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On shuffled-square-free words
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Univ Gustave Eiffel, CNRS, LIGM, F-77454 Marne-la-Vallée, France
{laurent.bulteau,vincent.juge,stephane.vialette}@univ-eiffel.fr

Abstract A word u is a shuffle of words v and w, which we denote by u ∈ v � w, if u can be
obtained by mixing the letters from v and w in a way that preserves the left-to-right ordering of
the letters from v and w. In case u ∈ v� v for some word v, the word u is called a shuffled-square.
A word u is shuffled-square-free if it does not have a non-empty factor (i.e, non-empty sequence
of adjacent letters) that is a shuffled-square. Our contribution in this context is two-fold. First, we
prove that there exist arbitrarily long shuffled-square-free words in any alphabet with six letters or
more, thereby improving on a previous result of Guégan and Ochem. Furthermore, we show that
recognizing shuffled-square-free words on arbitrary alphabets is NP-complete.

1 Introduction

A square is a non-empty word of the form uu, and a word is square-free if none of its fac-
tors are squares [6]. For example, aa, abab and abbababbab are square words, whereas bcabacb
and abacabcacb are square-free words. There exist several algorithms that can verify the square-
freeness of a word of length n in O(n log n) time [1,7,16]. Over a binary alphabet Σ = {a, b}, it
is easy to check that the only square-free words are the empty word ε, a, b, ab, ba, aba and bab.
However, there exist arbitrarily long square-free words in any alphabet with three or more let-
ters, as proved by Thue [22,21] (see also [2]). The numbers s(n) of ternary square-free words
of length n = 1, 2, . . . form the sequence 1, 3, 6, 12, 18, 30, 42, 60, . . . (OEIS A006156), and each
number s(n) is subject to the inequalities 6 ·1.032n 6 s(n) 6 6 ·1.379n [3]. Fraenkel and Simpson
proved that the number of distinct squares in a word of length n is bounded by 2n [10]. In [13],
Ilie improved this bound to 2n − θ(log n). Let us also mention that extremal square-free words
(i.e., those square-free words that cannot be extended to a new square-free word by inserting a
single letter in an arbitrary position) have been recently considered [11,17], and that a simple
algorithm for generating square-free words from a random source is given in [20].

The shuffle product � applied to a pair of strings u and v returns the set of all possible inter-
leavings of the symbols in u and v [15]. For instance, ab�ba = {abba, abba, abab, baba, baab, baab}.
A shuffled-square is a word u that satisfies u ∈ v � v for some non-empty word v, and a
shuffled-square-free word is a word that does not contain any factor that is a shuffled-square.
For example, abaabacc and ababccaa are shuffled-squares, since abaabacc ∈ abac � abac and
ababccaa ∈ abca�abca, whereas abacbabca, abcacbac and abcbacbcab are not shuffled-square-free
words. Note that abbacc and acbcba are neither shuffled-squares nor shuffled-square-free words.

Deciding whether a word is a shuffled-square has been proved to be NP-complete indepen-
dently by Buss and Soltys [5] and Rizzi and Vialette [19], the former proving the result for
alphabets as small as 9 letters. Recently, it has been proved that deciding whether a binary
word is a shuffled-square is NP-complete [4]. Note that, given words u, v and w, it is a standard
textbook exercise to show that deciding if u is a shuffle of v and w is polynomial-time solvable.

In Dagstuhl Seminar 14111 (Combinatorics and Algorithmics of Strings), Karhumäki and Rao
asked about the existence of an infinite shuffled-square-free word over some finite alphabet Σ [8].
It is clear that there exist only six shuffled-square-free words on the binary alphabet {a, b}:
a, ab, aba, b, ba and bab. Furthermore, a computer-aided search shows that there exist 237
shuffled-square-free words on the ternary alphabet {a, b, c} (see Figure 1 for a complete list), so
that |Σ| > 4 is a clear lower bound on the smallest possible size of Σ. As for the upper bound,
using the Lovász local lemma, Currie proved there exist infinite shuffled-square-free words over a
finite but large alphabet [9]. Soon afterward, Müller lowered the size of the alphabet to 10 [18].

https://oeis.org/A006156
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The best result obtained so far is by Guégan and Ochem that used entropy compression to show
that there exist at least 5.59n shuffled-square-free words of length n over a 7-letter alphabet. It
is worth noting that this latter result is non-constructive.

Our contribution in this paper is two-fold. First, we prove that there exist arbitrarily long
shuffled-square-free words in any alphabet with 6 letters or more, thereby improving on the
previous result of Guégan and Ochem [12]. Furthermore, complementing [5], [19] and [4], we
show that recognizing shuffled-square-free words is NP-complete on arbitrary alphabets.

2 Definitions

We follow standard terminology as used in [15,6]. Let Σ be a non-empty, finite set, called alphabet.
A word over Σ is a sequence of letters from Σ. We denote the length of a word u (i.e., the number
of letters it consists of) by |u|. The empty word ε is the unique word of length 0. The set of all
finite words over Σ is denoted by Σ∗ and the set of all non-empty finite words over Σ is denoted
by Σ+, so that Σ∗ = Σ+∪{ε}. For any integer n > 0, we denote by Σn the set of all finite words
over Σ of length n. For any word u ∈ Σn and any integer i such that 1 6 i 6 n, we denote by ui
the i-th letter of u.

