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A B S T R A C T

In this work we consider the finite element approximation of two equivalent formulations of
an obstacle problem of a Naghdi shell. This second one is a new formulation of the continuous
problem set on the unconstrained space of the displacement field and the rotation. Namely in
order to enforce the tangency requirement on the rotation and the inequality constraint, two
Lagrange multipliers are introduced. In addition to existence and uniqueness results of solutions
of the continuous and the discrete problems we derive a priori error estimates. We further prove
the convergence of the Uzawa algorithm associated with this variational inequality. Numerical
tests that validate and illustrate our approach are given.

1. Introduction

Many phenomena are accurately and concisely described by variational inequalities instead of variational equalities. Variational
inequalities can be found in mechanics (contact between deformable elastic bodies), in lubrication theory, in flows through porous
media, in control theory and in financial mathematics (see [1] and the references therein).

Discretization of obstacle problems without constraint by the finite element method in its primal formulation or using Lagrange
multipliers has been considered since many years. The literature on the finite element approximation of such formulations is
extremely vast. Let us quote [1–6] to mention a few. However, the case of variational inequalities related to thin structures1 with
state constraints and in particular for thin shells seems to be not widely discussed in the academic community.

The goal of this paper is then to analyse the finite element approximation of two equivalent formulations of the obstacle problem
of a Naghdi shell described in [7] (based on the Naghdi shell model introduced in [8,9]). The first one, called the reduced problem,
consists in a variational inequality and a variational equality, and the second one, called the full problem, made of a variational
inequality and two variational equalities. This second one is a new formulation of the continuous problem set on the unconstrained
space of the displacement field and the rotation. More precisely in order to enforce the tangency requirement on the rotation (which
is a state constraint) and the inequality constraint, two Lagrange multipliers are introduced. We then introduce a non conforming
approximation of the reduced problem, while inspired from [1], we also consider a conforming finite element approximation of
the full problem by adding the elementwise P3 bubble functions to P1 elements to approximate the displacement field in order to
guarantee a discrete stability estimate (see [1, Theorem 3.1] and Lemma 4.10 below). In addition to existence and uniqueness results
of solutions of the continuous and the discrete problems, we derive an a priori error estimate. We further prove the convergence

∗ Corresponding author at: Université Polytechnique Hauts-de-France, CÉRAMATHS/DEMATHS, FR CNRS 2037, F-59313, Valenciennes Cedex 9, France.
E-mail addresses: sokinakhenfer@gmail.com (S. Khenfar), Serge.Nicaise@uphf.fr (S. Nicaise), merabet.ismail@univ-ouargla.dz (I. Merabet).

1 Thin structures are three-dimensional bodies in which one dimension/two dimensions is/are small compared to other two/one; they include beams, plates
and shells, ….
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of the Uzawa algorithm associated with this variational inequality. Even if its speed of convergence may be slow, we have chosen
it due to its simplicity of implementation and its minimal memory requirements. Numerical tests that validate and illustrate our
approach are finally given.

This paper is organized as follow: In Section 2 we recall some geometrical preliminaries of surfaces and the Naghdi shell model
ithout contact. In Section 3 we present the contact problem described in [7], introduce its two formulations, and prove their
ell-posedness. Further, some comments on the regularity of the solution are made. Section 4 is devoted to the introduction of

he finite element approximation of the two variational problems. For both problems, we prove the existence and uniqueness of the
iscrete solution and derive a priori error estimates assuming that the solution satisfies the 𝐻2-regularity.

In Section 5 we discuss the Uzawa iterative method applied to the considered variational inequality. Finally numerical
xperiments are presented in Section 6.

Let us finish this introduction with some notation used in the paper. The usual norm and semi-norm of the Sobolev 𝑊 𝑠,𝑝(𝜔,R𝓁)
with 𝑠 ≥ 0, 𝑝 ∈ [1,∞] and 𝓁 ∈ N) are denoted by ‖ ⋅‖𝑠,𝑝,𝜔 and | ⋅ |𝑠,𝑝,𝜔, respectively For 𝑠 = 0 (resp. 𝑝 = 2), we drop the index 𝑠 (resp.
). In the same way, we denote by (⋅, ⋅)𝜔 the 𝐿2(𝜔)-inner product. The notation 𝐴 ≲ 𝐵 is used for the estimate 𝐴 ≤ 𝐶 𝐵, where 𝐶 is

a generic constant that does not depend on 𝐴 and 𝐵, in particular this constant does not depend the mesh size ℎ, but it may depend
on the thickness of the shell 𝜀 which is supposed to be a strictly positive constant. The notation 𝐴 ∼ 𝐵 means that both 𝐴 ≲ 𝐵 and
𝐵 ≲ 𝐴 hold.

2. Geometric preliminaries and notations

Let 𝜔 be a bounded connected domain of R2 with a Lipschitz boundary 𝜕𝜔. We assume given a splitting of 𝜕𝜔 into two open
subsets 𝛾0 and 𝛾1 such that 𝛾0 is non empty, 𝜕𝜔 = 𝛾̄0 ∪ 𝛾̄1, and 𝛾0 ∩ 𝛾1 = ∅. We consider a shell whose midsurface is given by 𝑆 = 𝜑(𝜔),
where 𝜑 ∈ 𝑊 2,∞(𝜔,R3) is a one-to-one mapping such that the two vectors

𝑎𝛼(𝑥) = (𝜕𝛼𝜑)(𝑥)

are linearly independent at each point 𝑥 of 𝜔. Thus,

𝑎3(𝑥) =
𝑎1(𝑥) ∧ 𝑎2(𝑥)
|𝑎1(𝑥) ∧ 𝑎2(𝑥)|

is the unit normal vector on the midsurface at point 𝜑(𝑥). The vectors 𝑎𝑖(𝑥) define the local covariant basis at point 𝜑(𝑥). The
contravariant basis 𝑎𝑖(𝑥) is defined by the relations 𝑎𝑖 ⋅ 𝑎𝑗 = 𝛿𝑗𝑖 where 𝛿𝑗𝑖 is the Kronecker symbol. Note that all these vectors belong
to 𝑊 1,∞(𝜔,R3). Note that, Greek indices and exponents take their values in the set {1, 2} and Latin indices and exponents are in the
set {1, 2, 3}. The first and second fundamental forms of the surface are given by 𝑎𝛼𝛽 = 𝑎𝛼 ⋅ 𝑎𝛽 and 𝑏𝛼𝛽 = 𝑎3 ⋅ 𝜕𝛽𝑎𝛼 . The area element
of the midsurface in the chart 𝜑 is given by

√

𝑎(𝑥) with 𝑎(𝑥) = |𝑎1(𝑥) ∧ 𝑎2(𝑥)|
2. Similarly, the length element 𝓁 on the boundary

𝜕𝜔 is given by √

𝑎𝛼𝛽𝜏𝛼𝜏𝛽 , with the standard summation convention for repeated indices and exponents, the 𝑎𝛼𝛽 = 𝑎𝛼 ⋅ 𝑎𝛽 being the
contravariant components of the first fundamental form and (𝜏1, 𝜏2) being the covariant coordinates of the unit vector tangent to
𝜕𝜔.

In this paper, the thickness of the shell, denoted by 𝜀, is supposed to be positive and constant. Hence the shell is given by

𝑆 = {𝜑(𝑥) + 𝑧𝑎3(𝑥) | 𝑥 ∈ 𝜔, 𝑧 ∈ (− 𝜀
2
, 𝜀
2
)}

ere, 𝑧 represents the distance of a point of the shell to its midsurface. Let also {𝑒1, 𝑒2, 𝑒3} denote the Cartesian basis in R3.
Following [7], we are interested in studying the contact of this shell with a rigid obstacle contained in the half-space 𝑧 ⋅ 𝑒3 < 0
and such that its boundary occupies the whole plane 𝑧 ⋅ 𝑒3 = 0. So, from now on, we assume without restriction that the function 𝜑
satisfies 𝜑(𝑥) ⋅ 𝑒3 > 0 and also 𝑎3(𝑥) ⋅ 𝑒3 ≥ 0, for all 𝑥 ∈ 𝜔̄. Thus, the contact occurs on part of the lower surface of the shell, namely
on the surface {𝜑(𝑥) − 𝜀

2𝑎3, 𝑥 ∈ 𝜔}.
We consider the case of a homogeneous, isotropic material with Young modulus 𝐸 > 0 and Poisson ratio 𝜈, 0 ≤ 𝜈 < 1

2 . The
ontravariant components of the elasticity tensor 𝑎𝛼𝛽𝜌𝜎 ∈ 𝐿∞(𝜔) are given by

𝑎𝛼𝛽𝜌𝜎 = 𝐸
2(1 + 𝜈)

(𝑎𝛼𝜌𝑎𝛽𝜎 + 𝑎𝛼𝜎𝑎𝛽𝜌) + 𝐸𝜈
1 − 𝜈2

𝑎𝛼𝛽𝑎𝜌𝜎 . (1)

This tensor satisfies the usual symmetry properties and is uniformly strictly positive, in the sense that there exists a positive constant
𝑐 such that

𝑎𝛼𝛽𝜌𝜎𝛾𝛼𝛽𝛾𝜌𝜎 ≥ 𝑐
∑

1≤𝛼,𝛽≤2
|𝛾𝛼𝛽 |

2,

for all 2 × 2 symmetric real-valued matrices 𝛾 = (𝛾𝛼𝛽 )1≤𝛼,𝛽≤2.
In this context, the covariant components of the change of metric tensor are

𝛾𝛼𝛽 (𝑢) =
1
2
(𝜕𝛼𝑢 ⋅ 𝑎𝛽 + 𝜕𝛽𝑢 ⋅ 𝑎𝛼), (2)

the covariant components of the change of transverse shear tensor are

𝛿 (𝑢, 𝑟) = 1 (𝜕 𝑢 ⋅ 𝑎 + 𝑟 ⋅ 𝑎 ), (3)
2

𝛼3 2 𝛼 3 𝛼
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and the covariant components of the change of curvature tensor are

𝜒𝛼𝛽 (𝑢, 𝑟) =
1
2
(𝜕𝛼𝑢 ⋅ 𝜕𝛽𝑎3 + 𝜕𝛽𝑢 ⋅ 𝜕𝛼𝑎3 + 𝜕𝛼𝑟 ⋅ 𝑎𝛽 + 𝜕𝛽𝑟 ⋅ 𝑎𝛼). (4)

ollowing [10], when there is no obstacle, the variational problem of the Naghdi shell reads

Find 𝑈 = (𝑢, 𝑟) ∈ V such that 𝒂(𝑈, 𝑉 ) = (𝑉 ), ∀𝑉 ∈ V, (5)

where the space V is given by

V =
{

𝑉 = (𝑣, 𝑠) ∈ 𝐻1(𝜔,R3) ×𝐻1(𝜔,R3) | 𝑠 ⋅ 𝑎3 = 0 in 𝜔, 𝑣
|𝛾0 = 𝑠

|𝛾0 = 0
}

, (6)

the bilinear form 𝒂 is defined by

𝒂(𝑈, 𝑉 ) ∶=∫𝜔
({𝜀𝑎𝛼𝛽𝜌𝜎

[

𝛾𝛼𝛽 (𝑢)𝛾𝜌𝜎 (𝑣) +
𝜀2

12
𝜒𝛼𝛽 (𝑈 )𝜒𝜌𝜎 (𝑉 )

]

+ 2𝜀𝐸
1 + 𝑣

𝑎𝛼𝛽𝛿𝛼3(𝑈 )𝛿𝛽3(𝑉 ))}
√

𝑎𝑑𝑥, (7)

where 𝜀 represents the thickness of the shell that is here supposed to be a positive constant, and the linear form (⋅) is given by

(𝑉 ) ∶= ∫𝜔
𝑓 ⋅ 𝑣

√

𝑎𝑑𝑥 + ∫𝛾1
(𝑁 ⋅ 𝑣 +𝑀 ⋅ 𝑠)𝓁 𝑑𝜏. (8)

The data 𝑓 ∈ 𝐿2(𝜔)3, 𝑁 ∈ 𝐿2(𝛾1)3 and 𝑀 ∈ 𝐿2(𝛾1)3 represent a given resultant force density, an applied traction density and an
applied moment density, respectively.

