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Abstract

Categorical semantics of type theories are often characterized as structure-preserving functors. This is because in category
theory both the syntax and the domain of interpretation are uniformly treated as structured categories, so that we can
express interpretations as structure-preserving functors between them. This mathematical characterization of semantics
makes it convenient to manipulate and to reason about relationships between interpretations. Motivated by this success of
functorial semantics, we address the question of finding a functorial analogue in abstract interpretation, a general framework
for comparing semantics, so that we can bring similar benefits of functorial semantics to semantic abstractions used in
abstract interpretation. Major differences concern the notion of interpretation that is being considered. Indeed, conventional
semantics are value-based whereas abstract interpretation typically deals with more complex properties. In this paper, we
propose a functorial approach to abstract interpretation and study associated fundamental concepts therein. In our approach,
interpretations are expressed as oplax functors in the category of posets, and abstraction relations between interpretations
are expressed as lax natural transformations representing concretizations. We present examples of these formal concepts from
monadic semantics of programming languages and discuss soundness.

Keywords: semantics, abstract interpretation, oplax functors, monads.

1 Introduction

In a categorical setting, programs semantics can often be characterized as functors. In this setup, programs
are viewed as morphisms and morphism composition describes how programs can be composed. As an
example, in the case of typed functional programs, one may let objects be types and morphisms be functions.
More precisely, a morphism from object a to object b denotes a function of type a→ b. Then, the semantics
maps programs to morphisms between objects that interpret input and output elements into a well-chosen
semantic domain. This construction is very general and accepts a wide range of semantic domains.
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This functorial presentation of semantics is prominent in the categorical semantics of type theories and
algebraic theories. There, both type theories and semantic categories are treated as categories possessing
a common structure, and the semantics itself is presented as a structure-preserving functor. A typical
example is the categorical semantics of the simply typed lambda-calculus, commonly studied under the
well-known Curry-Howard-Lambek correspondence [22]; the calculus modulo βη-equality is presented as
a Cartesian closed category, and its semantics in a Cartesian closed category is presented as a functor
preserving finite products and exponentials. Another example is the categorical presentation of algebraic
theories as a particular kind of categories with finite products (called Lawvere theories [23,1]), and their
models as finite-product preserving functors. These categorical and syntax-free presentations of the calculus
and its semantics brought significant convenience and advances to the study of type theories and their
semantics. Additionally, monads turned out to be the tool of choice in order to construct semantics for
effectful programs [25].

Abstract interpretation [9] provides a framework to compare program semantics of varying levels of
expressiveness, and to derive sound approximations of program semantics, based on a given abstraction
relation. It has been used to describe relationships across program semantics [8], program analysis [9,5,16],
program transformations [13], and more. However, it is usually formalized in order theory since this presen-
tation suffices in many applications. Therefore, it is not immediately compatible with the aforementioned
categorical presentation.

Although the notion of Galois connection, which is abundantly used in abstract interpretation
works [9,12], is adjunctions between posets, few works have studied a more complete description of ab-
stract interpretation frameworks in a categorical setup. Among the works that relied on categorical tools
in order to describe some specific semantic abstraction concepts for specific purposes, we can cite, Steffen
et al. [29] who integrate both concrete and abstract semantics in a categorical settings in order to examine
questions related to soundness and completeness, with respect to a given set of behaviors. Venet [30]
uses mathematical tools that stem from category theory in order to construct specific families of abstract
domains. More precisely, he applies the Grothendieck construction to generalize constructions such as
reduced product and cardinal power [10]. More recently, Sergey et al. [28] took advantage of the monadic
structure of a semantics of lambda-calculus to derive a static control flow analysis for a small functional
language as well as an implementation in Haskell.

In this work, we seek for more comprehensive foundations for classical abstract interpretation techniques
into the categorical semantics settings. We start with an interpretation of programs as morphisms in a
syntactic category and semantics as functors from programs to the category of posets. We formalize and
generalize the notion of collecting semantics typically used in program analysis as a decomposition of such
a functor. In this setup, we integrate the notion of abstraction using some form of natural transformations
between these functors. More precisely, the approximation inherent in sound, incomplete abstractions are
accounted for using lax natural transformations. We show that this construction also enables the abstract
interpretation of a basic language.

To achieve these goals, we build upon a categorical interpretation of programs and their semantics. In
our categorical formalism, the design of an abstract semantics with respect to a denotational semantics
J−K : L → C proceeds as follows. First, we turn the denotational semantics into a functorial collecting
semantics by composing J−K with a functor C : C → Pos (where Pos denotes the category of posets and
monotone functions between them), which we call property functor. This functor plays the role of attaching
a notion of property and a direct image operation to the category C. This step is crucial for the design of
the analysis, as it fixes the concrete semantics the analysis is built upon. Then, an analysis using abstract
domains over the collecting semantics C ◦ J−K is expressed as an oplax functor A : L→ Pos equipped with
a lax natural transformation γ : A→ C ◦ J−K representing a concretization of interpretation:

L

J−K **

A

**
⇓γ Pos

C C

33 (1)

Here, the functor A being oplax means that it only satisfies weakened functor axioms. The lax natural
transformations are also weakening of natural transformations, replacing the naturality axiom to an in-
equality. The use of oplax functors for modeling analysis was initiated by Steffen, Jay and Mendler [29].
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We adopt the same approach, and further bring some basic concepts that are not covered in [29] into the
oplax functor formalism.

The common approach relies on fixing such an abstraction relation (here described by γ) and seeking for
a sound, possibly approximate A that can be implemented efficiently. A natural and important question is
how such an (A, γ) pair can be constructed. This can be done by extending the collecting semantics with
a family of Galois connections, which are abundantly used in abstract interpretation, or with a family of
concretization functions when best abstraction cannot be ensured.

This story naturally extends to the monadic semantics of various effectful programming languages.
Indeed, as discussed earlier, the semantics of such programs is often derived using Kleisli categories of
monads. Assuming a base category C for values and a monad T for effects, effectful programs are interpreted
in the Kleisli category CT , and the semantics takes the form of a functor F : L → CT . We then derive a
collecting semantics by composing it with a functor CT → Pos, and its abstraction is given, following the
lax natural transformation discussed previously. Therefore, another benefit of our approach is to simplify
the design of static analyses for effectful programs, thanks to a better integration of program semantics
and abstraction.

To summarize, upon the work by Steffen, Jay and Mendler [29], we formalize abstract interpretation in
a functorial semantics framework. The new ingredients from [29] are the following:

(i) We show that interpretations (oplax functors) are closed under the induction operation by Galois con-
nections (Theorem 4.2). This induction also comes with concretizations of interpretations, formulated
as lax natural transformations.

(ii) We give a categorical formulation of collecting semantics (Section 3), which is the starting point of
the development of abstract interpretations. In our formulation, a collecting semantics is an exten-
sion of a standard denotational semantics with a property functor, which attaches forward predicate
transformers to the model category of the denotational semantics.

(iii) We present two examples of developments of abstract interpretations, one for a while language over
generic computational effects (Section 3 and Section 4), and the other for the simply typed lambda
calculus in Section 5. An additional result that follows from this approach is a strongest postcondition
predicate transformer semantics for the while language over general monads and truth value complete
lattices (Theorem 3.13). This semantics is a generalization of the strongest postcondition semantics
introduced in [32].

2 Interpretation as an Oplax Functor

In this section, we set up basic definitions that serve as foundations for our integrated framework in the
next sections. At this point, our main goal is to formalize the construction of semantics from programs.

2.1 Programs

Before considering semantic interpretations, we need to fix syntactic definitions. In this paper, we make the
choice to also integrate programs as categorical entities, so that we can define interpretations as functors.
This presentation is natural since programs can be viewed as transformations from inputs to inputs, that
can also be composed like morphisms in a category. To do that, we follow a classical idea that lets a
category L stand for the syntactic definition of programs and their inputs/outputs; more precisely,

• objects describe elements consumed/produced by programs;
• programs stand for morphisms.

As an example, in a functional setup, we may let objects be types (thus describing values) and morphisms
be functions mapping values to values.

Definition 2.1 [Programs as morphisms] In the following, we express a programming language by a cat-
egory L. Its objects represent types/contexts of programs, and morphisms stand for programs.

