rate and total sequence duration) relative to number (A) 

Within the training sets of our main decoding analysis, class “4” was necessarily characterized by auditory 

sequences that are on average slower relatively to those corresponding to class “12”. With this qualitative 

assessment, we asked whether above-chance performance on conditions matched for duration (i.e. when 

duration-related effects are completely uninformative, see Fig. S2 for an intuitive illustration) might reflect 

the retrieval of a “slower than/faster than” type of computation. In other words, we evaluated whether 

successful number classification could derive from rate distinctions. In the two panels, rate-based 

classification performance (pclust=0.0001) is superimposed over the average scores obtained with the main 
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decoding analysis when classifiers were tested on pairs of conditions that differed for both rate and 

number (pclust=0.0002). We found no overlap between the two performances, indicating that the main 

classification scores were not contaminated by the retrieval of rate-related effects. (B) Within our main 

training sets, class “4” was necessarily characterized by auditory sequences that are on average shorter 

relatively to those corresponding to class “12”. This qualitative assessment mirrors that of panel A. 

Namely, we tested whether successful performance on conditions matched for rate (i.e. when rate-

related effects are completely uninformative) could reflect the fact that the infant brain encoded the 

stimuli in terms of “shorter than/longer than”. As in A, the superimposition of classification scores 

reflecting pure duration-related effects (pclust=0.0001 and pclust=0.012) on the performance obtained in 

those main tests that included between-class duration discrepancies (pclust=0.0123) indicates that the 

scores for number were not contaminated by duration-related processing. 
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Fig. 4 Representation similarity analysis uncovers distinct dynamics for number and other quantitative 

dimensions. Theoretical matrices measuring the predicted distances between pairs of stimuli along the 

dimensions of number, duration and rate were entered in a multiple linear regression to explain the 

corresponding neural distances at each time point. Standardized beta weights averaged across subjects 

(N=26; vertical lines indicate the SEM) are marked by filled circles when significant. This analysis was 

performed either locked to the onset of the last tone of 4- and 12-item sequences (panel A), or locked to 

the onset of the 3rd and 7th tone within 12-item sequences (panel B). Numerical similarity predicts neural 

similarity in two distinct time windows (filled red circles): an early one (~200ms), present in both panels 

and reflecting current numerosity, and a late one (~600ms) present only at sequence ending and reflecting 

total numerosity. 
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Fig. 5 Generalization of number classifiers from auditory to visual trials. (A) GAT matrix showing the 

performance of classifiers trained on auditory trials at different times relative to sequence offset (y-axis) 

and tested on visual trials at different times relative to visual onset (x-axis). Dashed contours delimit 

statistical significance (cluster-based permutation t-test). (B) Slices through the GAT matrix show the 

performance of classifiers trained every 50ms between 450ms and 600ms. 
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STAR METHODS  

RESOURCE AVAILABILITY 

Lead contact  
Further information and requests for resources should be directed to and will be fulfilled by the lead 
contact, Giulia Gennari (giulia.gennari1991@gmail.com) 5 

Materials availability  
The study did not produce new materials.  

Data and code availability 
Original data and custom scripts are available upon request and will be deposited in a public repository 
according to the requirements of the journal.  10 

SUBJECT DETAILS  

26 healthy normal-hearing infants (15 females and 11 males) were tested between 12 and 14 weeks after 
birth (mean age= 13 weeks and 2 days). They were born after 37 weeks of gestation with a birth weight 
above the 10th percentile. An additional 23 participants were excluded from the analysis because of: 
impossibility to collect enough data due to excessive fussiness during the experimental session (n=13), 15 

insufficient number of trials after artifact rejection (n=4, the artifact rejection procedure is described 
below), equipment failure during data acquisition (n=6). The study comprised an auditory and a visual 
session. Out of the 26 infants included, only 16 (9 females and 7 males; mean age= 13 weeks and 2 days) 
had enough good-quality data for the subsidiary visual part. The protocol was approved by the regional 
ethical committee for biomedical research (CPP Region Centre Ouest 1). Parents gave their written 20 

informed consent before starting the experiment. 

METHOD DETAILS  

Stimuli 
Auditory Stimuli: Orchestral string tones were synthesized with Ableton Live (software version 10; Berlin, 
Germany). Four notes (C3, G3, C4 and G4) were played by a viola and a cello with three possible durations 25 

(40, 120 and 360ms; referred to as “S” [short], “M” [medium] and “L” [long] respectively) for a total of 24 
different sounds. The shape of the acoustic envelope was the same across all notes. Each auditory 
sequence comprised a single tone repeated 4 or 12 times at a constant rate. The duration of inter-tone 
intervals was half that of the single tone characterizing the sequence (i.e. 20ms for S sounds, 60ms for M 
sounds or 180ms for L sounds) resulting in three possible rates (1.9Hz, 5.6 Hz and 17Hz) and four possible 30 

total durations (240ms, 720ms, 2160ms and 6480ms; however the shortest total duration, i.e. “4S”, was 
excluded a-priori from the analysis because it sounded awkward). “4” was chosen as the smallest number 
for the following reason. When it comes to encode numerical information, infants are thought to possess 
two systems: one for approximate quantities and another for tracking up to 3 objects in parallel16,73.To 
date, the circumstances in which one or the other system are recruited to process small numerosities 35 

remain unclear (e.g. 41 vs 74). In our study, we wanted to rule out the possibility that differences between 
numerical conditions could be attributed to the intervention of two distinct representational systems 
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rather than to genuine neural codes for number. Crucially, the minimal ratio between pairs of numbers, 
tone rates or total sequence durations was always 1:3. Given that infants differentiate numbers and 
durations with the same level of precision 75, this means that the three quantities were equally 40 

discriminable for our participants. All sequences had the same sound-to-silence ratio (2:1) and equal 
loudness (75 dB). They were recorded on the left audio channel, which was connected to the 
loudspeakers. A 10ms-square signal was positioned on the right channel in correspondence with the onset 
of the initial tone and with the offset of the final tone composing each sequence; these clicks were used 
as a TTL signal to ensure accurate synchronization between the EEG recording and the stimulation.  45 

Visual Stimuli: The visual stimuli were the same as those used by Izard, Dehaene-Lambertz & Dehaene in 
2008 24. They consisted of a set of 400 images depicting either 4 or 12 colorful animal-like objects (8 
different objects) on a black background. To minimize any possible effect ascribable to non-numerical 
perceptual attributes, the position of the objects and the physical parameters of the image varied across 
stimuli following two rules. Namely, in 200 images the extensive parameters of the display (total 50 

luminance and total occupied area) were kept constant across numerosities, whereas in the remaining 
200 images the intensive parameters (object surface size, average area devoted to each object) were 
equated between numerosities. For more details on the control for non-numerical factors see 24. 