3. The contact problem

First, let us now introduce the following functional spaces:

M ∶= 𝐻1
𝛾0
(𝜔) =

{

𝜇 ∈ 𝐻1(𝜔); 𝜇 = 0 on 𝛾0
}

. (9)

X ∶= 𝐻1
𝛾0
(𝜔,R3) ×𝐻1

𝛾0
(𝜔,R3). (10)

The space X is endowed with the following natural Hilbert norm

‖𝑉 ‖X =
(

‖𝑣‖21,𝜔 + ‖𝑠‖21,𝜔
)

1
2 ,∀𝑉 = (𝑣, 𝑠) ∈ X. (11)

Obviously the forms 𝒂(⋅, ⋅) and  defined in (7) and (8), respectively, are also defined (and continuous) on X ×X and X. The space
is then the kernel of the bilinear form 𝒃(⋅, ⋅) given by

∀(𝑉 , 𝜒) ∈ X ×M, 𝒃(𝑉 , 𝜒) = ∫𝜔
𝜕𝛼(𝑠 ⋅ 𝑎3)𝜕𝛼𝜒 𝑑𝑥. (12)

Following [7] the obstacle problem of Naghdi’s shell reads:

Problem 1. Find (𝑈,𝜓) in N𝛷 ×M such that

∀𝑉 ∈ N𝛷, 𝒂(𝑈, 𝑉 − 𝑈 ) + 𝒃(𝑉 − 𝑈,𝜓) ≥ (𝑉 − 𝑈 ),

∀𝜒 ∈ M, 𝒃(𝑈, 𝜒) = 0,
(13)

where N𝛷 is a closed convex set of X defined by

N𝛷 ∶=
{

𝑉 = (𝑣, 𝑠) ∈ X;
(

𝑣 − 𝜀
2
𝑠
)

⋅ 𝑒3 ≥ 𝛷 a.e. in 𝜔
}

. (14)

The function 𝛷 belongs to the space 𝑊 1,∞(𝜔) and is given by

𝛷(𝑥) =
( 𝜀
2
𝑎3(𝑥) − 𝜑(𝑥)

)

⋅ 𝑒3. (15)

The contact model is meaningless without the following condition,

𝛷(𝑥) ≤ 0, ∀𝑥 ∈ 𝜔, (16)

which follows from the positivity of 𝜑 ⋅ 𝑒3 and the non-negativeness of 𝑎3 ⋅ 𝑒3 when the thickness 𝜀 is not too large and the shell is
not flat. Indeed from the definition of 𝛷, (16) holds if

𝜀
2
max
𝑥∈𝜔̄

𝑎3(𝑥) ⋅ 𝑒3 ≤ min
𝑥∈𝜔̄

𝜑(𝑥) ⋅ 𝑒3. (17)

Consequently if the shell is flat, namely if 𝑎3 ⋅ 𝑒3 = 0 on 𝜔, then (17) holds (and hence (16)), for all 𝜀 > 0. On the contrary, if
max𝑥∈𝜔̄ 𝑎3(𝑥) ⋅ 𝑒3 > 0, then (17) holds if and only if

𝜀 ≤ 𝜀0 ∶= 2
min𝑥∈𝜔̄ 𝜑(𝑥) ⋅ 𝑒3
max𝑥∈𝜔̄ 𝑎3(𝑥) ⋅ 𝑒3

.

Therefore (16) holds under this last constraint on 𝜀.
Since 𝑟 ⋅ 𝑎 = 0 a.e. in 𝜔, it is straightforward to check that Problem 1 is equivalent to the following problem:
3

3
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⎪

⎨

⎪

⎩

Find (𝑈,𝜓) ∈ N𝛷 ×M such that
∀𝑉 ∈ N𝛷, 𝒂𝜌(𝑈, 𝑉 − 𝑈 ) + 𝒃(𝑉 − 𝑈,𝜓) ≥ (𝑉 − 𝑈 ),

∀𝜒 ∈ M, 𝒃(𝑈, 𝜒) = 0,

(18)

where for any real parameter 𝜌 > 0, we set

𝒂𝜌(𝑈, 𝑉 ) = 𝒂(𝑈, 𝑉 ) + 𝜌∫𝜔
𝜕𝛼(𝑟 ⋅ 𝑎3)𝜕𝛼(𝑠 ⋅ 𝑎3) 𝑑𝑥, ∀𝑈 = (𝑢, 𝑟), 𝑉 = (𝑣, 𝑠) ∈ X.

Remark 3.1. Note that the bilinear form 𝒂(⋅, ⋅) is not X-elliptic (see [10, Lemma 3.3]). Replacing the bilinear form 𝒂((⋅, ⋅), (⋅, ⋅)) by
𝒂𝜌((⋅, ⋅), (⋅, ⋅)) allows us to recover the ellipticity over the space X, where as soon as 𝜌 > 0.

3.1. A compact formulation

It is clear that neither Problem 1 nor Problem 2 is in the ‘‘standard’’ form of variational inequalities, i.e., a single variational
inequality. In this subsection following [1], we first rewrite Problem 2 in a compact form involving a single variational inequality
set in a closed convex set.

Let us consider the Hilbert space:

 = X ×M (19)

and the closed convex set

K = N𝛷 ×M.

We define the bilinear form 𝜌 ∶ K ×K → R through

𝜌((𝑊 ,𝜇); (𝑉 , 𝜒)) ∶= 𝒂𝜌(𝑊 ,𝑉 ) + 𝒃(𝑉 , 𝜇) + 𝒃(𝑊 ,𝜒),

then, Problem 2 can be written in a compact way as follows:

Problem 3. Find (𝑈,𝜓) in K such that

𝜌((𝑈,𝜓); (𝑉 − 𝑈, 𝜒)) ≥ (𝑉 − 𝑈 ), ∀(𝑉 , 𝜒) ∈ K. (20)

Theorem 3.2. For any data (𝑓,𝑁,𝑀) ∈ 𝐿2(𝜔)3 × 𝐿2(𝛾1)3 × 𝐿2(𝛾1)3, Problem 3 admits a unique solution.

Note that, the bilinear form (⋅, ⋅) is not coercive on the whole space X × M, hence the existence and uniqueness result for
Problem 2 does not directly follow from Stampacchia’s theorem. However, we give here a proof using a perturbation technique
(see [11]). Indeed, we consider a perturbed bilinear form 𝑝 depending on small positive parameter 𝑝 defined as follows:

𝑝((𝑊 ,𝜇); (𝑉 , 𝜒)) ∶= 𝒂𝜌(𝑊 ,𝑉 ) + 𝒃(𝑉 , 𝜇) + 𝒃(𝑊 ,𝜒) + 𝑝(𝑊 ,𝑉 )X + 𝑝(𝜇, 𝜒)M,

where (⋅, ⋅)X and (⋅, ⋅)M respectively denote the inner product in X and in M.
We then consider the following perturbed problem:

Problem 4. Find (𝑈𝑝, 𝜓𝑝) in K such that

𝑝((𝑈𝑝, 𝜓𝑝); (𝑉 − 𝑈𝑝, 𝜒)) ≥ (𝑉 − 𝑈𝑝), ∀(𝑉 , 𝜒) ∈ K. (21)

Since the bilinear form 𝑝 is coercive on the space , Stampacchia’s theorem ensures that Problem 4 has a unique solution. We
need to justify the link between the solution of Problem 4 and Problem 3.

Lemma 3.3. The bilinear form 𝒃(⋅, ⋅) satisfies the following inf-sup condition

∃𝑐∗ > 0 such that sup
𝑊 ∈W(𝜔)

𝒃(𝑊 ,𝜒)
‖𝑊 ‖X

≥ 𝑐∗‖𝜒‖M,∀𝜒 ∈ M, (22)

here W is the closed subspace of X and included into N𝛷 defined by

W ∶= {(𝑣, 𝑠) ∈ X; (𝑣 − 𝜀
2
𝑠) ⋅ 𝑒3 = 0}.

roof. If we let 𝜒 ∈ M, then 𝑊̃ = ( 2𝜀𝜒𝑒3, 𝜒𝑒3) belongs to W and satisfies

‖𝑊̃ ‖X ∼ ‖𝜒‖M.

Consequently one has

sup
𝒃(𝑊 ,𝜒)

≥
𝒃(𝑊̃ , 𝜒)

∼
|𝜒|21,𝜔 ≳ ‖𝜒‖M. □
4

𝑊 ∈W ‖𝑊 ‖X ‖𝑊̃ ‖X ‖𝜒‖M
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Proof of Theorem 3.2. The solution (𝑈𝑝, 𝜓𝑝) of Problem 4 satisfies
{

∀𝑉 ∈ N𝛷(𝜔), 𝒂𝜌(𝑈𝑝, 𝑉 − 𝑈𝑝) + 𝒃(𝑉 − 𝑈𝑝, 𝜓𝑝) + 𝑝(𝑈𝑝, 𝑉 − 𝑈𝑝) ≥ (𝑉 − 𝑈 ),

∀𝜒 ∈ M(𝜔), 𝒃(𝑈𝑝, 𝜒) − 𝑝(𝜓𝑝, 𝜒)M = 0.
(23)

Since (𝟎X, 𝟎M) ∈ K, we then have the following bound

𝑝‖𝑈𝑝‖X + 𝑝‖𝜓𝑝‖M ≤ ‖‖X′ . (24)

We now introduce the functional 𝐺 ∶ M → R defined by

𝐺(𝜒) = 𝑝(𝜓𝑝, 𝜒), ∀𝜒 ∈ M.

It is clear that 𝐺 ∈ M′ and by (24) we have the following bound

‖𝐺‖M′ ≲ ‖‖X′ . (25)

By Lemma 3.3 (see [12] Lemma 4.1) there exists a unique solution 𝑄𝑝 ∈ W of

𝒃(𝑄𝑝, 𝜒) = 𝐺(𝜒), ∀𝜒 ∈ M,

such that

‖𝑄𝑝‖X ≲ ‖𝐺‖M′ . (26)

Then 𝑈𝑝 −𝑄𝑝 ∈ N𝛷 and by the second line in (23) we have

𝒃(𝑈𝑝 −𝑄𝑝, 𝜒) = 0 ∀𝜒 ∈ M

whence,

𝑈𝑝 −𝑄𝑝 ∈ N𝛷 ∩ V.

Taking 𝑉 = 𝑄𝑝 in the first line in (23) we get

𝒂𝜌(𝑈𝑝, 𝑄𝑝 − 𝑈𝑝) + 𝒃(𝑄𝑝 − 𝑈𝑝, 𝜓𝑝) + 𝑝(𝑈𝑝, 𝑄𝑝 − 𝑈𝑝) ≥ (𝑄𝑝 − 𝑈𝑝),

and subtracting 𝒂𝜌(𝑄𝑝, 𝑄𝑝 − 𝑈𝑝) from both sides we obtain

𝒂𝜌(𝑈𝑝 −𝑄𝑝, 𝑄𝑝 − 𝑈𝑝) + 𝑝(𝑈𝑝, 𝑄𝑝 − 𝑈𝑝) ≥ (𝑄𝑝 − 𝑈𝑝) − 𝒂𝜌(𝑄𝑝, 𝑄𝑝 − 𝑈𝑝).

Then using (24), (25), (26) and the Cauchy–Schwarz inequality we get

𝒂𝜌(𝑈𝑝 −𝑄𝑝, 𝑈𝑝 −𝑄𝑝) ≤ (𝑈𝑝 −𝑄𝑝) − 𝒂𝜌(𝑄𝑝, 𝑈𝑝 −𝑄𝑝) + 𝑝(𝑈𝑝, 𝑄𝑝 − 𝑈𝑝)

≲ ‖‖X′‖𝑈𝑝 −𝑄𝑝‖X.

Using the fact that 𝑈𝑝 −𝑄𝑝 ∈ V and the coercivity of the bilinear form 𝒂(⋅, ⋅) on the space V, we get

‖𝑈𝑝 −𝑄𝑝‖X ≲ ‖‖X′ . (27)

By the triangle inequality, (26) and (27) imply that

‖𝑈𝑝‖X ≲ ‖‖X′ . (28)

Note that the hidden constant is this last estimate is independent of 𝑝.
Now we need to bound ‖𝜓𝑝‖M. Indeed, since

∀𝑉 ∈ N𝛷, 𝒂𝜌(𝑈𝑝, 𝑉 − 𝑈𝑝) + 𝒃(𝑉 − 𝑈𝑝, 𝜓𝑝) + 𝑝(𝑈𝑝, 𝑉 − 𝑈𝑝) ≥ (𝑉 − 𝑈 ),

then (since W is a closed subspace contained in N𝛷)

∀𝑉 ∈ W, 𝒂𝜌(𝑈𝑝, 𝑉 ) + 𝒃(𝑉 , 𝜓𝑝) + 𝑝(𝑈𝑝, 𝑉 ) = (𝑉 )

which amounts to write

𝒃(𝑉 , 𝜓𝑝) = (𝑉 ) − 𝒂𝜌(𝑈𝑝, 𝑉 ) − 𝑝(𝑈𝑝, 𝑉 ), ∀𝑉 ∈ W.

Again the inf-sup inequality (22), the Cauchy–Schwarz inequality and (28) imply that

‖𝜓𝑝‖M ≲ ‖‖X′ . (29)

From the estimate (29) and the second line in (23) we deduce that

lim 𝒃(𝑈𝑝, 𝜒) = 0, ∀𝜒 ∈ M and lim 𝒃(𝑈𝑝, 𝜓𝑝) = 0. (30)
5

𝑝→0 𝑝→0
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Collecting (28) and (29) we deduce that the sequence ((𝑈𝑝, 𝜓𝑝))𝑝 is uniformly bounded in the Hilbert space X×M. Then there exists
(𝑈∗, 𝜓∗) ∈ K (recalling that (𝑈𝑝, 𝜓𝑝) belongs to K for all 𝑝) such that

(𝑈𝑝, 𝜓𝑝) ⇀ (𝑈∗, 𝜓∗) ∈ X ×M weakly as 𝑝→ 0.

or arbitrary 𝑉 ∈ N𝛷 we have,

(𝑉 − 𝑈𝑝) ≤𝑝((𝑈𝑝, 𝜓𝑝); (𝑉 − 𝑈𝑝, 𝜒))

Since

𝑝((𝑈𝑝, 𝜓𝑝); (𝑉 − 𝑈𝑝, 𝜒)) = 𝜌((𝑈𝑝, 𝜓𝑝); (𝑉 − 𝑈𝑝, 𝜒)) + 𝑝(𝑈𝑝, 𝑉 − 𝑈𝑝) + 𝑝(𝜓𝑝, 𝜒)

= 𝒂𝜌(𝑈𝑝, 𝑉 − 𝑈𝑝) + 𝑏(𝑈𝑝, 𝜒) + 𝑏(𝑉 − 𝑈𝑝, 𝜓𝑝) + 𝑝(𝑈𝑝, 𝑉 − 𝑈𝑝) + 𝑝(𝜓𝑝, 𝜒)