This approach has been often used to describe functional programs (see e.g. [22,14]). However, it also
applies to other families of programs, such as imperative languages, that may not seem, at first, ideally
adapted to a categorical approach. We illustrate this in the following examples.
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Example 2.2 [A small imperative programming language] We fix a set of values V and a finite set of
variables X. We define the category Lw as follows. First, we let expressions be defined by the grammar
e := v (where v ∈ V) | x (where x ∈ X) | e ⊕ e (where ⊕ ∈ {+,−, ∗,≤,=, . . .}). Second, we let programs
be defined by the grammar P := skip | P ;P | x := e | if e {P}else{P} | while e {P}. Intuitively, an
expression e is a value, the reading of a variable, or a binary expression, and a program is either the skip
program that does nothing, or a sequence, or an assignment, or a condition, or a loop. The sequence
construction acts like a composition. To satisfy the properties of morphism composition, we need to equate
skip;P and P ; skip with P (identity) and also to let sequential composition act as an associative operation
(which boils down to not parenthesizing sequences). Therefore Lw simply follows the typical single object
category describing a monoid.

As the above example is rather contrived in the sense that it omits any form of scoping, we consider a
second, more sophisticated version.

Example 2.3 [Imperative programs with scoped variables] In this example, we extend Example 2.2 with
a notion of scope, based on explicit variable creation and destruction operations. We keep the definition
of expressions unchanged and extend that of programs with two additional constructions addvarx which
adds a new local variable x and stores a default value (that we assume to be 0) into it and delvarx which
ends the scope of a local variable x. Note that conventional block-based scoping can be encoded using
these two operations.

We revise the construction of Lw in Example 2.2 and let objects be finite sets of variables. Intuitively,
the object X denotes set of memories storing |X|-many values. To make this explicit, we stratify the set of
programs by two sets of variables, that respectively denote the variables in their input and output states.
More precisely, we specify the set Lwv(X,X

′) of programs from X to X ′. Then, well-formed programs
are defined inductively as follows. For any set X, skip ∈ Lwv(X,X). Given programs P ∈ Lwv(X,X

′)
and P ′ ∈ Lwv(X

′, X ′′) the sequence program P ;P ′ is in the set Lwv(X,X
′′). Assignment x := e belongs

to Lwv(X,X) for any X such that x and all variables in e are elements of X. Given two programs
P, P ′ ∈ Lwv(X,X

′), the condition program if e {P}else{P ′} is in Lwv(X,X
′) when all variables in e are

in X. Similarly, loop (while e {PX,X})X,X is defined when all variables in e are elements of X (note that
the body and the loop program are morphisms from X to itself). Finally, when x ̸∈ X, (addvarx) ∈
Lwv(X,X ⊎ {x}) and (delvarx) ∈ Lwv(X ⊎ {x}, X). We note that the sequence case acts as composition
of two morphisms respectively from X to X ′ and from X ′ to X ′′ and that it produces a morphism from X
to X ′′. The resulting category is denoted by Lwv.

2.2 Semantic Interpretation

Based on the category of programs setup in Section 2.1, we now turn to semantic interpretations. Intuitively,
a semantic interpretation should map programs into mathematical objects that describe their behavior in
a more abstract manner than just syntax. For instance, the interpretation of a program P may boil down
to a function that maps program input states to corresponding output states. Such an interpretation is
expected to meet some compositionality property. Therefore, functors appear as the right categorical tool
to define semantic interpretations. Before we spell out any definition, we consider a couple of examples.

Example 2.4 [Denotational Semantics] In this first example, we consider the language of Example 2.2.
Programs are naturally regarded as actions on memories, namely functions from variables to values. We
thus first define M := [X → V] to be the set of memories. Since any memory state is a valid input/output for
any program, the construction of Definition 2.1 requires a single object that stands for M. This action will
be given as the semantics in the next Example. We observe that not all programs terminate, which entails
that one input state may not correspond to exactly one output state. Therefore, following the classical
approach to denotational semantics, we interpret the unique object of L into the set M⊥⊥ := M ⊎ {⊥⊥}
where ⊥⊥ stands for non-termination. Then, the interpretation of a program P is the ⊥⊥-strict function
JP K from M⊥⊥ into itself. We remark that M⊥⊥ is often interpreted as a poset, where ∀m ∈ M,⊥⊥ ⊑ m
and that ⊥⊥-strict functions are monotone functions in that set. Such interpretations compose well in the
sense that the interpretation of P0;P1 coincides with the composition of the interpretation of P1 with that
of P0. Therefore we may convert it into a functor J−K : Lw → Pos. This is a denotational semantics of
Lw, interpreting programs as actions on states (including ⊥⊥). This type of semantics will be studied in
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Section 3.1.
This functorial semantics can be extended to the imperative language with variable scoping operators

Lwv in Example 2.3. In this language, by putting MX := [X → V], program should be viewed a strict
continuous function from (MX)⊥⊥ into (MX′)⊥⊥ for two given finite sets of variables X,X ′. Note that, in this
settings, (addvarx) is well defined since it initializes the new variable x with default value 0, as specified
in Example 2.3.

Example 2.5 [Collecting semantics] Another type of semantics is to interpret programs as actions on
properties on states. There are various ways to represent them, and one way is by sets of states. Then the
semantics of programs are expressed as functions from sets of states into sets of states. Such a semantics
is usually called collecting semantics and is one of the fundamental semantics in abstract interpretation.
Specifically, we interpret the unique object of Lw with the poset (2M,⊆) and a program P with a ∪-
preserving function JP Kc : (2M,⊆) → (2M,⊆). Typically, JP Kc is defined by induction over the syntax
of programs and is compositional in the same sense as JP K (Example 2.4). It thus determines a functor
J−Kc : Lw → Pos. It can also be derived rather systematically from JP K - see Section 3.3.

Example 2.6 [Interval analysis] While the semantics shown in Example 2.5 is suitable as a starting point
to study static analyzers, it is not computable. Thus, we propose to consider a second interpretation, using
abstract properties rather than sets of states [9]. We consider here the interval abstraction of [9], assuming
values are machine integers. In this setup a set of states is described either with ⊥ (which denotes the
empty set) or with a function from variables into intervals with integer bounds (that could be the minimum
or maximum representable machine integers). Therefore, an interpretation of a program P may be defined
as an abstract semantics LP M that maps an abstract pre-condition into a sound abstract post-condition:
given any abstract state m♯ and any memory m that satisfies the constraints in m♯, all states in JP K({m})
are described by LP M(m♯).

Nevertheless, this construction may not be compositional in the strict sense of denotational semantics.
Indeed, the analysis of a composite program may be (and often is) more precise than the composition of
the analyses of the sub-programs, in the following sense: we say that an analysis LP0M is more precise than
an analysis LP1M when LP0M computes properties that are logically stronger than those computed than LP1M.
Indeed, let us consider P0 be x := 4 ∗ x − 2 and P1 be if x ≤ 0 {x = −x}else{skip}. Moreover, we let
m♯ map x to interval [0, 1]. Then, LP0M(x) = [−2, 2] and LP1M ◦ LP0M(x) = [0, 2]. However, if we consider
concrete executions starting with x ∈ [0, 1], only value 2 may be observed as an output, thus a more precise
analysis LP0;P1M that maps m♯ to [x 7→ [2, 2]] is sound.

The first remark that follows from the last two examples is that Pos provides a natural setup for
property-based semantics. Indeed, objects of Pos allow to account for collections of program inputs or
outputs, ordered with inclusion, with the usual meaning that smaller elements account for fewer behaviors.

The second remark is that composition may not always be exact when considering static analyses. In-
deed, while the concrete semantics of Example 2.4 is compositional, Example 2.6 shows that static analyses
may not be. Though, common practice ensures that most analyses satisfy a lax form of compositionality:
the analysis of the composition of two programs may be implemented so that it gives somewhat more
precise results than that of the composition of the analyses but is not expected to produce worse results.
We comment on the limitations of this view in Remark 2.8.