For two words u and v, we say that u is a prefix (resp., a suffix or a factor) of u if there
exists a word x (or if there exist words x and y) such that v = ux (resp., v = xu or v = xuy).
A square is a word u of the form u = vv, where v is a non-empty word. A square-free word is a
word that does not contain any factor that is a square.

The shuffle operator on words, denoted by�, is the set of words defined recursively as follows:

∀u ∈ Σ∗, u� ε = ε� u = {u}
∀u, v ∈ Σ∗, ∀a, b ∈ Σ, ua� vb = (u� vb)a ∪ (ua� v)b.

A shuffled-square is a word u that satisfies u ∈ v � v for some non-empty word v. A shuffled-
square-free word is a word that does not contain any factor that is a shuffled-square.

3 Shuffled-square-free words on small alphabets

This section is devoted to studying the existence of arbitrarily (or even infinitely) long shuffled-
square-free words on a small alphabet. Guégan and Ochem have shown that there exist infinite
shuffled-square-free words over an alphabet of size 7 [12]. We improve this bound to 6.

Theorem 1. For all integers n > 0, there exist at least 4.56n shuffled-square-free words of
length n over a 6-letter alphabet. In particular, there exist infinite shuffled-square-free words over
an alphabet of size 6.

Our proof is not constructive, but relies on counting arguments. Below, we set σ = 6, and we
denote by Σ an alphabet of size σ. Then, let A be the set of minimal (for the subfactor relation)
shuffled-squares in Σ∗, and let L be the set of words without factors in A.

Below, for every set X of finite words, we denote by Xn the set X ∩ Σn and by xn the
cardinality of Xn. For every word λ, we also denote by X◦λ and by Xλ◦ the sets X ∩ (Σ∗ · λ)
and X ∩ (λ · Σ∗), respectively. We will focus on proving that `n > ρn for all n > 0, where
ρ ≈ 4.56594 is the largest real root of the polynomial

P (X) = X5 − 5X4 + 18X3 − 210X2 + 626X − 5.

It will follow that the prefix-closed set L is infinite, and König’s lemma [14] will then show
that there exists an infinite word whose finite prefixes all belong to L, thereby being shuffled-
square-free.

Consider a word w · θ in the set Ln · Σ, i.e., a (n + 1)-letter-long word whose n-letter-long
prefix is shuffled-square-free. If w · θ has a factor f that is a shuffled-square, such a factor must
be a suffix of w · θ. Then, let f be the smallest such factor:
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a b c
ab ac ba bc ca cb
aba aca bab bca cab cba
abac acab babc bcab caba cbab
abaca acaba babca bcaba cabac cbabc
abacab acabac babcab bcabac cabaca cbabca
abacaba acabaca babcaba bcabaca cabacab cbabcab
abacabc acabacb babcabac bcabacab cabacabc cbabcaba
abacb acabc babcabacb bcabacabc cabacb cbabcabac
abacba acabca babcb bcabacb cabacba cbabcabacb
abacbab acabcac babcba bcabacba cabacbab cbabcb
abacbabc acabcacb babcbab bcabacbab cabacbabc cbabcba
abacbabca acabcacba babcbac bcabacbabc cabacbabca cbabcbac
abc acb bac bcabacbabca cabc cbac
abca acba baca bcabc cabca cbaca
abcab acbab bacab bcabcb cabcac cbacab
abcaba acbabc bacaba bcabcba cabcacb cbacaba
abcabac acbabca bacabac bcabcbac cabcacba cbacabac
abcabacb acbabcab bacabacb bcabcbacb cabcacbac cbacabacb
abcabacba acbabcaba bacabc bcac cabcb cbacabc
abcac acbabcabac bacabca bcacb cabcba cbacabca
abcacb acbabcabacb bacabcac bcacba cabcbab cbacabcac
abcacba acbabcb bacabcacb bcacbac cabcbabc cbacabcacb
abcacbac acbabcba bacabcacba bcacbaca cabcbabca cbacabcacba
abcacbaca acbabcbac bacb bcacbacab cabcbac cbacb
abcacbacab acbac bacba bcacbacabc cabcbacb cbacbc
abcacbacabc acbaca bacbab bcacbc cabcbacbc cbacbca
abcacbc acbacab bacbabc bcacbca cabcbacbca cbacbcab
abcacbca acbacabc bacbabca bcacbcab cabcbacbcab cbacbcabc
abcacbcab acbacabca bacbabcab bcb cac cbc
abcb acbc bacbc bcba cacb cbca
abcba acbca bacbca bcbab cacba cbcab
abcbab acbcab bacbcab bcbabc cacbac cbcabc
abcbabc acbcabc bacbcabc bcbabca cacbaca cbcabcb
abcbabca acbcabcb bacbcabcb bcbabcb cacbacab cbcabcba
abcbac acbcabcba bacbcabcba bcbac cacbacabc cbcabcbac
abcbacb acbcabcbac bacbcabcbac bcbacb cacbc cbcac
abcbacbc acbcac bacbcac bcbacbc cacbca cbcacb
abcbacbca acbcacb bacbcacb bcbacbca cacbcab cbcacba
abcbacbcab acbcacba bacbcacba bcbacbcab cacbcac cbcacbc

Figure 1. The 237 shuffled-square-free words over the ternary alphabet {a, b, c}.
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– if the word w · θ is shuffled-square-free, it belongs to Ln+1;
– if not, and if f has length 2, then f = θ2, and w belongs to L◦θn ;
– if not, and if f has length 2k for some integer k > 2, let λ the 2-letter-long prefix of f ; the

words w · σ · f−1 · λ and f belong to L◦λn+3−2k and to Aλ◦2k , respectively.