= 𝒂𝜌(𝑈𝑝, 𝑉 ) + 𝑏(𝑉 , 𝜓𝑝) + 𝑝(𝑈𝑝, 𝑉 ) − 𝒂(𝑈𝑝, 𝑈𝑝) − 𝑝(𝑈𝑝, 𝑈𝑝) + 𝑝(𝜓𝑝, 𝜒) + 𝑏(𝑈𝑝, 𝜒) − 𝑏(𝑈𝑝, 𝜓𝑝)

= 𝒂𝜌(𝑈𝑝, 𝑉 ) + 𝑏(𝑉 , 𝜓𝑝) − 𝒂(𝑈𝑝, 𝑈𝑝) + 𝑝(𝑈𝑝, 𝑉 ) − 𝑝(𝑈𝑝, 𝑈𝑝) + 𝑏(𝑈𝑝, 𝜒) − 𝑏(𝑈𝑝, 𝜓𝑝) + 𝑝(𝜓𝑝, 𝜒),

e then have,

(𝑉 − 𝑈𝑝) ≤ 𝒂𝜌(𝑈𝑝, 𝑉 ) + 𝑏(𝑉 , 𝜓𝑝) − 𝒂(𝑈𝑝, 𝑈𝑝) + 𝑝(𝑈𝑝, 𝑉 ) − 𝑝(𝑈𝑝, 𝑈𝑝) + 𝑏(𝑈𝑝, 𝜒) − 𝑏(𝑈𝑝, 𝜓𝑝) + 𝑝(𝜓𝑝, 𝜒),

nd by letting 𝑝→ 0 (using (30)) we get

𝒂𝜌(𝑈∗, 𝑉 ) + 𝒃(𝑉 , 𝜓∗) − lim
𝑝→0

𝒂𝜌(𝑈𝑝, 𝑈𝑝) ≥ (𝑉 − 𝑈∗).

ince,

lim
𝑝→0

𝒂𝜌(𝑈𝑝 − 𝑈∗, 𝑈𝑝 − 𝑈∗) ≥ 0

hen

lim
𝑝→0

𝒂𝜌(𝑈𝑝, 𝑈𝑝) ≥ 𝒂(𝑈∗, 𝑈∗).

hose last inequalities and (30) allow us to write

∀𝑉 ∈ N𝛷, 𝒂𝜌(𝑈∗, 𝑉 − 𝑈∗) + 𝒃(𝑉 , 𝜓∗) ≥ (𝑉 − 𝑈∗),

∀𝜒 ∈ M, 𝒃(𝑈∗, 𝜒) = 0.

Hence (𝑈∗, 𝜓∗) is a solution of Problem 3.
Let us now show the uniqueness. Let (𝑈1, 𝜓1) ∈ K and (𝑈2, 𝜓2) ∈ K be two solutions of Problem 3. Then

𝒂𝜌(𝑈1, 𝑈2 − 𝑈1) + 𝒃(𝑈2 − 𝑈1, 𝜓1) ≥ (𝑈2 − 𝑈1),

𝒃(𝑈1, 𝜒) = 0 ∀𝜒 ∈ M.

and

𝒂𝜌(𝑈2, 𝑈1 − 𝑈2) + 𝒃(𝑈1 − 𝑈2, 𝜓2) ≥ (𝑈1 − 𝑈2),

𝒃(𝑈2, 𝜒) = 0 ∀𝜒 ∈ M.

As 𝑈1 and 𝑈2 belong to V, it follows that
{

𝒂(𝑈1, 𝑈2 − 𝑈1) ≥ (𝑈2 − 𝑈1),

𝒂(𝑈2, 𝑈1 − 𝑈2) ≥ (𝑈1 − 𝑈2).
(31)

Hence

𝒂(𝑈1 − 𝑈2, 𝑈1 − 𝑈2) ≤ 0,

which implies that 𝑈1 = 𝑈2 since 𝒂(⋅, ⋅) is coercive on V.
The uniqueness of 𝜓 follows from the inf-sup condition (22). Indeed, since,

𝒂(𝑈, 𝑉 − 𝑈 ) + 𝒃(𝑉 − 𝑈,𝜓) ≥ (𝑉 − 𝑈 ), ∀𝑉 ∈ N𝛷,

then

𝒂(𝑈,𝑊 ) + 𝒃(𝑊 ,𝜓) = (𝑊 ), ∀𝑊 ∈ W. (32)

If (𝑈,𝜓1) ∈ K and (𝑈,𝜓2) ∈ K are two solutions of Problem 3, the inf-sup condition (22) and (32) imply that

‖𝜓1 − 𝜓2‖M ≤ sup
𝑊 ∈𝑊 (𝜔)

𝒃(𝑊 ,𝜓1 − 𝜓2)
‖𝑊 ‖X

= 0,
6

hich leads to 𝜓1 = 𝜓2. ■
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Let us now denote by 𝑐# and 𝑐# the coercivity and the continuity constants of the form 𝒂𝜌(⋅, ⋅) on X, respectively. Our error
analysis is built upon the following stability result.

Lemma 3.4. For any (𝑊 , 𝜉) ∈ X ×M there exists 𝑉 ∈ X such that:

𝜌((𝑊 , 𝜉); (𝑉 ,−𝜉)) ≥ 𝐶1
(

‖𝑊 ‖X + ‖𝜉‖M
)2 , (33)

‖𝑉 ‖X + ‖𝜉‖M ≤ 𝐶2‖𝑊 ‖X + ‖𝜉‖M. (34)

here 𝐶1 and 𝐶2 are two positive constants depending only on the constants 𝑐#, 𝑐# and 𝑐∗.

roof. Let (𝑊 , 𝜉) ∈ X ×M and let 𝑄 ∈ X be the unique solution of the following problem:
{

Find 𝑄 ∈X such that
𝒂𝜌(𝑄,𝑍) + (𝑄,𝑍)X = 𝒃(𝑍, 𝜉), ∀𝑍 ∈ X.

(35)

Then by taking 𝑍 = 𝑄 in (35) we get

‖𝑄‖2X ≤ 𝒃(𝑄, 𝜉).

auchy–Schwarz’s inequality yields

‖𝑄‖2X ≲ ‖𝑄‖X‖𝜉‖M.

hich by simplification leads to

‖𝑄‖X ≲ ‖𝜉‖M.

urthermore by the inf-sup condition we have

‖𝜉‖M ≲ sup
𝑍∈X

𝒃(𝑍, 𝜉)
‖𝑍‖X

.

sing (35) and Cauchy–Schwarz’s inequality, we obtain

‖𝜉‖M ≲ ‖𝑄‖X.

hus ‖𝑄‖X ∼ ‖𝜉‖M.
We now take 𝑉 = 𝑊 + 𝛿𝑄, where 0 < 𝛿 < 𝑐#

𝑐2#
, and get

𝜌((𝑊 , 𝜉); (𝑉 ,−𝜉)) = 𝜌((𝑊 , 𝜉); (𝑊 + 𝛿𝑄,−𝜉))

= 𝒂𝜌(𝑊 ,𝑊 + 𝛿𝑄) + 𝒃(𝑊 + 𝛿𝑄, 𝜉) + 𝒃(𝑊 ,−𝜉)

= 𝒂𝜌(𝑊 ,𝑊 ) + 𝛿𝒂𝜌(𝑊 ,𝑄) + 𝒃(𝑊 , 𝜉) + 𝛿𝒃(𝑄, 𝜉) − 𝒃(𝑊 , 𝜉)

= 𝒂𝜌(𝑊 ,𝑊 ) + 𝛿𝒂𝜌(𝑊 ,𝑄) + 𝛿𝒃(𝑄, 𝜉)

≥ 𝑐#‖𝑊 ‖

2
X −

𝛿𝑐2#
2

‖𝑊 ‖

2
X − 𝛿

2
‖𝑄‖2X + 𝛿‖𝑄‖2X

≳ ‖𝑊 ‖

2
X + ‖𝜉‖2M. ■

Let us now introduce the following cone

𝛬 = {𝜇 ∈ M′; ∀𝜎 ∈ M, 𝜎 ≥ 0, ⟨𝜎, 𝜇⟩ ≥ 0},

nd the following bilinear form 𝒄 ∶ X ×M′ → R defined by

𝒄(𝑉 , 𝜇) =
⟨(

𝑣 − 𝜀
2
𝑠
)

⋅ 𝑒3, 𝜇
⟩

,∀(𝑉 , 𝜇) ∈ X ×M′. (36)

Lemma 3.5. There exists a positive constant 𝐶𝑐 such that

inf
𝜒∈M′

sup
𝑣∈𝐻1

𝛾0
(𝜔,R3)

𝒄((𝑣, 0), 𝜇)
‖𝜇‖M′‖(𝑣, 0)‖X

≥ 𝐶𝑐 . (37)

Proof. See the proof of [7, Lemma 4.4].
Obviously the previous result implies that

inf sup
𝒄(𝑉 , 𝜇) ≥ 𝐶𝑐 . ■ (38)
7

𝜒∈M′𝑉 ∈X‖𝜇‖M′‖𝑉 ‖X
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Proposition 3.6. Let (𝑈,𝜓) be the solution of Problem 1. Then there exists a unique 𝜆 ∈ 𝛬 such that

𝒄(𝑉 , 𝜆) = 𝒂𝜌(𝑈, 𝑉 ) + 𝒃(𝑉 , 𝜓) − (𝑉 ), ∀𝑉 ∈ X. (39)

Moreover, the multiplier 𝜆 satisfies the following bound

‖𝜆‖M′ ≤ 𝐶‖‖X′ .

Proof. See [7]. ■

Now we consider the ‘‘full’’ problem

Problem 5. Find (𝑈,𝜓, 𝜆) ∈ X ×M × 𝛬 such that:

⎧

⎪

⎨

⎪

⎩

∀𝑉 ∈ X, 𝒂𝜌(𝑈, 𝑉 ) + 𝒃(𝑉 , 𝜓) − 𝒄(𝑉 , 𝜆) = (𝑉 ),

∀𝜒 ∈ M, 𝒃(𝑈, 𝜒) = 0,

∀𝜇 ∈ 𝛬, 𝒄(𝑈, 𝜇 − 𝜆) ≥ ⟨𝛷, 𝜇 − 𝜆⟩ .

(40)

Note that the right-hand side of the third line of this problem makes sense only if the function 𝛷 belongs to 𝐻1
𝛾0
(𝜔).

Proposition 3.7. The full Problem 5 and the reduced Problem 1 are equivalent, in the following sense: If (𝑈,𝜓, 𝜆) is a solution of full
problem, then (𝑈,𝜓) is a solution of the reduced. If (𝑈,𝜓) is a solution of the reduced problem then there exists a unique 𝜆 ∈ 𝛬 such that
(𝑈,𝜓, 𝜆) is a solution of the full problem.

roof. The proof can be done as the one of [7, Proposition 4.2]. ■

We introduce the following forms

ℬ(𝑈,𝜓, 𝜆;𝑉 , 𝜒, 𝜇) ∶= 𝒂𝜌(𝑈, 𝑉 ) + 𝒃(𝑉 , 𝜓) + 𝒃(𝑈, 𝜒) − 𝒄(𝑉 , 𝜆) + 𝒄(𝑈, 𝜇),
ℒ (𝑉 , 𝜒, 𝜇) ∶= (𝑉 ) + ⟨𝛷, 𝜇⟩ .

Then Problem 5 can now be written in the following compact form:

Problem 6. Find (𝑈,𝜓, 𝜆) ∈ X ×M × 𝛬 such that:

ℬ(𝑈,𝜓, 𝜆;𝑉 , 𝜒, 𝜇 − 𝜆) ≥ ℒ (𝑉 , 𝜒, 𝜇 − 𝜆), ∀(𝑉 , 𝜒, 𝜇) ∈ X ×M × 𝛬.

Theorem 3.8 (Continuous stability). For any (𝑉 , 𝜒, 𝜇) ∈ X ×M ×M′ there exists 𝑊 ∈ X such that

ℬ(𝑉 , 𝜒, 𝜇;𝑊 ,−𝜒, 𝜇) ≳
(

‖𝑊 ‖X + ‖𝜒‖M + ‖𝜇‖M
)2 , (41)

‖𝑊 ‖X ≲ ‖𝑉 ‖X. (42)

To prove Theorem 3.8, we need the following lemma.

Lemma 3.9. There exists a constant 𝛽# > 0 such that:

inf sup
(𝜒,𝜇)∈M×M′ 𝑉 =(𝑣,𝑠)∈X

𝒄(𝑉 , 𝜇) − 𝒃(𝑉 , 𝜒)
‖(𝜒, 𝜇)‖M×M′‖𝑉 ‖X

≥ 𝛽#. (43)

Proof. Let (𝜒, 𝜇) be in M ×M′, then there exists 𝜎 in 𝐻1
𝛾0
(𝜔) such that

∀𝜏 ∈ 𝐻1
𝛾0
(𝜔),∫𝜔

(𝐠𝐫𝐚𝐝 𝜎) ⋅ (𝐠𝐫𝐚𝐝 𝜏) 𝑑𝑥 = ⟨𝜏, 𝜇⟩ . (44)

We directly deduce that

‖𝜎‖1,𝜔 ≲ ‖𝜇‖M′ .