To formalize these remarks, we rely on the order-enrichment on the category Pos of posets and monotone
functions. All monotone functions f, g : X → Y in Pos are ordered in a pointwise manner, making Pos an
enriched category over Pos itself. Intuitively, the order f ≤ g means that “g is more abstract than f ”/“g
is coarser than f ”. Based on this terminology, we define semantic interpretations:

Definition 2.7 [Interpretations] A semantic interpretation (or, for short, interpretation) F consists of an
object mapping F : Obj(L) → Obj(Pos) and a morphism mapping FX,Y : L(X,Y ) → Pos(FX,FY ) such
that the following inequalities hold:

F (id) ≤ id, F (f1 ◦ f2) ≤ Ff1 ◦ Ff2.

We say that the interpretation is normal if F (idX) = idX and functorial if it is normal and F (f1 ◦ f2) =
Ff1 ◦ Ff2.
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Such a weakened form of functor is known as oplax functors. The above definition makes sense when
Pos is replaced with some other Pos-enriched category K. In fact, Steffen, Jay and Mendler considered
this general definition of interpretation in [29], and their intention is to pick a suitable K for each analysis
task. On the other hand, in this paper we fix the codomain of interpretation to Pos.

The semantics studied in Example 2.4 defines a functorial interpretation. The analysis of Example 2.6
defines an interpretation that is normal but not functorial. This latter situation was also commented by
Steffen, Jay and Mendler in [29]: indeed, they also introduce an oplax interpretation and remark that
strictness analysis is generally not functorial.

Remark 2.8 [Limitations] As stated above, not all semantics satisfy the property of Definition 2.7, and
in particular, some static analyses fail to satisfy it. As an example, it is possible to set up a weaker form of
interval analysis (Example 2.6) that gives up all precision when applied to programs with updates to more
than k variables. If k = 1, P0 is x = 0 and P1 is y = 1, although these programs are trivial, LP0;P1M drops
all information on x, y whereas LP1M ◦ LP0M is trivially analyzed in a precise manner, thus we do not have
LP0 ◦ P1M ≤ LP1M ◦ LP0M. Obviously, this definition is very contrived, and a conventional implementation of
interval analysis achieves the oplaxness property stated in Definition 2.7.

We introduce a partial order between interpretations. This order F ≤ G means that F,G agree on the
interpretation of objects in L, but F interprets programs with better precision than G.

Definition 2.9 [Partial Order between Interpretations] Given two interpretations F,G : L → Pos, we
write F ≤ G if F (a) = G(a) for any a ∈ L and F (f) ≤ G(f) for any f : a→ b in L.

This order will be used to compare abstract interpretations derived by Galois connections and its
over-approximations (Theorem 4.2,4.3,5.1).

3 Functorial Collecting Semantics

We have set-up a formulation of abstract semantics as oplax functors. Typically, the development of
abstract semantics is initiated from a concrete semantics called collecting semantics. We therefore express
collecting semantics in our categorical setting.

The spirit of the collecting semantics is to interpret the behavior of programs as actions on collections
of inputs, rather than single inputs. Typically, such a collection is chosen to represent a property on inputs,
hence below we use the word property to mean a collection of inputs, or a collection of elements in a set
X in general. Properties on X are ordered by the inclusion, forming the poset (2X ,⊆) (where 2X denotes
the set of subsets of X).

Let us consider a simple example of collecting semantics. We consider a set-theoretic denotational
semantics of a deterministic and terminating programming language L. It is defined by a functor J−K :
L → Set mapping a morphism P : a → b in L representing a program into a function JP K : JaK → JbK.
Then, the collecting semantics associated to this denotational semantics is the monotone function JP Kc :

(2JaK,⊆) → (2JbK,⊆) defined by JP Kc(U) := {JP K(x) | x ∈ U}; the right hand side is the direct image of a
property U ⊆ JaK by JP K. We then regard the collecting semantics as a functor J−Kc : L→ Pos.

We categorically analyze this definition of collecting semantics as follows. We introduce the covariant
powerset functor Q : Set → Pos defined by: Q(X) := (2X ,⊆) and Q(f)(U) := {f(x) | x ∈ U}. The role of
this functor is to assign to each X ∈ Set the poset of properties on X, and to each morphism f in Set the
direct image operation associated to f . Then we notice the equality JaKc = Q(JaK) for each object a ∈ L
and JP Kc = Q(JP K) for each morphism P in L, which amounts to the following functor equality:

J−Kc = L
J−K //Set

Q //Pos .

This functorial presentation of the collecting semantics suggests us to generalize the middle category to
an arbitrary category C instead of Set so that we can define the concept of collecting semantics for general
categorical semantics of programming languages. However, we need to replace the covariant powerset
functor Q : Set → Pos with something else because it is specific to Set. We therefore need to supply
a functor C : C → Pos that plays the same role as Q; it assigns to each object X ∈ C a poset CX of
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properties on X, whose elements abstractly represent properties on X, and to each f : X → Y a monotone
function Cf : CX → CY representing the direct image operation. Based on this observation, we derive
the following definition of collecting semantics.

Definition 3.1 A functorial collecting semantics of a language L (regarded as a category) consists of a
category C and two functors:

L
J−K // C C //Pos ,

where J−K is called a denotational semantics and C is called a property functor (for C). The composite
C ◦ J−K : L→ Pos itself is also called the functorial collecting semantics (with respect to J−K).

This definition of functorial collecting semantics reflects our view that concrete semantics for initiating
abstract interpretation is synthesized from a denotational semantics J−K : L→ C by composing a property
functor C : C → Pos. However, in some situations one may directly construct a collecting semantics
without denotational semantics —in this case we simply put C = Id.

Remark 3.2 The readers who are familiar with fibrational category theory might notice that the property
functor C : C → Pos bijectively corresponds to a posetal opfibration (a functor c : E → C from some
category E such that c satisfies the opcartesian lifting property; see e.g. [20, Section 9.1]). Therefore C
may be replaced by a posetal opfibration c : E → C. In this setting, the functorial collecting semantics
interprets a morphism f : a→ b in L as the pushforward JfK∗ : EJaK → EJbK between fibre posets.

3.1 Denotational Semantics

In this section, we focus on the first functor and look at several examples of denotational semantics.

Example 3.3 An extreme example of denotational semantics is the identity functor. This means that the
semantics of types/contexts and programs are themselves.

A second non-trivial family of examples relates to monadic semantics. Good references to the def-
initions of monads and Kleisli categories can be found in [24] and [25]. The Kleisli category of a
monad T on C is denoted by CT . We let • denote the composition of morphisms in Kleisli categories.
Among examples of monads on Set, we can cite 1) the maybe monad that joins an extra element to
a given set, and is defined by MX = X ⊎ {∗}, 2) the powerset monad which maps each set to its
powerset and is defined by PX = 2X , and 3) the monad of probability subdistributions defined by
DsX = {µ : X → [0, 1] | µ is a countable subdist. on X}. Before we look at monadic semantics, we fix a
class of monads that is required to enable a least fixpoint definition of the semantics of while commands.

Definition 3.4 A while-monad on Set consists of a monad (T, η, (−)#) on Set and an ω-cpo (⊑X ,⊥⊥X)
on each TX. The sup of an ω-chain {xi}i∈N in TX is denoted by

⊔
xi. 4 We define ⊑X,Y as the pointwise

order on SetT (X,Y ) given by f ⊑X,Y g ⇐⇒ ∀x ∈ X . f(x) ⊑Y g(x), and ⊥⊥X,Y as the least function
λx . ⊥⊥Y . The data of the while-monad should satisfy:
(i) the Kleisli composition • is monotone and ω-continuous in each argument with respect to ⊑X,Y , and
(ii) additionally, it is strict in the second argument: f • ⊥⊥X,Y = ⊥⊥X,Z for any f ∈ SetT (Y,Z).

This is a simplification and specialization of the order-enriched monad in [18]. The order ⊑ is to
compare the definedness of elements/functions in the sense of domain theory. We later see another order
for truth values, and these two orders are independent in general. We do not require • to be strict in the
first argument. This is because we may sometimes want to distinguish the divergence after some effect from
pure divergence. Consider a program tick; diverge. Then its monadic semantics will be ⊥⊥M,M • JtickK,
which we may want to distinguish from the silent divergence ⊥⊥M,M.

Examples of while-monads on Set include the powerset monad P with the set inclusion order, the
maybe monad M with the flat order making ι2(∗) the least element, and the countable subdistribution
monad Ds with the pointwise mass order.

