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Abstract

In this paper we introduce a new approach for solving image restoration problems
by using the infimal postcomposition of a convex function by a linear operator. We
derive this formulation for general linear composite convex problems in Hilbert spaces
and we provide globally weakly convergent algorithms based on the Douglas-Rachford
splitting. We apply our algorithms to the image restoration problem, giving an ex-
plicit closed expression for the proximity operator of the infimal postcomposition.
Comprehensive numerical experiments are performed in order to serve two key objec-
tives: first, to highlight the advantages of the proposed procedure over a wide array of
state-of-the-art methods, considering diverse levels of image degradations; and second,
to assess the impact of TV-l2 penalization, which introduces strong convexity while
maintaining high performance, contrary to conventional beliefs.

Douglas-Rachford algorithm, infimal post-composition, composite convex optimization
problems, image restoration, splitting algorithms, strong convexity.
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1 Introduction

Image reconstruction is a crucial task in image processing. It is based on the formulation
of the direct model involving the observation y = Ax+ η, where A is often considered as a
linear operator and η is a stochastic perturbation, i.e., a noise, and consists in recovering
an image x̂ close from the original image x.

The resolution of the image reconstruction problem by standard variational approaches,
including total variation (TV) reconstruction, relies on optimization algorithms solving lin-
early composite convex optimization problems of the form

minimize
x∈H

1

2
∥Ax− y∥2 + g(Lx), (1)

where H and G are real Hilbert spaces, g : G → ]−∞,+∞] is proper, lower semicontinuous,
and convex, and L : H → G is linear and bounded (see [1, 2, 3] for examples of g ◦ L). The
specific case of isotropic TV is obtained when g = ∥ · ∥2,1 and L models the first order finite
difference operator.

A wide literature is dedicated to proximal splitting methods for solving (1) (see, e.g., [4, 5,
6, 7, 3, 8]). The choice of the most appropriate algorithm will depend on the properties of the
involved functions and linear operators. A first class of approaches are the primal algorithms
such as forward-backward (FB) algorithm [9], Douglas-Rachford (DR) algorithm [10, 11, 12],
and Peaceman-Rachford (PR) algorithm [13, 14, 12], whose use depends essentially on the
Lipschitz differentiability or proximability1 of the functions. In the context of strongly
convex problems when g ◦ L is proximable and differentiable with a Lipschitz gradient, a
theoretical comparison among these first order methods is provided in [15]. This work leads
to preferable choices depending on the minimum and maximum eigenvalues of A as well
as the Lipschitz constant of ∇(g ◦ L). In this context, DR and PR are often preferable
choices in some specific instances. Another theoretical comparison relaxing the hypothesis
of differentiability of g ◦ L is developed in [16].

However, for many penalization terms encountered in image processing, g ◦ L is not
proximable, starting with the isotropic TV. In its general form, the problem in (1) can be
solved using FB or DR/PR algorithms, where the proximity operator of g ◦ L is computed
with inner iterations. This approach has the numerical disadvantage that each iteration may
require important computational time to reach an accurate precision in the computation of
the proximity operator. Another well-known approach is the alternating direction method
of multipliers (ADMM), which needs the inversion of matrices of the form L⊤L+A⊤A. This
can be efficiently computed when L and A have compatible structures leading to a simple
inversion (e.g., via discrete Fourier transform), but can be very costly in general, especially
when the dimension is big. On the other hand, primal-dual algorithms can alternate between

1A function is proximable if there is a closed-form expression of its proximity operator.
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the primal and the dual spaces to solve (1) by splitting all their functionals without needing
any matrix inversion [17, 6, 18, 19]). The disadvantage in this case is the need of keep track
of iterates in a higher dimensional primal-dual space.

Contributions – In this work, we introduce an alternative approach for solving general
linear composite convex problems in Hilbert spaces including (1), by using the infimal
postcomposition of a convex function by a linear operator. We first provide an equivalent
variational formulation of the convex problem involving the infimal postcomposition and
we propose a weakly convergent algorithm derived from DR. This algorithm requires the
computation of the proximity operator of the infimal postcomposition derived in [20]. In
the context of image restoration we provide an explicit formula of this proximity operator.
Numerical experiments are conducted to illustrate the efficiency of the proposed algorithm.
We show the benefit of the proposed procedure compared to a large panel of state-of-the-art
methods, for different level of degradations and different image types. Moreover, we evaluate
the impact of a TV-l2 penalization, highlighting the modelling impact of including strong
convexity and, contrary to common thought, without degrading performance.