Furthermore

‖𝜇‖M′ = sup
𝜏∈𝐻1

𝛾0
(𝜔)

⟨𝜏, 𝜇⟩
‖𝜏‖1,𝜔

= sup
𝜏∈𝐻1

𝛾0
(𝜔)

∫𝜔(𝐠𝐫𝐚𝐝 𝜎) ⋅ (𝐠𝐫𝐚𝐝 𝜏) 𝑑𝑥
‖𝜏‖1,𝜔

≲ ‖𝜎‖1,𝜔. (45)

Hence ‖𝜎‖1,𝜔 ∼ ‖𝜇‖M′ . In (44), take 𝑉 = (𝑣̃, 𝑠̃) with

𝑣̃ = (−𝜎 + 𝜀
2
𝜒𝑎3 ⋅ 𝑒3)𝑒3 and 𝑠̃ = 𝜒𝑎3,

then we have

𝒃(𝑉 , 𝜒) = 𝜕𝛼(𝑠̃ ⋅ 𝑎3)𝜕𝛼𝜒 𝑑𝑥 = |𝜒|2 ,
8

∫𝜔 1,𝜔
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𝒄(𝑉 , 𝜇) = − ⟨𝜎, 𝜇⟩ = −|𝜒|21,𝜔,

‖𝑉 ‖X ≲ ‖𝜎‖1,𝜔 + ‖𝜒‖1,𝜔 ≲ ‖𝜇‖M′ + ‖𝜒‖1,𝜔.

These properties directly yield

sup
𝑉 ∈X

𝒃(𝑉 , 𝜒) − 𝒄(𝑉 , 𝜇)
‖𝑉 ‖X

≥
𝒃(𝑉 , 𝜒) − 𝒄(𝑉 , 𝜇)

‖𝑉 ‖X
=

‖𝜒‖21,𝜔 + ‖𝜎‖21,𝜔
‖𝑉 ‖X

≳ (‖𝜒‖21,𝜔 + ‖𝜇‖2M′ )1∕2. ■

Proof of Theorem 3.8. Let (𝑉 , 𝜒, 𝜇) ∈ X ×M ×M′. We consider the following variational problem:
{

Find 𝑄 in X such that
𝒂𝜌(𝑄,𝑍) + (𝑄,𝑍)X = 𝒃(𝑍, 𝜒) − 𝒄(𝜇,𝑍), ∀𝑍 ∈ X.

(46)

Since, the bilinear form 𝒂𝜌(⋅, ⋅) + (⋅, ⋅)X is X-elliptic, problem (46) has a unique solution 𝑄 ∈ X.
Moreover, since 𝒄(⋅, ⋅) − 𝒃(⋅, ⋅) satisfies the inf-sup condition, the Cauchy–Schwarz inequality yields

‖𝜒‖M + ‖𝜇‖M′ ≲ sup
𝑍∈X

𝒄(𝜇,𝑍) − 𝒃(𝜒,𝑍)
‖𝑍‖X

= sup
𝑍∈X

𝒂(𝑄,𝑍) + (𝑄,𝑍)
‖𝑍‖X

≲ ‖𝑄‖X.

Take 𝑊 = 𝑉 + 𝛿𝑄 where 𝛿 is a positive constant to be determined later, then we have

ℬ(𝑉 , 𝜒, 𝜇;𝑊 ,−𝜒, 𝜇) = 𝒂𝜌(𝑉 , 𝑉 + 𝛿𝑄) + 𝒃(𝑉 + 𝛿𝑄, 𝜒) + 𝒃(𝑉 ,−𝜒) − 𝒄(𝑉 + 𝛿𝑄, 𝜇) + 𝒄(𝜇, 𝑉 )

= 𝒂𝜌(𝑉 , 𝑉 ) + 𝛿𝒂𝜌(𝑉 ,𝑄) + 𝛿𝒃(𝑄, 𝜒) − 𝛿𝒄(𝜇,𝑄)

≥ 𝒂𝜌(𝑉 , 𝑉 ) − 𝛿𝑐#‖𝑉 ‖X‖𝑄‖X + 𝛿‖𝑄‖2X

≥ (𝑐# −
𝛿(𝑐#)2

2
)‖𝑉 ‖

2
X + 𝛿

2
‖𝑄‖2X

Then it suffices to take 0 < 𝛿 <
𝑐2#

2(𝑐#)2
to obtain

ℬ(𝑉 , 𝜒, 𝜇;𝑊 ,−𝜒, 𝜇) ≳ (‖𝑉 ‖

2
X + ‖𝜒‖21 + ‖𝜇‖2−1). □

3.2. Regularity of the solution

The regularity of the solution of any PDE problem plays an important role in its error analysis by a FEM. Accordingly, the a
priori error analysis carried out in Section 4.1 requires additional regularity on the solution of the continuous problem. Let us first
introduce the following quantities:

𝑛𝜚𝜎 (𝑢) =𝑎𝜚𝜎𝛼𝛽𝛾𝛼𝛽 (𝑢), (47)

𝑞𝛽 (𝑢, 𝑟) = 𝜀𝐸
1 + 𝜈

𝑎𝛼𝛽𝛿𝛼3(𝑢, 𝑟), (48)

𝑚𝛼𝛽 (𝑢, 𝑟) = 𝜀
3

12
𝑎𝛼𝛽𝜌𝜎𝜒𝛼𝛽 (𝑢, 𝑟), (49)

where, 𝛾𝛼𝛽 , 𝛿𝛼3 and 𝜒𝛼𝛽 are given by (2), (3) and (4) respectively. Then our contact problem takes the following complementarity
formulation

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

−𝜕𝜚((𝑛𝜚𝜎 (𝑢)𝑎𝜎 + 𝑚𝜚𝜎 (𝑢, 𝑟)𝜕𝜎𝑎3 + 𝑞𝜚(𝑢, 𝑟)𝑎3)
√

𝑎) − 𝜆𝒆3 = 𝑓
√

𝑎 in 𝜔,

−𝜕𝜚(𝑚𝜚𝜎 (𝑢, 𝑟)𝑎𝜎
√

𝑎) + 𝑞𝛽 (𝑢, 𝑟)𝑎𝛽
√

𝑎 + 𝜀
2
𝜆𝒆3 = 0 in 𝜔,

𝑟 ⋅ 𝑎3 = 0 in 𝜔,
(

𝑢 − 𝜀
2
𝑟
)

⋅ 𝒆3 ≥ 𝛷, 𝜆 ≥ 0, 𝜆
((

𝑢 − 𝜀
2
𝑟
)

⋅ 𝒆3 −𝛷
)

= 0 in 𝜔,

𝑢 = 𝑟 = 0 on 𝜕𝜔,

(50)

with coefficients which are in 𝐿∞(𝜔), and the function 𝛷 belongs only to 𝑊 1,∞(𝜔) when the chart 𝜑 ∈ 𝑊 2,∞(𝜔,R3). Therefore,
the translations (or finite difference quotients) method of Nirenberg [13] cannot be applied here. The coefficients of the system
satisfy the ellipticity condition and in the non contact set the system is a ‘‘standard’’ second order elliptic system. But the famous
De Giorgi’s counter-example (see [14, p. 205]) indicates that the regularity problem for systems of equations (or vectorial case)
cannot be treated as the case of a single elliptic equation (or scalar case), so the Stampacchia-Brezis [15] technique cannot be
used here to obtain the 𝐻2(𝜔) regularity. However, if we assume that the chart 𝜑 is more regular, namely 𝜑 ∈ 𝐶3(𝜔,R3), then the
ormulation (expressions of the tensors (2), (3) and (4)) used in this paper coincides with the classical formulation of thin shell theory
see [10]). For sufficiently smooth surfaces, recent papers (see [16–18]) improved interior regularity (i.e. 𝐻2

loc(𝜔)) of the solution
f elastic Koiter’s or shallow shells in the presence of obstacles, by using the Nirenberg method. The main difficulty to adapt this
pproach to our Nagdi’s model is the construction of admissible displacement field in term of the finite difference quotient satisfying
9

he inequality constraint.
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4. Finite element discretizations

Let ℎ be a regular affine triangulation which cover the domain 𝜔. Here, ℎ is the mesh-size, or more precisely, ℎ = maxℎ𝑇 =
𝑑𝑖𝑎𝑚 𝑇 , 𝑇 ∈ ℎ. For a positive integer 𝑘, P𝑘(𝑇 ) stands for the set of functions on 𝑇 which are the restrictions to 𝑇 of polynomials
of degree less than or equal to 𝑘. For 𝑇 ∈ ℎ, 𝑏𝑇 denotes the bubble function defined by 𝑏𝑇 = 𝜆1𝜆2𝜆3

27 , where 𝜆𝑖, 𝑖 = 1, 2, 3 are the
barycentric coordinates of 𝑇 . Note that 𝑏𝑇 ∈ 𝐻1

0 (𝑇 ) ∩ P3(𝑇 ) has a maximum value of one. We further define

𝐵3(𝑇 ) = {𝑣 ∈ 𝐻1
0 (𝑇 ); 𝑣 = 𝑏𝑇𝑤, 𝑤 ∈ P0(𝑇 )}. (51)

Let us define the finite dimensional spaces:

Mℎ ∶={𝜒ℎ ∈ 𝐻1
𝛾0
(𝜔) | 𝜒ℎ|𝑇 ∈ P1(𝑇 )⊕𝐵3(𝑇 ), ∀𝑇 ∈ ℎ}.

Qℎ ∶={𝜇ℎ ∈ 𝐿2(𝜔) | 𝜇ℎ|𝑇 ∈ P0(𝑇 ), ∀𝑇 ∈ ℎ}.

Xℎ ∶=(Mℎ)3 × (Mℎ)3.

Wℎ ∶=
{

(𝑣ℎ, 𝑠ℎ) ∈ Xℎ;
(

𝑣ℎ −
𝜀
2
𝑠ℎ
)

⋅ 𝑒3 = 0
}

Then, we introduce the discrete convex cone

Nℎ =
{

(𝑣ℎ, 𝑠ℎ) ∈ Xℎ;
(

𝑣ℎ −
𝜀
2
𝑠ℎ
)

⋅ 𝑒3 ≥ 𝛷ℎ
}

, (52)

where 𝛷ℎ ∶= ℎ𝛷, ℎ being the standard Lagrange interpolant operator, namely (ℎ𝛷)𝑇 ∈ P1(𝑇 ) and (ℎ𝛷)𝑇 (𝑥) = 𝛷(𝑥) for all vertices
𝑥 of 𝑇 . Clearly we have Xℎ ⊂ X, Mℎ ⊂M and Wℎ ⊂ Nℎ but Nℎ is not necessarily contained in N𝛷.

We first consider the discrete version of Problem 2, namely

roblem 7. Find (𝑈ℎ, 𝜓ℎ) ∈ Nℎ ×Mℎ such that:
{

∀𝑉ℎ ∈ Nℎ, 𝒂𝜌(𝑈ℎ, 𝑉ℎ − 𝑈ℎ) + 𝒃(𝑉ℎ − 𝑈ℎ, 𝜓ℎ) ≥ (𝑉ℎ − 𝑈ℎ),

∀𝜒ℎ ∈ Mℎ, 𝒃(𝑈ℎ, 𝜒ℎ) = 0.
(53)

As in the continuous case, we may rewrite Problem 7 in the following compact form

roblem 8. Find (𝑈ℎ, 𝜓ℎ) ∈ Nℎ ×Mℎ such that:

𝜌((𝑈ℎ, 𝜓ℎ); (𝑉ℎ − 𝑈ℎ, 𝜒ℎ)) ≥ (𝑉ℎ − 𝑈ℎ), ∀(𝑉ℎ, 𝜒ℎ) ∈ Nℎ ×Mℎ. (54)

emma 4.1. If the mesh size ℎ is sufficiently small then, there exists a positive constant 𝐶𝑏 such that

inf
𝜒ℎ∈Mℎ

sup
𝑉ℎ∈Wℎ

𝒃(𝑉ℎ, 𝜒ℎ)
‖𝜒ℎ‖M‖𝑉ℎ‖X

≥ 𝐶𝑏. (55)

Proof. Recalling that ℎ is the standard Lagrange interpolation operator, for an arbitrary 𝜒ℎ ∈ Mℎ, we take

𝑉ℎ = (𝑣ℎ, 𝑠ℎ) = ( 2
𝜀
ℎ(𝜒ℎ𝑎3),ℎ(𝜒ℎ𝑎3)),

then clearly, 𝑉ℎ ∈ Wℎ and

𝒃(𝑉ℎ, 𝜒ℎ) ≳ ‖𝜒ℎ‖M

since the inverse estimate ‖∇𝑣ℎ‖∞,𝜔 ≲ ℎ−1‖𝑣ℎ‖∞,𝜔 is valid for all 𝑣ℎ ∈ Mℎ, see [19, Lemma 3.3] and [10, Lemma 5.6]. ■

Theorem 4.2. If the mesh size ℎ is sufficiently small, then Problem 7 admits a unique solution.

Proof. Since Wℎ is a closed subspace of Nℎ (see for instance [11]), the proof can be done by using the same perturbation technique
as for the continuous problem. ■

Now we introduce the closed convex cone

𝛬ℎ =
{

𝜇ℎ ∈ Qℎ;𝜇ℎ ≥ 0
}

, (56)

that is clearly a subspace of 𝛬. We then consider the ‘‘full’’ discrete problem (compare with Problem 5)

Problem 9. Find (𝑈ℎ, 𝜓ℎ, 𝜆ℎ) in Xℎ(𝜔) ×Mℎ(𝜔) × 𝛬ℎ such that:

⎧

⎪

⎨

⎪

∀𝑉ℎ ∈ Xℎ, 𝒂𝜌(𝑈ℎ, 𝑉ℎ) + 𝒃(𝑉ℎ, 𝜓ℎ) − 𝒄(𝑉ℎ, 𝜆ℎ) = (𝑉ℎ),

∀𝜒ℎ ∈ Mℎ, 𝒃(𝑈ℎ, 𝜒ℎ) = 0, (57)
10

⎩
∀𝜇ℎ ∈ 𝛬ℎ, 𝒄(𝑈ℎ, 𝜇ℎ − 𝜆ℎ) ≥ ⟨ℎ𝛷, 𝜇ℎ − 𝜆ℎ⟩ .
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Let us also introduce the following ℎ-dependent norm:

‖𝜒ℎ‖
2
ℎ =

∑

𝑇∈ℎ

ℎ2𝑇 ‖𝜒ℎ‖
2
𝑇 ,∀𝜒ℎ ∈ Qℎ. (58)

Lemma 4.3. There exist two positive constants 𝐶1 and 𝐶2 (independent of ℎ) such that

∀𝜒ℎ ∈ Qℎ, sup
𝑉ℎ∈Xℎ∩ker 𝑏

𝒄(𝑉ℎ, 𝜒ℎ)
‖𝑉ℎ‖Xℎ

≥ 𝐶1‖𝜒ℎ‖M′ − 𝐶2‖𝜒ℎ‖ℎ. (59)

Proof. Let 𝜒ℎ ∈ Qℎ ⊂M′, then the inf-sup condition (37) implies that there exists 𝑣 ∈ 𝐻1
𝛾0
(𝜔,R3) and 𝐶1 > 0 such that

𝒄((𝑣, 0), 𝜒ℎ) ≥ 𝐶1‖(𝑣, 0)‖X‖𝜒ℎ‖M′ .