Procedure 
Infants were tested in a soundproof Faraday cage equipped with a computer screen and loudspeakers on 55 

the ceiling. They were held by a caregiver in a comfortable position and constantly monitored by the 
experimenter from two video cameras located underneath and above the screen. All stimuli were 
presented using the Python package PsychoPy 76. 
The study comprised long-lasting auditory sessions and a subsidiary visual stimulation. Whereas sleep was 
required during the former, participants needed to be awake and calm in order to attend the visual 60 

display. Therefore, the order of visual/auditory sessions was based on their alertness state when arriving 
at the lab: when the infant was alert the visual part was carried first and vice-versa in case of sleepiness. 
Of the 26 subjects included in the final analysis, 13 infants saw the images before the auditory stimulation 
and 6 after, 1 infant partly before and partly after the auditory sequences. The remaining 6 infants had no 
visual stimulation. 65 

Auditory: Sequences were played with a fixed inter-sequence-interval of 1 second and organized in blocks 
of 688 trials (72 for “4S”, 136 for “4M”/ “4L”/ “12M” and 104 for “12S”/ “12L”) where the four notes, the 
two instruments and two numerosities were balanced. The different number of trials for each type of 
sequence was motivated by analytical plans (e.g. 4S was included in the stimulation to provide perceptual 
harmony but excluded from the analysis a-priori) and practical constraints (i.e. the need to collect a large 70 

number of trials in a reasonably limited amount of experimental time).  The order of the sequences was 
randomized with two constraints: the same number could not be presented more than 4 times in a row 
and the same condition (characterized by a given note, instrument, numerosity, rate and duration) could 
not be repeated more than twice in a row. A minimum of 2 blocks (corresponding already to ~71 minutes 
of listening) and a maximum of 3 blocks were presented to each participant. Breaks were taken whenever 75 

necessary and sleep was strongly encouraged. Often, the auditory stimulation started while the infants 
were still awake. However, in case the participant did not fall asleep within a short time window (~8/10 
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minutes), the session was paused or terminated. On average, infants were asleep for 72% of the auditory 
session.  

Visual: Images were presented for 1200ms in a continuous stream and randomized order, interspersed 80 

with 100ms-long blanks. They were organized in mini-blocks of 100 items, where numerosities and non-
numerical parameter control strategies were balanced. The onset of each image was recorded through a 
photodiode capturing the appearance of a white rectangle at the bottom corner of the computer screen 
(not visible by the subject) and sent as a TTL signal to the EEG recording system (NetStation 5.3, EGI). 
When the infant looked away the stream of numerical displays was interrupted, and a colorful attractor 85 

was presented until attention was re-established. The visual stimulation ended after the presentation of 
all the 400 images available or as soon as the participant could no longer engage with the displays.  

EEG recording 
The electroencephalogram (EEG) was continuously digitized at 500 Hz (Net Amps 300 EGI amplifier 
combined with NetStation 5.3 software, EGI®, Eugene, OR, USA) from 256 channels. We used a prototype 90 

HydroCel net (EGI) referenced to the vertex. Twenty of the standard temporal channel locations in a 
classical geodesic 128-sensor net were replaced by tight grids of sensors (70 electrodes on each side, 
organized in hexagonal pods) with no sponge inserts (Fig. S1A). Electrodes were made of carbon fibers 
embedded within a plastic (ABS) substrate and coated with silver-chloride. 

Data preprocessing   95 

The data were first band-pass filtered ([0.5 - 40Hz]) and the mean voltage of each electrode was set to 
zero. We then followed an artifact detection-correction procedure validated and exhaustively described 
by Fló et al. 77. Namely, we based artifact detection on adaptive (rather than absolute) thresholds to 
account for inter-individual variability and for the heterogeneous influence that distance to the reference 
and vigilance state exert on the voltage. Thresholds were set independently for each subject and for each 100 

electrode upon the distribution of different measures along the whole recording (threshold = median +/- 
n*IQ, where IQ is the interquartile range of the distribution). We used series of algorithms that rejected 
samples on the basis of: the voltage amplitude and its first derivative; the variance across a 500ms-long 
moving time window; the fast running average and the deviation between the fast and the slow running 
averages within a 500ms-long sliding time window. Two additional algorithms identified whether the 105 

power within the 0-10Hz band was excessively low or within 20-40Hz excessively high relative to the total 
power; and whether the voltage amplitude displayed by each sensor at a given time point was 
disproportionate relative to that recorded by the other sensors at the same instant. For these last two 
algorithms, thresholds were computed upon the distribution across channels.  

Artifact detection was conducted on the continuous recording in an iterative fashion (4 loops in total). At 110 

each run,  previously identified bad samples were kept aside for the subsequent artifact detection steps. 
We started by applying the algorithms twice in order to identify very short signal disruptions (80ms max), 
corresponding to heart beats or jumps. We corrected these very short segments by estimating their 
principal components (PCA) and removing the first n components determining 90% of the variance. This 
operation was followed by a high-pass filter (0.5Hz) to eliminate possible drifts that could have been 115 

created by this local correction. Next, we applied the detection algorithms twice more. At the end of these 
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iterations, we obtained a rejection matrix of the same size as the EEG recording indicating “bad” time-
samples for each electrode.  

The EEG data and the corresponding rejection matrix were then segmented into epochs from -40ms to 
+1240ms relative to the onset of the last tone composing the auditory sequences and from -200ms to 120 

+1300ms relative to the onset of the images. To analyze responses within sequence, a third set of epochs 
was created from the onset of the first note and included a different time-window depending on the 
sequence lengths: [-200 to 1820ms] for “4M” and “12S” trials; [-200 to 3260ms] for “4L” and “12M” trials; 
[-200 to 3260ms] and [+2500 to 6500ms] for “12L” trials. The longest sequences were divided in two parts, 
first from the onset of the first tone until the end of the 6th inter-tone interval and second from the onset 125 

of the 6th tone until the 12th inter-tone interval.  

Once segmented, we used the rejection matrix to mark, in each epoch, the time points containing 
prominent artifacts (bad times) and channels that did not function properly (bad channels). Specifically, 
bad times were periods longer than 80ms with a percentage of rejected channels superior to 30% or 
beyond 2IQ from the 3rd quartile of the distribution of the percentage of rejected channels across time. 130 

Similarly, bad channels were the ones not working properly for more than 30% of the time points 
composing the epoch or with a percentage of bad samples that went beyond 2IQ from the 3rd quartile of 
the distribution of the percentage of rejected samples across channels. With this step we extended in 
time and space the detected bad samples based on the assumption that when a conspicuous portion of 
channels/times are detected as “bad”, the temporal/spatial neighbors are likely to be affected by the 135 

artefact as well. Bad channels and long rejected segments of a given electrode were corrected using 
spherical splines interpolation 78 only if at least 50% of the neighboring channels were intact. 
Epochs were discarded if more than 15% of their samples contained artifacts or if more than 2.5% of their 
channels were marked as bad. Since in infants ongoing activity is particularly large and can hinder the 
extraction of the evoked potential, epochs were also discarded based on their Euclidean distance from 140 

the average, i.e. when their mean or maximum distance from the average response was an outlier in the 
distribution (> 3rdquartile + 1.5*IQ). Following these automated rejection steps, the remaining epochs 
were visually inspected and a few channels or trials still presenting obvious aberrancies were dropped. 
Accepted epochs were low-pass filtered at 20Hz and mathematically re-referenced to the mean of all 
channels.  145 

