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ARTICLE INFO ABSTRACT

Keywords: In this work we consider the finite element approximation of two equivalent formulations of
Contact problem an obstacle problem of a Naghdi shell. This second one is a new formulation of the continuous
Naghdi shell problem set on the unconstrained space of the displacement field and the rotation. Namely in

Finite element
A priori error analysis
Iterative method

order to enforce the tangency requirement on the rotation and the inequality constraint, two
Lagrange multipliers are introduced. In addition to existence and uniqueness results of solutions
of the continuous and the discrete problems we derive a priori error estimates. We further prove
the convergence of the Uzawa algorithm associated with this variational inequality. Numerical
tests that validate and illustrate our approach are given.

1. Introduction

Many phenomena are accurately and concisely described by variational inequalities instead of variational equalities. Variational
inequalities can be found in mechanics (contact between deformable elastic bodies), in lubrication theory, in flows through porous
media, in control theory and in financial mathematics (see [1] and the references therein).

Discretization of obstacle problems without constraint by the finite element method in its primal formulation or using Lagrange
multipliers has been considered since many years. The literature on the finite element approximation of such formulations is
extremely vast. Let us quote [1-6] to mention a few. However, the case of variational inequalities related to thin structures' with
state constraints and in particular for thin shells seems to be not widely discussed in the academic community.

The goal of this paper is then to analyse the finite element approximation of two equivalent formulations of the obstacle problem
of a Naghdi shell described in [7] (based on the Naghdi shell model introduced in [8,9]). The first one, called the reduced problem,
consists in a variational inequality and a variational equality, and the second one, called the full problem, made of a variational
inequality and two variational equalities. This second one is a new formulation of the continuous problem set on the unconstrained
space of the displacement field and the rotation. More precisely in order to enforce the tangency requirement on the rotation (which
is a state constraint) and the inequality constraint, two Lagrange multipliers are introduced. We then introduce a non conforming
approximation of the reduced problem, while inspired from [1], we also consider a conforming finite element approximation of
the full problem by adding the elementwise P; bubble functions to [P, elements to approximate the displacement field in order to
guarantee a discrete stability estimate (see [1, Theorem 3.1] and Lemma 4.10 below). In addition to existence and uniqueness results
of solutions of the continuous and the discrete problems, we derive an a priori error estimate. We further prove the convergence
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1 Thin structures are three-dimensional bodies in which one dimension/two dimensions is/are small compared to other two/one; they include beams, plates
and shells, ....
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of the Uzawa algorithm associated with this variational inequality. Even if its speed of convergence may be slow, we have chosen
it due to its simplicity of implementation and its minimal memory requirements. Numerical tests that validate and illustrate our
approach are finally given.

This paper is organized as follow: In Section 2 we recall some geometrical preliminaries of surfaces and the Naghdi shell model
without contact. In Section 3 we present the contact problem described in [7], introduce its two formulations, and prove their
well-posedness. Further, some comments on the regularity of the solution are made. Section 4 is devoted to the introduction of
the finite element approximation of the two variational problems. For both problems, we prove the existence and uniqueness of the
discrete solution and derive a priori error estimates assuming that the solution satisfies the H?-regularity.

In Section 5 we discuss the Uzawa iterative method applied to the considered variational inequality. Finally numerical
experiments are presented in Section 6.

Let us finish this introduction with some notation used in the paper. The usual norm and semi-norm of the Sobolev W ?(w, R?)
(with s > 0, p € [1, 0] and # € N) are denoted by ||- |l ,, and | - |, respectively For s = 0 (resp. p = 2), we drop the index s (resp.
p). In the same way, we denote by (-, -), the L*(w)-inner product. The notation A < B is used for the estimate A < C B, where C is
a generic constant that does not depend on A and B, in particular this constant does not depend the mesh size h, but it may depend
on the thickness of the shell £ which is supposed to be a strictly positive constant. The notation A ~ B means that both A < B and
B < A hold.

2. Geometric preliminaries and notations

Let w be a bounded connected domain of R? with a Lipschitz boundary dw. We assume given a splitting of de into two open
subsets y, and y, such that y, is non empty, dw = 7,U7,, and y,Ny; = @. We consider a shell whose midsurface is given by .S = ¢(®),
where ¢ € W2®(w,R?) is a one-to-one mapping such that the two vectors

a,(x) = (0,)(x)

are linearly independent at each point x of w. Thus,

a(x) A ay(x)

la;(x) A ay(x)|

is the unit normal vector on the midsurface at point ¢(x). The vectors g;(x) define the local covariant basis at point ¢(x). The
contravariant basis a/(x) is defined by the relations g, - ¢/ = 6{ where 6{ is the Kronecker symbol. Note that all these vectors belong
to W (w, R?). Note that, Greek indices and exponents take their values in the set {1,2} and Latin indices and exponents are in the
set {1,2,3}. The first and second fundamental forms of the surface are given by a,; = a, - a5 and b,;5 = a5 - d4a,. The area element
of the midsurface in the chart ¢ is given by \/M with a(x) = [a;(x) A az(x)|2. Similarly, the length element # on the boundary
Jw is given by \/W , with the standard summation convention for repeated indices and exponents, the a®/ = a” - af being the
contravariant components of the first fundamental form and (r, 7,) being the covariant coordinates of the unit vector tangent to

dw.
In this paper, the thickness of the shell, denoted by ¢, is supposed to be positive and constant. Hence the shell is given by

az(x) =

S ={px)+za3(x) | x Ew,z € (—%,%)}

Here, z represents the distance of a point of the shell to its midsurface. Let also {e;,e,,e;} denote the Cartesian basis in R>.
Following [7], we are interested in studying the contact of this shell with a rigid obstacle contained in the half-space z - e; < 0
and such that its boundary occupies the whole plane z - e; = 0. So, from now on, we assume without restriction that the function ¢
satisfies @(x) - e3 > 0 and also a3(x) - e3 > 0, for all x € @. Thus, the contact occurs on part of the lower surface of the shell, namely
on the surface {p(x) — §a3,x € w}.

We consider the case of a homogeneous, isotropic material with Young modulus E > 0 and Poisson ratio v, 0 < v < % The
contravariant components of the elasticity tensor a®?° € L®(w) are given by

afpo — _E a®aPe + a%® gP?y + Ev
W+ A

This tensor satisfies the usual symmetry properties and is uniformly strictly positive, in the sense that there exists a positive constant
¢ such that

APt Z ¢ D rapl®s
1<a,p<22

a4 are 1)

for all 2 x 2 symmetric real-valued matrices y = (Yop)1<q p<2-
In this context, the covariant components of the change of metric tensor are

1
Yap) = E(()au “ag+0gu-a,), 2)
the covariant components of the change of transverse shear tensor are

1
O3, r) = 5(0au caz+r-ay), 3)
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and the covariant components of the change of curvature tensor are

Xap(sr) = %(%u - 0paz + Ogu - 0yaz + 0,1 - ag + dgr - ag). “4)
Following [10], when there is no obstacle, the variational problem of the Naghdi shell reads

Find U = (u,r) €V suchthat aU,V)=L(V), VV eV, 5)
where the space V is given by

V={V=@oeH @) x H'@R)|s-a=0in o o, =s, =0}, ®)
the bilinear form a is defined by

2¢eE

a5 U3 (V) Vadx, @)

2
aU.V) = / ({ea®Pre [yaﬂ(wyw(v) + 5ty V)| +
where ¢ represents the thickness of the shell that is here supposed to be a positive constant, and the linear form £(-) is given by
L) :=/f-U\/de+ (N-v+ M -s)¢ dr. )
o 1

The data f € L*(w)}, N € L?*(y;)* and M € L*(y,)’ represent a given resultant force density, an applied traction density and an
applied moment density, respectively.

3. The contact problem
First, let us now introduce the following functional spaces:
M := H}}U(a)):{ﬂEHl(a)); u=0on y/o}. (©))
ol 3 1 3

X:= Hyo(a),R )XHyo(a),]R ). (10)

The space X is endowed with the following natural Hilbert norm
1
Wi = (ol + lsI,, )7 9V = .9) € X. an

Obviously the forms a(-,-) and £ defined in (7) and (8), respectively, are also defined (and continuous) on X x X and X. The space
V is then the kernel of the bilinear form b(:, ) given by

VV,y)e XXM, b(V,y)= / 0, (s - a3)dy y dx. (12)

Following [7] the obstacle problem of Naghdi’s shell reads:

Problem 1. Find (U, y) in Ng x M such that
YV €Ny, alU,V -U)+ bV -U,y) > LV -U),

(13)
VyeM, bU, y)=0,
where N, is a closed convex set of X defined by
3 .
=V = i (v=25) e3> @ ace. .