Let 𝑉ℎ be the Clément interpolant of (𝑣, 0) (hence 𝑉ℎ is in the form (𝑣ℎ, 0) and belongs to ker 𝑏), then we have

𝒄(𝑉ℎ, 𝜒ℎ) = 𝒄(𝑉ℎ − 𝑉 , 𝜒ℎ) + 𝒄(𝑉 , 𝜒ℎ)

=
∑

𝑇∈ℎ

((

𝑣ℎ − 𝑣
)

⋅ 𝑒3, 𝜒ℎ
)

𝑇 + 𝒄(𝑉 , 𝜒ℎ)

≥
∑

𝑇∈ℎ

((

𝑣ℎ − 𝑣
)

⋅ 𝑒3, 𝜒ℎ
)

𝑇 + 𝐶1‖𝑉 ‖X‖𝜒ℎ‖M′

≥ −
∑

𝑇∈ℎ

‖

(

𝑣ℎ − 𝑣
)

⋅ 𝑒3‖𝑇 )‖𝜒ℎ‖𝑇 + 𝐶1‖𝑉 ‖X‖𝜒ℎ‖M′

= −
∑

𝑇∈ℎ

ℎ−1𝑇 ‖

(

𝑣ℎ − 𝑣
)

⋅ 𝑒3‖𝑇 ℎ𝑇 ‖𝜒ℎ‖𝑇 + 𝐶1‖𝑉 ‖X‖𝜒ℎ‖M′ .

(60)

From the properties of the Clément interpolant and the fact that ℎ is quasi-uniform, we have

𝑇
⎛

⎜

⎜

⎝

∑

𝑇∈ℎ

ℎ−2𝑇 ‖

(

𝑣ℎ − 𝑣
)

⋅ 𝑒3‖
2
𝑇

⎞

⎟

⎟

⎠

1∕2

≤ 𝐶2‖𝑉 ‖X and ‖𝑉ℎ‖X ≲ ‖𝑉 ‖X,

consequently
∑

𝑇∈ℎ

ℎ−1𝑇 ‖

(

𝑣ℎ − 𝑣
)

⋅ 𝑒3‖𝑇 ℎ𝑇 ‖𝜒ℎ‖𝑇 ≤ 𝐶2‖𝜒ℎ‖ℎ‖𝑉 ‖X,

which together with (60) shows that

𝒄(𝑉ℎ, 𝜒ℎ) ≥ 𝐶1‖𝑉 ‖X‖𝜒ℎ‖M′ − 𝐶2‖𝑉 ‖X‖𝜒ℎ‖ℎ. (61)

Now if 𝐶1‖𝜒ℎ‖M′ − 𝐶2‖𝜒ℎ‖ℎ ≥ 0, then (61) implies that

𝐶1‖𝜒ℎ‖M′ − 𝐶2‖𝜒ℎ‖ℎ ≤
𝒄(𝑉ℎ, 𝜒ℎ)
‖𝑉 ‖X

≲
𝒄(𝑉ℎ, 𝜒ℎ)
‖𝑉ℎ‖X

,

since 𝑐(𝑉ℎ, 𝜒ℎ) ≥ 0 because the left-hand side of this estimate is positive.
Otherwise, if 𝐶1‖𝜒ℎ‖M′ − 𝐶2‖𝜒ℎ‖ℎ ≤ 0, then clearly

sup
𝑉ℎ∈Xℎ

𝒄(𝑉ℎ, 𝜒ℎ)
‖𝑉ℎ‖X

≳ 𝐶1‖𝜒ℎ‖M′ − 𝐶2‖𝜒ℎ‖ℎ,

since, for 𝑊ℎ = (0, 0, 𝜒ℎ𝑏𝑇 , 0, 0, 0), for some interior triangle 𝑇 , we have 𝒄(𝑊ℎ, 𝜒ℎ) ≥ 0. ■

Lemma 4.4. We have the following inf-sup condition for the mesh-dependent norm (58), namely there exists a positive constant 𝐶3
(independent of ℎ) such that

∀𝜒ℎ ∈ Qℎ, sup
𝑉ℎ∈Xℎ∩ker 𝑏

𝒄(𝑉ℎ, 𝜒ℎ)
‖𝑉ℎ‖X

≥ 𝐶3‖𝜒ℎ‖ℎ. (62)

Proof. Let 𝜒ℎ ∈ Qℎ, we define 𝑉ℎ ∈ Xℎ as follow:

𝑉ℎ = (0, 0, 𝜎ℎ, 0, 0, 0), with (𝜎ℎ)|𝑇 = ℎ2𝑇 𝜒ℎ𝑏𝑇 ,∀𝑇 ∈ ℎ.

Then clearly 𝑉ℎ ∈ Xℎ ∩ ker 𝑏, and we have

𝒄(𝑉ℎ, 𝜒ℎ) =
∑

((

𝑣ℎ −
𝜀
2
𝑠ℎ
)

⋅ 𝑒3, 𝜒ℎ
)

=
∑

∫𝑇
ℎ2𝑇 𝜒

2
ℎ𝑏𝑇 ≳ ‖𝜒ℎ‖

2
ℎ

11

𝑇∈ℎ 𝑇∈ℎ
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and

‖𝑉ℎ‖
2
X = ‖𝜎ℎ‖

2
1,𝑇 ≲

∑

𝑇∈ℎ

ℎ−2𝑇 ‖𝜎ℎ‖
2
0,𝑇 ≤

∑

𝑇∈ℎ

ℎ2𝑇 ‖𝜒ℎ‖
2
0,𝑇 = ‖𝜒ℎ‖

2
ℎ

e then conclude that

𝒄(𝑉ℎ, 𝜒ℎ) ≳ ‖𝑉ℎ‖X‖𝜒ℎ‖ℎ. □

emma 4.5. It holds

sup
𝑉ℎ∈X∩ker 𝑏

𝒄(𝑉ℎ, 𝜒ℎ)
‖𝑉ℎ‖X

≳ ‖𝜒ℎ‖M′ . (63)

Proof. For 𝛿 ∈ (0, 1), owing to (59) and (62), we have

sup
𝑉ℎ∈X∩ker 𝑏

𝒄(𝑉ℎ, 𝜒ℎ)
‖𝑉ℎ‖X

= 𝛿 sup
𝑉ℎ∈X∩ker 𝑏

𝒄(𝑉ℎ, 𝜒ℎ)
‖𝑉ℎ‖X

+ (1 − 𝛿) sup
𝑉ℎ∈X∩ker 𝑏

𝒄(𝑉ℎ, 𝜒ℎ)
‖𝑉ℎ‖X

≥ 𝛿
(

𝐶1‖𝜒ℎ‖M′ − 𝐶2‖𝜒ℎ‖ℎ
)

+ (1 − 𝛿)𝐶3‖𝜒ℎ‖ℎ
≥ 𝛿𝐶1‖𝜒ℎ‖M′ +

(

(1 − 𝛿)𝐶3 − 𝛿𝐶2
)

‖𝜒ℎ‖ℎ.

Choosing 𝛿 such that (1 − 𝛿)𝐶3 − 𝛿𝐶2 = 0 or equivalently 𝛿 = 𝐶3
𝐶2+𝐶3

that is indeed in (0, 1), we obtain (63). ■

Proposition 4.6. The full problem (57) and the reduced problem (53) are equivalent, in the following sense: If (𝑈ℎ, 𝜓ℎ, 𝜆ℎ) is a solution
f full problem, then (𝑈ℎ, 𝜓ℎ) is a solution of the reduced. If (𝑈ℎ, 𝜓ℎ) is a solution of the reduced problem then there exists 𝜆ℎ ∈ 𝛬ℎ such
hat (𝑈ℎ, 𝜓ℎ, 𝜆ℎ) is a solution of the full problem.

roof. Suppose that (𝑈ℎ, 𝜓ℎ, 𝜆ℎ) satisfies (57), then from the first equation of (57) we have

𝒂𝜌(𝑈ℎ, 𝑉ℎ) + 𝒃(𝑉ℎ, 𝜓ℎ) = (𝑉ℎ) + 𝒄(𝑉ℎ, 𝜆ℎ), ∀𝑉ℎ ∈ Xℎ. (64)

Taking 𝜇ℎ = 0 and 𝜇ℎ = 2𝜆ℎ in the third line of (57) gives

𝒄(𝑈ℎ, 𝜆ℎ) = ⟨ℎ𝛷, 𝜆ℎ⟩ , (65)

and since ℎ𝛷 ≤ 0 in 𝜔, for any 𝑉ℎ ∈ Nℎ we have

𝒄(𝑉ℎ, 𝜆ℎ) ≥ ⟨ℎ𝛷, 𝜆ℎ⟩ . (66)

So, combining (65) and (66) we get

𝒄(𝑉ℎ − 𝑈ℎ, 𝜆ℎ) ≥ 0, ∀𝑉ℎ ∈ Nℎ.

Hence (60), and the second line in (57) amount to write

𝑎𝜌(𝑈ℎ, 𝑉ℎ − 𝑈ℎ) + 𝒃(𝑉ℎ − 𝑈ℎ, 𝜓ℎ) ≥ (𝑉ℎ − 𝑈ℎ), ∀𝑉ℎ ∈ Nℎ,
𝒃(𝑈ℎ, 𝜒ℎ) = 0. ∀𝜒ℎ ∈ Mℎ.

Conversely, if (𝑈ℎ, 𝜓ℎ) is a solution of Problem 7 we want to prove that there exists 𝜆ℎ ∈ 𝛬ℎ such that (𝑈ℎ, 𝜓ℎ, 𝜆ℎ) is a solution of
roblem 9.

Let us first recall that the first line of (53) with 𝑉ℎ = 0 and 𝑉ℎ = 2𝑈ℎ yields

𝒂𝜌(𝑈ℎ, 𝑈ℎ) + 𝒃(𝑈ℎ, 𝜓ℎ) = (𝑈ℎ). (67)

Since the bilinear form 𝑐(⋅, ⋅) satisfies the inf-sup condition (see Lemma 4.5), then there exists a unique 𝜆ℎ ∈ Qℎ such that

𝒄(𝑉ℎ, 𝜆ℎ) = 𝒂𝜌
(

𝑈ℎ, 𝑉ℎ
)

+ 𝒃
(

𝑉ℎ, 𝜓ℎ
)

− 
(

𝑉ℎ
)

,∀𝑉ℎ ∈ Xℎ. (68)

Now we need to prove that 𝜆ℎ ∈ 𝛬ℎ.
First let 𝑇 ∈ ℎ be an arbitrary triangle and let 𝑉ℎ ∈ Xℎ be chosen such that

𝑉ℎ = (𝑢ℎ + (0, 0, 𝑏𝑇 ), 𝑟ℎ),

where 𝑈ℎ = (𝑢ℎ, 𝑟ℎ). Then since 𝑏𝑇 ∈ 𝐻1
0 (𝑇 ), 𝑏𝑇 ≥ 0, it is clear that 𝑉ℎ ∈ Nℎ and

𝒄(𝑉ℎ − 𝑈ℎ, 𝜆ℎ) = ∫𝑇
𝜆ℎ𝑏𝑇 = 𝒂𝜌

(

𝑈ℎ, 𝑉ℎ − 𝑈ℎ
)

+ 𝒃
(

𝑉ℎ − 𝑈ℎ, 𝜓ℎ
)

− 
(

𝑉ℎ − 𝑈ℎ
)

≥ 0

Hence 𝜆ℎ ≥ 0 in 𝜔, which means that 𝜆ℎ ∈ 𝛬ℎ.
It remains to prove the last property of Problem 9. First as 𝑈ℎ belongs to Nℎ, it holds

(

𝑢 − 𝜀 𝑟
)

⋅ 𝑒 ≥  𝛷, (69)
12
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which directly implies that

𝒄(𝑈ℎ, 𝜇ℎ) ≥ ⟨ℎ𝛷, 𝜇ℎ⟩ ∀𝜇ℎ ∈ 𝛬ℎ. (70)

The last inequality of (57) then holds if we show that
⟨(

𝑢ℎ −
𝜀
2
𝑟ℎ
)

⋅ 𝑒3 − ℎ𝛷, 𝜆ℎ
⟩

= 0, (71)

Since 𝑈ℎ ∈ Nℎ and 𝜆ℎ ∈ 𝛬ℎ then we have
⟨(

𝑢ℎ −
𝜀
2
𝑟ℎ
)

⋅ 𝑒3 − ℎ𝛷, 𝜆ℎ
⟩

≥ 0. (72)

On the other hand, by (67) and (68), we have

𝒄(𝑈ℎ, 𝜆ℎ) = 0,

while the fact that 𝜆ℎ ∈ 𝛬ℎ and that ℎ𝛷 ≤ 0 lead to

⟨ℎ𝛷, 𝜆ℎ⟩ ≥ 0.