Since our paradigm was mainly based on the auditory stimulation, our inclusion criterion concerned the 
latter: participants were included in the study with a minimum of 192 artifact-free epochs for each of the 
most frequent auditory conditions (“4M”, “4L”, “12M”). This criterion was set to guarantee a minimum of 
24 pseudo-trials for every class in each training set (all the details are explained in the Decoding section 
below). In our final group of infants (N=26), the mean rejection rate for auditory trials was 33.5% (with 150 

median=34.3% and range 12.4 to 48.4%). The mean rejection rate during wakefulness was 59.6% (with a 
median of 67.1% and range 28.2 to 80.8%). Considering that participants were awake during less than 
30% of the auditory session, this implies that during the vast majority of trials included in the main 
analyses infants were asleep. On average, the number of artifact-free epochs available per subject was 
1252, including 247 trials for “4M”/“4L”/“12M” and 189 trials for “12S”/”12L” (the remaining epochs 155 

belonged to the “4S” condition and were discarded from further consideration).  
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The visual part of the experiment was much shorter due to the limited attention span typical of this age. 
For an infant to be included in the cross-modal analysis, we required at least 64 artifact-free epochs. The 
mean rejection rate for visual epochs was 62% (25 to 77.4%) and only 16 out the 20 subjects who attended 
the visual displays met the criterion. The average number of artifact-free visual epochs available for these 160 

16 subjects was 109.  

QUANTIFICATION AND STATISTICAL ANALYSIS  

Decoding 
Time-resolved multivariate pattern analyses were conducted within subject, relying on the Python 
packages MNE 79,80 and Scikit-Learn 81. EEG data were first prepared by removing a linear trend from the 165 

entire segments to remove eventual slow drifts. After this preliminary step, epochs were divided into 110 
consecutive windows of 10ms, from -40ms to 1060ms relative to the onset of the last tone composing the 
auditory sequence. All the procedures described in this section were carried at the level of single time-
windows, each corresponding to a matrix with shape n channels x 5 samples (sampling rate=500Hz, 5 
samples=10ms). The general goal of the decoding analyses was to predict a vector of binary categorical 170 

data (y, containing the classes “4” vs “12”) from a matrix of single-trial neural data (X) which included all 
EEG channels.  

For the main analysis we used three separate sets of estimators and followed the three complementary 
strategies illustrated by Fig. 1C and S2. In each training phase, one number class included trials belonging 
to a single experimental condition (e.g. “12M”), while the alternative numerical class was composed of 175 

two experimental conditions, one characterized by the same tone rate (e.g. “4M”) and the other 
characterized by the same total duration (e.g. “4L”) present in the homogeneous class (in this example: 
“12”). With this design, we minimized the impact of non-numerical parameters on the training process as 
number (4 vs. 12) was the only reliable feature to separate classes. Further, to make sure that duration-
based or rate-based learning could not lead to successful performance, each set of classifiers was tested 180 

twice, on two different datasets (Fig. 1C and S2). In a first test (A1, B1 & C1) all sequences had the same 
total duration while the specific rate indicative of number during training could not lead to above-chance 
scores since it was either not at all present (A1, B1) or a peculiarity of the opposite numerosity (thus 
misleading, C1). Specifically, test A1 used short tones for 12 (fast rate) and medium tones for 4 (medium 
rate) whereas during training the fast rate was absent and the medium rate corresponded to both 4 and 185 

12 (i.e., during training, the medium rate was uninformative to class separation). Test B1 entailed a similar 
configuration. Concerning C1, the medium rate characterized “4” while it corresponded to “12” during 
training. The second test (A2, B2 & C2 in Fig. 1C and S2) followed the same logic, in a reversed fashion: 
tone rate could not drive above chance scores since it was the same across conditions and the total 
duration indicative of the composite class during training could not lead to above-chance scores since it 190 

was either absent (A2, C2) or a peculiarity of the opposite numerosity (thus misleading, B2). Note how 
sub-schemas B2 and C1 yield pure cross-condition performances as both test conditions correspond to 
new sequence types, never employed during training.  

In order to avoid overfitting, we used a cross-validation procedure with 100 loops. At each run, trials were 
shuffled, then assigned to the respective training and test sets. To ensure equal contribution of each 195 

experimental condition and at the same time maximize the number of trials during training, the splitting 
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was always organized to ensure balanced composite classes (in terms of n epochs per condition) but still 
exploit all 4M/4L/12M trials available for a given subject. Concerning schema A, the number of “4M” trials 
was first equated to that of “4L” (by randomly selecting and dropping n extra epochs for the most 
numerous condition), then 15% of “4M” trials and 15% of “4L” trials were kept aside for the test phase. 200 

The splitting was slightly different in schemas B and C in order to counterbalance the fact that “12S”/”12L” 
trials were less numerous relative to “12M” (see Procedure above). Namely, 80% and 20% of “12S”/”12L” 
trials were assigned to the training and test set respectively. The splitting of “12M” trials was then 
calibrated to obtain a balanced training set in terms of number of epochs per “12” condition (e.g. for 
schema B: n 12M trials in test set = total number of 12M trials available – n of “12L” trials in training set). 205 

Partitioning was always performed in a stratified fashion such that all sources of irrelevant variability (i.e. 
musical notes and instruments) were distributed in equal proportions. When a specific condition was used 
only within training or exclusively at test, all the corresponding trials were assigned to one of the two sets 
according to the schema at hand. 

Once established the training and the test set for a given run, we applied a “micro-averaging” procedure, 210 

a strategy commonly employed to improve signal-to-noise ratio 82,83. Within each experimental condition, 
this consisted in shuffling the epochs and then forming pseudo-trials by averaging together (randomly-
defined) groups of 8 trials. At the end of such operation, we balanced the test sets by equalizing the 
number of micro-averaged epochs across numerosity classes. In practice, we randomly selected the same 
amount of pseudo-trials available for the least numerous class from the most abundant.  215 

Next, following the z-scoring of each channel and time point across trials, we fitted a L2-norm regularized 
Logistic Regression to the training set 84 in order to find the hyperplane that could maximally predict y 
from X while minimizing a loss function. Since composite classes contained more trials than 
heterogeneous ones, a weighting procedure was applied in order to equalize the contribution of each 
class to the definition of the hyperplane. The other model parameters were kept to their default values 220 

as provided by the Scikit-learn package. 

After training, the models were used to predict y from the test set and their performance was evaluated 
by comparing estimates to the ground truth. All algorithms produced, as an outcome, vectors of 
probabilistic estimates. These probabilities were scored by computing the area under the Receiver 
Operating Characteristic curve (AUC), which summarizes the ratio between true and false positives. The 225 

value of AUC ranges between 0 and 1, with 0.5 corresponding to chance level. The scores obtained across 
loops and from either all (Fig. 2A-B) or a group of train/test schemas (Fig. 2C) were averaged within subject 
before submitting them to statistical analysis (see Statistical Analysis below).  