Ny : {V wsex (v 2s> ey >®ae lnw} 14)

The function @ belongs to the space W' (w) and is given by
13

o) = (5030 = 00)) - 5 (15)
The contact model is meaningless without the following condition,

D(x) <0, Vx€w, (16)

which follows from the positivity of ¢ - e; and the non-negativeness of a; - e; when the thickness ¢ is not too large and the shell is
not flat. Indeed from the definition of @, (16) holds if

& .
5 max a3(x) - e3 < ming(x) - e3. 17)

Consequently if the shell is flat, namely if a; - e; = 0 on w, then (17) holds (and hence (16)), for all € > 0. On the contrary, if

max, g az(x) - e3 > 0, then (17) holds if and only if

XED
min,.c, @(x) - e
e < =) = 2x€w—3
max,cg az(x) - e3

Therefore (16) holds under this last constraint on .
Since r - a3 = 0 a.e. in w, it is straightforward to check that Problem 1 is equivalent to the following problem:

3
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Problem 2.
Find (U,y) € Ny x M such that
VV €Ng, a,(UV-U)+bV -U,y) =2 LV -U), (18)
Vy €M, bU, y) =0,

where for any real parameter p > 0, we set

a,(U.V)=aU.V)+ p/ 0,(r - a3),(s - az)dx, YU = (u,r),V = (v,5) € X.

®

Remark 3.1. Note that the bilinear form a(,-) is not X-elliptic (see [10, Lemma 3.3]). Replacing the bilinear form a((:,-), (-,-)) by
a,((-,-),(-,-)) allows us to recover the ellipticity over the space X, where as soon as p > 0.

3.1. A compact formulation

It is clear that neither Problem 1 nor Problem 2 is in the “standard” form of variational inequalities, i.e., a single variational
inequality. In this subsection following [1], we first rewrite Problem 2 in a compact form involving a single variational inequality
set in a closed convex set.

Let us consider the Hilbert space:

H=XxM (19)
and the closed convex set

K =Ny x M.
We define the bilinear form A, : K xK — R through

AW, w;(V, 0) i=a,(W,V)+b(V,u)+ bW, y),

then, Problem 2 can be written in a compact way as follows:

Problem 3. Find (U,y) in K such that
AU, w);(V =U, ) 2LV -U), VV,p)eK (20)

Theorem 3.2. For any data (f, N, M) € L*(w)> x L*(y,)> x L*(y,), Problem 3 admits a unique solution.

Note that, the bilinear form .A(-,-) is not coercive on the whole space X x M, hence the existence and uniqueness result for
Problem 2 does not directly follow from Stampacchia’s theorem. However, we give here a proof using a perturbation technique
(see [11]). Indeed, we consider a perturbed bilinear form .4” depending on small positive parameter p defined as follows:

AW, 1), (V. x0) 2= a,(W., V) + b(V, u) + bW, ) + pW ., V)x + p(its 1

where (-, )x and (., -)y; respectively denote the inner product in X and in M.
We then consider the following perturbed problem:

Problem 4. Find (U W) iIn K such that
AU, w,);(V =U,, ) 2 LV =U,), YV,y) ek (21)

Since the bilinear form .47 is coercive on the space H, Stampacchia’s theorem ensures that Problem 4 has a unique solution. We
need to justify the link between the solution of Problem 4 and Problem 3.

Lemma 3.3. The bilinear form b(-, ) satisfies the following inf-sup condition

b(W,
Je, > 0 such that  sup W. 2)
weww) Wk

Z c.llxllv. Yy €M, (22)

where W is the closed subspace of X and included into Ny, defined by
W= {ws)eX;, (- %s) -e3 = 0}.

Proof. If welet y €M, then W = (% xes, yes) belongs to W and satisfies

W 11~ 11l

Consequently one has

~ 2
bW, z) _ bW,y Xl
up > — ~ = 2zl O
wew IWlx = Wiy lxliu
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Proof of Theorem 3.2. The solution WUy w,) of Problem 4 satisfies

{VV € Np(®)., a,(U,,V =U,) +b(V =U,.y,) +pU,.V =U,) > LIV ~U), 3

Vx € M(w), b(U,, x) = p(w,, X)m = 0.

Since (0, 0y;) € K, we then have the following bound

Pl NIk + pllw,ling < N1£1Ix- (24)
We now introduce the functional G : M — R defined by

G(x)=pw,, x), Yy €M
It is clear that G € M’ and by (24) we have the following bound

Gl S NN (25)
By Lemma 3.3 (see [12] Lemma 4.1) there exists a unique solution 0, € W of

bQ,. x)=G(y), VYyeM,
such that

19, llx < NGl - (26)
Then U,-0,eNg and by the second line in (23) we have

bU,~Q, x)=0 YzeM
whence,

Uu,-90,¢e NgNnV.
Taking V = o, in the first line in (23) we get

a,U,,0,-U,)+bQ,—-U,w,)+pU,Q,-U, = LQ,—-U,,
and subtracting a ,(0,,0,-U,) from both sides we obtain

a,U,-0,,0,-U)+plU,0Q0,-U, 2 LQ,-U,—-a,Q,0,-U,.
Then using (24), (25), (26) and the Cauchy-Schwarz inequality we get

a,U,-0,U,-0,)<LU,-0,)-a,0,U,-0,)+pU,Q,-U,)

SN NU, = Q) llx-

Using the fact that U, — Q, € V and the coercivity of the bilinear form a(-,-) on the space V, we get

U, = 0,llx S L1l 27)
By the triangle inequality, (26) and (27) imply that

Ul S 1Ll (28)

Note that the hidden constant is this last estimate is independent of p.
Now we need to bound ||y, ||y Indeed, since

YV €Ny, a,U,.V =U,) +b(V = U, w,) +pU,.V —U,) > LV - U),
then (since W is a closed subspace contained in Ng)
YV €W, a,U,, V) +b(V.y,)+pU,.V)=LYV)
which amounts to write
b(V.w,) = LV) —a, (U, V)= pU,, V), YV EW.
Again the inf-sup inequality (22), the Cauchy-Schwarz inequality and (28) imply that
llwpllne S LN - (29)
From the estimate (29) and the second line in (23) we deduce that

lim b(U,, 7)=0, Vy €M and limb(U,y,) =0. (30)
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Collecting (28) and (29) we deduce that the sequence (U, wp))y is uniformly bounded in the Hilbert space X x M.. Then there exists
(U*,w*) € K (recalling that (U, w,) belongs to K for all p) such that

Uy, w,) = (U™, y™") € Xx M weakly as p — 0.
For arbitrary V' € Ng we have,
LYV =U,) AU, y,);(V =U,, 1)
Since
AP(U,, w,); (V = Uy, 1)) = Ap((U,, w,); (V = U,, 1))+ pU,,V = U,) + p(w,, ¥)
=a,U,,V -Uy)+bU,, x)+ bV —Upyw,) +plU,V —U,) + pw,, 1)
=a,U,,V)+b(V,w,) +plU, V) —alU, U, - plU,, Uy + p(y,, x) + bU,, x) = bU,, y,)
=a,U,,V)+b(V,y,) —alU, U, +plU,V)—-plU, U, +blU,, ) = bU, w,) + py,, 1),

we then have,
LYV -U,) <a,U,V)+blV,w,)—alU, U, +plU,V)-plU,U,+bU, x)— b, w,) + py,, 1),
and by letting p — 0 (using (30)) we get
a,(U" V) + bV, y) - lima,(U,, Uy) 2 £V = U,).
Since,
lima,(U, = U",U, = U") 20
then
lima, (U, U,) > aU",U").
Those last inequalities and (30) allow us to write

VV € Ny, a‘,(U*,V -US+b(V,y*)> LV -U"),
VyeM, b(U*, ) =0.