This directly implies
⟨(

𝑢ℎ −
𝜀
2
𝑟ℎ
)

⋅ 𝑒3 − ℎ𝛷, 𝜆ℎ
⟩

≤ 0. (73)

Hence, (72) and (73) imply that (71) holds. ■

4.1. A priori error analysis of the reduced problem

The purpose of this subsection is the a priori error analysis of Problem 2. We assume that the mesh size ℎ is sufficiently small
so that Lemma 4.1 holds.

Lemma 4.7. For any (𝑊ℎ, 𝜉ℎ) ∈ Xℎ ×Mℎ there exists 𝑉ℎ ∈ Xℎ such that 𝑉ℎ −𝑊ℎ ∈ Wℎ and satisfying

𝜌((𝑊ℎ, 𝜉ℎ); (𝑉ℎ,−𝜉ℎ)) ≳
(

‖𝑊ℎ‖X + ‖𝜉ℎ‖M
)2 , (74)

‖𝑉ℎ‖X + ‖𝜒ℎ‖M ≲ ‖𝑊ℎ‖X + ‖𝜉ℎ‖M. (75)

Proof. The proof can be done by the same way as in Lemma 3.4 for the continuous problem. Let (𝑊ℎ, 𝜉ℎ) ∈ Xℎ×Mℎ and let 𝑄ℎ ∈ Wℎ
be the unique solution of

{

Find 𝑄ℎ ∈Wℎ such that
𝒂𝜌(𝑄ℎ, 𝑍ℎ) + (𝑄ℎ, 𝑍ℎ)X = 𝒃(𝑍ℎ, 𝜉ℎ), ∀𝑍ℎ ∈ Wℎ.

(76)

By taking 𝑍ℎ = 𝑄ℎ in (76) we get

‖𝑄ℎ‖
2
X ≤ 𝒃(𝑄ℎ, 𝜉ℎ)

which by Cauchy–Schwarz’s inequality leads to

‖𝑄ℎ‖X ≲ ‖𝜉ℎ‖M.

Furthermore Lemma 4.1 yields

𝐶𝑏‖𝜉ℎ‖M ≤ sup
𝑉ℎ∈Wℎ

𝒃(𝑉ℎ, 𝜒ℎ)
‖𝑉ℎ‖X

,

nd by (76) and Cauchy–Schwarz’s inequality, we find

‖𝜉ℎ‖M ≲ ‖𝑄ℎ‖X.

his means that

‖𝑄ℎ‖X ∼ ‖𝜉ℎ‖M.

e now take 𝑉ℎ = 𝑊ℎ + 𝛿𝑄ℎ where 0 < 𝛿 < 𝑐#

𝑐2#
, and get

𝜌((𝑊ℎ, 𝜉ℎ); (𝑉ℎ,−𝜉ℎ)) = 𝜌((𝑊ℎ, 𝜉ℎ); (𝑊ℎ + 𝛿𝑄ℎ,−𝜉ℎ))

= 𝒂𝜌(𝑊ℎ,𝑊ℎ + 𝛿𝑄ℎ) + 𝒃(𝑊ℎ + 𝛿𝑄ℎ, 𝜉ℎ) + 𝒃(𝑊ℎ,−𝜉ℎ)

= 𝒂𝜌(𝑊ℎ,𝑊ℎ) + 𝛿𝒂𝜌(𝑊ℎ, 𝑄ℎ) + 𝒃(𝑊ℎ, 𝜉ℎ) + 𝛿𝒃(𝑄ℎ, 𝜉ℎ) − 𝒃(𝑊ℎ, 𝜉ℎ)

= 𝒂 (𝑊 ,𝑊 ) + 𝛿𝒂 (𝑊 ,𝑄 ) + 𝛿𝒃(𝑄 , 𝜉 )
13
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B

≥ 𝑐#‖𝑊ℎ‖
2
X −

𝛿𝑐2#
2

‖𝑊ℎ‖
2
X − 𝛿

2
‖𝑄ℎ‖

2
X + 𝛿‖𝑄ℎ‖2X

≳ ‖𝑊ℎ‖
2
X + ‖𝜉ℎ‖

2
M.

Let us finally notice that 𝑉ℎ −𝑊ℎ = 𝛿𝑄ℎ, which indeed belongs to Wℎ. ■

Theorem 4.8. Let (𝑈,𝜓) and (𝑈ℎ, 𝜓ℎ) be the solution of Problem 2 and Problem 7 respectively. Then

‖𝑈 − 𝑈ℎ‖X + ‖𝜓 − 𝜓ℎ‖M ≲ inf
𝑉ℎ∈Nℎ

(‖𝑈 − 𝑉ℎ‖X +
√

𝒄(𝑉ℎ − 𝑈, 𝜆) − ⟨ℎ𝛷 −𝛷, 𝜆⟩) + inf
𝜒ℎ∈Mℎ

‖𝜓 − 𝜒ℎ‖M

roof. Let (𝑉ℎ, 𝜒ℎ, 𝜇ℎ) ∈ Nℎ ×Mℎ × 𝛬ℎ and let 𝑄ℎ ∈ Wℎ be the solution of

𝒂𝜌(𝑄ℎ, 𝑍ℎ) + (𝑄ℎ, 𝑍ℎ)Xℎ = 𝒃(𝜒ℎ, 𝑍ℎ) − 𝒄(𝜇ℎ, 𝑍ℎ), ∀𝑍ℎ ∈ Wℎ

For an arbitrary 𝜒ℎ ∈ Mℎ, we apply Lemma 4.7 to the pair (𝑉ℎ − 𝑈ℎ, 𝜒ℎ − 𝜓ℎ), hence there exists 𝑊ℎ ∈ Xℎ such that 𝐷ℎ ∶=
ℎ − (𝑉ℎ − 𝑈ℎ) ∈ Wℎ and satisfying

(‖𝑉ℎ − 𝑈ℎ‖X + ‖𝜒ℎ − 𝜓ℎ‖M)2 ≲𝜌((𝑉ℎ − 𝑈ℎ, 𝜒ℎ − 𝜓ℎ); (𝑊ℎ, 𝜓ℎ − 𝜒ℎ))

=𝜌((𝑉ℎ − 𝑈, 𝜒ℎ − 𝜓); (𝑊ℎ, 𝜓ℎ − 𝜒ℎ)) +𝜌((𝑈,𝜓); (𝑊ℎ, 𝜓ℎ − 𝜒ℎ))

− 𝜌((𝑈ℎ, 𝜓ℎ); (𝑊ℎ, 𝜓ℎ − 𝜒ℎ)) (77)

aking as test function 𝑉ℎ in the first line of Problem 7 the function 𝑈ℎ +𝑊ℎ = 𝐷ℎ +𝑉ℎ that belongs to Nℎ because 𝐷ℎ is in Wℎ and
ℎ is in Nℎ, we find that

𝒂𝜌(𝑈ℎ,𝑊ℎ) + 𝒃(𝑊ℎ, 𝜓ℎ) ≥ (𝑊ℎ).

ince we also have

𝒃(𝑈ℎ, 𝜓ℎ − 𝜒ℎ) = 0,

e obtain

𝒂𝜌(𝑈ℎ,𝑊ℎ) + 𝒃(𝑊ℎ, 𝜓ℎ) + 𝒃(𝑈ℎ, 𝜓ℎ − 𝜒ℎ) ≥ (𝑊ℎ),

r equivalently,

𝜌((𝑈ℎ, 𝜓ℎ); (𝑊ℎ, 𝜓ℎ − 𝜒ℎ)) ≥ (𝑊ℎ), (78)

recalling that

𝜌((𝑈ℎ, 𝜓ℎ); (𝑊ℎ, 𝜓ℎ − 𝜒ℎ)) = 𝒂𝜌(𝑈ℎ,𝑊ℎ) + 𝒃(𝑊ℎ, 𝜓ℎ) + 𝒃(𝑈ℎ, 𝜓ℎ − 𝜒ℎ).

Then (77) and (78) amount to write

(‖𝑉ℎ − 𝑈ℎ‖X + ‖𝜒ℎ − 𝜓ℎ‖M)2 ≲𝜌((𝑉ℎ − 𝑈, 𝜒ℎ − 𝜓); (𝑊ℎ, 𝜓ℎ − 𝜒ℎ)) +𝜌((𝑈,𝜓); (𝑊ℎ, 𝜓ℎ − 𝜒ℎ))

− (𝑊ℎ).

ut by Proposition 3.7, we may write

𝜌((𝑈,𝜓); (𝑊ℎ, 𝜓ℎ − 𝜒ℎ)) − (𝑊ℎ) = 𝒄(𝑊ℎ, 𝜆).

Then we get

(‖𝑉ℎ − 𝑈ℎ‖X + ‖𝜒ℎ − 𝜓ℎ‖M)2 ≲ 𝜌((𝑉ℎ − 𝑈, 𝜒ℎ − 𝜓); (𝑊ℎ, 𝜓ℎ − 𝜒ℎ)) + 𝒄(𝑊ℎ, 𝜆). (79)

As 𝑊ℎ − (𝑉ℎ − 𝑈ℎ) ∈ Wℎ, we directly have

𝒄(𝑊ℎ, 𝜆) = 𝒄(𝑉ℎ − 𝑈ℎ, 𝜆) = 𝒄(𝑉ℎ − 𝑈, 𝜆) + 𝒄(𝑈 − 𝑈ℎ, 𝜆).

Now we recall that

𝒄(𝑈, 𝜆) = ⟨𝛷, 𝜆⟩ and 𝒄(𝑈ℎ, 𝜆) ≥ ⟨ℎ𝛷, 𝜆⟩ ,

whence,

𝒄(𝑈 − 𝑈ℎ, 𝜆) + ⟨ℎ𝛷 −𝛷, 𝜆⟩ ≤ 0.

All together we then have

𝒄(𝑊ℎ, 𝜆) ≤ 𝒄(𝑉ℎ − 𝑈, 𝜆) − ⟨ℎ𝛷 −𝛷, 𝜆⟩ .

This estimate in (79) implies
2

14

(‖𝑉ℎ − 𝑈ℎ‖X + ‖𝜒ℎ − 𝜓ℎ‖M) ≲ 𝜌((𝑉ℎ − 𝑈, 𝜒ℎ − 𝜓); (𝑊ℎ,−𝜉ℎ)) + 𝒄(𝑉ℎ − 𝑈, 𝜆) − ⟨ℎ𝛷 −𝛷, 𝜆⟩ .
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The continuity of the bilinear form 𝜌 gives

(‖𝑉ℎ − 𝑈ℎ‖X + ‖𝜒ℎ − 𝜓ℎ‖M)2 ≲ ‖(𝑉ℎ − 𝑈, 𝜒ℎ − 𝜓)‖‖(𝑊ℎ,−𝜉ℎ)‖ + 𝒄(𝑉ℎ − 𝑈, 𝜆) − ⟨ℎ𝛷 −𝛷, 𝜆⟩ .

ote that

𝒄(𝑉ℎ − 𝑈, 𝜆) − ⟨ℎ𝛷 −𝛷, 𝜆⟩ ≥ 0, ∀𝑉ℎ ∈ Nℎ.

pplying Young’s inequality to the first term on the right-hand side and completing the square gives

‖𝑉ℎ − 𝑈ℎ‖X + ‖𝜒ℎ − 𝜓ℎ‖M ≲ ‖𝑉ℎ − 𝑈‖X + ‖𝜒ℎ − 𝜓‖M +
√

𝒄(𝑉ℎ − 𝑈, 𝜆) − ⟨ℎ𝛷 −𝛷, 𝜆⟩

inally, the desired estimate follows from the last inequality and the triangle inequality. ■

The next a priori error estimate is a direct consequence of the Lagrange interpolant properties, in particular we may notice that
f 𝑈 belongs to N, then ℎ𝑈 belongs to Nℎ.

orollary 4.9. Assume that the solution (𝑈,𝜓) of Problem 1 belongs to (𝐻2(𝜔,R3))2 ×𝐻2(𝜔) and the function 𝛷 belongs to 𝐻2(𝜔). Let
𝑈ℎ, 𝜓ℎ) be the solution of Problem 7. Then

‖𝑈 − 𝑈ℎ‖X + ‖𝜓 − 𝜓ℎ‖M ≲
√

ℎ [|𝑈 |2,𝜔 + |𝜓|2,𝜔 + |𝛷|2,𝜔].

.2. A priori error analysis of the full problem

In this section we derive a priori error analysis for Problem 5. We recall that it consists in finding (𝑈,𝜓, 𝜆) ∈ X × M × 𝛬 such
that

⎧

⎪

⎨

⎪

⎩

∀𝑉 ∈ X, 𝒂𝜌(𝑈, 𝑉 ) + 𝒃(𝑉 , 𝜓) − 𝒄(𝑉 , 𝜆) = (𝑉 ),

∀𝜒 ∈ M, 𝒃(𝑈, 𝜒) = 0,

∀𝜇 ∈ 𝛬, 𝒄(𝑈, 𝜇 − 𝜆) ≥ ⟨𝛷, 𝜇 − 𝜆⟩ .

(80)

while its discrete approximation (Problem 9) consists in finding (𝑈ℎ, 𝜓ℎ, 𝜆ℎ) ∈ Xℎ ×Mℎ × 𝛬ℎ such that

⎧

⎪

⎨

⎪

⎩

∀𝑉ℎ ∈ Xℎ, 𝒂𝜌(𝑈ℎ, 𝑉ℎ) + 𝒃(𝑉ℎ, 𝜓ℎ) − 𝒄(𝑉ℎ, 𝜆ℎ) = (𝑉ℎ),

∀𝜒ℎ ∈ Mℎ, 𝒃(𝑈ℎ, 𝜒ℎ) = 0

∀𝜇ℎ ∈ 𝛬ℎ, 𝒄(𝑈ℎ, 𝜇ℎ − 𝜆ℎ) ≥ ⟨𝛷ℎ, 𝜇ℎ − 𝜆ℎ⟩ .