Outline – The paper is organized as follows. In Section 2 we introduce a variational formu-
lation using the infimal postcomposition of a general linear composite optimization problem
in Hilbert spaces, we study its theoretical properties, and we provide two weakly convergent
algorithms based on DR. These results are applied to the context of image restoration in
Section 3, including the explicit formula for the proximity operator of the infimal postcom-
position. In Section 4 we illustrate the efficiency of the proposed methods with respect to
concurrent state-of-the-art algorithms and we study the advantages of including a strongly
convex term on the isotropic TVl2 minimization problem.

Notations – Throughout this paper, H and G are real Hilbert spaces with inner products
⟨· | ·⟩ and associated norm ∥ · ∥, ⇀ denotes the convergence in the weak topology. Given
a function f : H → ]−∞,+∞], the domain of f is dom f =

{
x ∈ H

∣∣ f(x) < +∞
}
and f

is proper if and only if dom f ̸= ∅. Moreover, Γ0(H) denotes the class of convex, lower
semi-continuous, and proper functions from H to ]−∞,+∞].

Given a linear operator L : H → G, L∗ denotes its adjoint and its range is ranL ={
u ∈ G

∣∣ (∃x ∈ H) Lx = u
}
. If H = G is finite dimensional, and L = L⊤, denote by

λmin(L) the smallest eigenvalue of L.

For every f ∈ Γ0(H) and a linear operator L : H → G, define

proxf,L : G → 2H : u 7→ argmin
x∈H

f(x) +
1

2
∥Lx− u∥2. (2)

Note that proxf,Id = proxf is the classical proximity operator [21]. As for the classical prox-
imity operator, in several instances proxf,L has closed expression [20]. Given a nonempty set

C ⊂ H, the strong relative interior of C is sri (C) =
{
x ∈ H

∣∣ span(C − x) = cone(C − x)
}
,

where span(A) denotes the smallest closed linear subspace containing the set A and cone(A)
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denotes its conicall hull, i.e., the smallest cone containing A.

2 Optimization problems with infimal postcomposi-

tion

This contribution relies on the concept of infimal postcomposition of a function by a linear
operator [4, 20] defined below.

Definition 1. Let G be a real Hilbert space. Given f : H → ]−∞,+∞] and a linear bounded
operator L : H → G, the infimal postcomposition of f by L is defined by

L ▷ f : G → ]−∞,+∞] : u 7→ inf
x∈H
Lx=u

f(x). (3)

We say that L ▷ f is exact at u ∈ G, if

arg min
x∈H
Lx=u

f(x) ̸= ∅.

Note that dom (L ▷ f) ⊂ ranL.

A general formulation of (1) can be rewritten considering previous definition.

Problem 1. Let f ∈ Γ0(H), let g ∈ Γ0(G), and let L : H → G be a linear bounded operator.
We consider the problems

inf
x∈H

f(x) + g(Lx), (P )

and
inf
u∈G

g(u) + (L ▷ f)(u). (Q)

We denote S(P ) and S(Q) the sets of solutions to (P ) and (Q), respectively.

The following result connects problems (P ) and (Q), whose proof can be found in the
Appendix 6.1.

Proposition 1. In the context of Problem 1, the following hold:

1. infx∈H f(x) + g(Lx) = infu∈G g(u) + (L ▷ f)(u).

2. Suppose that x̂ ∈ S(P ). Then Lx̂ ∈ S(Q).

3. Suppose that û ∈ S(Q). Then

arg min
x∈H
Lx=û

f(x) ⊂ S(P ).
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Remark 1. Note that Proposition 1-2) implies that S(P ) ̸= ∅, then S(Q) ̸= ∅. The
converse is not true in general. Indeed, if û is a solution to (Q), Proposition 1-3) asserts that
S(P ) is nonempty if L▷f is exact at some solution û ∈ S(Q). Let us give a counterexample
of the existence of a solution to (P ) where, for every û ∈ S(Q), argmin x∈H

Lx=û
f(x) = ∅.

Set H = R2, G = R, f : (x1, x2) 7→ ex2, g : u 7→ u2/2, and L : (x1, x2) 7→ x1. Then
(L▷f) : u 7→ infx1=u e

x2 = 0 and (Q) reduces to infu∈R u
2/2, which has value 0 and a unique

solution û = 0. On the other hand, (P ) reduces to inf(x1,x2)∈R2 ex2 + x2
1/2, whose infimum is

also 0 but it does not admit solutions. Note that, in this case, argmin x∈H
Lx=û

f(x) = ∅.