Hence (U*,y*) is a solution of Problem 3.
Let us now show the uniqueness. Let (U;,y;) € K and (U,, y»,) € K be two solutions of Problem 3. Then

a,(Uy,Uy = Up) + b(U, = Uyyy) 2 LUy = Uy,
b(U,,x)=0 VyeM.

and

a,(Uy. Uy = Uy) + b(U, - Uy,y) > LU, — Uy),
b(U,. y)=0 Vg€ M.

As U, and U, belong to V, it follows that

{a(Ul, U, —Uy) > LU, - Uy), -
a(U,,U; —U,y) > LU, = U,).
Hence
alU, -U,,U, -U,) <0,
which implies that U, = U, since a(., -) is coercive on V.
The uniqueness of y follows from the inf-sup condition (22). Indeed, since,
aU,V =U)+blV —-U,y) > LV -U), VV €Ng,
then
aU, W)+ bW ,y)=LW), VW eW. (32)

If (U,y,) €K and (U,y,) € K are two solutions of Problem 3, the inf-sup condition (22) and (32) imply that

bW,y —y,)
lly; =yl < sup —————=— =
weww Wik

>

which leads to v =y,. W
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Let us now denote by ¢* and c, the coercivity and the continuity constants of the form a,(-,-) on X, respectively. Our error
analysis is built upon the following stability result.

Lemma 3.4. For any (W,¢) € X x M there exists V € X such that:

AW, 8V, =) 2 C) (IW I + ) s (33)
IV llx + 1€l < W Ik + 1€l (34)

where C; and C, are two positive constants depending only on the constants c*,c, and c,.

Proof. Let (W,¢) € XxM and let Q € X be the unique solution of the following problem:

Find Q €X such that (35)
a,0,2)+(Q, 2)x =b(Z.8), VZ e X
Then by taking Z = Q in (35) we get
lol% < b(Q. o).
Cauchy-Schwarz’s inequality yields
0115 S QI 1€l
which by simplification leads to
1Olxx S €l
Furthermore by the inf-sup condition we have
KZ,9)
€l S sup ——=.
16lhe = 50171
Using (35) and Cauchy-Schwarz’s inequality, we obtain
1€l S NQIx-
Thus [1Ql1x ~ Nlly- .
We now take V = W + §Q, where 0 < § < C—z, and get
C
#
A (W, 8, (V,=8) = A (W, 5); (W +60,-8)
=a,(W,W +30)+ bW + 60,5+ b(W,=¢)
=a,(W,W)+d6a,(W,0)+bW,& + b0, &) — bW, )
=a,(W,W)+8a,(W,0)+6b0Q.&)
5c2 5
> MW - SEIWIE - S1101E +slo1%
2IWIE +lIEl;, W
Let us now introduce the following cone
A={ueM;Vo eM,c >0, (o, u)>0},
and the following bilinear form ¢ : X x M’ - R defined by
= —£5). 4
c(V,y)-((u 2s> e3,/4>,V(V,y)eX><M. (36)
Lemma 3.5. There exists a positive constant C, such that
inf _c@O.m_ e (37)
’{EM'ueH}U(w,W) el 1l 0, Ol
Proof. See the proof of [7, Lemma 4.4].
Obviously the previous result implies that
c(V, u) c.. m (38)

i _ >
xeMyex |l 1V llx
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Proposition 3.6. Let (U,y) be the solution of Problem 1. Then there exists a unique A € A such that
cV,A)=a,U,V)+b(V,y)—LV), VVeX (39)
Moreover, the multiplier 1 satisfies the following bound
Il < ClL N -

Proof. See [7]. W

Now we consider the “full” problem

Problem 5. Find (U,y,A) € XXM x A such that:
YW eX, a,(U.V)+bV,y)—c(V,2) =LYV),
VyeM, b(U, y) =0, (40)
Yu € A, U, p—2)> (D, u—A).

Note that the right-hand side of the third line of this problem makes sense only if the function & belongs to Hylo (w).

Proposition 3.7. The full Problem 5 and the reduced Problem 1 are equivalent, in the following sense: If (U,w, A) is a solution of full
problem, then (U, y) is a solution of the reduced. If (U, y) is a solution of the reduced problem then there exists a unique A € A such that
(U,w, 4) is a solution of the full problem.

Proof. The proof can be done as the one of [7, Proposition 4.2]. W

We introduce the following forms

BU,w, LV, x.1) = a,U,V)+ bV, p)+bU, y) = c(V, 1)+ cU, p),
LV, 1) = LYV) +{D, ).

Then Problem 5 can now be written in the following compact form:

Problem 6. Find (U,y, 1) € XX M X A such that:

BU W, LV, ou—D2ZLV, x,u—4), YV, x,u) € XxMxA.

Theorem 3.8 (Continuous stability). For any (V, y,u) € Xx M x M there exists W € X such that
2
BV, ;W= 2 (IW Ik + Il + lallg) ™ (41)
Wik S IV k- (42)

To prove Theorem 3.8, we need the following lemma.

Lemma 3.9. There exists a constant % > 0 such that:

V,u)— bV,
inf  sup V.m-bV.0) > p. 43)
e v=w.sex 10 W hpar 1V 11k

Proof. Let (y,u) be in M x M/, then there exists ¢ in H 710 (w) such that

Vr e H;O(w), / (grad o) - (grad 7) dx = (r, u). (44)
We directly deduce that

llollio < Nallne -
Furthermore
(t.u) _ /,(grad o) - (grad 7) dx

llullyer = sup S ol o (45)

TGH}}O({H) ”Tlll,m TGHVIQ(”’) ”Tlll,w
Hence |loll;, ~ lullyy. In (44), take V = (3, 3) with
b= (-o+ 3103 ~e3)e;  and 5= yas,
then we have

bV, y) :/0(,(5-03)6(,;( dx =417,
@
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eV, ) =—(o.u) = =117,
Vlx S llolle + xlle S el + 1210

These properties directly yield

~ - 2 2
qp 20—V bV ) e _ Mo, el
vex  IVIx = IV lix IV %

2l , +ul3)' 2

Proof of Theorem 3.8. Let (V, y,u) € XX M x M'. We consider the following variational problem:
Find Q in X such that
a,0,2)+ (0, D)x =WZ,p)—c(u, Z2), VZeX

Since, the bilinear form a,(-,-) + (-, )x is X-elliptic, problem (46) has a unique solution Q € X.
Moreover, since c(-,-) — b(-, -) satisfies the inf-sup condition, the Cauchy-Schwarz inequality yields
cu,2)-by.Z) _ a(0,2)+(0,2)
= sup
1Zllx Zex 1Zllx
Take W =V + 50 where § is a positive constant to be determined later, then we have

(46)

[Lxling + Nl < sup S Ollx-
zexX

BV, W=y, ) =a,(V.V+60)+ bV +60, )+ b(V,—y) —c(V +60, u) + c(u, V)
=a,(V,V)+6a,(V,0)+6b(Q, y) — 6c(u, Q)
> a,(V,V) =3IV IxlQlx + 510N
LG
2
Z(C#)Z

1
2 (e = = OIVIE + SlIQI

Then it suffices to take 0 < 6 < to obtain

BV W=z ) 2 (VIE+ 12+ 1el?). O
3.2. Regularity of the solution
The regularity of the solution of any PDE problem plays an important role in its error analysis by a FEM. Accordingly, the a

priori error analysis carried out in Section 4.1 requires additional regularity on the solution of the continuous problem. Let us first
introduce the following quantities:

% (u) =a*" Py, 5(w), (47)

& w.r) =105, 1), 48)
3

mPu,r) =22 a7 74w r), (49)

where, 7,5,8,3 and y,, are given by (2), (3) and (4) respectively. Then our contact problem takes the following complementarity
formulation

=0,((n°° (Wa, +m® (u,r)da; + q°(u, r)a3)\/z) — Aey = f\/z in w,
—0,(m® (u,r)a,\/a) + P, r)aﬂ\/z + 5/163 =0 in o,