From this disjunction of cases, we deduce the following inclusion relation over sets of words of
length n+ 1:

Ln ·Σ ⊆ Ln+1 ∪
⋃
θ∈Σ

(L◦θn · θ) ∪
⋃
λ∈Σ2

(n+1)/2⋃
k=2

L◦λn+3−2k · λ−1 ·Aλ◦2k .

This inclusion relation translates immediately into the inequality

`nσ 6 `n+1 +
∑
θ∈Σ

`◦θn +
∑
λ∈Σ2

(n+1)/2∑
k=2

`◦λn+3−2ka
λ◦
2k .

The quantity `◦θn does not depend on θ, and the sets L◦θn form a partition of Ln. It follows
that σ`◦θn = `n for all θ ∈ Σ. Then, when k > 2 and λ is a square word of length 2, the sets L◦λn
and Aλ◦2k are empty, i.e., `◦λn+3−2k = aλ◦2k = 0. Finally, when k > 2 and λ is a non-square word
of length 2, the quantities `◦λn and aλ◦2k do not depend on λ, and the sets L◦λn and Aλ◦2k form a
partition of Ln and of A2k, respectively. Hence, σ(σ − 1)`◦λn = `n and σ(σ − 1)aλ◦n = an for all
non-square words λ ∈ Σ2. It follows that

`nσ 6 `n+1 + `n +
1

σ(σ − 1)

(n+1)/2∑
k=2

`n+3−2ka2k.

Unfortunately, finding a tractable expression of a2k for all k > 2 seems out of reach. Therefore,
we just focus on computing simple upper bounds b2k on the size of the set A2k. It will then follow
that

`nσ 6 `n+1 + `n +
1

σ(σ − 1)

(n+1)/2∑
k=2

`n+3−2kb2k. (1)

Consider now some word w ∈ A2k, with k > 2. The set {1, 2, . . . , 2k} can be partitioned
into two subsets U = {u1, u2, . . . , uk} and V = {v1, v2, . . . , vk}, where u1 < u2 < . . . < uk
and v1 < v2 < . . . < vk, such that wu1wu2 · · ·wuk = wv1wv2 · · ·wvk . Without loss of generality,
we assume that u1 = 1.

We associate w with a path D that goes from the point of coordinates (0, 0) to the point
of coordinates (2k, 0). This path uses 2k unit steps that go one unit to the east and one unit
either to the north or to the south, as follows: the `-th step of that path is a north-east step
when ` ∈ U , and a south-east step when ` ∈ V . One checks easily that the `-th step arrives at
the point of coordinates (`,m), where m def

== #{i : ui 6 `} −#{i : vi 6 `}.
The first step goes from the point (0, 0) to the point (1, 1). Furthermore, if the path reaches

the line y = 0 at some point (`, 0), the word w1w2 · · ·w` is a shuffled-square, and the minimality
of w proves that ` = 2k. Consequently, our path keeps staying strictly above the line y = 0
between its first and last steps: this is a Dyck path, and even after deleting these first and last
steps, we still get a Dyck path (of length 2k − 2), which we denote by D′.

Example 1. If Σ contains the letters 1, 2 and 3, and if´ k = 4, the word w = 12131231 is the
shuffled-square of the word w1w2w4w5 = w3w6w7w8 = 1231. Thus, we associate w with the Dyck
path shown in Figure 2, which never goes below the line y = 1 except at its endpoints.
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1

2 1 3

1 2

3

1

Figure 2. Dyck path associated with a factorization of a minimal shuffled-square.

Moreover, once the path D is chosen, recovering the word w itself amounts to choosing
the letters wu1 , wu2 , . . . , wuk , in that order. There are σ ways to choose wu1 . Then, once the
letters wu1 , . . . , wu`−1

have been chosen, the letter wu`−1 is fixed, and therefore there are at
most σ − 1 ways to choose wu` .

In case u` > 3 and u` + 1 ∈ V , we can even go further. Indeed, when choosing the value
of wu` , the values of wu`−2, wu`−1 and wu`+1 have already been chosen. Then,

– if wu`−1 6= wu`+1, the letter wu` must be chosen among the σ−2 elements ofΣ\{wu`−1, wu`+1};
– if wu`−1 = wu`+1, and since the factor wu`−2wu`−1wu`wu`+1 is not allowed to be a shuffled-

square, the letter wu` must be chosen among the σ − 2 elements of Σ \ {wu`−1, wu`−2}.

Hence, in each of these two cases, there are at most σ − 2 ways to choose wu` .

Example 2. We consider the Dyck path obtained in Example 1, and look for letters a, b, c, d
that would result in an element of A8, as illustrated in Figure 3.

There are σ choices for the letter a. Then, the constraints b 6= a and c 6= a leave us with σ−1
choices for each of the letters b and c. Finally, if c = b, we know that d /∈ {a, c}, because the
word acdb is shuffled-square-free; if c 6= b, we also know that d /∈ {c, b}. This leaves us with σ− 2
choices for the letter d.

Note that, in this case, we omitted some constraints, e.g., we also need to have b 6= c.

a

b c

d

a

b

c

d

Figure 3. Choosing labels on increasing steps of a Dyck path.