Proposition 1 provides an alternative formulation of (P ) depending on the infimal post-
composition. We aim at solving this formulation via proximal splitting methods, which
need L ▷ f ∈ Γ0(G) and an explicit expression of its proximity operator. Next result gives
sufficient conditions in this direction.

Proposition 2. Let H and G be real Hilbert spaces, let f ∈ Γ0(H), and let L : H → G be a
linear bounded operator such that

0 ∈ sri (dom f ∗ − ranL∗). (4)

Then L ▷ f ∈ Γ0(G), it is exact in G, and
(∀γ > 0) proxγ(L▷f) = L proxγf,L, (5)

where domproxγf,L = G.

The proof can be found in the Appendix 6.2. An interesting feature of the identity in
(5) is that, even if proxf,L may be a set-valued operator, Lproxf,L is single-valued.

Under the assumptions on Proposition 2, (Q) is an optimization problem involving the
sum of two proper lower semicontinuous convex functions. Moreover, if the proximity oper-
ator of g is available, this alternative formulation can be solved, for instance, by using the
Douglas-Rachford algorithm using the closed form expression of the proximity operator of
L▷f . We now describe two infimal postcomposition Douglas-Rachford (IPCDR) algorithms,
whose difference comes from the order in which the proximity operators of L ▷ f and g are
activated.

Theorem 1. In the context of Problem 1, suppose that S(P ) ̸= ∅ and that

0 ∈ sri (dom f ∗ − ranL∗). (6)

Moreover, let (xn)n∈N be a sequence defined by either Algorithm 1 or Algorithm 2. Then,
the sequences (un)n∈N and (Lxn)n∈N converge weakly to some û ∈ S(Q). In addition, for
every x̂ ∈ H,

x̂ ∈ arg min
x∈H
Lx=û

f(x) ⇒ x̂ ∈ S(P ). (7)

The proof can be found in the Appendix 6.3.
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Algorithm 1: IPCDR1

Let z0 ∈ H, let γ > 0, and consider the routine

For n = 0, 1, . . . xn = proxγf,Lzn
un = proxγg

(
2Lxn − zn

)
zn+1 = zn + un − Lxn

Algorithm 2: IPCDR2

Let z0 ∈ H, let γ > 0, and consider the routine

For n = 0, 1, . . . un = proxγgzn
xn = proxγf,L

(
2un − zn

)
zn+1 = zn + Lxn − un.

3 Image restoration

We place our study in a standard image restoration context where we consider the following
finite dimensional problem.

Problem 2. Let A and D be N ×N and M ×N real matrices, let ϵ ≥ 0, let y ∈ RN , and
let g ∈ Γ0(RM) be a positive, positively homogeneous function vanishing only at 0 such that
ranD ∩ dom g ̸= ∅. The problem is to

minimize
x∈RN

F (x) =
1

2
∥Ax− y∥22 +

ϵ

2
∥x∥22 + g(Dx). (8)

The minimisation problem (8) models an image restoration problem where the degrada-
tion process is given by y = Ax + η ∈ RN , where x ∈ RN is the original image to recover,
A is an N × N real matrix, and η models an additive white Gaussian noise. Moreover, D
is a linear transform such as the discrete finite difference operator, involving horizontal and
vertical differences, which induces piecewise constant images when combined with a partic-
ular function g. The standard anisotropic total variation is obtained by choosing g = λ∥ · ∥1
while the isotropic one is obtained with g = λ∥·∥2,1 the hybrid ℓ2,1-norm. The regularization
parameter λ > 0 permits a tradeoff between the fidelity and the prior.

The introduction of the euclidean norm insures strongly convexity when ϵ > 0 and allows
us to recover more standard non strongly convex procedure when ϵ = 0.
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By setting f = 1
2
∥A ·−y∥2+ ϵ

2
∥ · ∥22, L = D, H = RN , and G = RM , (8) can be written as

a particular case of (P ) by noting that f is convex, differentiable with a (∥A∥2+ϵ)-Lipschitz
gradient. In addition, f is (λmin(A

∗A) + ϵ)-strongly convex, where λmin associates to any
symmetric N ×N real matrix its lowest eigenvalue. The following result provides existence
of solutions to Problem 2 and its proof can be found in Appendix 6.4.