We now give a generic set-theoretic monadic semantics of the while language in Example 2.2.

4 In this article, the least element of a poset is denoted by ⊥⊥X if it corresponds to non-termination, while it is
denoted by ⊥ if it corresponds to the falsity (Example 3.9).
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Example 3.5 [Monadic Semantics of While Language] We give a semantics of the while language in SetT .
Let (T, η, (−)#,⊑,⊥⊥) be a while-monad on Set. In this semantics, we allow assignment commands x := e
to perform some computational effects. We therefore let the interpretation of the command x := e be the
morphism Jx := eK ∈ SetT (M,M). We also assume an interpretation of the boolean expression b as a
function JbK ∈ Set(M, {ff, tt}) into the two-points set. Then, the interpretation of programs is given by

JskipKT := ηM JP ;P ′KT := JP ′KT • JP KT Jx := eKT := Jx := eK
Jif b {P1}else{P2}KT := λρ . if JbK(ρ) = tt then JP1KT (ρ) else JP2KT (ρ)

Jwhile e {P}KT := µΦ where Φ(f) := λρ . if JbK(ρ) = tt then f • JP KT (ρ) else ηΩM(ρ)

Here µΦ is the least fixpoint of Φ, and ηΩM is a component of the unit natural transformation of the monad
T . We regard this interpretation as a functor J−KT : Lw → SetT . When T is the maybe monad M , J−KM
interprets programs as partial functions, while when T is the powerset monad P , J−KP may be regarded
as interpreting programs as binary relations.

Example 3.6 To interpret the while language Lwv with variable addition and deletion (Example 2.3), we
may adjust the semantics in the previous example as follows. First, we let J−KT map each object X ∈ Lwv,
which is a finite set of variables, to the set JXKT := MX of memories over X (Example 2.4). It is then
almost straightforward to modify J−KT and let it map a program P ∈ Lwv(X,X

′) to a morphism of type
MX → MX′ in SetT . We interpret two additional commands addvar and delvar by

J(addvar x)X,X⊎{x}KT (ρ) = ηJXK⊎{x}(ρ{x 7→ 0}) J(delvar x)X⊎{x},XKT (ρ) = ηJXK(ρ− x),

where 0 is the presupposed default value for new variables (Example 2.3) and ρ − x is the environment
obtained by removing x from the domain of ρ. Overall, we obtain a revised functor J−KT : Lwv → SetT .

3.2 Property Functor

We next see some property functors so that we can form functorial collecting semantics of denotational
semantics in the previous section.

Example 3.7 An extreme example of a property functor is the identity functor on Pos. This assigns to
each poset X the poset of properties consisting of “being less than or equal to x” for each x ∈ X.

Example 3.8 The category Rel of sets and binary relations between them is the host category for various
relational semantics of programs. For instance, the relational semantics of the while language interprets
a program as an endorelation on M. Recall that each binary relation f ∈ Rel(X,Y ) determines a ∪-
preserving function fS(U) := {j | i ∈ U ∧ (i, j) ∈ f} : (2X ,⊆) → (2Y ,⊆). We turn this into a functor
IP : Rel → CLat∨, where CLat∨ is the subcategory of Pos consisting of complete lattices and join-
preserving functions between them, by IP (X) := (2X ,⊆) and IP (f) := fS . Clearly we have the subcategory
inclusion ι : CLat∨ → Pos, so overall we obtain a property functor for Rel as the composite ι◦IP : Rel →
CLat∨ → Pos.

Example 3.9 Recall that Rel is isomorphic to the Kleisli category SetP of the powerset monad P . Thus
the property functor in the previous example may be seen as the composite ι◦IP : SetP → CLat∨ → Pos.
In this example, we generalize this diagram in two directions: one is to replace P with a Set-monad
(T, η, (−)#), and the other is to adopt complete-lattice valued predicates as properties. We then derive
a property functor using the strongest postcondition predicate transformer for Kleisli categories studied in
[2].

We first take a complete lattice (Ω,≤) for truth values. We use the symbols ⊥,⊤,∨,∧ to mean the
least/greatest elements and joins/meets of Ω. We then regard a function ϕ : X → Ω as an Ω-valued property
on X. Such properties form a complete lattice ΩX := (Set(X,Ω),≤X), where ≤X is the pointwise order.
The lattice operations on ΩX is written by ∧X ,∨X , etc. We note that the mapping X 7→ ΩX extends to a
functor of type Setop → CLat (the category of complete lattices and complete lattice homomorphisms).

We next take a T -algebra (or Eilenberg-Moore T -algebra) o : TΩ → Ω (see [24, Section VI.2]), and assume
that o is meet-preserving in the following sense: the function λϕ . o ◦ T (ϕ) belongs to CLat∧(Ω

X ,ΩT (X)),
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the homset of the category CLat∧ of complete lattices and meet-preserving functions. Such a T -algebra
induces the weakest precondition predicate transformer wpo(f) ∈ CLat∧(Ω

Y ,ΩX) for each f ∈ SetT (X,Y ).
It is given by wpo(f) := λϕ . o ◦ Tϕ ◦ f [2, Corollary 4.6]. The mapping f 7→ wpo(f) extends to a functor
of type SetopT → CLat∧, thanks to the Eilenberg-Moore axioms.

We then take the left adjoint spo(f) ∈ CLat∨(Ω
X ,ΩY ) of wpo(f), which we call the strongest post-

condition predicate transformer [2, Example 4.11]. We extend the mapping f 7→ spo(f) to a functor
Io : SetT → CLat∨ given by Io(X) := ΩX and Io(f) := spo(f). In this way we obtain a property functor
ι ◦ Io : SetT → CLat∨ → Pos.

We see a few examples of meet-preserving T -algebras where Ω = {⊥ ≤ ⊤}. Now ΩX is the poset of
characteristic functions, and we identify it with the poset (2X ,⊆) of subsets of X.

(i) For the powerset monad P , there is only one T -algebra o : PΩ → Ω preserving meets: o(U) = ⊤ ⇐⇒
⊥ ̸∈ U [2, Example 5.3]. The derived property functor is isomorphic to the one in Example 3.8.

(ii) For the maybe monad M , there is only one T -algebra o :MΩ → Ω preserving meets: the one sending
ι2(⊥⊥) to ⊤. The strongest postcondition predicate transformer (hence property functor Io) satisfies,
for f ∈ SetM (X,Y ), spo(f) = λϕ . {y ∈ Y | ∃x ∈ X . x ∈ ϕ ∧ f(x) = ηY (y)}.

Example 3.10 Any category C with a functor U : C → Set has a property functor given by the composite
Q ◦ U : C → Set → Pos with the covariant powerset functor Q.

For example, let (T, η, (−)#) be a monad on Set. Its Kleisli category SetT comes with the right adjoint
functor KT : SetT → Set given by KT (X) := T (X) and KT (f) := f# [24, Theorem VI.1]. We then
compose this with the covariant powerset functor Q and obtain a property functor Q ◦ KT : SetT →
Set → Pos.

By letting T be the powerset monad P , we obtain the property functor that assigns to a set X the set
of hyperproperties over X in the sense of Clarkson and Schneider [6]. The object part of Q ◦KT sends a
set X to the poset (22

X
,⊆) of hyperproperties on X.

3.3 Putting Together

We have seen several denotational semantics and property functors. By combining them we obtain func-
torial collecting semantics.

We consider a functorial collecting semantics of the while language Lw with 1) the monadic denotational
semantics J−KT : Lw → SetT in Example 3.5, and 2) the property functor ι ◦ Io : SetT → Pos given by
the strongest postcondition predicate transformer spo in Example 3.9. The functorial collecting semantics
interprets a program P as JP Kc := ι ◦ Io(JP KT ) = spo(JP KT ).

We address the question of whether this collecting semantics can be given inductively. Let
(T, η, (−)#,⊑,⊥⊥) be the while-monad on Set used in the monadic denotational semantics, (Ω,≤) be
the complete lattice, and o : TΩ → Ω be the meet-preserving T -algebra used in the property functor. We
remark that these two orders represent two independent notions: ⊑ represents the definedness order of
computations in the sense of domain theory, while ≤ represents the strength of truth values in the sense of
algebraic logic. As noted in [12], we emphasize these two orders may be different in general. We also use
different symbols for these two orders: joins for a definedness order is denoted by ⊔.