Generalization across time (GAT): Within the same cross-validation, estimators were tested both at the 
trained time sample and on all the other 109 windows. The outcome of this procedure is a temporal 230 

generalization matrix 37 where each row reports the classification scores of a single estimator trained at 
time t and tested all along the time-samples of the trial (each time lag t’ corresponds to one column). 
When a neural code is sustained or recursive, a successful estimator trained at a given time point (i.e. 
specific to a given pattern of brain activity) achieves above-chance scores not only at the same time point 
but also at other time lags. Thus, the shape of the generalization performance within the temporal matrix 235 

can provide rich insights upon the dynamics of the neural activity patterns enabling classification. 
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Generalization across sensory modalities  
In a second decoding analysis, we investigated whether the infant brain processes the numerosity 
embedded in auditory and visual displays through a common neural code. Given the limited attentional 
span of 3-month-olds and the peculiarities of our paradigm (i.e. relatively long image duration) it was 240 

impossible, in the current experiment, to collect enough visual trials to build robust estimators. Thus, 
training was always performed on auditory data. We used the same pipeline as above (100 cross-
validation loops, L2-regularized logistic regression with weighted class contribution etc.) but this time 
probed decoder’s ability to predict y from the neural responses to the visual displays. Given the divergence 
of training and test data, this analysis entailed the opportunity to employ all auditory conditions at once, 245 

with the potential benefit of increasing predictive power. Yet, in order to prevent class separation based 
on non-numerical parameters, it remained crucial to keep our three training schemas (Fig. 1C and S2) 
separate. Following such considerations, in order to maximize both sensitivity and specificity, we exploited 
an inherent property of the learning process: iterations. That is, the optimal hyperplane is computed 
though successive, intermediate and approximate minimizations of the cost function, while the model is 250 

updated incrementally after each pass over the dataset. In a standard decoding pipeline (initiated by the 
method model.fit() in scikit-learn), such incremental updates occur under the hood and classifiers are 
always ‘fed’ with the entire training dataset.  
Building on the iterative nature of the learning process, we used a single set of decoders (one estimator 
for each of the time lags that led to successful classification in the main analysis) and trained them in an 255 

online fashion. Specifically, the initial pipeline was modified such that the training set (i.e. schema) 
changed (randomly) at each internal iteration, for a total of 600 partial fits (model.partial_fit() in scikit-
learn). In practice, each classifier was ‘fed’ with training set A 200 times, training set B 200 times and 
training set C 200 times, in random order and while retaining the intermediate coefficient at each loop. 
The final weights of the model (those submitted to testing) corresponded to the average value of the 260 

coefficients computed across all updates. Overall, this strategy enabled us to capitalize on the possibility 
to use a larger training set while still minimizing the impact of non-numerical parameters on learning (by 
adopting the same training logic as the main analysis). 

Visual data was prepared for tests in the same manner as the auditory data. Before micro-averaging, we 
equalized the amount of trials controlled for extensive parameters to that of trials controlled for intensive 265 

properties within each numerosity condition. When the trials available were too scarce to obtain a 
minimum of 5 pseudo-trials/visual numerosity (4 subjects), we implemented the micro-averaging using 
some of the single epochs more than once, with the constraint that two pseudo-trials could not share 
more than 2 single epochs (out of 8).  

Each classifier trained on a given time-window t (in between 400 and 800ms after the onset of the last 270 

tones, i.e. within the period supporting number decoding for the auditory modality) was tested at every 
time-lag from 0 to 1000ms after the onset of the image (x-axis in Fig. 5A). Obtaining such temporal 
generalization matrix was essential for this analysis since we had no a-priori hypothesis concerning the 
temporal delay of numerical estimation within the visual modality. 

Finally, to exclude the eventuality of non-numerical confounds on the observed performance, we created 275 

two supplementary test sets: one exclusively composed of trials with extensive parameter control (in 
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which object size and area devoted to each object co-varied with number) and the other including only 
those trials controlled for intensive elements (where total occupied area and luminance increased as a 
function of numerosity). Focusing on peak scores (Fig. 5) and once ascertained their normal distribution, 
we compared the performances attained on these two separate sets by means of paired sample t-tests 280 

(two-sided). In the main text we report the outcome obtained by averaging the scores over a 30ms 
squared window (3 training time points x 3 testing time points). With alternative solutions we observed 
similar null results. Namely, t-tests were also performed over a single performance (covering a time lag of 
10ms): training at 500ms, test at 370ms, N=16 - mean AUC with fixed extensive parameters=0. 563±0.097, 
mean AUC with fixed intensive parameters=0.605±0.153, t=-0.832, p=0.42; and over a wider window (5 285 

training times x 5 testing times i.e. 50ms): training 480-520ms, test 350-390ms - mean AUC with fixed 
extensive parameters=0.56±0.088, mean AUC with fixed intensive parameters=0.602±0.144, t=-0.89, 
p=0.39. 

Representation Similarity Analysis  
The aim of this analysis was to test whether numerical and non-numerical information could be 290 

dissociated from the activity patterns evoked by the auditory sequences. Crucially, unlike classification-
based decoding, Representational Similarity Analysis (RSA) allows to assess the effect of multiple 
quantitative variables at once 31,35. The general outline of the analysis consisted in modelling a set of neural 
(i.e. empirical) dissimilarity matrices, one for each time point, as a linear combination of 3 theoretical 
matrices providing all together an exhaustive description of the quantitative information embedded in 295 

the auditory space.  

To compute neural dissimilarity, we started by down-sampling the EEG recordings (with a moving average 
of 4 time points) to 125Hz, then averaged together the epochs belonging to the same condition. Given 
that the potential of this kind of analysis is best expressed with rich experimental designs 35, we averaged 
trials where notes were played by different instruments separately. That is, for each main condition (Fig. 300 

1A) we obtained two evoked responses, corresponding to the sub-conditions “viola” and “cello”. Finally, 
we calculated the correlational distance (1-Pearson across channels) between each pair of sub-condition. 
To counterbalance the fact that “12S/12L” trials were less numerous, we repeated this computation 100 
times. At each loop, the evoked responses were calculated by averaging an equal number of trials per 
sub-condition (for each of sub-condition, we randomly selected the same number of trials available for 305 

the least abundant one). In this way, we made sure that each condition had the same signal-to-noise ratio 
and still exploited all the data available for a given subject, thereby optimizing the stability of the 
estimates. The final neural dissimilarities corresponded to the mean distances obtained across the 100 
loops. 

The theoretical dissimilarity matrices encoded the distance, on a logarithmic scale, between each pair of 310 

sub-conditions along the quantitative dimensions defining the auditory sequences: number, tone rate and 
total sequence duration. The three matrices were entered as predictors in a linear multiple regression in 
order to explain the neural distances observed at each time point. All the dissimilarity matrices were z-
scored before estimating the regression coefficients. As a final outcome and for every subject, we 
obtained a set of beta weights reflecting the portion of the variance that each of predictor matrices 315 

uniquely explained in the evoked activity patterns over time. At the group level, significantly above-zero 
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beta weights imply that, over a certain window within the trial, one quantitative dimension modulated 
neural activity beyond the other two (i.e., when the effect of the other two was accounted for). 

We performed two RSA analyses: one at sequence offset (i.e. from the onset of the last note), mirroring 
the decoding analysis, and one within sequence, to query the existence of a continuous numerical process 320 

that updates at each new tone.  