Proposition 3. Problem 2 admits at least a solution.

Note that, Proposition 3 and Proposition 1(2) imply that the equivalent optimization
problem (Q) associated to Problem 2 also admits solutions. Our strategy is thus to find a
solution û to (Q) and recover a solution x̂ to (P ) by showing that L▷ f is exact at û and
using Proposition 1(3). We estimate û by considering IPCDR1 (Algorithm 1) or IPCDR2
(Algorithm 2), which requires to compute proxγf,D provided in Proposition 4. Its proof can
be found in the Appendix 6.5..

Proposition 4. In the setting of Problem 2, let

f =
1

2
∥A · −y∥22 +

ϵ

2
∥ · ∥22,

let γ > 0, and set
Φ = γ(ϵ Id+A⊤A) +D⊤D.

Then the following hold:

1. dom f ∗ = ran (A⊤A+ ϵ Id).

2. 0 ∈ sri (dom f ∗ − ranD⊤).

3. proxγf,D : u 7→
{
p ∈ H

∣∣ Φp = γA⊤y +D⊤u
}
.

In the following proposition, we provide conditions ensuring the invertibility of Φ defined
in Proposition 4. This result allows us to obtain a single-valued proximity operator proxγf,D.

Proposition 5. In the context of Problem 2, let γ > 0 and set Φ = γ(A⊤A+ ϵ Id) +D⊤D.
Moreover, suppose that one of the following holds.

1. λmin(Φ) > 0.

2. ϵ > 0.

3. kerA ∩ kerD = {0}.

4. kerD = ⟨{1}⟩ and 1 /∈ kerA.
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Then, Φ is invertible and proxγf,D : u 7→ Φ−1(γA⊤y +D⊤u).

The proof of Proposition 5 can be found in Appendix 6.6. Note that condition kerA ∩
kerD = {0} is satisfied, e.g., if kerA = {0}. On the other hand, when D is the discrete
difference operator, kerD = ⟨{1}⟩, i.e., the kernel of D is the set of constant vectors in
RN . In this case, Proposition 5(4) ensures the inversibility of Φ when 1 /∈ kerA. In thoses
cases, several efficient inversion techniques can be used to compute Φ−1. For instance, if A
and D share similar block-circulant structures, the inversion can be efficiently computed by
considering the Fourier transform and proxγf,D can be computed from Proposition 5.

The following results combine Theorem 1 and Proposition 4 in order to provide explicit
implementations of Algorithms 1 and 2 for solving Problem 2. The proof of Proposition 6
can be found in Appendix 6.7 and that of Proposition 7 is analogous.

Proposition 6. In the context of Problem 2, suppose that one of the assumptions 1), 2),
3), or 4) in Proposition 5 holds. Let z0 ∈ RM , let γ > 0, and consider the routine

For n = 0, 1, . . . xn =
(
γ(A⊤A+ ϵ Id) +D⊤D

)−1
(γA⊤y +D⊤zn)

un = proxγg
(
2Dxn − zn

)
zn+1 = zn + un −Dxn

(9)

Then, there exists x̂ ∈ RN such that xn → x̂ and

x̂+
1⊤(A⊤y − (A⊤A+ ϵ Id)x̂)

)
1⊤(A⊤A+ ϵ Id)1

1 (10)

is a solution to Problem 2.

Proposition 7. In the context of Problem 2, suppose that one of the assumptions 1), 2),
3), or 4) in Proposition 5 holds. Let z0 ∈ RM , let γ > 0, and consider the routine

For n = 0, 1, . . . un = proxγgzn
xn = (γ(A⊤A+ ϵ Id) +D⊤D)−1

(
γA⊤y +D⊤(2un − zn)

)
zn+1 = zn +Dxn − un.

(11)

Then, there exists x̂ ∈ RN such that xn → x̂ and

x̂+
1⊤(A⊤y − (A⊤A+ ϵ Id)x̂)

)
1⊤(A⊤A+ ϵ Id)1

1 (12)

is a solution to Problem 2.
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4 Numerical experiments

4.1 Algorithmic comparison

In this section we highlight the benefit of the infimal postcomposition combined with DR
procedures. To this purpose, we compare several algorithms for solving Problem 2 in the
case when ϵ > 0.

[IPCDR1] Infimal postcomposition combined with standard DR described in Propo-
sition 6.

[IPCDR2] Infimal postcomposition combined with standard DR described in Propo-
sition 7, where the proximal steps are swapped compared to [IPCDR1].