4 r-a;=0 in o, (50)
€ € .
5 e > > —Zr) e — =
(u 2r) e;3>d, A1>0, A ((u 2r> ey 47) 0 in w,
u=r=0 on Jdw,

with coefficients which are in L*(w), and the function @ belongs only to W' (w) when the chart ¢ € W?%(w, R?). Therefore,
the translations (or finite difference quotients) method of Nirenberg [13] cannot be applied here. The coefficients of the system
satisfy the ellipticity condition and in the non contact set the system is a “standard” second order elliptic system. But the famous
De Giorgi’s counter-example (see [14, p. 205]) indicates that the regularity problem for systems of equations (or vectorial case)
cannot be treated as the case of a single elliptic equation (or scalar case), so the Stampacchia-Brezis [15] technique cannot be
used here to obtain the H?(w) regularity. However, if we assume that the chart ¢ is more regular, namely ¢ € C3(w, R?), then the
formulation (expressions of the tensors (2), (3) and (4)) used in this paper coincides with the classical formulation of thin shell theory
(see [10]). For sufficiently smooth surfaces, recent papers (see [16-18]) improved interior regularity (i.e. H %)C(w)) of the solution
of elastic Koiter’s or shallow shells in the presence of obstacles, by using the Nirenberg method. The main difficulty to adapt this
approach to our Nagdi’s model is the construction of admissible displacement field in term of the finite difference quotient satisfying
the inequality constraint.
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4. Finite element discretizations

Let 7, be a regular affine triangulation which cover the domain w. Here, h is the mesh-size, or more precisely, h = max hy =
diam T, T € T,. For a positive integer k, IP,(T) stands for the set of functions on T which are the restrictions to T of polynomials
of degree less than or equal to k. For T € T, by denotes the bubble function defined by b; = A‘;ﬁ-‘ , where 4;,i = 1,2,3 are the
barycentric coordinates of T. Note that b, € H(} (T) nP3(T) has a maximum value of one. We further define

By(T)={v e H}(T);v=bpw, wePyT)}. (51)
Let us define the finite dimensional spaces:

My, i={xy € H} (@) | xur €P\(T)® B3y(T), VT € Ty},

Qy ={py € LX@) | pyr €PYT), VT €Ty}

X, i=(M,)? x (M,)3.

&

W, = {(Uh,sh) € Xy (Uh - Esh) ce3=0 }
Then, we introduce the discrete convex cone

Nh:{(Uh,sh)GXh;(Uh—%sh>~e32¢h }, (52)

where @, :=1,®, I, being the standard Lagrange interpolant operator, namely (Z,®); € P;(T) and (1,®)(x) = @(x) for all vertices
x of T. Clearly we have X, c X, M, c M and W, c N, but N, is not necessarily contained in Ng.
We first consider the discrete version of Problem 2, namely

Problem 7. Find (U,,y;) € N, X M|, such that:

W, €Ny, a,Uy,Vy, = Uy) + bV, = Up,yrp) 2 LV, = Up), 53)
Yy, € My, bU,, x,) =0.
As in the continuous case, we may rewrite Problem 7 in the following compact form
Problem 8. Find (U,,y;) € N, x M, such that:

A (Upowy); (Vi = Upo ) 2 LV, = Up), YV, xp) € N X M. 54

Lemma 4.1. If the mesh size h is sufficiently small then, there exists a positive constant C, such that

b(v,,,

inf  sup M > C,. (55)

My, ew, LxnllvllVallx —

Proof. Recalling that 7, is the standard Lagrange interpolation operator, for an arbitrary y;, € M, we take
2
V= (vp, sp) = (glh()(h%)»lh()(h%))’
then clearly, ¥, € W, and

bWy xn) 2 L xtnllm

since the inverse estimate [|Vo,llqp S 27 0]l is valid for all v, € M, see [19, Lemma 3.3] and [10, Lemma 5.6]. W

Theorem 4.2. If the mesh size h is sufficiently small, then Problem 7 admits a unique solution.
Proof. Since W, is a closed subspace of N;, (see for instance [11]), the proof can be done by using the same perturbation technique
as for the continuous problem. [ |
Now we introduce the closed convex cone

Ay = {up € Quspy 20}, (56)
that is clearly a subspace of A. We then consider the “full” discrete problem (compare with Problem 5)
Problem 9. Find (U, y,,. 4;) in X, (w) X M,(w) X A, such that:

VWV, € Xy a,(Uy, Vy) + bV, wy) — Vi, 4y) = L(V)),

Vyn € My, b(Uy, x) =0, (57)
Vi, € Ay U iy — ) > (L. iy — Ap) -

10
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Let us also introduce the following A-dependent norm:

leally = Y, B:llanll Yy € Qe (58)

TEeT,

Lemma 4.3. There exist two positive constants C; and C, (independent of h) such that

Vi, xn)
n € Qps o 2 Cillanlhe = Cllxally-
Vi, €Q sup = Cillxall Clixall (59)
viexpnkers IVallx,

Proof. Let y, € Q, c M, then the inf-sup condition (37) implies that there exists v € H }}U (w,R3) and C, > 0 such that
c((v,0), xp) 2 Ci 1, )l wp Iy -
Let V,, be the Clément interpolant of (v,0) (hence V), is in the form (v,,0) and belongs to ker b), then we have

cWipxn) =cVy =V, xn)+cV, xp)
= Y ((th=v)-es.)p +eVozw)

TeTy,

> Y ((vn—0) - esan)y + CLV Il 2l
T;'h T (60)

2= 1 (o5 =) - eslly lanlly + ClV llelln e
TeT),

=- z h}l Il (Uh - U) esllphrllznllr + CUllV Il s e -
TeT,

From the properties of the Clément interpolant and the fact that 7, is quasi-uniform, we have
1/2

T Y r2l (vp—v) a5l <GIVIx  and  [Vyllx S IVl
TET,

consequently

2 h}l Il (v =) - eslirhrllznllr < Collanlla IV Nk
TeT,

which together with (60) shows that

Wy, xn) 2 CillV Ixllxpllye — CollV Il ap - (61)
Now if C\ |l ysllvmr — Collxpll, = 0, then (61) implies that

cWh 2w o €W k)
Vix = WWallx -~
since ¢(V},, x,) > 0 because the left-hand side of this estimate is positive.
Otherwise, if C| || yxllmr — Collxnll, <0, then clearly

Cillxnlh = Collapll, <

(Vi xn)

2 Cillxnllve = Collxallns
VieX), ||Vh||x

since, for W), = (0,0, y,br,0,0,0), for some interior triangle T', we have ¢(W,,, y,) >0. W

Lemma 4.4. We have the following inf-sup condition for the mesh-dependent norm (58), namely there exists a positive constant C;
(independent of h) such that

c(Vis xn)
Vin € Qp, sup  ————— > G5l vl (62)
viexnkers [IVallx

Proof. Let y, € Q,, we define V), € X, as follow:
Vy =(0,0,05,,0,0,0),  with (6;,)p = h3.7,by, YT € T,

Then clearly V;, € X, nker b, and we have

Wiz = % ((n=59) -esn) = T [ #2ivr 2 0l

TET), TET,

11
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and
2 2 -2 2 2 2 2
Wil = lloall} ;S X A2 lonlldy < ) Willznlid - = el
TeT), TeTy,

We then conclude that

Wy 20) 2 Wpllscll nlln- O

Lemma 4.5. It holds
c(Vis xn)

2 e - (63)
Viexnkers IVllx

Proof. For § € (0, 1), owing to (59) and (62), we have

<V, xn) WV, xn) Vs Xn)
—_— = S —— 4+ ({1 =-6) sup —————
VyeXnker b ||Vh||x VyeXnker b ||Vh||X VyeXnker b ||Vh||x

> 5 (Cillxnle — Collzalln) + A = )Csll xull

> 8C, llxpllpy + ((1 = 8)C3 = 8Cy) llapllp-

S _ that is indeed in (0,1), we obtain (63). W
C+Cy

Choosing § such that (1 — §)C; — 6C, = 0 or equivalently § =

Proposition 4.6. The full problem (57) and the reduced problem (53) are equivalent, in the following sense: If (U, w,, 4;,) is a solution
of full problem, then (U, y,,) is a solution of the reduced. If (U, y,;,) is a solution of the reduced problem then there exists 4, € A, such
that (U, wy,, A;) is a solution of the full problem.
Proof. Suppose that (U, y;, 4;) satisfies (57), then from the first equation of (57) we have

a,(Up, Vi) + bV wy) = LIV + ¢V, Ap), WV, €X,. 64)
Taking u;, = 0 and u;, =24, in the third line of (57) gives

c(Up, Ap) = {1 ®. Ap,) . (65)
and since 7,® <0 in w, for any V,, € N, we have

eV, Ap) 2 (L, @, 4y) . (66)
So, combining (65) and (66) we get

c(Vy=Up, Ap) 20, VYV, €N,
Hence (60), and the second line in (57) amount to write

a,(Up, Vy, =Up) + bV}, = Up,yy) 2 LV}, = Uy), vV, e Ny,
b(Uy, xp) = 0. Vi, € My,

Conversely, if (U,,y,,) is a solution of Problem 7 we want to prove that there exists 4, € A, such that (U, y,;, 4,) is a solution of
Problem 9.
Let us first recall that the first line of (53) with ¥, =0 and V), = 2U,, yields

a,(Uy, Up) + b(Uy, wp,) = L(Uy). (67)
Since the bilinear form c(., -) satisfies the inf-sup condition (see Lemma 4.5), then there exists a unique 4, € Q, such that
Vi, 2p) = a, (Up, V) + b (Viowy,) — £ (Vi) VY, € X, (68)