This provides us with the following estimation. Let us denote by Dk,m the number of Dyck
paths of length 2k such that there are exactly m north-east steps that are immediately followed
by a south-east step: we say that these steps are the apexes of the path. The paths D and D′

have as many apexes as each other, and choosing D′ amounts to choosing D.
Consequently, there are Dk−1,m ways to choose D so that it has m apexes. As illustrated

in Figure 4 (right), in the first Dk−2,m−1 cases, the first apex of D is its second step. In the
remaining Dk−1,m −Dk−2,m−1 cases, the first apex is its `-th step for some integer ` > 3.

– In the first Dk−2,m−1 cases, we have σ ways to choose the letter w1, (at most) σ − 2 ways
to choose each of the m − 1 letters w` such that ` > 3 and the `-th step of D is an apex,
and (at most) σ − 1 ways to choose each of the remaining k −m letters w` such that ` = 2
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2(k − 1)

2k

Dk−1,m ways to choose D with m apexes

m apexes

2(k − 2)

2k

Dk−2,m−1 ways to choose D with m apexes,
one of which is the second step

1 apex m− 1 apexes

Figure 4. Counting ways of choosing Dyck paths with 2k steps and m apexes.

or the `-th and (` + 1)-th steps of D are north-east steps. Consequently, there are at most
σ(σ − 2)m−1(σ − 1)k−m ways to choose the letters wu1 , wu2 , . . . , wuk once the pathD is given.

– In the remaining Dk−1,m−Dk−2,m−1 cases, the first apex of D is not its second step. In each
of these cases, we have σ ways to choose the letter w1, σ − 2 ways to choose each of the m
letters w` such that the `-th step is an apex, and σ− 1 ways to choose each of the remaining
k −m− 1 letters such that the `-th and (`+ 1)-th steps are north-east steps. Consequently,
there are at most σ(σ − 2)m(σ − 1)k−m−1 ways to choose the letters wu1 , wu2 , . . . , wuk once
the path D is given.

Since Dk,0 = 0 for all k > 1, it follows that

b2k =
∑
m>1

Dk−2,m−1σ(σ − 2)m−1(σ − 1)k−m +∑
m>1

(Dk−1,m −Dk−2,m−1)σ(σ − 2)m(σ − 1)k−m−1

=
∑
m>1

Dk−2,m−1σ(σ − 2)m−1(σ − 1)k−m−1 +∑
m>1

Dk−1,mσ(σ − 2)m(σ − 1)k−m−1

=
∑
m>0

Dk−2,mσ(σ − 2)m(σ − 1)k−m−2 +∑
m>0

Dk−1,mσ(σ − 2)m(σ − 1)k−m−1 (2)

when k > 2.
Finally, consider the power series

L(x) =
∑
n>0

`nx
n, B(x) =

∑
k>2

b2kx
2k and D(x, y) =

∑
k,m>0

Dk,mx
kym,

whose coefficients are non-negative integers. The series D(x, 1) counts Dyck paths without any
concern for the number of their apexes, and thus it coincides with the Catalan series

D(x, 1) =
∑
n>0

xn

n+ 1

(
2n

n

)
=

1−
√
1− 4x

2x
,

whose radius of convergence is 1/4. Thus, for every value ŷ such that |ŷ| 6 1, we already know
that the series D(x, ŷ) in the variable x has radius of convergence at least 1/4.

Dyck paths are counted by the bivariate series D(x, y) and can be decomposed recursively
as follows. A Dyck path of length 2k with m apexes is either:
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– empty, in which case k = m = 0;
– made of a north-east step, then a south-east step, and finally a Dyck path of length 2(k− 1)

with m− 1 apexes;
– made of a north-east step, then a Dyck path of length 2a with b apexes, for some integers a > 1

and b > 1, then a south-east step, and finally another Dyck path of length 2(k − 1 − a)
with m− b apexes.

It follows that Dk,m = 1k=m=0 when k 6 0 or m 6 0, and that

Dk,m = Dk−1,m−1 +
∑
a>1

∑
b>1

Da,bDk−1−a,m−b (3)

when k > 1 and m > 1.
Alternatively, and denoting by D the class of Dyck paths and by 1 the (empty) Dyck path

of length 0, we can write the above recursive decomposition as:

D = 1∪ ↗ ·↘ ·D∪ ↗ ·(D \ {1})·↘ ·D.

This relation immediately translates into the equality

D(x, y) = 1 + xyD(x, y) + xD(x, y)(D(x, y)− 1) (4)

over generating functions. This equality can also be viewed as a consequence of (3).
The two solutions of (4) are

D(x, y) =
1 + x− xy ±

√
(1 + x− xy)2 − 4x

2x
.