The following theorem states that the collecting semantics of while-free programs can be inductively
given.

Theorem 3.11 The functorial collecting semantics J−Kc satisfies:

JskipKc = idΩM JP ;P ′Kc = JP ′Kc ◦ JP Kc Jx := eKc = spo(Jx := eK)
Jif b {P1}else{P2}Kc = λϕ . JP1Kc(ϕ ∧M [b = tt]) ∨M JP2Kc(ϕ ∧M [b = ff]).

Here, [b = v] : M → {⊥M,⊤M} ⊆ ΩM is the function defined by [b = v](ρ) = ⊤M if and only if JbK(ρ) = v.

The next question is whether Jwhile b {P}Kc ∈ CLat∨(Ω
M,ΩM) can be computed by the least fixpoint

of some functional, say Ψ, definable by P and b. Since Jwhile b {P}KT is the least fixpoint of a functional
Φ on SetT (M,M) (see Example 3.5), it suffices to show that 1) spo : SetT (M,M) → CLat∨(Ω

M,ΩM)

9
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is ω-continuous and strict, and 2) Ψ ◦ spo = spo ◦ Φ. Regarding 1, it is equivalent to the continuity of
o : TΩ → Ω in the following sense. It relates the ω-lub in the definedness order and the ω-lub in the truth
value order.

Proposition 3.12 The following hold:

(i) spo(
⊔
fi) =

∨
spo(fi) holds for any X,Y ∈ SetT and ω-chain fi in hom-ω-cpo (SetT (X,Y ),⊑X,Y ) if

and only if o(
⊔
ci) =

∧
(o(ci)) holds for any ω-chain ci in the ω-CPO (TΩ,⊑Ω).

(ii) spo(⊥⊥X,Y ) = λϕ . ⊥Y if and only if o(⊥⊥Ω) = ⊤.

Proof We here prove (i); (ii) can be proved similarly. We actually prove that the following are equivalent.

(a) spo (
⊔
fi) =

∨
spo(fi) for any X,Y ∈ SetT and ω-chain fi in hom-ω-CPO (SetT (X,Y ),⊑X,Y ).

(b) wpo (
⊔
fi) =

∧
wpo(fi) for any X,Y ∈ SetT and ω-chain fi in hom-ω-CPO (SetT (X,Y ),⊑X,Y ).

(c) o (
⊔
ci) =

∧
(o(ci)) for any ω-chain ci in the ω-CPO (TΩ,⊑Ω).

(a) ⇐⇒ (b) Let fi be an ω-chain in (SetT (X,Y ),⊑X,Y ). Then from spo(fi) ⊣ wpo(fi), we obtain:

spo
(⊔

fi

)
=

∨
spo(fi) ⇐⇒

(
∀ϕ, ψ . spo

(⊔
fi

)
(ϕ) ≤Y ψ ⇐⇒

∨
spo(fi)(ϕ) ≤Y ψ

)
⇐⇒

(
∀ϕ, ψ . ϕ ≤X wpo

(⊔
fi

)
(ψ) ⇐⇒ ϕ ≤X

∧
wpo(fi)(ψ)

)
⇐⇒ wpo

(⊔
fi

)
=

∧
wpo(fi).

(b) =⇒ (c) Let ci be an ω-chain in (TΩ,⊑Ω). Notice the isomorphism (TΩ,⊑Ω) ∼= (SetT (1,Ω),⊑1,Ω).
We thus identify ci as an ω-chain in (SetT (1,Ω),⊑1,Ω). Then

o ◦
(⊔

ci

)
= wpo

(⊔
ci

)
(idΩ) =

∧
wpo(ci)(idΩ) =

∧
o ◦ ci.

(c) =⇒ (b) Let fi be an ω-chain in (SetT (X,Y ),⊑X,Y ). Then for any ϕ : Y → Ω and x ∈ X, we have

wpo
(⊔

fi

)
(ϕ)(x) = o ◦ Tϕ ◦

(⊔
fi

)
(x) = o

(
Tϕ

(⊔
fi(x)

))
= o

(⊔
Tϕ(fi(x))

)
=
∧
o(Tϕ(fi(x))) =

∧
(wpo(fi)(ϕ)(x)) =

(∧
wpo(fi)

)
(ϕ)(x).

Notice that Tϕ is continuous as T is a while monad. Therefore wpo (
⊔
fi) =

∧
wpo(fi). 2

We thus say that o makes spo ω-continuous and strict if it is a strict ω-continuous function of type
(TΩ,⊑Ω)

op → (Ω,≤).

Theorem 3.13 If o makes spo ω-continuous and strict, the functorial collecting semantics J−Kc satisfies

Jwhile b {P}Kc = µΨ where Ψ(f) = λϕ . (f ◦ JP Kc(ϕ ∧M [b = tt])) ∨ΩM (ϕ ∧M [b = ff]).

Proof It sufficies to show spo(µΦ) = µΨ. It is easy to verify that Ψ is a join-preserving endofunction on
the pointwise-order complete lattice CLat∨(Ω

M,ΩM). To show that (−)∧M [b = v] preserves joins, we use
the fact that [b = v] takes only values in {⊥M,⊤M}. By calculation, we have Ψ ◦ spo = spo ◦ Φ. Since spo
is ω-continuous and strict, we obtain spo(µΦ) = µΨ. 2

We see some examples of meet-preserving T -algebra making spo ω-continuous and strict.

(i) For the powerset while-monad P on Set and Ω = {⊥ ≤ ⊤}, the meet-preserving T -algebra o in
Example 3.9 makes spo ω-continuous and strict. The functorial collecting semantics J−Kc coincides
with the standard one in the literature.

(ii) For the powerset while-monad P on Set and Ω = ([0,∞],≤), the inf-operation inf : P [0,∞] → [0,∞]
is a meet-preserving T -algebra making spo ω-continuous and strict. The functorial collecting semantics
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J−Kc coincides with the quantitative strongest postcondition in [32]. By taking the opposite complete
lattice ([0,∞],≥) for Ω and replacing inf with sup, the functorial collecting semantics J−Kc coincides
with the quantitative strongest liberal postcondition in [32].

(iii) For the maybe while-monad M and Ω = {⊥ ≤ ⊤}, the meet-preserving T -algebra o in Example 3.9
makes spo ω-continuous and strict.

Example 3.14 We consider a functorial collecting semantics of the while language Lw with the monadic
denotational semantics J−KT : Lw → SetT in Example 3.5 and the property functor Q ◦KT : SetT → Pos
in Example 3.10. The interpretationQ◦KT (JP KT ) : 2TM → 2TM of a program P by this functorial collecting
semantics satisfies Q ◦ KT (JP KT )(U) = {JP K#T (c) | c ∈ U}, for any U ∈ 2TM, where (−)# is the Kleisli
lifting of the monad T . When T is the powerset monad P , this functorial collecting semantics appears
in Asaf et al.’s study on hypercollecting semantics [3, Section 4]. The definition of their hypercollecting
semantics is partially inductive 5 , and is an over-approximation of the above functorial collecting semantics;
see the proof of Theorem 1 of their paper.

4 Semantic Abstraction

After discussing the role of collecting semantics in detail in Section 3, we now consider semantic abstraction
and derivation of abstract semantics from a reference (e.g., collecting) semantics.

4.1 Abstraction Relations Between Domains and Interpretations

So far, we have studied the definition of program semantics independently from one another and have not
considered comparing them quite yet. Abstract interpretation [9] is specifically motivated with semantic
comparison so as to tie properties that may be proved with one to statements involving another. Therefore,
we consider the comparison of program semantics here.

Several forms of abstraction relations have been proposed, including Galois connections [9], concretiza-
tion functions without assuming the existence of a best abstraction [10], abstraction functions without
assuming the existence of a concretization, or binary relations [12,11]. In categorical terms, a Galois con-
nection α ⊣ γ : A → C is a pair of monotone functions α : C → A and γ : A → C between posets such
that the equivalence α(a) ≤ c ⇐⇒ a ≤ γ(c) holds for any a ∈ A, c ∈ C. It is called a Galois insertion if
α ◦ γ = id.