Now we need to prove that 4, € A,.
First let T € 7), be an arbitrary triangle and let ¥, € X, be chosen such that

Vi, = (uy, + (0,0, by), rp),
where Uj, = (u, ry,). Then since by € Hé (T), by > 0, it is clear that ¥V}, € N, and
c(Vy = Uy Ap) = / pbr =a, (U, V= Uy) +b(Vy, = Upyy,) =L (V, - U,) 20
T

Hence 4, > 0 in w, which means that 4, € A,,.
It remains to prove the last property of Problem 9. First as U, belongs to N, it holds

(uh - %rh) ce3 > 1,0, (69)

12
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which directly implies that
Uy, pp) 2 ATy @, py) Vi € Ay (70)

The last inequality of (57) then holds if we show that

(e %rh> ce = Ty®, Ay ) =0, 71)
Since U, € N, and 4, € A;, then we have
<<uh - %rh> ce3— 1,0, Ah> >0. (72)

On the other hand, by (67) and (68), we have
c(Uy, Ay) =0,
while the fact that 4, € A;, and that 7,® <0 lead to
(I,@,4,) =0.
This directly implies
<(uh - %rh) ey — 1,0, z,,) <o0. (73)

Hence, (72) and (73) imply that (71) holds. W
4.1. A priori error analysis of the reduced problem

The purpose of this subsection is the a priori error analysis of Problem 2. We assume that the mesh size # is sufficiently small
so that Lemma 4.1 holds.

Lemma 4.7. For any (W,,.¢,) € X, x M, there exists V}, € X, such that V;, - W;, € W;, and satisfying

2
Ay (Wis &) Vs =€) 2 (W3l + 1Ex 1)~ s 74)
Wallx + enlive S IWhllx + 1SR 1 (75)
Proof. The proof can be done by the same way as in Lemma 3.4 for the continuous problem. Let (W), §,) € X, xM,, and let 0, e W,
be the unique solution of
Find Q;, €W, such that
a,(Qy, Zp) + (O, Zp)x = b(Z),,8), VZ), €W,
By taking Z, = Q,, in (76) we get
IOAll% < b(Qp. 1)

which by Cauchy-Schwarz’s inequality leads to

[1Onllx < NEnllna-

Furthermore Lemma 4.1 yields

bVy. xp)
Collépllyg £ sup ————,
veew, IVallx

(76)

and by (76) and Cauchy-Schwarz’s inequality, we find
€1l S NQpllx-

This means that
1Qnllxc ~ 11$A lIna-
#
We now take V;, = W, + 6Q,, where 0 < § < 6—2, and get
C
#
A, (W, &) Vi, =) = A,(Wh, &) (W + 60, —Ep))
=a,(W;,, W), +60,) + bW}, + 60,,.&;,) + b(W),, =&;)
=a, (W, W) +6a,(W),0p) + bW, &) + 6b(Qy,. &) — bW, &)
= a,(Wy,, Wy) + 6a,(Wy, Qp) + 6b(Qy, &)

13
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82

# [

2 WG = - IWallE = SOk + 31015
LA TR A

Let us finally notice that v}, — W, = 60, which indeed belongs to W,. W

Theorem 4.8. Let (U,y) and (U, y;,) be the solution of Problem 2 and Problem 7 respectively. Then

U =Upllx + v —wplly S Viﬂf U =Vyllx + VeV, =U, D) —(L,® - @, i) + inf |y — x4l
WENy InEMy,

Proof. Let (V}, xy. 1) € N, XM, x A, and let Q;, € W, be the solution of
a,(Qp. Zp) + (Qp. Zp)x, = by, Zy) — cluys Zy), VZ, €W,

For an arbitrary y, € M, we apply Lemma 4.7 to the pair (V,, — Uy, x, — vy,), hence there exists W), € X, such that D, :=
w, -V, —U,) € W, and satisfying

Vi = Uplix + Ln = willin)* SALV = U 20— i) W wy — 21))
=A, (Vi = U. x4 =) Wi, — 20) + A, (U w): Wy wy = )
= A (Up,wr)s Wy wy — xp) 77)

Taking as test function V), in the first line of Problem 7 the function U, + W), = D;, + V,, that belongs to N, because D, is in W, and
V,, is in N, we find that

a,U,, Wy) + bW, w,) > L(W)).
Since we also have
bUp,wy — xp) =0,
we obtain
a,(Uy, W) + bWy, wy,) + b(Up, vy, — xp) 2 LIW),),
or equivalently,
A (Upswi); Wi wi, — 1)) 2 LW, (78)
recalling that
A, (Upwi); Wy wi = 2) = a,(Up, W) + bWy, wy,) + b(Uy, wy, — xp)-
Then (77) and (78) amount to write

Vi = Upllx + Len = wallw)* SALVy = U 2 = w): Wiawy = 1) + A, (U 9): Wi wi, — 1))
— L(W)).

But by Proposition 3.7, we may write
AU, w); (W, vy, = x3) = LOWy) = ¢(W),, A).
Then we get
NV = Upllx + llxn — Wh||M)2 s Ap((Vh =U.xn =) Whowp, — X)) + c(Wp, A). (79)
As W, — (V, - U, € W, we directly have
W, A=V =Up, ) = c(Vy = U, )+ c(U = Uy, A).
Now we recall that
cU,)=(®,2) and cU,, A) > (I, 1),
whence,
cU = Uy, ) +{T,® -, 1) <0.
All together we then have
Wi, ) eV, —U, ) = (1,® - D, A).
This estimate in (79) implies

(Vh = Unll + L = wall)® S A (Vi = U, 2 = w)s Wy =€) + ¢(Vy = U, ) = (L, ® = @, 1) .

14
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The continuity of the bilinear form A, gives

V3 = Ul + lLew = wall)® S 1V = U 2 = Wl W, =€l + ¢V = U, 2) = (1, - @, 4) .
Note that

eV, =U, )= (I,®-®,2) >0, VV, €N,

Applying Young’s inequality to the first term on the right-hand side and completing the square gives

Vi = Upllx + lLew = wallwe S Wi = Ul + llzn = vl + VeV — U, D) — (1, ® - @, 4)
Finally, the desired estimate follows from the last inequality and the triangle inequality.
The next a priori error estimate is a direct consequence of the Lagrange interpolant properties, in particular we may notice that

if U belongs to N, then Z,U belongs to N,,.