The solution

1 + x− xy +
√

(1 + x− xy)2 − 4x

2x

is not continuous around 0, and since we know that D is continuous, it follows that

D(x, y) =
1 + x− xy −

√
(1 + x− xy)2 − 4x

2x
, (5)

this equality being valid on the domain Dom
def
== {(x, y) : 0 6 y and 0 6 x 6 1/(1 +

√
y)2}, on

which D is absolutely convergent.
We then prove that the series B(x) coincides with the power series

E(x)
def
== σx2(1 + x2)D

(
(σ − 1)x2,

σ − 2

σ − 1

)
− σx2,

which has radius of convergence

r =
1√

σ − 2 +
√
σ − 1

.
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Indeed, E(x) is clearly even, and since D0,m = 1m=0 for all m > 0, its coefficients e2k satisfy the
relation ∑

k>0

e2kx
2k = E(x) = σx2

(
−1 +D

(
(σ − 1)x2,

σ − 2

σ − 1

))
+

σx4D

(
(σ − 1)x2,

σ − 2

σ − 1

)
=
∑
k>1

∑
m>0

σ(σ − 1)k−m(σ − 2)mDk,mx
2k+2 +

∑
k>0

∑
m>0

σ(σ − 1)k−m(σ − 2)mDk,mx
2k+4

=
∑
k>2

∑
m>0

σ(σ − 1)k−m−1(σ − 2)mDk−1,mx
2k +

∑
k>2

∑
m>0

σ(σ − 1)k−m−2(σ − 2)mDk−2,mx
2k

=
∑
k>2

b2kx
2k = B(x). (6)

In particular, both series E(x) and B(x) are absolutely convergent on the open interval (0, r).
Finally, let s be the minimum of the radii of convergence of the series B(x) and L(x). For

each integer n > 0 and for each real number x ∈ (0, s), we rewrite the inequality (1) as:

σ(σ − 1) ((σ − 1)`n − `n+1)x
n+3 6

(n+1)/2∑
k=2

`n+3−2kb2kx
n+3. (7)

Summing these inequalities provides us with an absolutely converging sum on the left side, and
a sum with non-negative terms on the right side. Thus, the left sum is still bounded from above
by the right sum. Up to using the change of variable m def

== n+ 3− 2k, this means that

B(x) (L(x)− `0 − `1x) =
∑
k>2

∑
m>2

`mx
mb2kx

2k

=
∑
k>2

∑
n>2k−1

`n+3−2kb2kx
n+3

=
∑
n>0

(n+1)/2∑
k=2

`n+3−2kb2kx
n+3

>
∑
n>0

σ(σ − 1) ((σ − 1)`n − `n+1)x
n+3

> σ(σ − 1)2x3
∑
n>0

`nx
n − σ(σ − 1)x2

∑
n>1

`nx
n

> σ(σ − 1)x2 ((σ − 1)xL(x)− L(x) + `0) . (8)

Since `0 = 1 and `1 = σ, the latter inequality can be rewritten as(
B(x) + σ(σ − 1)x2(1 + x− σx)

)
L(x) > (σx+ 1)B(x) + σ(σ − 1)x2. (9)

Then, one checks (e.g., by using a formal calculus software) that (σx+1)B(x) + σ(σ− 1)x2 > 0
whenever x ∈ (0, r), and that B(x)+σ(σ−1)x2(1+x−σx) < 0 whenever x ∈ (ρ−1, ρ−12 ), where ρ2
is the second largest real root of the polynomial P (X). Meanwhile, L(x) has non-negative co-
efficients, thereby being positive on the interval (0, s). Consequently, no real number belongs
simultaneously to the three intervals (0, r), (0, s) and (ρ−1, ρ−12 ), which means that s 6 ρ−1.

Furthermore, since the sequence (`n)n>0 is sub-multiplicative, we know that `n > s−n for
all n > 0. It follows that `n > ρn for all n > 0.
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4 Recognizing shuffled-square-free words

Deciding whether a word u is a shuffled-square (i.e., u ∈ v� v for some v ∈ Σ+) is NP-complete
[5,19], even for binary alphabets [4]. These results leave open the problem of recognizing words
that do not contain any shuffled-square as a factor. This section is devoted to proving hardness
of recognizing shuffled-square-free words on arbitrary alphabets.

Theorem 2. Deciding shuffled-square-free words is NP-complete.

We proceed by using a reduction from 3SAT. Our reduction can be decomposed into three
steps. We successively translate each 3SAT formula ϕ into a circuit Cϕ, then into a graph Gϕ,
and finally into a word wϕ whose strict factors are never shuffled-squares. Each positive instance
of ϕ is translated into a successful computation of Cϕ, into a perfect matching of Gϕ that satisfies
some non-crossing property, and into a decomposition of wϕ into a shuffled-square. By contrast,
if ϕ is not satisfiable, Cϕ has no successful computation, no perfect matching of Gϕ has the
non-crossing property, and wϕ is not a shuffled-square.

Step 1: From 3SAT formulæ to circuits. Let ϕ be a 3SAT formula with m clauses, each formed
of three literals, and n variables. The problem 3SAT consists in deciding whether there exists a
way to choose one literal ` in each clause (we say that this is a clause-literal) and one literal x
or x per variable (we say that this is a variable-literal) so that each chosen clause-literal coincides
with a chosen variable-literal. Such choices, if they exist, form a positive instance of ϕ.

Given the formula ϕ, we build a rectangular circuit through which will run a certain number
of wires. Each wire is associated with a clause- or variable-literal, and thus there are 3m + 2n
wires. Wires interact as follows.

On each row of the circuit, the wires are ordered from left to right, each wire occupying one
cell of the circuit grid, which is thus 3m+ 2n-column-wide. On the two extremities of each wire
lie a source gadget and a sink gadget, which correspond with a given clause or variable. In each
source gadget, we give a special status to one of the (two or three) wires that exit the gadget.
This corresponds to choosing one literal per clause, and one of the two literals x and x per
variable x.

On the top row of the circuit, clause source gadgets occupy the leftmost cells, and variable
source gadgets occupy the rightmost cells. On the bottom row of the circuit, clause source
gadgets occupy the rightmost cells, and variable source gadgets occupy the leftmost cells. Thus,
the challenge is to make each variable-literal wire cross each clause-literal wire.