Concerning the RSA performed at sequence offset (Fig. 4A), “12L” trials were excluded from the analysis 
in order to balance the design. Thanks to such expedient, all three predictors remained adequately 
decorrelated (number-rate: 0.26, number-duration: -0.17, rate-duration: 0.26) and their variance inflation 
factors (VIF) satisfactorily low (1.143, 1.19, 1.143 for number, tone rate and total sequence duration 325 

respectively). Note that it is important to minimize multicollinearity, as high correlations between 
predictors/high VIFs can compromise the reliability of the outcome coefficients.  

For the RSAs performed within sequence (Fig. 4B and S3), the analysis was restricted to “12” trials and no 
exclusion was needed in order to obtain balanced distance matrices. Starting from the epochs crafted 
around sequence onset (see Data preprocessing), we obtained two sets of evoked activity patterns, 330 

corresponding to two cardinalities, by cropping the signal from the onset of the nth note and up to 800ms 
thereafter. For the main analysis we chose to contrast “3” and “7” in order to parallel the RSA at sequence 
offset in the best way possible, thereby obtaining a set of beta weights that could be interpreted in 
relation to the former. For this contrast, total sequence duration (in this case: the time elapsed from 
sequence onset up to the specific cardinality) was equal between “7S” and “3M” (i.e. 360ms) and between 335 

“7M” and “3L” (i.e. 1080ms), mirroring the correspondence in the total durations of “12S”/“4M” and 
“12M”/“4L” (Fig. 1A). As in the previous case, this characteristic contributed to keeping multicollinearity 
at the minimum (VIFs were 1.059, 1.565, 1.555 for number, rate and duration respectively). Further, 
selecting the cardinalities “3” and “7” enabled to (a) minimize low-level effects related to sequence onset 
(e.g. habituation), (b) focus on a portion of the signal that was sufficiently far from sequence offset not to 340 

overlap with the main RSA analysis (c) test a numerical ratio greater than 1:2, taking into account that, 
according to behavioral observations, newborns require a ration greater than 1:2 to discriminate 
numerical displays 17. Overall, the analytical choice of “3” vs “7” granted conceptual comparability 
between the outcomes illustrated by Fig. 4A and 4B.  

Statistical analysis 345 

We performed second-level tests across subjects employing the MNE dedicated functions. Following a 
standard approach in adult studies (e.g. 85), we used one-sample cluster-based permutation t-tests 86 
which intrinsically account for multiple comparisons over time (as a reminder: all our analyses were 
performed on consecutive time slices all along the trial corresponding to 10ms for decoding and 4ms in 
the RSA) . We tested whether (a) time-resolved classification scores were higher than chance and (b) 350 

whether multiple regression beta-weights differed from zero. The analyses considered two-dimensional 
clusters for decoding scores (i.e. they were always performed on the entire temporal generalization 
matrix) and one-dimensional clusters in the case of regression coefficients. Univariate t-values were 
calculated for every score/beta-weight with the exclusion of those corresponding to the baseline period. 
All samples exceeding the 95th quantile were then grouped into clusters based on temporal adjacency. 355 

Cluster-level test statistics corresponded to the sum of t-values within each cluster. Their significance was 
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computed by means of the Monte-Carlo method: they were compared to a null distribution of test 
statistics created by drawing 10 000 random sign flips of the observed outcomes. A cluster was considered 
as significant when its p-value was below 0.05. 
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SUPPLEMENTAL FIGURES AND TABLE  

Figure S1. (A) Prototype EEG net featuring an intensive coverage of temporal areas; pictures adapted 
with permission from Gennari et al. 83. (B) Grand Average high-resolution event-related potentials (ERPs; 
N=26) for the five types of auditory sequences. Vertical gray lines correspond to tone-onsets.  
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Figure S2. Tactical combination of training and test sets. Alternative visualization of the decoding 
strategy illustrated in Fig. 1C. 
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Figure S3. RSA within 12-tones sequences indicates that online numerical accumulation is imprecise. Multiple 
regression analyses mirroring that in Fig. 4B in all aspects except for the numerical contrast under investigation. 
Standardized beta weights are averaged across subjects (N=26; vertical lines indicate the SEM) and marked by filled 

circles when significantly above zero (“3” vs “4”  rate: 0-90ms pclust=0.0001 and from 545ms onwards pclust= 0.01; 
duration: 0-185 and 335-560ms, pclust=0.0001 | “3” vs “6”  number: 190-320ms pclust=0.0054; rate: 0-105ms and 

from 455ms onwards, pclust< 0.01; duration: 0-185 and 335-575ms, pclust=0.0001 | “4” vs “8”  rate: 0-90ms 
pclust=0.0001 and from 230ms onwards pclust= 0.0035; duration: 0-145 pclust=0.0005 | “4” vs “9”  number: 110-270ms 
pclust=0.007; rate: 0-90ms and from 256ms onwards, pclust< 0.01; duration: 0-160 pclust=0.0001). In addition to these 
contrasts, the same RSA analysis was performed with “3” vs “9” (same numerical ratio as 4 and 12). The latter yielded 
a very similar beta-weights pattern to that observed for “3” vs “7” (Fig. 4B) and “3” vs “6” i.e.  number: 160-350ms 
pclust=0.0006; rate: 440-615ms pclust= 0.008; duration: 0-185 and 370-640ms, pclust<0.001. 

Note that these analyses were performed on data that were not independent (i.e. trials corresponding to the same 
sequences were aligned on different onsets). Regardless, “3” vs “6” and “4” vs “9” yielded similar results, with a 
significant time-window for the number regressor at around 200ms. Importantly, such modulatory effect is observed 
for “4” vs “9” but not “3” vs “5” revealing that the main result in Fig. 4B is not attributable to the intervention of an 
object-tracking system (for 3 but not 7 16) and that the accumulator mechanism is imprecise (i.e. a ratio <1:2 is 
insufficient to discern a numerosity effect). 
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Figure S4. Grand Average high-resolution ERPs for the visual displays, divided by number condition. 
N=number of infant participants.  
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                    Condition 

 Parameters 
4M 4L 12M 12S 12L 

tone duration (ms) 120 360 120 40 360 

inter-tone-interval (ms) 60 180 60 20 180 

total sequence duration (ms) 720 2160 2160 720 6480 

tone rate (Hz) 5.6 1.9 5.6 17 1.9 

total amount of sound (ms) 480 1440 1440 480 4320 

total amount of silence (ms) 240 720 720 240 2160 

Table S1: Physical parameters characterizing each auditory condition. The auditory space was 
constructed in a way that ensured full and straightforward traceability of all the quantitative dimensions 
involved. Namely, a given tone duration is always matched to a specific inter-tone-interval and their ratio 
is constant (2:1), leading to a one-to-one correspondence between single tone duration and rate. As a 
consequence, when sequences of 4 vs 12 sounds were matched for their total duration (e.g. 12M and 4L), 
they also embedded the same amount of sound (e.g. 1440ms) and silence (e.g. 720ms). This design was 
crucial because it ensured the possibility to separate numerosity from any other possible quantitative 
parameter characterizing the stimulation. Any time our analysis controls for tone rate, single tone 
duration and inter-tone-interval are also accounted for and any time our analysis accounts for sequence 
duration, the total amount of sound and the total amount of silence are also accounted for. This design 
does not enable to disentangle the effects of single tone duration from that of inter-tone-interval and the 
effects of the overall sequence duration from those of the total amount of sound/silence: this kind of 
investigation was beyond the scope of the study.  