Corollary 4.9. Assume that the solution (U, y) of Problem 1 belongs to (H?(w,R?))> x H*(w) and the function @ belongs to H*(w). Let
(Uy,, wy,) be the solution of Problem 7. Then

IU = Uplle + Il = wiallig S VAU Lo + Wloo + 191,
4.2. A priori error analysis of the full problem
In this section we derive a priori error analysis for Problem 5. We recall that it consists in finding (U, y, 1) € X x M X A such
that
VW eX a,U,V)+bV,y)—clV,2)=LY),
VyeM, b(U, y)=0, (80)
Vu € A, cU, =) 2(D,u—4y.
while its discrete approximation (Problem 9) consists in finding (U, vy, 4;,) € X, x M, X A, such that
YV, € Xy a,(Up, Vi) + bV wy) — ¢V 4y) = L(V)),
Vi, € My, blUy, xp,) =0 (81)
Vu, € Ay, cUps iy = Ap) 2 AD@py, iy — Ap) -

First, we observe that (81) can now be written in a compact way as follows:
Problem 10. Find (U, y;, 4;,) € X;, x M, X A, such that:

BWU Wiy A Vis X i — Ap) 2 Ly Vst — Ay YV Xpo ) € Xy X My X Ay,
where

BWUp,Whs Aps Vi X ) 1= a,(Up, Vi) + bV, wy) + b(Uy, xp) — ¢(Vyy, Ay) + ¢(Uy, py)
ZLnWVis Xns Hp) = LV) + (@, up)

Lemma 4.10. There exists a constant f* > 0 such that:

c(Z,, - b(Z,, -
inf  sup L ) = b(Z: 20) > g (82)
@M xQ;  Zy=(zpotp)eXy | s ) lng s 1 25 Ml

Proof. Let us fix (y,,u,) € M, x Q, such that (y,,u,) # (0,0). First note that by Lemma 4.5 there exists ¥}, € X, nker b and
IV, llx = 1 such that

[lupllve S €W tip) = ¢V, up) = 6V, xn)s

while by Lemma 4.1 there exists W;, € W, = ker ¢ with ||W,|lx = 1 such that:

[Lxnllng S =bWh, xp) = c(Wh, y) — bW, x1)-

Now we may notice that ||V}, + W,,||x is positive, indeed if V,, + W}, = 0, we deduce that W) = -V, and therefore U, and W), belong
to ker bnker ¢, and by the previous estimates we would have y;, = u, = 0, which contradicts our assumption. Then by the triangular

inequality, one has 0 < ||V}, + W, |lx <2, and consequently 1 < (ST Using all these estimates we get
h X

[xnllvg + Npllve S Vi + Wi, ) — bV, + Wi, 1)
< c(Vy + Wiy, 1) = bV + Wy, 1)
~ Vi + Wallx ’

15
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This obviously implies that

c(Z,, -b(Z,,
Lnll + lagllyy 5 sup SZmi0) =020 20) (83)
e 1 Zxllx

Lemma 4.11. For any (W}, x4, 1) € X;, X M, X Q,, there exists Y, € X, such that:
2
BWs s b Yoo =dtns i) 2 (IWallxe + 12 e + Nl ) (84

IYhllsc + s lng + apllng S IWalls + zallng + g llne - (85)

Proof. The proof follows the lines of the one of Theorem 3.8 using the previous Lemma. We give it for completeness. Let
W, 2o 1p) € X, X M, X Q. We consider the following variational problem:

Find Q,, in X, such that 86)
a,(Qp, Zp) + (O, Zp)x = b(Zy, xp) — c(up. Zp), VZ, €X,
Since, the bilinear form a,(-,-) + (-, )x is X-elliptic and X,, C X, problem (86) has a unique solution Q;, € X,,.
Moreover, since c(:,-) — b(-, -) satisfies the inf-sup condition (see Lemma 4.10) and the Cauchy-Schwarz inequality yields:
c(up, Zp) = b(xp. Zp) a(Qp, Z) + (O, Zp)
izl + lpllyer S sup ———i =2l — T e [ S
Z,eX, 1 Z Nl Z,€X), 1Zllx
Take Y, = W), + 6Q,, where § is a positive constant to be determined later, then we have:
BWis Xns Bps Yns —Xns Hp) = ap(Wh, Wy, +60,) + bW, + 60y, xp) + bW, —xp) — c(W), + 60, up)
+ c(uy. W)
=a, Wy, Wy) +6a,(Wy, Qp) + 6b(Qy, xp) — 6¢(pp, Op)
2 a,(W,, W) = 8¢* Wl | Oyl + 81105115
() s
2 (e = Z5IWIE + 510,15
&2
Then it suffice to take 0 < § < —— to obtain
z(c#)z
BWis s s Yo =200 ) 2 IWilI% + LallS + pgll3)- M (87)
Theorem 4.12. Let (U,y, 4) and (U,.w,, 4;,) be the solution of Problem 5 and Problem 9 respectively. Then
U-U, - A—4 S inf U -V, inf -
I allx + v = willyg + I allr Nyngh” wllx + Ihlth”‘l/ Il
+ inf (luy = Al + Ve, uy = 2) = (@, 1y — 4)
HhE€AR
+ 1@ — Dyl
Proof. Let V, € N, and let O, € W, be the solution of
a,(Qp, Zp) + (O, Zp)x, = btn — Wi Zp) — c(upy = Aps Zy), VZj € W,
Using Lemma 4.11 with W), =V}, — Uy, x;, = x;, — w;, and p;, = py, — 4, there exists Y, € X, satisfying (84) and (85), namely
Yrllx S NVh — Uplix. (88)

as well as

(Vi = Ul + Liew = wallvg + N = AD* SBV3 = Ups 2 = Wi by = s Yoo Wi = 2o i — M)
=BV —U. 20 =W lip = 5 Y0 Wy = Ao My — Ap)
+ BWU,w, A Y, vy, — X My — Ap)
= BWpWps Aps Y W = Ko B — Ap)-

By the definition of Problem 10
~BWUns Whs Ay Y Wh = s M — Ap) < =L (Vs iy — Ap)-

16



S. Khenfar et al. Journal of Computational and Applied Mathematics 441 (2024) 115670

For the second term we have, since X, C X then the definition of the bilinear form ¢(-,-) implies that:

BWU,w, Y, wp, — xp iy — Ap) = a,U.Y,) + b(Yy,w) +bU,wy, — xp) —c(Yy, A) +c(U, pup, — Ap)

=0
=LYy +cWU, uy = Ap),

we then get

V3 = Upllx + llen — wallng + g — Ah”)z SBVy=U, yp—w, iy — 5 YWy — Xps iy — Ap)
+ U, pp — Ap) + L) — LYy iy — Ap)
=BV —U, xp =¥,y = LY Wy — X by — )
U,y — Ay) = (Do iy — Ay) -
Since A, C A then,
c(U, Ap) 2D, Ay) (89)
On the other hand, we have,
cU,up — Ap) = @p, ppy — Ap) =cU, ppy — D)+ c(U, A = 4) = (@), — D, puj, — Ay) — (D, uy, — 4)
— (D, A= 4y)
<eU, pp = 1) =Py = @,y = 4p) =D, pp, — A)
whence we obtain
Vs = Uplix + L = willg + N = AD* SBWVy = U, gy =W, gy = 2 Yy W — X by — An)
+eU.pp = D) =@,y — 2) = (@ — D, pj, — Ay)
Applying Young’s inequality to the first term on the right-hand side, using the estimate (88), and completing the square gives
Vi = Upllx + llxn — willyg + lin = Anllner SV = Ullx + 1xn — wily
+ Nl = Al + VW, = D) = (@, py = A) + | — Dyl

Finally, the desired estimate follows from this last inequality and the triangle inequality.

Corollary 4.13. Assume that the solution (U, 1) of Problem 5 belongs to (H?(w, R?))?> x H*(w) X L*(w) and the function & belongs to
H%*(w)N Hylo(w). Let (Uy,, v, A3,) be the solution of Problem 9. Then

U = Uyl + 1y = vl + 12 = Al S VAUl + Wl + 1@l + 12,

Proof. The proof is based on the a priori error estimate shown in Theorem 4.12. The estimate for the terms, ||V, = Ullx, [lx, — v llm»
1y, — Allyy and ||@ — @, ||y, can be easily obtained by standard interpolation procedure. To show the result, we need to prove the
estimate for the term \/@7”}1 —A) =D, yy, — A).

AsU e Hy'o(a);IR3)2 and @ € Hylo(m), one has

leWU. pp = 1) =D, pj, = D) S Ul o + 1Py 1ty — Al - (90)

Now we take y,, as the weighted Clément type interpolation operator of A [20], namely yu;, = O, 4, defined by

Oph= Y 7(Di
XEN;,

where for any ¢ € L!(w), one sets

Jop @R, _
== ifx &y,
(@) =3 oA 0
0 if x € 7.
Hence as
[, (A—0pde
1A= 0pAlly = sup H)HT
pet) @20 19l

and as we directly check that

/(/I—thl)(p=//1(rp—Qhrp),
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we obtain

J Mo = 010)
A= Qpillyr = sup — F——"
(pEH},lo(w)A,(p;ﬁO ”(pllla)

By Cauchy-Schwraz’s inequality and Lemma 6.2 of [20], we get
1A= Qpallyy < Al
Inserting this estimate in (90), we obtain

e, uyp = DN S (U + 191 )AL, S BAUIT, + 1217, + 1412). O
5. Iterative solution: Uzawa-type stationary methods

In this section we analyse the Uzawa method for solving Problem 9. The most attractive character of the Uzawa method is
its simplicity of implementation and its minimal memory requirements. Even if its speed of convergence may be slow, we have
chosen it due to its simplicity of implementation and its minimal memory requirement. A primal-dual active set method [1,21]
may certainly be used, this will be investigated in the future. In each Uzawa iteration, an elliptic solver for computing the inverse
of a large sparse matrix is needed. The convergence of the Uzawa method for saddle point systems was discussed by several authors
(see for instance [22,23]). Here we prove the convergence of the Uzawa algorithm for the case of variational inequality, namely
Problem 9.