[DR-kerL1] Formulation by means of an auxiliary variable combined to standard DR
procedure considering kernel projection as described in [22].

[DR-kerL2] Formulation by means of an auxiliary variable to apply standard DR
procedure considering kernel projection as described in [22] and where the proximal
steps are inverted compared to [DR-kerL1].

[ADMM] ADMM procedure [23, 24, 25].

[CP] Chambolle-Pock algorithm [17].

[CV] Condat-Vũ algorithm [6, 18].

Each of these methods are specified below.

• DR-kerL1 Following [22], the minimization problem (8) can be formulated as

minimize
(x,v)∈RN×RM

Dx=v

1

2
∥Ax− y∥22 +

ϵ

2
∥x∥22 + g(v) (13)

or equivalently as

minimize
(x,v)∈RN×RM

1

2
∥Ax− y∥22 +

ϵ

2
∥x∥22 + g(v) + ιker L̃(x, v) (14)

with L̃ =
[
D − Id

]
. Since

Pker L̃ = Id− L̃⊤(L̃L̃⊤)−1L̃ = Id− L̃⊤(DD⊤ + Id)−1L̃,
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the iterations resulting by applying Douglas-Rachford splitting as in [22, Section 5.3.1] are
provided below and the sequence (xn)n∈N converges to the minimizer of (8).

Let z0 = xinit ∈ RN and z̃0 = Dz0 and γ > 0
For n = 0, 1, . . .

xn = (γA⊤A+ (γϵ+ 1) Id)−1(γA⊤y + zn)
vn = proxγgz̃n
un = (DD⊤ + Id)−1(D(2xn − zn)− 2vn + z̃n)
zn+1 = xn −D⊤un

z̃n+1 = vn + un.

• DR-kerL2 Relying on the same principle but swapping the two proximal operator com-
putations leads to the resulting iterations described below for which the sequence (xn)n∈N
also converges to a minimizer of (8).

Let z0 = xinit ∈ RN and z̃0 = Dz0 and γ > 0
For n = 0, 1, . . .

tn = (DD⊤ + Id)−1(Dzn − z̃n)
un = zn −D⊤tn
ũn = z̃n + tn
xn = (γA⊤A+ (γϵ+ 1) Id)−1(γA⊤y + 2un − zn)
vn = proxγg(2ũn − z̃n)
zn+1 = zn + xn − un

z̃n+1 = z̃n + vn − ũn.

• ADMM Another well-established algorithm is ADMM [8] whose resulting iterations are
described below and are such that the sequence (xn)n∈N converges to a minimizer of (8).

Let u0 = y0 = Dxinit and γ > 0
For n = 0, 1, . . . xn+1 = (A⊤A+ ϵId + γD⊤D)−1(A⊤y +D⊤(γun − yn))

un+1 = proxγ−1g(Dxn+1 + γ−1yn)
yn+1 = yn + γ(Dxn+1 − un+1).

• CP The iterations of Chambolle-Pock [17] are described below and are such that the
sequence (xn)n∈N converges to a minimizer of (8).

Let x̃0 = x0 = xinit ∈ RN and u0 = Dx0

Set τ > 0 and γ < (τ∥D∥2)−1

For n = 0, 1, . . .⌊
xn+1 = (τA⊤A+ (τϵ+ 1)Id)−1(xn − τD⊤un + τA⊤y)
un+1 = proxγg∗

(
un + γD(2xn+1 − xn)

)
.
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•CV The iterations of Condat-Vũ [6, 18] are described below and are such that the sequence
(xn)n∈N also converges to a minimizer of (8).

Let x0 = xinit ∈ RN and u0 = Dx0

Set τ > 0 and γ < ((∥A∥2 + ϵ)/2 + τ∥D∥2)−1

For n = 0, 1, . . .⌊
xn+1 = xn − τ

(
A⊤(Axn − y) + ϵxn +D⊤un

)
un+1 = proxγg∗

(
un + γD(2xn+1 − xn)

)
.

4.2 Numerical settings

For our numerical experiments, we consider the standard framework of image restoration
when the acquisition process A is associated with a blur having periodic boundary effects
as encountered in many optics systems leading to a bloc circulant matrix [2]. This matrix is
diagonalizable in the Fourier domain, which makes the computations, especially inversion,
very efficient. η ∼ N (0, σ2Id) models an additive white Gaussian noise of standard deviation
σ. In our experiments, D = [Dh, Dv] denotes horizontal and vertical differences operators
associated with the filter h = [1/2,−1/2] and v = h⊤ with periodic boundary effects also
leading to a bloc circulant matrix, and g = ∥ · ∥1,2.