(81)

First, we observe that (81) can now be written in a compact way as follows:

Problem 10. Find (𝑈ℎ, 𝜓ℎ, 𝜆ℎ) ∈ Xℎ ×Mℎ × 𝛬ℎ such that:

ℬ(𝑈ℎ, 𝜓ℎ, 𝜆ℎ;𝑉ℎ, 𝜒ℎ, 𝜇ℎ − 𝜆ℎ) ≥ ℒℎ(𝑉ℎ, 𝜇ℎ − 𝜆ℎ), ∀(𝑉ℎ, 𝜒ℎ, 𝜇ℎ) ∈ Xℎ ×Mℎ × 𝛬ℎ,

where

ℬ(𝑈ℎ, 𝜓ℎ, 𝜆ℎ;𝑉ℎ, 𝜒ℎ, 𝜇ℎ) ∶= 𝒂𝜌(𝑈ℎ, 𝑉ℎ) + 𝒃(𝑉ℎ, 𝜓ℎ) + 𝒃(𝑈ℎ, 𝜒ℎ) − 𝒄(𝑉ℎ, 𝜆ℎ) + 𝒄(𝑈ℎ, 𝜇ℎ)

ℒℎ(𝑉ℎ, 𝜒ℎ, 𝜇ℎ) ∶= (𝑉 ) + ⟨𝛷ℎ, 𝜇ℎ⟩

Lemma 4.10. There exists a constant 𝛽# > 0 such that:

inf sup
(𝜒ℎ ,𝜇ℎ)∈Mℎ×Qℎ 𝑍ℎ=(𝑧ℎ ,𝑡ℎ)∈Xℎ

𝒄(𝑍ℎ, 𝜇ℎ) − 𝒃(𝑍ℎ, 𝜒ℎ)
‖(𝜒ℎ, 𝜇ℎ)‖Mℎ×M′‖𝑍ℎ‖X

≥ 𝛽#. (82)

Proof. Let us fix (𝜒ℎ, 𝜇ℎ) ∈ Mℎ × Qℎ such that (𝜒ℎ, 𝜇ℎ) ≠ (0, 0). First note that by Lemma 4.5 there exists 𝑉ℎ ∈ Xℎ ∩ ker 𝒃 and
‖𝑉ℎ‖X = 1 such that

‖𝜇ℎ‖M′ ≲ 𝒄(𝑉ℎ, 𝜇ℎ) = 𝒄(𝑉ℎ, 𝜇ℎ) − 𝒃(𝑉ℎ, 𝜒ℎ),

while by Lemma 4.1 there exists 𝑊ℎ ∈ Wℎ = ker 𝒄 with ‖𝑊ℎ‖X = 1 such that:

‖𝜒ℎ‖M ≲ −𝒃(𝑊ℎ, 𝜒ℎ) = 𝒄(𝑊ℎ, 𝜇ℎ) − 𝒃(𝑊ℎ, 𝜒ℎ).

Now we may notice that ‖𝑉ℎ +𝑊ℎ‖X is positive, indeed if 𝑉ℎ +𝑊ℎ = 0, we deduce that 𝑊ℎ = −𝑉ℎ and therefore 𝑈ℎ and 𝑊ℎ belong
to ker 𝑏∩ker 𝑐, and by the previous estimates we would have 𝜒ℎ = 𝜇ℎ = 0, which contradicts our assumption. Then by the triangular
inequality, one has 0 < ‖𝑉ℎ +𝑊ℎ‖X ≤ 2, and consequently 1 ≤ 2

‖𝑉ℎ+𝑊ℎ‖X
. Using all these estimates we get

‖𝜒ℎ‖M + ‖𝜇ℎ‖M′ ≲ 𝒄(𝑉ℎ +𝑊ℎ, 𝜇ℎ) − 𝒃(𝑉ℎ +𝑊ℎ, 𝜒ℎ)

≲
𝒄(𝑉ℎ +𝑊ℎ, 𝜇ℎ) − 𝒃(𝑉ℎ +𝑊ℎ, 𝜒ℎ) .
15
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B

This obviously implies that

‖𝜒ℎ‖M + ‖𝜇ℎ‖M′ ≲ sup
𝑍ℎ∈Xℎ

𝒄(𝑍ℎ, 𝜇ℎ) − 𝒃(𝑍ℎ, 𝜒ℎ)
‖𝑍ℎ‖X

. ■ (83)

Lemma 4.11. For any (𝑊ℎ, 𝜒ℎ, 𝜇ℎ) ∈ Xℎ ×Mℎ ×Qℎ there exists 𝑌ℎ ∈ Xℎ such that:

ℬ(𝑊ℎ, 𝜒ℎ, 𝜇ℎ; 𝑌ℎ,−𝜒ℎ, 𝜇ℎ) ≳
(

‖𝑊ℎ‖X + ‖𝜒ℎ‖M + ‖𝜇ℎ‖M′
)2 , (84)

‖𝑌ℎ‖X + ‖𝜒ℎ‖M + ‖𝜇ℎ‖M′ ≲ ‖𝑊ℎ‖X + ‖𝜒ℎ‖M + ‖𝜇ℎ‖M′ . (85)

Proof. The proof follows the lines of the one of Theorem 3.8 using the previous Lemma. We give it for completeness. Let
(𝑊ℎ, 𝜒ℎ, 𝜇ℎ) ∈ Xℎ ×Mℎ ×Qℎ. We consider the following variational problem:

{

Find 𝑄ℎ in Xℎ such that
𝒂𝜌(𝑄ℎ, 𝑍ℎ) + (𝑄ℎ, 𝑍ℎ)X = 𝒃(𝑍ℎ, 𝜒ℎ) − 𝒄(𝜇ℎ, 𝑍ℎ), ∀𝑍ℎ ∈ Xℎ

(86)

Since, the bilinear form 𝒂𝜌(⋅, ⋅) + (⋅, ⋅)X is X-elliptic and Xℎ ⊂ X, problem (86) has a unique solution 𝑄ℎ ∈ Xℎ.
Moreover, since 𝒄(⋅, ⋅) − 𝒃(⋅, ⋅) satisfies the inf-sup condition (see Lemma 4.10) and the Cauchy–Schwarz inequality yields:

‖𝜒ℎ‖M + ‖𝜇ℎ‖M′ ≲ sup
𝑍ℎ∈Xℎ

𝒄(𝜇ℎ, 𝑍ℎ) − 𝒃(𝜒ℎ, 𝑍ℎ)
‖𝑍ℎ‖X

= sup
𝑍ℎ∈Xℎ

𝒂(𝑄ℎ, 𝑍ℎ) + (𝑄ℎ, 𝑍ℎ)X
‖𝑍ℎ‖X

≲ ‖𝑄ℎ‖X.

Take 𝑌ℎ = 𝑊ℎ + 𝛿𝑄ℎ where 𝛿 is a positive constant to be determined later, then we have:

ℬ(𝑊ℎ, 𝜒ℎ, 𝜇ℎ; 𝑌ℎ,−𝜒ℎ, 𝜇ℎ) = 𝒂𝜌(𝑊ℎ,𝑊ℎ + 𝛿𝑄ℎ) + 𝒃(𝑊ℎ + 𝛿𝑄ℎ, 𝜒ℎ) + 𝒃(𝑊ℎ,−𝜒ℎ) − 𝒄(𝑊ℎ + 𝛿𝑄ℎ, 𝜇ℎ)

+ 𝒄(𝜇ℎ,𝑊ℎ)

= 𝒂𝜌(𝑊ℎ,𝑊ℎ) + 𝛿𝒂𝜌(𝑊ℎ, 𝑄ℎ) + 𝛿𝒃(𝑄ℎ, 𝜒ℎ) − 𝛿𝒄(𝜇ℎ, 𝑄ℎ)

≥ 𝒂𝜌(𝑊ℎ,𝑊ℎ) − 𝛿𝑐#‖𝑊ℎ‖X‖𝑄ℎ‖X + 𝛿‖𝑄ℎ‖2X

≥ (𝑐# −
𝛿(𝑐#)2

2
)‖𝑊ℎ‖

2
X + 𝛿

2
‖𝑄ℎ‖

2
X.

Then it suffice to take 0 < 𝛿 <
𝑐2#

2(𝑐#)2
to obtain

ℬ(𝑊ℎ, 𝜒ℎ, 𝜇ℎ; 𝑌ℎ,−𝜒ℎ, 𝜇ℎ) ≳ (‖𝑊ℎ‖
2
X + ‖𝜒ℎ‖

2
M + ‖𝜇ℎ‖

2
M′ ). ■ (87)

Theorem 4.12. Let (𝑈,𝜓, 𝜆) and (𝑈ℎ, 𝜓ℎ, 𝜆ℎ) be the solution of Problem 5 and Problem 9 respectively. Then

‖𝑈 − 𝑈ℎ‖X + ‖𝜓 − 𝜓ℎ‖M + ‖𝜆 − 𝜆ℎ‖M′ ≲ inf
𝑉ℎ∈Nℎ

‖𝑈 − 𝑉ℎ‖X + inf
𝜒ℎ∈Mℎ

‖𝜓 − 𝜒ℎ‖M

+ inf
𝜇ℎ∈𝛬ℎ

(‖𝜇ℎ − 𝜆‖M′ +
√

𝒄(𝑈, 𝜇ℎ − 𝜆) − ⟨𝛷, 𝜇ℎ − 𝜆⟩)

+ ‖𝛷 −𝛷ℎ‖M.

roof. Let 𝑉ℎ ∈ Nℎ and let 𝑄ℎ ∈ Wℎ be the solution of

𝒂𝜌(𝑄ℎ, 𝑍ℎ) + (𝑄ℎ, 𝑍ℎ)Xℎ = 𝒃(𝜒ℎ − 𝜓ℎ, 𝑍ℎ) − 𝒄(𝜇ℎ − 𝜆ℎ, 𝑍ℎ), ∀𝑍ℎ ∈ Wℎ.

Using Lemma 4.11 with 𝑊ℎ = 𝑉ℎ − 𝑈ℎ, 𝜒ℎ = 𝜒ℎ − 𝜓ℎ and 𝜇ℎ = 𝜇ℎ − 𝜆ℎ, there exists 𝑌ℎ ∈ Xℎ satisfying (84) and (85), namely

‖𝑌ℎ‖X ≲ ‖𝑉ℎ − 𝑈ℎ‖X. (88)

as well as

(‖𝑉ℎ − 𝑈ℎ‖X + ‖𝜒ℎ − 𝜓ℎ‖M + ‖𝜇ℎ − 𝜆ℎ‖)2 ≲ℬ(𝑉ℎ − 𝑈ℎ, 𝜒ℎ − 𝜓ℎ, 𝜇ℎ − 𝜆ℎ; 𝑌ℎ, 𝜓ℎ − 𝜒ℎ, 𝜇ℎ − 𝜆ℎ)

=ℬ(𝑉ℎ − 𝑈, 𝜒ℎ − 𝜓, 𝜇ℎ − 𝜆; 𝑌ℎ, 𝜓ℎ − 𝜒ℎ, 𝜇ℎ − 𝜆ℎ)

+ ℬ(𝑈,𝜓, 𝜆; 𝑌ℎ, 𝜓ℎ − 𝜒ℎ, 𝜇ℎ − 𝜆ℎ)

− ℬ(𝑈ℎ, 𝜓ℎ, 𝜆ℎ; 𝑌ℎ, 𝜓ℎ − 𝜒ℎ, 𝜇ℎ − 𝜆ℎ).

y the definition of Problem 10
16

−ℬ(𝑈ℎ, 𝜓ℎ, 𝜆ℎ; 𝑌ℎ, 𝜓ℎ − 𝜒ℎ, 𝜇ℎ − 𝜆ℎ) ≤ −ℒℎ(𝑌ℎ, 𝜇ℎ − 𝜆ℎ).
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For the second term we have, since Xℎ ⊂ X then the definition of the bilinear form 𝒄(⋅, ⋅) implies that:

ℬ(𝑈,𝜓, 𝜆; 𝑌ℎ, 𝜓ℎ − 𝜒ℎ, 𝜇ℎ − 𝜆ℎ) = 𝒂𝜌(𝑈, 𝑌ℎ) + 𝒃(𝑌ℎ, 𝜓) + 𝒃(𝑈,𝜓ℎ − 𝜒ℎ)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

=0

− 𝒄(𝑌ℎ, 𝜆) + 𝒄(𝑈, 𝜇ℎ − 𝜆ℎ)

= (𝑌ℎ) + 𝒄(𝑈, 𝜇ℎ − 𝜆ℎ),

e then get

(‖𝑉ℎ − 𝑈ℎ‖X + ‖𝜒ℎ − 𝜓ℎ‖M + ‖𝜇ℎ − 𝜆ℎ‖)2 ≲ℬ(𝑉ℎ − 𝑈, 𝜒ℎ − 𝜓, 𝜇ℎ − 𝜆; 𝑌ℎ, 𝜓ℎ − 𝜒ℎ, 𝜇ℎ − 𝜆ℎ)

+ 𝒄(𝑈, 𝜇ℎ − 𝜆ℎ) + (𝑌ℎ) −ℒℎ(𝑌ℎ, 𝜇ℎ − 𝜆ℎ)

=ℬ(𝑉ℎ − 𝑈, 𝜒ℎ − 𝜓, 𝜇ℎ − 𝜆; 𝑌ℎ, 𝜓ℎ − 𝜒ℎ, 𝜇ℎ − 𝜆ℎ)