The way wires cross each other is controlled as follows. In general, wires cannot cross each
other, i.e., swap the columns they occupy, unless they go through swap gates. Each swap gate
occupies three adjacent cells on one row. Its input consists of one clause-literal wire ` and two
variable-literal wires x and x, from left to right. Its output, one row below, consists in the
variable-literal wires x and x and then the clause-literal wire `.

There are three variants of swap gates. First, cross gates (or ⊗ gates) are used to make two
variable-literal wires x and x cross a clause-literal wire ` that concerns a variable distinct from x.
Second, positive gates (or ⊕ gates) are used to make two variable-literal wires x and x cross
a clause-literal wire x. Such a gate triggers an error if both the clause-literal wire x and the
variable-literal wire x were chosen by their respective source gadgets. Similarly, negative gates
(or 	 gates) are used to make two variable-literal wires x and x cross a clause-literal wire x.
Such a gate triggers an error if both the clause-literal wire x and the variable-literal wire x were
chosen by their respective source gadgets.

In conclusion, when source gates select one of their outgoing wires, they conjointly choose a
family of literals, which may or may not form a positive instance of the formula ϕ. This family
is a positive instance of ϕ if and only if no swap gate triggers any error.

In Figure 5, we present the circuit associated with a 3SAT formula ϕ, and a choice of literals
that is not a positive instance of ϕ.
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x1 x2 x3

Clause source:
x1 ∨ x2 ∨ x3

x1 x2 x4

Clause source:
x1 ∨ x2 ∨ x4

x1 x1

Variable
source:x1

x2 x2

Variable
source:x2

x3 x3

Variable
source:x3

x4 x4

Variable
source:x4

⊗ ⊗

⊗ ⊗

⊕ ⊕

⊗ ⊗

⊗ ⊗

⊕ ⊕

⊗ ⊗

⊕ ⊕

⊗ ⊗

⊗ ⊗

	 	

⊗ ⊗

⊗ ⊗

⊗ ⊗

⊗ ⊗

⊕ ⊕

⊗ ⊗

⊗ ⊗

	 	

⊗ ⊗

⊗ ⊗

⊗ ⊗

⊗ ⊗

⊗ ⊗

Variable
sink

Variable
sink

Variable
sink

Variable
sink

Clause
sink

Clause
sink

Figure 5. Circuit associated with the formula ϕ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4). Wires
associated with chosen literals are painted red. Other wires are painted black. Choosing the
clause literals x2, x4 and the variable literals x1, x2, x3, x4 does not provide us with a positive
instance of ϕ, and the 	 gate painted in black triggers an error. Had we chosen the variable
literal x4 instead of x4, we would have obtained a positive instance of ϕ, and no error would have
been triggered.

Step 2: From circuits to labeled graphs. Our second step consists in transforming Cϕ into a
labeled graph Gϕ constructed as follows. The vertices of Gϕ are placed in the cells of a rectangular
grid, which may be seen as a subdivision of the rectangular grid containing the circuit Cϕ. Then,
two vertices of Gϕ are connected with each other if they lie in adjacent rows and if they have
the same label. Identifying each edge with a segment between the two vertices it connects, this
graph comes with a notion of crossing between edges.

Our transformation is designed to ensure that the 3SAT formula ϕ from which we built the
circuit Cϕ is satisfiable if and only if Gϕ has a non-crossing perfect matching, i.e., if there is a
collection of pairwise non-crossing edges of Gϕ such that each vertex of Gϕ belongs to exactly
one edge of the collection.

In order to do so, we build the graph Gϕ with two kinds of connected components. Some
connected components consist of two vertices and one edge. Such a component is obtained by
giving its vertices a label that no other vertex uses. We say that such vertices and the edge that
connects them are blocking. Indeed, when an edge e is blocking, every perfect matching of Gϕ

contains e, and thus non-crossing perfect matchings of Gϕ cannot contain any edge that crosses e.
Thus, in what follows, we will represent edges only if they do not cross any blocking edge.

In addition to blocking components, Gϕ also contains connected components with arbitrar-
ily many vertices and edges. Such components are meant to represent wires of the circuit Cϕ

with a common clause or variable source, and we say that the edges involved in such large-size
components are main edges of the graph.
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The circuit Cϕ is composed of several circuit units: variable and clause sources, which have
fan-out two or three; unit cell grids, with fan-in and fan-out one; swap gates, with fan-in and
fan-out three; variable and clause sinks, which have fan-in two or three. Each circuit unit U
covers one to three grid cells, and is translated into a graph unit U that covers a tiny rectangle
within the rectangular grid in which Gϕ is embedded.

A circuit unit U with fan-in x and fan-out y is translated into a graph unit U with 3x
half-edges on its top side and 3y half-edges on its bottom side. More precisely, the top side of U
contains x main half-edges, each of which is surrounded by two blocking half-edges. Similarly, the
bottom side of U contains y main half-edges, each of which is surrounded by two blocking half-
edges. In addition, both the left and right sides of each graph unit are surrounded by blocking
edges, and we make sure that any two main vertices are separated by at least one blocking vertex.

Below, let us order wires and edges from left to right. The kth wire that leaves a circuit unit U
is translated into the kth main half-edge, say ek, on the bottom side of U. Similarly, the `th wire
that enters a circuit unit U′ is translated into the `th main half-edge, say e′`, on the top side
of U′. Then, if the two wires coincide with each other, the half-edges ek and e′` belong to the
same edge e, and the graph units U and U′ share the edge e as well as the two surrounding
blocking edges.