It is important to observe that Problem 9 in its matrix form can be regarded as a 2 x 2 block matrix in two different ways,
according to the used partitioning strategy. The first way consists of finding (U, yf*!), for a given 4% € A,. It highlights the
fact that Problem 9 can in principle be treated as a standard saddle point problem to compute U}’l‘“,y/;,‘*' followed by a projection
procedure that computes /ll;l“. The second way consists of finding U p]:H’ for a given (y/hk, A’;l) € M, x A;,. More precisely, assume that
we consider iterative methods for solving large, sparse linear systems of equations of the form

A BT CT
dx=b, withog=| B 0 0o |, 91)
Cc 0 0

where A € R™" is symmetric positive definite, B € R"™" and C € RP*". We recall that iterative methods are based on the splitting
of &, i.e,

o =M — ., with invertible matrix ./#
and the iterative scheme
Xpy1 = M N x + M7D, k=0,1,2...,

For our considered case, the matrix o/ can be regarded as a 2 x 2 block matrix in two different ways, according to which of the
following partitioning strategies is used:

A| BT CT A BT | cT
d=| B| 0 0 or 4= B 0 o |. (92)
cl| o 0 c 0 0

Then two Uzawa-like iterative methods can be considered for solving (91) according to the splittings

d=-N, or d=.l,—N,

with
A 0 0 0o -BT" T
ay=| B 210 |, m=[0 =1 0
-1 —1
c 0 51 0 0 1
A BT 0 0o 0 -cT
Ay=| B 0 0 |, M=[0 0 0
c 0 ‘711 0 0 _alI

where « and f are two given nonzero parameters (see [24,25]).

Then if the splitting of = .4, — | is used, we need to initialize our iterative method with a given (1//2, ,12) € M, x A, and two
parameters a and f. While for the second choice we need only one parameter and an initial guess /12 € Ay

In this paper we will make use only the second type with only one parameter a, but we are especially interested in studying the
convergence of the considered method when the third line of the system (91) is replaced by an inequality.
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The Uzawa algorithm of Problem 9 in variational form reads,

a, (U V) + bV wi™) = L) + (V. 2Y), WV, €X,,
bU, ) =0, Vi, €M,
GIH i) = (AF, fip) + acUST, i) — a(@y,, fiy), Vi, € My,

=P, (R,

93)

For k > 1, we introduce the following notation
k k k k k k
E,=U,-U,, E,=vw,-vy,, and e, = Ap— Ay,
then we can easily write
a, (X V) + bV, EFY) = eV ), WY, € X,
B(EN, ) =0, Vy, €M,
then using the coercivity of a,(:, ), the continuity of ¢(-,-) and the inf-sup condition of b(-, -), we get,

et 1 e+l k
NEL  llx + 1E; g S llegl

and therefore, the convergence to zero of the sequence ||e’;l|| will imply immediately the convergence of ||E’;lJrl |lx and ||E;lchl Il
We end those preliminary remarks by the following observation. We recall that,

k+1 Th+1
A =Py, A5,
i.e, Af*! is the projection of 5*! on the closed convex set A, then,
(T — 28y = 28 <0, Yy, € Ay and (AT < 126
Since (Af*! - J&*1 ;) <0, we then have
A = AL ) + AP < 1212,
which is equivalent to
k+1 k+1 Tkt k1
(Ap = A 2y = 2840y < = TH1 2, = T,
This amounts to write

k+1 ~k+1 ~k K
eyl < eyt i, where & = 4, — 7. (94)

sk+1 ”
5

k1
e 1.

will imply the convergence to zero of the sequence ||e,

Hence, the convergence to zero of the sequence ||

c
Theorem 5.1. Let K = E_# where ¢, is the inf-sup constant of Lemma 4.4. Denote by c, 4 the continuity constant of the bilinear form c in

X x L%(w), namely the smailest positive constant such that

le(V, 10l < ccxlUNxllull, YV € X, u € L¥ (o). (95)
If the parameter a is chosen such that

0<1+a(acl, —2c¢HK2h* < 1 (96)
then

: skt —
kEToo ”eh IF=0.

Proof. First we have

a,(Ef* V) + b(Vy, EfY) = c(Vy.ef) =0, VYV, € X, 97)
Take ¥, = Ef*', we get

a,(EXT ENY) = o(EXY of) — B(EFM, ENY) = c(EXT!, o). (98)

T
The third line of the scheme (81) and (93) amount to write
A i) = s i) + ae (U™ i) + a(@y,, i),
U, Ay = Ag) = (Do Ay = Ay ) -
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poo_ ok

For fij, = e, we get

Iyt ep) = (. ) + acU ! ef) + a(@),. ep),

(ps€) > (g ef) + ac(Uy. ef) + a(@y, €f).

Then,

@*,e}) = (e, ef) + ac(ExH ef)
or equivalently,

k+1 skl _ k

ac(E,™, pup) < (8 ,e,,)-

Using (98) we find
1 1 Skt k41112 2 ak+l 2

a,(EX* EM < — ( ok eky = — (|| =l P = lleytt - epll?) (99)

where in the last equality we have used the 1dent1ty

(b—a,b—a)—(b,b)+(a,a) =(b,b—a)—(a,b—a)—(b,b)+ (a,a)
= (b,b) — (b,a) — (a,b—a) — (b, b) + (a,a)
=(a,a—b)—(a,b—a)
=2(a,a—b).

The estimate (99) implies that
2ac* | EFFHIL + 11852 < Jlef |1 + (1854 — ek )12, (100)

where ¢* is the coercivity constant of a,. The next step is to evaluate ||¢; gkl _ e’h‘||2.
Let ji, € M, and u;, € A, be given by

fip = —ef, Hp = Ay — (A = 1EF)
then,
Ay = sy = Ay
We take this ji;, in the third line of (93) to obtain
i) = Ak, i) + acUFT i) — (@, fip),
while by the third line of (57) one has
Aps Hp = Ap) < G sy = Ap) + acUp, py — Ap) — a( @y, pyy — Ap).
So by taking the difference
(~k+1 gl _ ¢ ) < (e ék“ - e];) + ozc(E’};Jrl,é’;;L1 - e’;l) (101)
Then the estimate (95) yields
841 = ek 17 < ae(EXH, e+ — b) < ac, 4l EXF [IxllekH! — ek .
This estimate is finally equivalent to
llef+! — eflI* < a®c I 11
By (100), we deduce that,
Qac® —a® DIER IS + 112, 117 < llej 1%,
or equivalently
eI < llej 1 + atac? , — 2 ER 15 (102)
We therefore chose « > 0 small enough such that aci# —2c* < 0. So that we will conclude if one can show that
eIl < Koh™ ILER . (103)
Indeed if this estimate is valid then (102) becomes

- 2
15117 < (14 atac?, — 269K 2R ek I,
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Fig. 1. The surface S = ¢(w).

and by (94)
_ 2
ey II* < (1 + a(ac?, = 2HKG2 R llej )™
By iteration we finally find
k
eIl < (1 + alac?, — 2¢HK 2% 2 el

and proves the convergence |lef || to zero if 0 < 1 + a(ac?, — 2cH)K;2h? < 1.
It remains to prove (103). For that purpose, we use the identity (97), which says that

c(Vp-eh) = a,(EX* V) + bV, EF), WV, €X,,
which reduces to
ky _ k1
c(Vpek) = a,(EX* V) WV, € X, nkerb,
Hence using Lemma 4.4, we deduce that
& lleklly < chl EX Iy

By the definition of the norm || - ||,, we get (103) with K, =

mhg
|

o

6. Numerical tests

In this section we first discuss the performance of the Uzawa algorithm presented in the previous section for solving the discrete
problem Problem 9. We consider the hyperbolic paraboloid shell .S = g(w), where the reference domain w is

o={(y R |x|+]yl<50V2} (104)
and the chart is defined by (see Fig. 1)
2_ .2
0(x.) = (xy 14+ =52, with R =502 (105)

The shell is clamped on dw, namely, we choose y, = dw (hence y, is empty) and subjected to a uniform pressure f; = ¢ =
—0.25kp/cm2. In other words, in (8), we choose f = (0,0, ¢). As Young’s modulus and Poisson’s ratio we take E = 2.85x 10* kp/cm2,
v = 0.4 respectively, while the thickness of the shell is ¢ = 0.8 cm.