Definition 4.1 Let A,C : L→ Pos be interpretations.
A concretization of domains from A to C is a family {γa : A(a) → C(a)}a∈L of monotone functions.

We say that it is a concretization of interpretation from A to C if it satisfies C(f) ◦ γa ≤ γb ◦A(f) for any
f ∈ L(a, b). Dually, an abstraction of domains from C to A is a family {αa : C(a) → A(a)}a∈L of monotone
functions. We say that it is an abstraction of interpretation from C to A if it satisfies αb ◦C(f) ≤ A(f)◦αa

for any f ∈ L(a, b). A concretization (resp., abstraction) of interpretations is called complete if the above
inequality is an equality.

Remark that this definition sets up two notions of concretization (and the same for abstractions): the
notion of concretization of domains ties only semantic domains, just like the concretizations in [9] do
whereas concretization of interpretation tie not only domains (via a concretization of domains) but also
interpretations, thus providing an interpretation soundness statement as typically sought to design a static
analysis.

In categorical terminology, a concretization of interpretation is exactly a lax natural transformation from
A to C, and an abstraction of interpretation is exactly an oplax natural transformation from C to A. 6
Both concretizations and abstractions of interpretation express that one interpretation is more abstract
than the other.

5 The hypercollecting semantics in [3, Section 4] is not inductive at the interpretation of conditional expressions.
6 The original definition of (op)lax natural transformation consists of families of 1-cells and 2-cells. In the current
context, however, there is at most one choice of 2-cells for (op)lax natural transformations between oplax functors
into Pos. Therefore we here treat the concept of (op)lax natural transformation as a property on families of 1-cells.
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Moreover, as in [9], we remark that the same abstraction relation may be described simultaneously both
by concretization of domains and by an abstraction of domains; this strong correspondence between the
two then defines a Galois connection.

We now explain how we develop a sound abstract interpretation of a functorial collecting semantics
(J−K, C) in our categorical framework. The ultimate goal is to construct an interpretation A together with
a concretization of interpretation, as shown in the diagram (1). The development process is broken into
the following steps:

(i) We give the object part of A; this corresponds to designing a domain of interpretation for each
type/context a ∈ L.

(ii) We give a concretization of domains {γa : A(a) → CJaK}, relating the domain of interpretation of
types/contexts and that of the collecting semantics.

(iii) We give the morphism part of A; this corresponds to designing how each program P : a→ b transfers
abstract properties in A(a) to those in A(b). In our categorical framework this should respect the
oplax functoriality in Definition 2.7.

(iv) We check if the constructed interpretation A satisfies soundness in the following sense: for any program
P : a → b in L and an abstract predicate ϕ ∈ A(a), we have C(JP K)(γa(ϕ)) ≤ γb(A(P )(ϕ)). This is
equivalent to showing that γ being a concretization of interpretation from A to the functorial collecting
semantics C ◦ J−K.

The delicate part of this process is to find a right combination of A(a), γa and A(P ) to achieve the
soundness, as well as the expressiveness of abstract properties and the effectiveness of the semantics (when
implementing it on a computer). In many cases, it is possible to simultaneously carry out the third and
fourth steps, and to derive A from the interpretation C ◦ J−K and the abstraction relation, so as to achieve
a sound A.

In the rest of the section we see examples of concretization of interpretation. A bigger example of the
development of abstraction is given for the denotational semantics of the lambda calculus (Section 5).

4.2 The Case of Galois Connections

As discussed earlier, Galois connections are one of the fundamental constructions that are used in abstract
interpretation to describe abstraction relations. In presence of such a strong connection, the semantic
induction technique of an interpretation that was mentioned in the previous subsection can be made even
more systematic. We now study it in our categorical framework.

Theorem 4.2 Let C : L → Pos be an (resp. normal) interpretation, {A(a)}a∈L be a family of posets
indexed by objects in L, and G := {αa ⊣ γa : A(a) → C(a)}a∈L be a family of Galois connections (resp.
insertions). We define mappings on L-objects and L-morphisms by CG(a) := A(a) and CG(f) := αb ◦Cf ◦
γa (f : a→ b).

(i) CG : L→ Pos is a (resp. normal) interpretation, which we call the interpretation induced by G.
(ii) γ is a concretization of interpretation from CG to C. Moreover, for any interpretation A′ : L→ Pos

such that A′(a) = A(a), if γ is a concretization of interpretation from A′ to C, then CG ≤ A′.
(iii) α is an abstraction of interpretation from C to CG. Moreover, for any interpretation A′ : L → Pos

such that A′(a) = A(a), if α is an abstraction of interpretation from C to A′, then CG ≤ A′.

Proof (i) CG(ida) ≤ idCa is immediate by αa ◦ γa ≤ idCa. We show the other inequality:

CG(g ◦ f) = αc ◦ Cg ◦ Cf ◦ γa ≤ αc ◦ Cg ◦ γb ◦ αb ◦ Cf ◦ γa = CG(g) ◦ CG(f).

(ii) We show γ is a lax natural transformation from CG to C, that is, C(f)◦γa ≤ γb◦CG(f). This is evident
as C(f) ◦ γa ≤ γb ◦αb ◦C(f) ◦ γa. Next, let A′ : L→ Pos be an interpretation such that A′(a) = A(a) and
assume that γa is a concretization of interpretation from A′ to Pos. This amounts to C(f)◦γa ≤ γb ◦A′(f)
for any f : a→ b in L. Since αb is a left adjoint of γb, this is equivalent to αb ◦ C(f) ◦ γa ≤ A′(f), that is,
CG(f) ≤ A′(f). (iii) can be proved similarly. 2
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When considering a program f : a → b, the interpretation αb ◦ Cf ◦ γa is often called best abstract
transformer. The above theorem says that CG is the most precise interpretation making γ a concretization
of interpretation from CG to C, as well as α an abstraction of interpretation from C to CG.

The induction of abstract semantics by Galois connections is a fundamental operation in abstract
interpretation, and our categorical framework of abstract interpretation accommodates it by the above
theorem. Employing oplax functors as interpretations (Definition 2.7) is crucial here, because ordinary
functors are not closed under the induction operation by Galois connection.

An abstraction of an interpretation in a complete lattice defining a Galois connection.
The semantics induced by a family of Galois connections would not have an inductive characterization

due to its oplaxness. The common practice is to derive the best abstract transformers (or approximate
ones) for the basic constructs of a language, then extend them to the whole language by induction. We
discuss this approach using the functorial collecting semantics of the while language in Section 3.3 using a
meet-preserving Eilenberg-Moore T -algebra o : TΩ → Ω and a Galois connection G := α ⊣ γ : A→ (ΩM,≤)
with a general complete lattice (A,∧A,∨A); later we restrict A so that the abstract interpretation can be
computed in a finite means. We apply this Galois connection to the functorial collecting semantics J−Kc
in Section 3.3, and induce an abstract interpretation J−KGc : Lw → Pos, which is an oplax functor. It
interprets a program P as a monotone function α ◦ JP Kc ◦ γ : A → A, but it does not enjoy an inductive
characterization, that is, JP KGc is not expressible by the interpretation of subprograms in P by J−KGc .
We therefore inductively construct another interpretation L−M that uses the best abstract transformers at
assignment commands:

LskipM := idA LP ;P ′M := LP ′M ◦ LP M Lx := eM := Jx := eKGc (= α ◦ spo(Jx := eK) ◦ γ)
Lif b {P1}else{P2}M := λϕ . LP1M(ϕ ∧A α([b = tt])) ∨A LP2M(ϕ ∧A α([b = ff]))

Lwhile b {P}M := µΘ where Θ(f) := λϕ . (f ◦ LP M(ϕ ∧A α([b = tt]))) ∨A (ϕ ∧A α([b = ff]))

Recall that spo(Jx := eK) denotes the strongest postcondition predicate transformer for assignments (Ex-
ample 3.9), and [b = v] denotes the predicate representing the condition tests (Theorem 3.11). In the
interpretation of while, we use the complete lattice structure on the homset Pos(A,A) with the pointwise
order.