We implement each algorithm for a large panel of values γ (for all four algorithms based
on DR and ADMM) or values (τ , γ) (for CP and CV).

In Figures 1, 2, and 3, we display, the original image, the degraded one, and its recon-
struction, for different choices of blur and noise. The evolution of the objective function
for each method (right figures) are displayed for the step-size parameter(s) leading to the
fastest procedure in terms of convergence of the objective function. As all the methods
converge to the same solution, the provided reconstructed image is the one obtained with
the fastest algorithm and for the parameters (λ, ϵ) leading to the best signal-to-noise ratio
(SNR) represented with the red box.

We can observe that CV is systematically the slowest algorithm followed by CP and DR-
kerL procedures. ADMM and IPCDR1/IPCDR2 have very close behaviour even if IPCDR1
is always faster. In terms of image reconstruction, we can observe that the best results
are not necessarily obtained for the smallest ϵ leading to the conclusion that adding strong
convexity does not impact badly in the reconstruction while it can help for the optimization
procedure.

Moreover, the profil in terms of convergence seems very close for different images but
similar degradation. IPCDR1/IPCDR2 appears to have a better convergence profile for
larger blur but not larger noise degradation.
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Original Degraded SNR MAP Restored Convergence plot

<latexit sha1_base64="cYIsQpm+9gxcR0+nWeqvM9B6z3M="></latexit>✏1e-6 1e-1
1e-2

100

<latexit sha1_base64="p3NRbD/71iydbM7RMyeMGoPD/+Y="></latexit>

�

5 10 15

1.6

1.7

1.8

1.9

2

10
6

CV

CP

ADMM

DR-kerL1

DR-kerL2

IPCDR1

IPCDR2

Figure 1: From left to right: original image extracted from [26], degraded image with a
uniform blur of size 3 × 3 and a Gaussian noise with standard deviation σ = 0.012, SNR
map w.r.t. (ϵ, λ) where the red box displays the highest SNR value, restored image, evolution
of F (xn) w.r.t the iterations n.

Original Degraded SNR MAP Restored Convergence plot
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Figure 2: From left to right: original Image ’2018’ extracted from BSD dataset [27], degraded
image with a uniform blur of size 5 × 5 and a Gaussian noise with standard deviation
σ = 0.02, SNR map w.r.t. (ϵ, λ) where the red box displays the highest SNR value, restored
image, evolution of F (xn) w.r.t the iterations n.
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Figure 3: From left to right: original Image ’10081’ extracted from BSD dataset [27],
degraded image with a uniform blur of size 3 × 3 and a Gaussian noise with standard
deviation σ = 0.1, SNR map w.r.t. (ϵ, λ) where the red box displays the highest SNR value,
restored image, evolution of F (xn) w.r.t the iterations n.
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5 Conclusion

In this paper we introduce a new formulation for linear composite convex optimization
problems using the infimal postcomposition of a convex function by a linear operator. We
study theoretical properties connecting the original convex optimization problem and our
formulation. This new formulation allows for the efficient application of first-order proximal
splitting methods as the Douglas-Rachford splitting, given a recent implementation of the
proximity operator of the infimal postcomposition in [20]. We provide numerical imple-
mentations of the proposed method in the context of image restoration problems, where
the proximity operator of the infimal postcomposition is computed explicitly. We illustrate
the efficiency of our proposed method by comparing it with respect to the state-of-the-art
methods in the literature.

6 Appendix

6.1 Proof of Proposition 1

Proof. 1: We have

inf
u∈G

g(u) + (L ▷ f)(u) = inf
u∈G

g(u) + inf
x∈H
Lx=u

f(x)

= inf
x∈H

inf
u∈G
Lx=u

f(x) + g(u)

= inf
x∈H

f(x) + g(Lx). (15)

2: Suppose that x̂ ∈ S(P ). Then it follows from (15) and Definition 1 that

f(x̂) + g(Lx̂) = min
x∈H

f(x) + g(Lx)

= inf
u∈G

g(u) + (L ▷ f)(u)

≤ g(Lx̂) + (f ▷ L)(Lx̂)

≤ g(Lx̂) + f(x̂), (16)

which yields
g(Lx̂) + (f ▷ L)(Lx̂) = min

u∈G
g(u) + (L ▷ f)(u) (17)

and, hence, û = Lx̂ ∈ S(Q).