Finally, we translate each choice of clause or variable literals of Cϕ into a non-crossing perfect
matching of Gϕ. This translation will fail if some gate of Cϕ triggers an error, and succeed
otherwise. The translation is as follows: if the literal associated with a wire entering (and then
leaving) a circuit unit U has been chosen, the two half-edges corresponding to that wire, in
the top and bottom borders of the graph unit U, are excluded from the non-crossing perfect
matching. If that literal is not chosen, these half-edges are included into the matching.

Thus, we keep following the convention from Figure 5 about coloring wires black or red
depending on whether they were associated with chosen literals or not: in Figures 6 and 7 below,
the main half-edges included in (portions of) non-crossing perfect matching are painted black,
and the other half-edges are painted red. In both Figures 6 and 7, we represent the labels of main
vertices, and omit the labels of blocking vertices.

Now, we present the different graph units that correspond to a given circuit unit. Each graph
unit is represented as a small graph with half-edges, and we present the possible portions of
non-crossing perfect graph matchings that concern the edges and half-edges of the graph unit.

Sources, sinks and unit cells are translated into the graph units represented in Figure 6:

1. each clause source is translated into ClauseSource;
2. each clause sink is translated into ClauseSink;
3. each variable source is translated into VariableSource;
4. each variable sink is translated into VariableSource;
5. each unit cell is translated into a version of Cell whose main vertices are labeled either by c

or by v, depending on if the unit cell contains a wire associated with a clause literal or with
a variable literal.

The first four graph units are two-row-high, whereas Cell is eight-row-high.
Then, swap gates are translated into the eight-row-high graph units represented in Figure 7:

1. each cross gate is translated into Gate⊗;
2. each positive gate is translated into Gate⊕;
3. each negative gate is translated into Gate	.

The graph unit Gate⊗ has four (portions of) non-crossing perfect matchings. Each matching
coincides with choosing one of the variable literals x and x, and either choosing (or not) the
clause literal `. Thus, using Gate⊗ allows these four literal choices.

Then, the graph unit Gate⊕ is obtained by adding one blocking edge, which results in deleting
one main edge of Gate⊗ from ever belonging to a non-crossing perfect matching. As a result, the
portion of non-crossing perfect matching that coincides with choosing both literals ` and x is no
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`1

`1

`2

`2

`3

`3

`1

`1

`2

`2

`3

`3

`1

`1

`2

`2

`3

`3

c c c

c

ClauseSource

c c c

c

ClauseSink

x

x

x

x

x

x

x

x

v v

v

VariableSource

v v

v

VariableSink

`

`

`

`

c
v

c
v

c
v

c
v

c
v

c
v

c
v

c
v

Cell

Figure 6. The source and sink associated with a clause `1 ∨ `2 ∨ `3 are translated into the
graph units ClauseSource and ClauseSink. The source and sink associated with a variable x are
translated into the graph units VariableSource and VariableSink. Each unit cell associated with a
clause (resp., a variable) is translated into a graph unit Cell whose main vertices are labelled c
(resp., v). Thick edges represent the main edges of the graph units. The rows of the grid into
which the graph Gϕ is scattered are alternatively painted white and gray.
Next to each graph unit are represented the portions of perfect non-crossing matchings that
concern the unit’s edges and half-edges, where blocking edges and half-edges have been omitted.
Main edges and half-edges are painted black if they belong to the matching, and red otherwise.
Each portion coincides with choosing zero or one wire, and we represent in red literals that were
chosen: these are the clause literals `1, `2, `3, the variable literals x, x, and, possibly, the literal `
of the unit cell.
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Gate	

Figure 7. Swap gates involving one clause-literal ` and two variable-literals x and x are trans-
lated into the graph units Gate⊗, Gate⊕ and Gate	.
Next to the graph unit Gate⊗ are represented the portions of perfect non-crossing matchings that
concern the unit’s edges and half-edges, where isolated edges have been omitted. Main edges and
half-edges are painted black if they belong to the matching, and red otherwise. Above and below
each portion are indicated those literals that were chosen.
The graph units Gate⊕ and Gate	 are obtained from Gate⊗ by adding a blocking edge, which
results in deleting one main edge (drawn as a dotted line) and preventing one portion of non-
crossing perfect matching from being realized.
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longer possible if we use Gate⊕ instead of Gate⊗. By using the same mechanisms, choosing both
literals ` and x is no longer possible if we use Gate	 instead of Gate⊗.

Step 3: From labeled graphs to words. Our third and last step consists in transforming Gϕ

into a word wϕ. The letters of wϕ are obtained by listing, from left to right, the letters on the
top row of Gϕ, then on the second top row of Gϕ, . . . , and finally on the bottom row of Gϕ.
If Gϕ has n vertices, we thereby identify these vertices with the integers 1, 2, . . . , n, each vertex
being identified with its position in the top-down, left-to-right ordering. If Gϕ consists of ` rows,
we also order the rows of Gϕ from 1 to `, and we denote by ar and br the smallest and largest
vertices included in the row r, respectively.