Then the function @ defined by (15) is here given by

0.4R? _ x2 — y?
VAT AH+ R R

Note that the function @ (see Fig. 4(a)) satisfies the condition (16) which ensures that the surface satisfies the required conditions
that we discussed in the introductory section. The numerical tests that we now present have been performed on the finite element
code FreeFEM++ [26]. We study the convergence of the Uzawa method with respect to the number of iterations.

D(x,y) = - 14
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Fig. 2. The mesh and isovalues for u;.
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Fig. 3. Isovalues for ug, f=1,2.

It is well known that (after the elimination of the unknowns U and y) the Uzawa method can be seen as a fixed-parameter
first-order Richardson iteration by using Schur complement (for the unknown 1) (see [24]). So as stopping criterion we can stop
the process when || A**! — A¥||, o is very small.

In our problem the contact zone is defined to be the set of points (x, y) € w that satisfies (( u — gr -e3)(x,y) = @(x, y). For contact
problems, the contact zone and the free boundary are a priori unknowns. However, for the considered example we have observed
that, at the origin (0,0) we have ((u;, — %rh - €3)(0,0) = @,(0,0) when the number of iterations becomes large. Since the analytic
expression of the function @, is available and by analytical computations we have @&,(0,0) = —1, we have reported the quantity
[ (uy, — %”h - e3(0,0) — @,(0,0)| at different steps. The results indicate that this quantity relatively decays to zero by the same rate
as [[Ak*! — 1%l (see Fig. 6). This observation may be interpreted as follows: the type of the considered loading and the position
of the function @ with respect to the shell imply that the origin (0,0) belongs to the contact zone at least for the discrete problems.

In Fig. 2(a) the isovalues for u; are plotted using the quasi uniform mesh shown in Fig. 2(b). Due to the form of the considered
loading we can expect that the displacement u; will be larger than the tangential displacement ug, f = 1,2. Fig. 3 shows this
significant difference between u; and ug, f = 1,2. Indeed the range of u; is between 0.029 and —1.09 while the values of 4; and
u, varies between —0.005 and 0.005.

The constraint (“h - grh) - e3 and the function @, are presented in Fig. 4(b), there we observe that the function @, can be

considered as an obstacle for the unknown (u;, — %’h) - e3. In Fig. 5 we plot the “contact zone”, and the free boundary after 350

iterations. It seems to be a connected and non convex subset of @ that contains the origin.
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Wl witli

W-0.156827
00457155 W-0.0457155
0653957 W.0653957
(a) The function ® (b) (uh — %rh) -e3 and @,
Fig. 4. The constraint (u,, - %Vh) - ey and the functions @ and @,.
s
W 05556
Fig. 5. The contact zone {(x,y) € w; ((uh - %rh) . 83) (x,y) = ®,(x, 9}
Table 1
Convergence results for the Uzawa scheme using P, @ B; — P, @ B; — ;.
Iteration 100 150 200 250 300 350
AR+ — 2K 122 (@) 0.0485238 0.0327921 0.0288491 0.0220641 0.021193 0.0192298
Value of
The constraint 0.0317884 0.024239 0.0207364 0.0169701 0.0156183 0.0140509

at the point (0,0)

We present in Table 1 and Fig. 6, the evolution of || A**! — A*|| (., and of | ("n - grh) - e5(0,0) — @,(0,0)| at different iterations
with the choice p = 10°. Note that the number of iterations to stop the algorithm for some reasonable stopping criteria is huge.
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0.050
—— error for lambda —— error at (0,0)
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Fig. 6. The error as a function of the number of iterations.

Table 2
Convergence results for the Uzawa scheme for « = 0.01 and different values of p.
p 10° 10° 107 10°
AR = A 1l 2 0.0119165 0.0119167 0.0119348 0.0087216
|((u,1 - %rh> ce3 —@,)(0,0)] 0.0635194 0.0636253 0.0637142 0.0621998
Table 3
Comparison of the number of iteration for « = 0.01 and different values of p.
P 1 10! 103 10° 107 10°
Number of iterations 701 688 686 686 686 684
Table 4
Convergence results for the Uzawa scheme for p = 10 and different values of a.
« 107! 1072 1073 107

AR = A8 1 2 ) 0.01851140 0.01191650 0.00732018 0.00148822

Indeed, we have observed that in order to obtain ||A**! = 2| ;eo(,,) < 1076 or | (1, — %’h) - 5(0,0) — @,(0,0)| < 10~° more then 100000
iterations is needed but no pathological behaviour is observed. Therefore we have preferred to present the evolution of the errors
up to 350 iterations.

The convergence of the Uzawa method depends strongly on the value of the parameter a. The optimal choice of this parameter
depends on the eigenvalues of the system. Based on the inequality (96), it must satisfy

O<a< CZ,#

but the coercivity and the continuity of the bilinear form depend on the parameter p. Indeed, for p = 0, we have observed that the
method does not converge, choosing p > 0 big enough gives a large range of « for which the method converges. In order to show
the influence of the parameter p on the performance of the algorithm we have made numerical experiments on a mesh consisting
of 512 triangles (6119 degrees of freedom) with fixed value of « = 0.01 and different values of p = 1,10', 103, 10%,107 and 10°. First
as above, we look at the convergence of the Uzawa algorithm after 350 iterations for different values of p. The results are listed
in Table 2, where we may remark that the choice of large enough p does not significantly influence the error. Secondly, we have
chosen the stopping criteria [|A**1 — A¥||;«(,) < 0.01, in that case we observe that augmenting the value of p reduces slightly the
number of iterations, see Table 3

Finally for a fixed (large enough) value of p, we have performed numerical tests with different values of a and look at the
variation of the error || A**! — A¥||;(,, after 350 iterations. The results are shown in Table 4, where contrary to the previous case,
we observe that changing « and fixing p large enough may affect significantly the convergence.

In the context of finite element approximation of PDEs, the rate of convergence depends strongly on the regularity of the solution
of the exact solution and the degree of the used polynomials, an inverse theorem also exists (see [27]). It should be noticed that for
contact problems, the limited regularity of the solution due to the unknown contact boundary limits the convergence rate. For our
problem the exact solution and the a priori regularity are unknown. In order to overcome this issue, we follow the algorithm proposed
in [28, Sec. 6]. Indeed, the prescribed numerical test is solved by our mixed formulation discretized using (P, @ B;,P; @ B;,P;) and
the Uzawa algorithm with fixed parameters p = 10° and « = 0.01. The meshes are refined uniformly and the mesh size of the mesh
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(a) n=0 b)yn=3

Fig. 7. The first and the fourth meshes.
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Fig. 8. The “ global” rate of the convergence as a function of the mesh size.

7, after n refinements is given by A, , = 50\/5/2(“4), n=0,1,2,3 (see Fig. 7). Hence if (U,,y,) is the solution of our Problem 9
for the mesh 7, then we define the numerical convergence rate by

”(Um Wn) - (Un—lv Wn_1)||X><M1
2N g1 W) — W W)l

K, :=log

n
Hence assuming that

U w) = U, )l ~ h;ax,n’
we may expect that

lim , = k.
n—-oo

Since the different components have very different order of magnitude, we prefer to use the relative error instead of the absolute
error.

The numerical tests from Fig. 8 show that the algorithm converges with a numerical convergence rate «, = 0.5, which is in good
agreement with the theoretical results obtained in Proposition 4.6 and Corollary 4.9. Note that the numerical convergence rate is
not the same for the two components of the error.

Let us finally mention that it would be a very interesting question to investigate whether the rate of convergence can be improved
by an automatic adaptive refinement strategy using a reliable and efficient a posteriori error indicator together with high order
polynomial spaces like P, + B, P,_;, k > 2.
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