Theorem 4.3 Suppose that o makes sp ω-continuous and strict (hence Theorem 3.13 holds). The inter-
pretation L−M : Lw → Pos is functorial and J−KGc ≤ L−M holds.

Proof The functoriality of L−M is obvious by definition. We show α ◦ JP0Kc ◦ γ ≤ LP0M by induction on
the structure of P0. We omit subscript of ∧,∨. The cases P0 = skip, (P ;P ′), (x := e) are easy. The case
P0 = if b {P1}else{P2} is shown as follows.

Lif b {P1}else{P2}M = λϕ.LP1M(ϕ ∧ α([b = tt])) ∨ LP2M(ϕ ∧ α([b = ff]))

{IH} ≥ λϕ.α ◦ JP1Kc ◦ γ(ϕ ∧ α([b = tt])) ∨ α ◦ JP2Kc ◦ γ(ϕ ∧ α([b = ff]))

{γ meet-pres.} = λϕ.α ◦ JP1Kc(γ(ϕ) ∧ γ(α([b = tt]))) ∨ α ◦ JP2Kc(γ(ϕ) ∧ γ(α([b = ff])))

{unit law and α join-pres.} ≥ λϕ.α(JP1Kc(γ(ϕ) ∧ [b = tt]) ∨ JP2Kc(γ(ϕ) ∧ [b = ff]))

{definition} = α ◦ Jif b {P1}else{P2}Kc ◦ γ

To show the case P0 = while b {P}, we compare Ψ defined in Theorem 3.13 and Θ used in the definition
of Lwhile b {P}M. We first show α ◦Ψ(f) ◦ γ ≤ Θ(α ◦ f ◦ γ).

α ◦Ψ(f) ◦ γ = λϕ.α(f(JP Kc(γ(ϕ) ∧ [b = tt])) ∨ (γ(ϕ) ∧ [b = ff]))

{unit law and α join-pres.} ≤ λϕ.(α ◦ f ◦ JP Kc(γ(ϕ) ∧ γ(α([b = tt])))) ∨ α(γ(ϕ) ∧ γ(α([b = ff])))

{γ meet-pres.} = λϕ.(α ◦ f ◦ JP Kc ◦ γ(ϕ ∧ α([b = tt]))) ∨ α(γ(ϕ ∧ α([b = ff])))

{unit and counit law} ≤ λϕ.(α ◦ f ◦ γ ◦ α ◦ JP Kc ◦ γ(ϕ ∧ α([b = tt]))) ∨ (ϕ ∧ α([b = ff]))

{IH} ≤ λϕ.(α ◦ f ◦ γ ◦ LP M(ϕ ∧ α([b = tt]))) ∨ (ϕ ∧ α([b = ff]))

= Θ(α ◦ f ◦ γ).
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Since α ⊣ γ, the operation α ◦ (−) ◦ γ : (Pos(A,A),≤) → (Pos(ΩM,ΩM),≤) is strict and continuous.
Therefore

Lwhile b {P}M =
∨

Θn(⊥) =
∨

Θn(α ◦ ⊥ ◦ γ) ≥
∨

(α ◦Ψn(⊥) ◦ γ) = α ◦
(∨

Ψn(⊥)
)
◦ γ

= α ◦ Jwhile b {P}Kc ◦ γ.

2

This result is generic with respect to monads, the interpretation of (effectful) assignment commands,
truth values and Galois connections. This theorem gives a functorial over-approximation of the best
abstract interpretation derived from Galois connections. We see a similar story with the simply typed
lambda calculus in Section 5. In the following paragraphs, we discuss how Theorem 4.3 paves the way to
a computable static analysis.

Evaluation of the abstraction of an interpretation with a finite height domain.
When the abstract domain is a complete lattice with the finite chain property (which asserts that any

totally ordered subset of the lattice is finite), Theorem 4.3 provides an algorithm to compute the abstract
semantics that it defines [9]. Indeed, the complete lattice property and the finite chain property respectively
ensure the definition and the termination of the computation of Lwhile b {P}M. A classical analysis that
falls into this case is the analysis with the lattice of constants [21].

Evaluation of the abstraction of an interpretation using fixpoint over-approximation.
In practice, few abstract domains satisfy the properties that were required in the previous paragraph.

First, the complete lattice property often fails to hold. Then, the existence of least upper bounds for any
family of abstract elements can then not be guaranteed. Second, even when any family of abstract elements
has a least upper bound, the ω-chain generated by Lwhile b {P}M may not converge after finite iterations,
hence its least upper bound may not be computable. As an example, this occurs in the case of the abstract
domain of intervals [9]: as it is possible to find an infinite sequence of intervals I0 ⊂ I1 ⊂ . . . In ⊂ In+1 ⊂ . . .,
the definition of Lwhile b {P}M that was provided earlier does not terminate in general.

Such cases are typically addressed by specific fixpoint approximation abstract operators. The most
common instance is widening [9] and consists of a binary operator ▽ that over-approximates concrete
unions and ensures termination in the sense that any sequence of applications of widening stabilizes after
finitely many iterates. We now detail how our framework accommodates such analyses. We use the same
notations as in the previous definition of L.M and assume a program P , a condition b, and an abstract
element ϕ. Then, we define W ϕ

n :=
∨i=0...n

A τ i(ϕ) where τ(x) := LP M(x ∧A α([b = tt])). Interpolation
operators such as widening produce an over-approximation of all the elements of this sequence in terms of
≤. As an example, in the case of widening, the analysis computes a sequence defined by V ϕ

0 := W ϕ
0 and

V ϕ
n+1 := V ϕ

n ▽ τ(V ϕ
n ). This sequence converges to an element that we note V ϕ. Then the analysis produces

Lwhile b {P}M(ϕ) := V ϕ ∧A α([b = ff]).

Category of abstractions of interpretations.
We end this section by introducing the category of abstractions of an interpretation. This can be

viewed as a categorical understanding of the so-called lattice of abstractions. Fix an interpretation of a
category L, that is, an oplax functor C : L → Pos. This interpretation would typically be a functorial
collecting semantics as in Section 3. The category of abstractions of C is the category where an object is
a concretization of interpretation {γa : A(a) → C(a)}a∈L from an interpretation A to C, and a morphism
from {γa : A(a) → C(a)}a∈L to {γ′a : A′(a) → C(a)}a∈L is a concretization of interpretation {δa : A(a) →
A′(a)}a∈L such that for any object a of L, γ′a ◦δa ≥ γa, saying that γ′a ◦δa is more abstract than γa. We will
denote it by Abs(C). In words, Abs(C) is the oplax slice category over C of the category of interpretations
of L and concretizations between them.

Some standard constructions in abstract interpretation can be lifted to categorical structures of Abs(C),
provided that C enjoys certain properties. When C factorizes through the category of meet-semilattices
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and meet-preserving maps, the category Abs(C) has binary products. It is given by the Cartesian product
abstract domain (see e.g. [7]). Concretely, given two concretizations {γa : A(a) → C(a)}a∈L and {γ′a :
A′(a) → C(a)}a∈L, their binary product is given by the interpretation A × A′ and the concretization
{δa : A(a)×A′(a) → C(a)}a∈L where δa(u, v) = γa(u)∧γ′a(v). It remains to be seen what other categorical
structures are available on Abs(C).

5 Abstracting Denotational Semantics of λ-Calculus

In this section, we develop another kind of example to demonstrate the modularity of our theory of ab-
stractions. Examples discussed so far only consist of imperative languages with various semantics and
interpretations. Here, we describe interpretations for the simply typed lambda calculus over a higher-order
signature, as a larger case study to demonstrate that our theory also copes with functional languages. In
this study, we adopt rather simple non-relational abstraction of domains, that is, the abstract domain for
product types is the product of abstract domains for component types.

5.1 The Language Category: the Free Cartesian Closed Category

Given a set B, we define Typ(B) to be the set of types generated from B with the type constructors for
the unit type 1, the binary product type × and the arrow type →. We specify the simply typed lambda
calculus by a higher-order signature. It consists of a set B of base types, a set O of constants and a function
typ : O → Typ(B) assigning a type to each constant. We do not consider equational axioms on constants.
In the rest of Section 5, we let Π be a higher-order signature (B,O, typ).