3: Suppose that û ∈ S(Q) and let x̂ ∈ L−1û be such that f(x̂) = (L ▷ f)(û). Hence,
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since Lx̂ = û, we deduce from (15) that

g(Lx̂) + f(x̂) = g(û) + (f ▷ L)(û)

= min
u∈G

g(u) + (f ▷ L)(u)

= inf
x∈H

f(x) + g(Lx), (18)

and the result follows.

6.2 Proof of Proposition 2

In view of [20, Proposition 3], we only need to prove the exactness of L▷f (cf. Definition 1).
Let u ∈ G and note that

(L▷ f)(u) = inf
x∈H

f(x) + ι{u}(Lx), (19)

that ι∗{u} = ⟨u | ·⟩, and that dom ι∗{u} = G. Therefore, it follows from (4) and [4, Theo-

rem 15.23] that
− inf

v∈G
⟨u | v⟩+ f ∗(−L∗v) = min

x∈H
f(x) + ι{u}(Lx), (20)

and the result follows from (19).

6.3 Proof of Theorem 1

Proof. First note that S(P ) ̸= ∅ and Proposition 1(2) yield S(Q) ̸= ∅. Moreover, (6)
and Proposition 2 imply that (L ▷ f) ∈ Γ0(G) and proxγ(L▷f) = L proxγf,L. Hence, since
Algorithm 1 can be written equivalently as

zn+1 = proxγg(2proxγ(L▷f)zn − zn) + zn − proxγ(L▷f)zn, (21)

[4, Theorem 26.11] implies the existence of û ∈ S(Q) such that Lxn = proxγ(L▷f)zn ⇀ û
and un = proxγg(2proxγ(L▷f)zn− zn) ⇀ û. The result is analogous for Algorithm 2, because
it reduces to

zn+1 = proxγ(L▷f)(2proxγgzn − zn) + zn − proxγgzn. (22)

The last assertion follows from the exactness guaranteed in Proposition 2 and Proposi-
tion 1(3).

6.4 Proof of Proposition 3

Proof. Note that F = Ψ(Λ · −ℓ), where Ψ: (a, b, c) 7→ ∥a∥22/2 + ∥b∥22/2 + g(c), Λ: x 7→
(Ax,

√
ϵx,Dx), and ℓ = (z, 0, 0). Moreover, since g ≥ 0 is a positively homogeneous function
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vanishing only at 0, Ψ is a proper, convex, lower semicontinuous, coercive function. Hence,
it follows from [28, Remark 2.2, Remark 2.3, p. 774, and Theorem 2.1] that the solution set
of Problem 2 is nonempty.

6.5 Proof of Proposition 4

Proof. 1: Note that f = Ψ◦Λ, where Ψ: (a, b) 7→ ∥a−y∥22/2+∥b∥22/2, and Λ: x 7→ (Ax,
√
ϵx).

Moreover, Ψ∗ : (u, v) 7→ 1
2
∥v∥2 + 1

2
∥u + y∥2 − 1

2
∥y∥2 and Λ⊤ : (u, v) 7→ A⊤u +

√
ϵv. Since

0 ∈ RN × RN = sri (domΨ − ranΛ), it follows from [4, Corollary 15.28] that, for every
x∗ ∈ RN ,

f ∗(x∗) = (Ψ ◦ Λ)∗(x∗)

= (Λ⊤ ▷Ψ∗)(x∗)

= inf
(u,v)∈RN×RN

A⊤u+
√
ϵv=x∗

1

2
∥v∥2 + 1

2
∥u+ y∥2 − 1

2
∥y∥2. (23)

We explore two cases. If ϵ > 0, then (23) reduces to

inf
u∈RN

1

2ϵ
∥x∗ − A⊤u∥2 + 1

2
∥u+ y∥2 − 1

2
∥y∥2,

which has always a unique solution and a real value, because it is a strongly convex opti-
mization problem. Hence, dom f ∗ = RN = ran (A⊤A + ϵ Id). On the other hand, suppose
that ϵ = 0. Then, if x∗ /∈ ranA⊤, f ∗(x∗) = +∞, while if x∗ ∈ ranA⊤, there exists u∗ ∈ RN

such that x∗ = A⊤u∗ and (23) reduces to

inf
u∈RN

A⊤(u−u∗)=0

1

2
∥u+ y∥2 − 1

2
∥y∥2

= inf
w∈RN

A⊤w=0

1

2
∥u∗ + y − w∥2 − 1

2
∥y∥2

=
1

2
d2kerA⊤(u

∗ + y)− 1

2
∥y∥2,

which is a real number. Therefore, dom f ∗ = ranA⊤ = ran (A⊤A+ ϵ Id).