 



32 
 

REFERENCES  

1. Spelke, E.S., and Kinzler, K.D. (2007). Core knowledge. Dev. Sci. 10, 89–96. 
https://doi.org/10.1111/j.1467-7687.2007.00569.x. 

2. Dehaene, S. (2011). The Number Sense: How the Mind Creates Mathematics, Revised and Updated 
Edition (Oxford University Press, USA). 

3. Nieder, A. (2021). Neuroethology of number sense across the animal kingdom. J. Exp. Biol. 224, 
jeb218289. 10.1242/jeb.218289. 

4. Burr, D.C., and Ross, J. (2008). A Visual Sense of Number. Curr. Biol. 18, 425–428. 
10.1016/j.cub.2008.02.052. 

5. Park, J., DeWind, N.K., Woldorff, M.G., and Brannon, E.M. (2016). Rapid and Direct Encoding of 
Numerosity in the Visual Stream. Cereb. Cortex 26, 748–763. 10.1093/cercor/bhv017. 

6. Van Rinsveld, A., Guillaume, M., Kohler, P.J., Schiltz, C., Gevers, W., and Content, A. (2020). The 
neural signature of numerosity by separating numerical and continuous magnitude extraction in 
visual cortex with frequency-tagged EEG. Proc. Natl. Acad. Sci. 117, 5726–5732. 
10.1073/pnas.1917849117. 

7. Lucero, C., Brookshire, G., Sava-Segal, C., Bottini, R., Goldin-Meadow, S., Vogel, E.K., and Casasanto, 
D. (2020). Unconscious Number Discrimination in the Human Visual System. Cereb. Cortex 30, 
5821–5829. 10.1093/cercor/bhaa155. 

8. Xu, F., and Spelke, E.S. (2000). Large number discrimination in 6-month-old infants. Cognition 74, 
B1–B11. 10.1016/S0010-0277(99)00066-9. 

9. Mix, K.S., Huttenlocher, J., and Levine, S.C. (2002). Multiple cues for quantification in infancy: Is 
number one of them? Psychol. Bull. 128, 278–294. 10.1037/0033-2909.128.2.278. 

10. Rousselle, L., Palmers, E., and Noël, M.-P. (2004). Magnitude comparison in preschoolers: what 
counts? Influence of perceptual variables. J. Exp. Child Psychol. 87, 57–84. 
10.1016/j.jecp.2003.10.005. 

11. Cantrell, L., and Smith, L.B. (2013). Open questions and a proposal: A critical review of the evidence 
on infant numerical abilities. Cognition 128, 331–352. 10.1016/j.cognition.2013.04.008. 

12. Leibovich-Raveh, T., Stein, I., Henik, A., and Salti, M. (2018). Number and Continuous Magnitude 
Processing Depends on Task Goals and Numerosity Ratio. J. Cogn. 1, 19. 10.5334/joc.22. 

13. Soltész, F., Szűcs, D., and Szűcs, L. (2010). Relationships between magnitude representation, 
counting and memory in 4- to 7-year-old children: A developmental study. Behav. Brain Funct. 6, 13. 
10.1186/1744-9081-6-13. 

14. Aulet, L.S., and Lourenco, S.F. (2021). The relative salience of numerical and non-numerical 
dimensions shifts over development: A re-analysis of Tomlinson, DeWind, and Brannon (2020). 
Cognition 210, 104610. 10.1016/j.cognition.2021.104610. 



33 
 

15. Aulet, L.S., and Lourenco, S.F. (2021). No intrinsic number bias: evaluating the role of perceptual 
discriminability in magnitude categorization (PsyArXiv) 10.31234/osf.io/eh5pb. 

16. Feigenson, L., Dehaene, S., and Spelke, E. (2004). Core systems of number. Trends Cogn. Sci. 8, 307–
314. 10.1016/j.tics.2004.05.002. 

17. Izard, V., Sann, C., Spelke, E.S., and Streri, A. (2009). Newborn infants perceive abstract numbers. 
Proc. Natl. Acad. Sci. 106, 10382–10385. 10.1073/pnas.0812142106. 

18. Coubart, A., Izard, V., Spelke, E.S., Marie, J., and Streri, A. (2014). Dissociation between small and 
large numerosities in newborn infants. Dev. Sci. 17, 11–22. 10.1111/desc.12108. 

19. Smyth, R.E., and Ansari, D. (2020). Do infants have a sense of numerosity? A p-curve analysis of 
infant numerosity discrimination studies. Dev. Sci. 23, e12897. https://doi.org/10.1111/desc.12897. 

20. Leibovich, T., Katzin, N., Harel, M., and Henik, A. (2017). From “sense of number” to “sense of 
magnitude”: The role of continuous magnitudes in numerical cognition. Behav. Brain Sci. 40. 
10.1017/S0140525X16000960. 

21. Hamamouche, K., and Cordes, S. (2019). Number, time, and space are not singularly represented: 
Evidence against a common magnitude system beyond early childhood. Psychon. Bull. Rev. 26, 833–
854. 10.3758/s13423-018-1561-3. 

22. Walsh, V. (2003). A theory of magnitude: common cortical metrics of time, space and quantity. 
Trends Cogn. Sci. 7, 483–488. 10.1016/j.tics.2003.09.002. 

23. Cantlon, J.F., Platt, M.L., and Brannon, E.M. (2009). Beyond the number domain. Trends Cogn. Sci. 
13, 83–91. 10.1016/j.tics.2008.11.007. 

24. Izard, V., Dehaene-Lambertz, G., and Dehaene, S. (2008). Distinct Cerebral Pathways for Object 
Identity and Number in Human Infants. PLOS Biol. 6, e11. 10.1371/journal.pbio.0060011. 

25. Hyde, D.C., Boas, D.A., Blair, C., and Carey, S. (2010). Near-infrared spectroscopy shows right 
parietal specialization for number in pre-verbal infants. NeuroImage 53, 647–652. 
10.1016/j.neuroimage.2010.06.030. 

26. Edwards, L.A., Wagner, J.B., Simon, C.E., and Hyde, D.C. (2016). Functional brain organization for 
number processing in pre-verbal infants. Dev. Sci. 19, 757–769. 10.1111/desc.12333. 

27. Gebuis, T., Cohen Kadosh, R., and Gevers, W. (2016). Sensory-integration system rather than 
approximate number system underlies numerosity processing: A critical review. Acta Psychol. 
(Amst.) 171, 17–35. 10.1016/j.actpsy.2016.09.003. 

28. Sokolowski, H.M., Fias, W., Bosah Ononye, C., and Ansari, D. (2017). Are numbers grounded in a 
general magnitude processing system? A functional neuroimaging meta-analysis. Neuropsychologia 
105, 50–69. 10.1016/j.neuropsychologia.2017.01.019. 