Given a non-empty subset X of the interval {1, 2, . . . , n} with |X| elements, we denote by Xk

the kth element of X, for all k 6 |X|. Then, we denote by wϕX the sub-word wϕX1
wϕX2
· · ·wϕX|X|‘

of wϕ, and by GϕX the sub-graph of Gϕ whose vertices belong to X. Finally, we say that the
set X is matchable if each vertex x ∈ X belongs to some edge (x, y) of Gϕ such that y ∈ X.

We prove now that, ifK is a matchable sub-interval of {1, 2, . . . , n−1}, thenK = {1, 2, . . . , n}.
Indeed, since no two consecutive vertices are main vertices, K must contain a blocking vertex x,
in a row r. Then,K also contains the unique vertex y to which is x connected, and up to assuming
that x < y, the vertex y lies in the row r+1. Consequently, K contains the vertices br and ar+1.

Then, the graph units presented in Figures 6 and 7 were designed so that, for each row r < `,
the vertex ar is a blocking vertex connected to a vertex in row r + 1, whereas the vertex br+1 is
a blocking vertex connected to a vertex in row r. Hence, if K contains a vertex aρ (with ρ < `),
it also contains aρ+1, and if K contains the vertex bρ (with ρ > 1), it also contains bρ−1.

Therefore, K contains the vertices b1 and ar+1, so it also contains the vertex a2+1, which is
a blocking vertex connected to the vertex a1 = 1. Similarly, K contains the vertices br and a`, so
it also contains the vertex a`−1 − 1, which is a blocking vertex connected to the vertex b` = n.
In particular, K contains both vertices 1 and n, and K = {1, 2, . . . , n}.

Lemma 1. Let (I, J) be a partition of a non-empty interval K ⊆ {1, 2, . . . , n} into sets of same
cardinality such that Ik < Jk for all k < |I|. The words wϕI and wϕJ coincide with each other if
and only if the graph GϕK admits a non-crossing perfect matching M such that each edge in M
has one endpoint in I and one endpoint in J . Moreover, in that case, K = {1, 2, . . . , n}.

Proof. First, if such a matching M exists, let (x, y) and (x′, y′) be two edges of M, with x < y,
x′ < y′ and x < x′. If x and x′ are on the same row r, the vertices y and y′ are on the row r+1,
and since (x, y) and (x′, y′) do not cross each other, it must be the case that y < y′. Otherwise,
if x is on some row r, the vertex y is on the row r + 1, and x′ is on some row r′ > r + 1, so
that y′ is on the row r′ + 1 > r + 1 and y < y′. Consequently, sorting the edges in M by the
smallest endpoint or by their largest endpoint does not change anything. This proves that M
connects each vertex Ik to the vertex Jk, and since these vertices must have the same labels, the
words wϕI and wϕJ indeed coincide with each other.

Conversely, if a partition (I, J) satisfies the conditions mentioned above, let us prove that
the pairs (Ik, Jk) form a non-crossing perfect matching of GϕK . The set K is matchable, which
already proves that K = {1, 2, . . . , n}. Then, it suffices to prove that the vertices Ik and Jk
always belong to adjacent rows: the pairs (Ik, Jk) will then form a perfect matching M of GϕK ,
and the reasoning already used above will prove that this matching is non-crossing.

Let r be the row to which belongs the vertex Ik. If r is the top row, we are already done.
Then, if Ik is blocking, we also know that Jk belongs to the row r + 1. Otherwise, note that
ar 6 Ik 6 br − 1 and that both blocking vertices ar and br − 1 are connected to vertices in
row r + 1. It follows that Jk is in row r + 1, which completes the proof. ut

Consequently, if the graph Gϕ has a non-crossing perfect matching M, we may just define I
as the set of vertices x that are smaller than the vertex they are matched to, and J as the
set of vertices outside I. Lemma 1 then states precisely that wϕI and wϕJ form a factorization
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of wϕ into a shuffled-square. Conversely, if some factor wϕK is a shuffled-square, Lemma 1 proves
that wϕK = wϕ and that Gϕ has a non-crossing perfect matching.

In conclusion, the 3SAT formula ϕ is satisfiable if and only if the circuit Cϕ has an execution
that triggers no error, which happens if and only if the graph Gϕ has a non-crossing perfect
matching, which happens if and only if the word wϕ is a shuffled-square (and no strict factor
of wϕ is a shuffled-square). Moreover, constructing the word wϕ from the formula ϕ can be done
in polynomial time. This completes the reduction and the proof of Theorem 2.

5 Concluding remarks

We have shown that there exist infinite shuffled-square-free words over an alphabet of size 6.
This raises many questions and challenges, and we mention some of them. The most natural
question is to ask about the minimum k such that there exist infinite shuffled-square-free words
over an alphabet of size k. We conjecture that there exist infinite shuffled-square-free words over
an alphabet of size 4 (recall that there exist arbitrarily long square-free words in any alphabet
with three letters, as proved by Thue).

As for generating words, Shur [20] has proposed an algorithm called R2F that can generate
a square-free word of length n over any alphabet with three or more letters. However, simi-
larly to Guégan and Ochem, our approach relies on counting arguments and is inherently non-
constructive. Therefore, two challenging problems are: (i) to decide for which alphabet sizes |Σ|,
if any, there exists a polynomial-time algorithm that produces, when given an integer n > 0 as
input, a shuffled-square-free-words of length n over Σ; (ii) to decide the existence of an algorithm
that checks, when given a finite alphabet Σ and a word w ∈ Σ∗ as inputs, whether w is a factor
of an infinite shuffle-square-free word over the alphabet Σ.
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