2: Note that 1 yields dom f ∗ = ran (A⊤A+ϵ Id) and, since ran (A⊤A+ϵ Id) and ran (D⊤)
are linear subspaces of RN , the finite dimensional context of Problem 2 and [4, Proposi-
tion 6.19(ii)] imply the result.

3: For every u ∈ G, it follows from (2) and Fermat’s theorem [4, Theorem 16.3] that
p = proxγf,Du is a solution to the linear system

Φp = (γ(A⊤A+ ϵ Id) +D⊤D)p = γA⊤y +D⊤u. (24)

The proof is complete.
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6.6 Proof of Proposition 5

Proof. First note that Φ is symmetric and, for every x ∈ RN , we have

x⊤Φx = γ∥Ax∥2 + γϵ∥x∥2 + ∥Dx∥2 ≥ 0. (25)

Therefore, Φ is a symmetric positive semidefinite N ×N real matrix.

1: This implies that Φ is a symmetric positive definite real matrix and, thus, it is
invertible.

2: It follows from (25) that λmin(Φ) ≥ γϵ > 0 and the result follows from 1.

3: Suppose that Φx = 0 for some x ∈ RN . Then, (25) implies that

γ∥Ax∥2 + γϵ∥x∥2 + ∥Dx∥2 = 0, (26)

which implies that x ∈ kerA ∩ kerD = {0} and, hence, kerΦ = {0}. Therefore Φ is
invertible.

4: Clear from 3.

The last assertion follows from Proposition 4(3).

6.7 Proof of Proposition 6

Proof. First observe that the existence of solutions to Problem 2 is guaranteed by Propo-
sition 3. Moreover, Proposition 4(2) asserts that 0 ∈ sri (dom f ∗ − ranD⊤). In addition,
it follows from Proposition 5 that (9) is a particular instance of Algorithm 1. Therefore,
Theorem 1 asserts that sequences (un)n∈N and (Dxn)n∈N converge to some û ∈ S(Q) in
the specific case of Problem 2. We recall that weak and strong topologies coincide in finite
dimensions.

In order to recover a solution to Problem 2 from û ∈ S(Q), it follows from (7) in
Theorem 1 that we need to solve

min
x∈H
Dx=û

1

2
∥Ax− z∥22 +

ϵ

2
∥x∥22. (27)

Since D is a discrete gradient, we have that the kernel of D is the space of constant images,
or, equivalently, kerD = ⟨{1}⟩, where 1 ∈ RN is the image constant and equal to 1.
Moreover, since û ∈ S(Q) ⊂ dom (D▷ f) ⊂ ranD, we obtain that {x ∈ RN |Dx = û} ≠ ∅.
Let x̂ ∈ RN such that Dx̂ = û. Then

(∀x ∈ H) Dx = û ⇔ D(x− x̂) = 0

⇔ x− x̂ ∈ kerD = ⟨{1}⟩
⇔ (∃λ ∈ R) x = x̂+ λ1. (28)
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Therefore, (27) reduces to

min
λ∈R

1

2
∥A(x̂+ λ1)− z∥22 +

ϵ

2
∥x̂+ λ1∥22, (29)

whose explicit solution is

λ̂ =
1⊤(A⊤z − (A⊤A+ ϵ Id)x̂)

)
1⊤(A⊤A+ ϵ Id)1

. (30)

We conclude that x̂+ λ̂1 is a solution to Problem 2. The proof is thus complete.
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linéaires,” Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge
Anal. Numér., vol. 9, no. R-2, pp. 41–76, 1975.

[24] D. Gabay and B. Mercier, “A dual algorithm for the solution of nonlinear variational
problems via finite element approximation,” Comput. Math. Appl., vol. 2, no. 1, pp.
17–40, 1976.

[25] D. Gabay, “Chapter IX applications of the method of multipliers to variational inequal-
ities,” in Augmented Lagrangian Methods: Applications to the Numerical Solution of
Boundary-Value Problems, Michel Fortin and Roland Glowinski, Eds., vol. 15 of Studies
in Mathematics and Its Applications, pp. 299 – 331. Elsevier, 1983.
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