34 
 

29. Borghesani, V., de Hevia, M.D., Viarouge, A., Pinheiro-Chagas, P., Eger, E., and Piazza, M. (2019). 
Processing number and length in the parietal cortex: Sharing resources, not a common code. Cortex 
114, 17–27. 10.1016/j.cortex.2018.07.017. 

30. Harvey, B.M., Fracasso, A., Petridou, N., and Dumoulin, S.O. (2015). Topographic representations of 
object size and relationships with numerosity reveal generalized quantity processing in human 
parietal cortex. Proc. Natl. Acad. Sci. 112, 13525–13530. 10.1073/pnas.1515414112. 

31. Castaldi, E., Piazza, M., Dehaene, S., Vignaud, A., and Eger, E. (2019). Attentional amplification of 
neural codes for number independent of other quantities along the dorsal visual stream. eLife 8, 
e45160. 10.7554/eLife.45160. 

32. Kutter, E.F., Bostroem, J., Elger, C.E., Mormann, F., and Nieder, A. (2018). Single Neurons in the 
Human Brain Encode Numbers. Neuron 100, 753-761.e4. 10.1016/j.neuron.2018.08.036. 

33. Odabaee, M., Freeman, W.J., Colditz, P.B., Ramon, C., and Vanhatalo, S. (2013). Spatial patterning of 
the neonatal EEG suggests a need for a high number of electrodes. NeuroImage 68, 229–235. 
10.1016/j.neuroimage.2012.11.062. 

34. Stokes, M.G., Wolff, M.J., and Spaak, E. (2015). Decoding Rich Spatial Information with High 
Temporal Resolution. Trends Cogn. Sci. 19, 636–638. 10.1016/j.tics.2015.08.016. 

35. Kriegeskorte, N. (2008). Representational similarity analysis – connecting the branches of systems 
neuroscience. Front. Syst. Neurosci. 10.3389/neuro.06.004.2008. 

36. Nieder, A., Diester, I., and Tudusciuc, O. (2006). Temporal and Spatial Enumeration Processes in the 
Primate Parietal Cortex. Science 313, 1431–1435. 10.1126/science.1130308. 

37. King, J.-R., and Dehaene, S. (2014). Characterizing the dynamics of mental representations: the 
temporal generalization method. Trends Cogn. Sci. 18, 203–210. 10.1016/j.tics.2014.01.002. 

38. Meck, W.H., and Church, R.M. (1983). A mode control model of counting and timing processes. J. 
Exp. Psychol. Anim. Behav. Process. 9, 320–334. 10.1037/0097-7403.9.3.320. 

39. Sun, C., Yang, W., Martin, J., and Tonegawa, S. (2020). Hippocampal neurons represent events as 
transferable units of experience. Nat. Neurosci. 23, 651–663. 10.1038/s41593-020-0614-x. 

40. Hannagan, T., Nieder, A., Viswanathan, P., and Dehaene, S. (2017). A random-matrix theory of the 
number sense. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 373. 10.1098/rstb.2017.0253. 

41. Lipton, J.S., and Spelke, E.S. (2004). Discrimination of Large and Small Numerosities by Human 
Infants. Infancy 5, 271–290. 10.1207/s15327078in0503_2. 

42. Xu, F., Spelke, E.S., and Goddard, S. (2005). Number sense in human infants. Dev. Sci. 8, 88–101. 
https://doi.org/10.1111/j.1467-7687.2005.00395.x. 

43. Cantlon, J.F. (2018). How Evolution Constrains Human Numerical Concepts. Child Dev. Perspect. 12, 
65–71. https://doi.org/10.1111/cdep.12264. 



35 
 

44. Wang, J. (Jenny), and Feigenson, L. (2021). Dynamic changes in numerical acuity in 4-month-old 
infants. Infancy 26, 47–62. 10.1111/infa.12373. 

45. de Hevia, M.D., Izard, V., Coubart, A., Spelke, E.S., and Streri, A. (2014). Representations of space, 
time, and number in neonates. Proc. Natl. Acad. Sci. 111, 4809–4813. 10.1073/pnas.1323628111. 

46. Lourenco, S.F., and Longo, M.R. (2010). General Magnitude Representation in Human Infants. 
Psychol. Sci. 21, 873–881. 10.1177/0956797610370158. 

47. de Hevia, M.D., and Spelke, E.S. (2010). Number-Space Mapping in Human Infants. Psychol. Sci. 21, 
653–660. 10.1177/0956797610366091. 

48. Fort, M., Lammertink, I., Peperkamp, S., Guevara-Rukoz, A., Fikkert, P., and Tsuji, S. (2018). 
Symbouki: a meta-analysis on the emergence of sound symbolism in early language acquisition. 
Dev. Sci. 21, e12659. 10.1111/desc.12659. 

49. Zorzi, M., and Testolin, A. (2018). An emergentist perspective on the origin of number sense. Philos. 
Trans. R. Soc. B Biol. Sci. 373, 20170043. 10.1098/rstb.2017.0043. 

50. Kim, G., Jang, J., Baek, S., Song, M., and Paik, S.-B. (2021). Visual number sense in untrained deep 
neural networks. Sci. Adv. 7, eabd6127. 10.1126/sciadv.abd6127. 

51. Giurfa, M. (2019). An Insect’s Sense of Number. Trends Cogn. Sci. 23, 720–722. 
10.1016/j.tics.2019.06.010. 

52. Potrich, D., Zanon, M., and Vallortigara, G. (2022). Archerfish number discrimination. eLife 11, 
e74057. 10.7554/eLife.74057. 

53. Kobylkov, D., Mayer, U., Zanon, M., and Vallortigara, G. (2022). Number neurons in the nidopallium 
of young domestic chicks. Proc. Natl. Acad. Sci. 119, e2201039119. 10.1073/pnas.2201039119. 

54. Messina, A., Potrich, D., Schiona, I., Sovrano, V.A., Fraser, S.E., Brennan, C.H., and Vallortigara, G. 
(2022). Neurons in the Dorso-Central Division of Zebrafish Pallium Respond to Change in Visual 
Numerosity. Cereb. Cortex 32, 418–428. 10.1093/cercor/bhab218. 

55. Jordan, K.E., Brannon, E.M., Logothetis, N.K., and Ghazanfar, A.A. (2005). Monkeys Match the 
Number of Voices They Hear to the Number of Faces They See. Curr. Biol. 15, 1034–1038. 
10.1016/j.cub.2005.04.056. 

56. Nieder, A. (2012). Supramodal numerosity selectivity of neurons in primate prefrontal and posterior 
parietal cortices. Proc. Natl. Acad. Sci. 109, 11860–11865. 10.1073/pnas.1204580109. 

57. Ditz, H.M., and Nieder, A. (2015). Neurons selective to the number of visual items in the corvid 
songbird endbrain. Proc. Natl. Acad. Sci. 112, 7827–7832. 10.1073/pnas.1504245112. 

58. Merten, K., and Nieder, A. (2009). Compressed Scaling of Abstract Numerosity Representations in 
Adult Humans and Monkeys. J. Cogn. Neurosci. 21, 333–346. 10.1162/jocn.2008.21032. 