We write λ(Π) for the free Cartesian closed category (CCC for short) generated from Π [14]. An object
of λ(Π) is a type in Typ(B), and a morphism from τ to τ ′ is a βη-equivalence class of a term-in-context
x : τ ⊢M : τ ′ in the simply typed lambda calculus over Π.

5.2 Functorial Collecting Semantics for the Lambda Calculus

We next give a functorial collecting semantics for λ(Π). We first recall the standard functorial semantics
of the simply typed lambda calculus in a Cartesian closed category (CCC for short). Let (C, 1C ,×C ,⇒C)
be a CCC. A Π-structure in C consists of 1) an assignment J−K0 : B → C of a C-object to each base type,
and 2) an assignment JcK0 : 1C → Jtyp(c)K of a C-morphism to each constant c ∈ O; here J−K : Typ(B) → C
is the inductive extension of J−K0 : B → C by

JbK := JbK0, J1K := 1C , Jτ1 × τ2K := Jτ1K ×C Jτ2K, Jτ1 → τ2K := Jτ1K ⇒C Jτ2K.

The Π-structure induces the Cartesian closed functor 7 J−K : λ(Π) → C [14].
For our functorial collecting semantics, we employ the CCC Set and fix a Π-structure in Set, then

take the induced Cartesian closed functor J−K as a denotational semantics. For the property functor, we
take the covariant powerset functor Q : Set → Pos from Section 3. To summarize, we take the following
functorial collecting semantics: Q ◦ J−K : λ(Π) → Set → Pos.

5.3 Abstracting Collecting Semantics by Galois Connections

Thanks to Theorem 4.2, to construct an abstract semantics of Q(J−K), it suffices to give a Galois connection
of the form ατ ⊣ γτ : A(τ) → Q(JτK) for every type τ ∈ Typ(B). We do so by first assuming, for each
base type b ∈ B, 1) a poset A0(b) of abstract base type properties, and 2) a Galois connection αb ⊣ γb :
A0(b) → Q(JbK). For instance, when there is a base type nat ∈ B for natural numbers and it is interpreted
as the set N of natural numbers, we may take the poset of intervals (including the empty one) over N for
A0(nat), and take the Galois connection for interval abstraction for αnat ⊣ γnat : A0(nat) → Q(N).

7 Here it means a functor strictly preserving finite products and exponentials.
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We then inductively extend the mapping A0 : B → Pos to the one A : Typ(B) → Pos by the Cartesian
closed structure of Pos:

A(b) := A0(b), A(1) := 1Pos, A(τ1 × τ2) := A(τ1)×Pos A(τ2), A(τ1 → τ2) := A(τ1)⇒Pos A(τ2).

We next construct a type-indexed family of Galois connections. Below ατi ⊣ γτi : A(τi) → Q(JτiK) are
Galois connections for i = 1, 2. (For α1 ⊣ γ1 : 1Pos → Q(J1K) we take the unique one.)

A(τ1 × τ2) Q(Jτ1K)×Pos Q(Jτ2K)
ατ1×ατ2

oo

⊥ //γτ1×γτ2
Q(Jτ1 × τ2K)

α×
oo

⊥ //γ×

A(τ1 → τ2) Q(Jτ1K)⇒Pos Q(Jτ2K)
ατ2◦_◦γτ1
oo

⊥ //γτ2◦_◦ατ1

Q(Jτ1 → τ2K)
α⇒

oo

⊥ //γ⇒

Here, Galois connections α× ⊣ γ× and α⇒ ⊣ γ⇒ are given by

α×(U) := (Q(π1)(U), Q(π2)(U)) γ×(U, V ) := U × V

α⇒(F ) := λU .
⋃

f∈F Qf(U) γ⇒(g) := {f | ∀U ⊆ Jτ1K. Qf(U) ⊆ g(U)}.

This establishes a type-indexed family of Galois connections G := {ατ ⊣ γτ : A(τ) → Q(JτK)}τ∈Typ(B).
Using the notations of Theorem 4.2, we obtain an abstract interpretation, that is, an oplax functor

J−KGc : λ(Π) → Pos given by JτKGc := A(τ) and Jx : τ ⊢ P : σKGc := ασ ◦ Q(Jx : τ ⊢ P : σK) ◦ γτ .
By Theorem 4.2, it comes with a concretization of interpretation γ from J−KGc to Q ◦ J−K, as well as an
abstraction of interpretation α from Q ◦ J−K to J−KGc . The interpretation J−KGc is normal when the base
type Galois connections are Galois insertions: indeed, it can be easily proved by induction on types that
ατ ◦ γτ = id. However, it is not functorial.

To have an inductively defined semantics that over-approximates J−KGc , we derive a new semantics of
the lambda calculus that interprets each constant c by Jx : 1 ⊢ c : typ(c)KGc : 1Pos → A(typ(c)). Formally,
we form a Π-structure (A0, {Jx : 1 ⊢ c : typ(c)KGc }c∈O) in Pos and induce a Cartesian closed functor
L−M : λ(Π) → Pos. This process is a lambda-calculus analogue of the derivation of L−M from J−KGc for the
while language in Section 4.2; in this example, assignment commands are replaced with constants in Π.
The following theorem is in parallel with Theorem 4.3.

Theorem 5.1 L−M is a Cartesian closed functor, and J−KGc ≤ L−M.

6 Related Works

In this paper, we study the construction of frameworks to describe semantic abstraction using categorical
tools which are already used heavily to construct semantics of programming languages.

Abstract interpretation [9,10] was proposed as a very general framework to compare program semantics
and has found applications in many areas of computer science such as semantics [8], program analysis and
verification [9,5,16], program transformations [13,27], or security [17]. It is of very general scope as shown
in [12], since it can be adapted to various program semantics, styles of abstraction relations (abstraction
functions, concretization functions, Galois connections, or basic abstraction relations), abstract domains,
and classes of approximation algorithms. Although it was remarked very early that it could also be
formalized in category theory, most descriptions use set theory. Steffen et al [29] define both concrete
and abstract semantics in a categorical framework in which they express soundness. Before their work,
Panangaden and Mishra give a categorical formulation of abstract interpretation based on the concept called
quasi-functor [26]. We leave the comparision of quasi-functors with oplax functors for future work. Sergey et
al. [28,15] rely on monads to construct a control flow analysis of a small functional language, where various
aspects of the program semantics and abstraction are described by monads. Our work uses categorical
tools in a different way. First, we use a framework based on oplax functors and lax natural transformations
in order to express and compare semantics. This is the right setting for embracing the induction of

16



Katsumata, Rival, Dubut

semantics by Galois connections (Theorem 4.2), which is foundational in abstract interpretation. Second,
we build upon a functorial decomposition to generalize the notion of collecting semantics, to expose a
property component and a semantic component. According to [12] as “the main utilization of the collecting
semantics is to provide a sound and relatively complete proof method for the considered class of properties”,
however this presentation does not give a systematic way to construct one such semantics, thus one of
our contributions is to provide a functorial interpretation for this notion. Another of our contributions
is to bridge the gap between monadic tools to construct program semantics and their use in abstract
interpretation.

This paper focuses on the forward property-based semantics. The other side of the story, namely
the backward property-based semantics, has recently been categorically studied [19,2,31]. They point out
that Dijkstra’s weakest precondition predicate transformer (wppt for short), which is a typical backward
property-based semantics, corresponds to functors of type Lop → Pos (see wpo in Example 3.9). This fact
suggests that we may dualize this paper’s story to develop abstract interpretations for backward property-
based semantics. There, wppts expressed as functors would play the role of functorial collecting semantics.

7 Conclusion

We have introduced categorical structures that account for basic concepts and constructions in abstract
interpretation. We have demonstrated that it can account for the abstraction of both imperative and
functional programs in a unified manner. A future work is to explore various combinations of the data
in the diagram (1). For the language category L, it would be interesting to take programming languages
other than the while language and the simply typed lambda calculus, such as linear lambda calculus [4],
Moggi’s monadic metalanguage [25], and dependent type theories. For the property functor C, regular
fibrations [20, Definition 4.2.1] are a rich source. The construction of (A, γ)-pairs is the central part of the
development of abstract interpretation, and it remains to be seen if our categorical formalism provides new
construction methods of (A, γ)-pairs.
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