36 
 

59. Jordan, K.E., and Brannon, E.M. (2006). Weber’s Law influences numerical representations in rhesus 
macaques (Macaca mulatta). Anim. Cogn. 9, 159–172. 10.1007/s10071-006-0017-8. 

60. Piazza, M., Facoetti, A., Trussardi, A.N., Berteletti, I., Conte, S., Lucangeli, D., Dehaene, S., and Zorzi, 
M. (2010). Developmental trajectory of number acuity reveals a severe impairment in 
developmental dyscalculia. Cognition 116, 33–41. 10.1016/j.cognition.2010.03.012. 

61. Piazza, M., De Feo, V., Panzeri, S., and Dehaene, S. (2018). Learning to focus on number. Cognition 
181, 35–45. 10.1016/j.cognition.2018.07.011. 

62. Piazza, M., Pica, P., Izard, V., Spelke, E.S., and Dehaene, S. (2013). Education Enhances the Acuity of 
the Nonverbal Approximate Number System. Psychol. Sci. 24, 1037–1043. 
10.1177/0956797612464057. 

63. Georges, C., Guillaume, M., and Schiltz, C. (2020). A robust electrophysiological marker of 
spontaneous numerical discrimination. Sci. Rep. 10, 18376. 10.1038/s41598-020-75307-y. 

64. Fornaciai, M., and Park, J. (2018). Early Numerosity Encoding in Visual Cortex Is Not Sufficient for 
the Representation of Numerical Magnitude. J. Cogn. Neurosci. 30, 1788–1802. 
10.1162/jocn_a_01320. 

65. Piazza, M., Mechelli, A., Price, C.J., and Butterworth, B. (2006). Exact and approximate judgements 
of visual and auditory numerosity: An fMRI study. Brain Res. 1106, 177–188. 
10.1016/j.brainres.2006.05.104. 

66. Dormal, V., Andres, M., Dormal, G., and Pesenti, M. (2010). Mode-dependent and mode-
independent representations of numerosity in the right intraparietal sulcus. NeuroImage 52, 1677–
1686. 10.1016/j.neuroimage.2010.04.254. 

67. Cavdaroglu, S., Katz, C., and Knops, A. (2015). Dissociating estimation from comparison and 
response eliminates parietal involvement in sequential numerosity perception. NeuroImage 116, 
135–148. 10.1016/j.neuroimage.2015.04.019. 

68. Cavdaroglu, S., and Knops, A. (2019). Evidence for a Posterior Parietal Cortex Contribution to Spatial 
but not Temporal Numerosity Perception. Cereb. Cortex 29, 2965–2977. 10.1093/cercor/bhy163. 

69. Arrighi, R., Togoli, I., and Burr, D.C. (2014). A generalized sense of number. Proc. R. Soc. B Biol. Sci. 
281, 20141791. 10.1098/rspb.2014.1791. 

70. Burr, D.C., Anobile, G., and Arrighi, R. (2018). Psychophysical evidence for the number sense. Philos. 
Trans. R. Soc. B Biol. Sci. 373, 20170045. 10.1098/rstb.2017.0045. 

71. Piazza, M. (2010). Neurocognitive start-up tools for symbolic number representations. Trends Cogn. 
Sci. 14, 542–551. 10.1016/j.tics.2010.09.008. 

72. Butterworth, B. (2018). The implications for education of an innate numerosity-processing 
mechanism. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170118. 10.1098/rstb.2017.0118. 



37 
 

73. Hyde, D.C., and Spelke, E.S. (2011). Neural signatures of number processing in human infants: 
evidence for two core systems underlying numerical cognition. Dev. Sci. 14, 360–371. 
10.1111/j.1467-7687.2010.00987.x. 

74. vanMarle, K., and Wynn, K. (2009). Infants’ auditory enumeration: Evidence for analog magnitudes 
in the small number range. Cognition 111, 302–316. 10.1016/j.cognition.2009.01.011. 

75. Brannon, E.M., Suanda, S., and Libertus, K. (2007). Temporal discrimination increases in precision 
over development and parallels the development of numerosity discrimination. Dev. Sci. 10, 770–
777. https://doi.org/10.1111/j.1467-7687.2007.00635.x. 

76. Peirce, J., Gray, J.R., Simpson, S., MacAskill, M., Höchenberger, R., Sogo, H., Kastman, E., and 
Lindeløv, J.K. (2019). PsychoPy2: Experiments in behavior made easy. Behav. Res. Methods 51, 195–
203. 10.3758/s13428-018-01193-y. 

77. Fló, A., Gennari, G., Benjamin, L., and Dehaene-Lambertz, G. (2022). Automated Pipeline for Infants 
Continuous EEG (APICE): A flexible pipeline for developmental cognitive studies. Dev. Cogn. 
Neurosci. 54, 101077. 10.1016/j.dcn.2022.101077. 

78. Perrin, F., Pernier, J., Bertrand, O., and Echallier, J.F. (1989). Spherical splines for scalp potential and 
current density mapping. Electroencephalogr. Clin. Neurophysiol. 72, 184–187. 10.1016/0013-
4694(89)90180-6. 

79. Gramfort, A., Luessi, M., Larson, E., Engemann, D.A., Strohmeier, D., Brodbeck, C., Parkkonen, L., 
and Hämäläinen, M.S. (2014). MNE software for processing MEG and EEG data. NeuroImage 86, 
446–460. 10.1016/j.neuroimage.2013.10.027. 

80. Gramfort, A., Luessi, M., Larson, E., Engemann, D.A., Strohmeier, D., Brodbeck, C., Goj, R., Jas, M., 
Brooks, T., Parkkonen, L., et al. (2013). MEG and EEG data analysis with MNE-Python. Front. 
Neurosci. 7. 10.3389/fnins.2013.00267. 

81. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., 
Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: Machine Learning in Python. J. 
Mach. Learn. Res. 12, 2825–2830. 

82. Grootswagers, T., Wardle, S.G., and Carlson, T.A. (2016). Decoding Dynamic Brain Patterns from 
Evoked Responses: A Tutorial on Multivariate Pattern Analysis Applied to Time Series Neuroimaging 
Data. J. Cogn. Neurosci. 29, 677–697. 10.1162/jocn_a_01068. 

83. Gennari, G., Marti, S., Palu, M., Fló, A., and Dehaene-Lambertz, G. (2021). Orthogonal neural codes 
for speech in the infant brain. Proc. Natl. Acad. Sci. 118. 10.1073/pnas.2020410118. 

84. Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and Lin, C.-J. (2008). LIBLINEAR: A Library for Large 
Linear Classification. J. Mach. Learn. Res. 9, 1871–1874. 

85. Al Roumi, F., Marti, S., Wang, L., Amalric, M., and Dehaene, S. (2021). Mental compression of spatial 
sequences in human working memory using numerical and geometrical primitives. Neuron 109, 
2627-2639.e4. 10.1016/j.neuron.2021.06.009. 



38 
 

86. Maris, E., and Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. J. 
Neurosci. Methods 164, 177–190. 10.1016/j.jneumeth.2007.03.024. 

 