+ 𝒄(𝑈, 𝜇ℎ − 𝜆ℎ) − ⟨𝛷ℎ, 𝜇ℎ − 𝜆ℎ⟩ .

ince 𝛬ℎ ⊂ 𝛬 then,

𝒄(𝑈, 𝜆ℎ) ≥ ⟨𝛷, 𝜆ℎ⟩ (89)

n the other hand, we have,

𝒄(𝑈, 𝜇ℎ − 𝜆ℎ) − ⟨𝛷ℎ, 𝜇ℎ − 𝜆ℎ⟩ =𝒄(𝑈, 𝜇ℎ − 𝜆) + 𝒄(𝑈, 𝜆 − 𝜆ℎ) − ⟨𝛷ℎ −𝛷, 𝜇ℎ − 𝜆ℎ⟩ − ⟨𝛷, 𝜇ℎ − 𝜆⟩

− ⟨𝛷, 𝜆 − 𝜆ℎ⟩

≤𝒄(𝑈, 𝜇ℎ − 𝜆) − ⟨𝛷ℎ −𝛷, 𝜇ℎ − 𝜆ℎ⟩ − ⟨𝛷, 𝜇ℎ − 𝜆⟩

hence we obtain

(‖𝑉ℎ − 𝑈ℎ‖X + ‖𝜒ℎ − 𝜓ℎ‖M + ‖𝜇ℎ − 𝜆ℎ‖)2 ≲ℬ(𝑉ℎ − 𝑈, 𝜒ℎ − 𝜓, 𝜇ℎ − 𝜆; 𝑌ℎ, 𝜓ℎ − 𝜒ℎ, 𝜇ℎ − 𝜆ℎ)

+ 𝒄(𝑈, 𝜇ℎ − 𝜆) − ⟨𝛷, 𝜇ℎ − 𝜆⟩ − ⟨𝛷ℎ −𝛷, 𝜇ℎ − 𝜆ℎ⟩

pplying Young’s inequality to the first term on the right-hand side, using the estimate (88), and completing the square gives

‖𝑉ℎ − 𝑈ℎ‖X + ‖𝜒ℎ − 𝜓ℎ‖M + ‖𝜇ℎ − 𝜆ℎ‖M′ ≲‖𝑉ℎ − 𝑈‖X + ‖𝜒ℎ − 𝜓‖M
+ ‖𝜇ℎ − 𝜆‖M′ +

√

𝒄(𝑈, 𝜇ℎ − 𝜆) − ⟨𝛷, 𝜇ℎ − 𝜆⟩ + ‖𝛷 −𝛷ℎ‖M

inally, the desired estimate follows from this last inequality and the triangle inequality. ■

orollary 4.13. Assume that the solution (𝑈,𝜓, 𝜆) of Problem 5 belongs to (𝐻2(𝜔,R3))2 ×𝐻2(𝜔) ×𝐿2(𝜔) and the function 𝛷 belongs to
2(𝜔) ∩𝐻1

𝛾0
(𝜔). Let (𝑈ℎ, 𝜓ℎ, 𝜆ℎ) be the solution of Problem 9. Then

‖𝑈 − 𝑈ℎ‖X + ‖𝜓 − 𝜓ℎ‖M + ‖𝜆 − 𝜆ℎ‖M′ ≲
√

ℎ [|𝑈 |2,𝜔 + |𝜓|2,𝜔 + |𝛷|2,𝜔 + ‖𝜆‖𝜔].

roof. The proof is based on the a priori error estimate shown in Theorem 4.12. The estimate for the terms, ‖𝑉ℎ−𝑈‖X, ‖𝜒ℎ−𝜓‖M,
𝜇ℎ − 𝜆‖M′ and ‖𝛷 − 𝛷ℎ‖M can be easily obtained by standard interpolation procedure. To show the result, we need to prove the
stimate for the term

√

𝒄(𝑈, 𝜇ℎ − 𝜆) − ⟨𝛷, 𝜇ℎ − 𝜆⟩.
As 𝑈 ∈ 𝐻1

𝛾0
(𝜔;R3)2 and 𝛷 ∈ 𝐻1

𝛾0
(𝜔), one has

|𝒄(𝑈, 𝜇ℎ − 𝜆) − ⟨𝛷, 𝜇ℎ − 𝜆⟩| ≲ (‖𝑈‖1,𝜔 + ‖𝛷‖1,𝜔)‖𝜇ℎ − 𝜆‖M′ . (90)

Now we take 𝜇ℎ as the weighted Clément type interpolation operator of 𝜆 [20], namely 𝜇ℎ = 𝑄ℎ𝜆, defined by

𝑄ℎ𝜆 =
∑

𝑥∈ℎ

𝜋𝑥(𝜆)𝜆𝑥,

where for any 𝜑 ∈ 𝐿1(𝜔), one sets

𝜋𝑥(𝜑) =

⎧

⎪

⎨

⎪

⎩

∫𝜔𝑥 𝜑𝜆𝑥
∫𝜔𝑥 𝜆𝑥

if 𝑥 ∉ 𝛾̄0,

0 if 𝑥 ∈ 𝛾̄0.

Hence as

‖𝜆 −𝑄ℎ𝜆‖M′ = sup
𝜑∈𝐻1

𝛾0
(𝜔),𝜑≠0

∫𝜔(𝜆 −𝑄ℎ𝜆)𝜑
‖𝜑‖1,𝜔

,

and as we directly check that

(𝜆 −𝑄ℎ𝜆)𝜑 = 𝜆(𝜑 −𝑄ℎ𝜑),
17
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we obtain

‖𝜆 −𝑄ℎ𝜆‖M′ = sup
𝜑∈𝐻1

𝛾0
(𝜔),𝜑≠0

∫𝜔 𝜆(𝜑 −𝑄ℎ𝜑)
‖𝜑‖1,𝜔

.

y Cauchy-Schwraz’s inequality and Lemma 6.2 of [20], we get

‖𝜆 −𝑄ℎ𝜆‖M′ ≲ ℎ‖𝜆‖𝜔.

nserting this estimate in (90), we obtain

|𝒄(𝑈, 𝜇ℎ − 𝜆)| ≲ ℎ(‖𝑈‖1,𝜔 + ‖𝛷‖1,𝜔)‖𝜆‖𝜔 ≲ ℎ(‖𝑈‖

2
1,𝜔 + ‖𝛷‖21,𝜔 + ‖𝜆‖2𝜔). □

5. Iterative solution: Uzawa-type stationary methods

In this section we analyse the Uzawa method for solving Problem 9. The most attractive character of the Uzawa method is
its simplicity of implementation and its minimal memory requirements. Even if its speed of convergence may be slow, we have
chosen it due to its simplicity of implementation and its minimal memory requirement. A primal–dual active set method [1,21]
may certainly be used, this will be investigated in the future. In each Uzawa iteration, an elliptic solver for computing the inverse
of a large sparse matrix is needed. The convergence of the Uzawa method for saddle point systems was discussed by several authors
(see for instance [22,23]). Here we prove the convergence of the Uzawa algorithm for the case of variational inequality, namely
Problem 9.

It is important to observe that Problem 9 in its matrix form can be regarded as a 2 × 2 block matrix in two different ways,
according to the used partitioning strategy. The first way consists of finding (𝑈𝑘+1

ℎ , 𝜓𝑘+1ℎ ), for a given 𝜆𝑘ℎ ∈ 𝛬ℎ. It highlights the
act that Problem 9 can in principle be treated as a standard saddle point problem to compute 𝑈𝑘+1

ℎ , 𝜓𝑘+1ℎ followed by a projection
rocedure that computes 𝜆𝑘+1ℎ . The second way consists of finding 𝑈𝑘+1

ℎ , for a given (𝜓𝑘ℎ , 𝜆
𝑘
ℎ) ∈ Mℎ ×𝛬ℎ. More precisely, assume that

e consider iterative methods for solving large, sparse linear systems of equations of the form

𝒜𝑥 = 𝑏, with 𝒜 ≡
⎡

⎢

⎢

⎣

𝐴 𝐵𝑇 𝐶𝑇

𝐵 0 0
𝐶 0 0

⎤

⎥

⎥

⎦

, (91)

here 𝐴 ∈ R𝑛×𝑛 is symmetric positive definite, 𝐵 ∈ R𝑚×𝑛 and 𝐶 ∈ R𝑝×𝑛. We recall that iterative methods are based on the splitting
f 𝒜 , i.e,

𝒜 = ℳ −𝒩 , with invertible matrix ℳ

nd the iterative scheme

𝑥𝑘+1 = ℳ−1𝒩 𝑥𝑘 +ℳ−1𝑏, 𝑘 = 0, 1, 2...,

or our considered case, the matrix 𝒜 can be regarded as a 2 × 2 block matrix in two different ways, according to which of the
ollowing partitioning strategies is used:

𝒜 ≡
⎡

⎢

⎢

⎣

𝐴 𝐵𝑇 𝐶𝑇

𝐵 0 0
𝐶 0 0

⎤

⎥

⎥

⎦

or 𝒜 ≡
⎡

⎢

⎢

⎣

𝐴 𝐵𝑇 𝐶𝑇

𝐵 0 0
𝐶 0 0

⎤

⎥

⎥

⎦

. (92)

Then two Uzawa-like iterative methods can be considered for solving (91) according to the splittings

𝒜 = ℳ1 −𝒩1 or 𝒜 = ℳ2 −𝒩2,

with

ℳ1 =

⎡

⎢

⎢

⎢

⎣

𝐴 0 0
𝐵 −1

𝛼 𝐼 0
𝐶 0 −1

𝛽 𝐼

⎤

⎥

⎥

⎥

⎦

, 𝒩1 =

⎡

⎢

⎢

⎢

⎣

0 −𝐵𝑇 −𝐶𝑇

0 −1
𝛼 𝐼 0

0 0 −1
𝛽 𝐼

⎤

⎥

⎥

⎥

⎦

.

ℳ2 =
⎡

⎢

⎢

⎣

𝐴 𝐵𝑇 0
𝐵 0 0
𝐶 0 −1

𝛼 𝐼

⎤

⎥

⎥

⎦

, 𝒩2 =
⎡

⎢

⎢

⎣

0 0 −𝐶𝑇

0 0 0
0 0 −1

𝛼 𝐼

⎤

⎥

⎥

⎦

.

where 𝛼 and 𝛽 are two given nonzero parameters (see [24,25]).
Then if the splitting 𝒜 = ℳ1 − 𝒩1 is used, we need to initialize our iterative method with a given (𝜓0

ℎ , 𝜆
0
ℎ) ∈ Mℎ × 𝛬ℎ and two

parameters 𝛼 and 𝛽. While for the second choice we need only one parameter and an initial guess 𝜆0ℎ ∈ 𝛬ℎ.
In this paper we will make use only the second type with only one parameter 𝛼, but we are especially interested in studying the

convergence of the considered method when the third line of the system (91) is replaced by an inequality.
18
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The Uzawa algorithm of Problem 9 in variational form reads,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝒂𝜌(𝑈𝑘+1
ℎ , 𝑉ℎ) + 𝒃(𝑉ℎ, 𝜓𝑘+1ℎ ) = (𝑉ℎ) + 𝒄(𝑉ℎ, 𝜆𝑘ℎ), ∀𝑉ℎ ∈ Xℎ,

𝒃(𝑈𝑘+1
ℎ , 𝜒ℎ) = 0, ∀𝜒ℎ ∈ Mℎ,

(𝜆̃𝑘+1ℎ , 𝜇̃ℎ) = (𝜆𝑘ℎ, 𝜇̃ℎ) + 𝛼𝒄(𝑈
𝑘+1
ℎ , 𝜇̃ℎ) − 𝛼(𝛷ℎ, 𝜇̃ℎ), ∀𝜇̃ℎ ∈ Mℎ,

𝜆𝑘+1ℎ = 𝛬ℎ (𝜆̃
𝑘+1
ℎ ).

(93)

For 𝑘 ≥ 1, we introduce the following notation

𝑬𝑘
ℎ = 𝑈ℎ − 𝑈𝑘

ℎ , 𝐸𝑘ℎ = 𝜓ℎ − 𝜓𝑘ℎ , and 𝑒𝑘ℎ = 𝜆ℎ − 𝜆𝑘ℎ,

then we can easily write

𝒂𝜌(𝑬𝑘+1
ℎ , 𝑉ℎ) + 𝒃(𝑉ℎ, 𝐸𝑘+1ℎ ) = 𝒄(𝑉ℎ, 𝑒𝑘ℎ), ∀𝑉ℎ ∈ Xℎ

𝒃(𝑬𝑘+1
ℎ , 𝜒ℎ) = 0, ∀𝜒ℎ ∈ Mℎ

then using the coercivity of 𝒂𝜌(⋅, ⋅), the continuity of 𝒄(⋅, ⋅) and the inf-sup condition of 𝒃(⋅, ⋅), we get,

‖𝑬𝑘+1
ℎ ‖X + ‖𝐸𝑘+1ℎ ‖M ≲ ‖𝑒𝑘ℎ‖

and therefore, the convergence to zero of the sequence ‖𝑒𝑘ℎ‖ will imply immediately the convergence of ‖𝑬𝑘+1
ℎ ‖X and ‖𝐸𝑘+1ℎ ‖M.

We end those preliminary remarks by the following observation. We recall that,

𝜆𝑘+1ℎ = 𝛬ℎ (𝜆̃
𝑘+1
ℎ ),

i.e, 𝜆𝑘+1ℎ is the projection of 𝜆̃𝑘+1ℎ on the closed convex set 𝛬ℎ, then,

(𝜆̃𝑘+1ℎ − 𝜆𝑘+1ℎ , 𝜇ℎ − 𝜆𝑘+1ℎ ) ≤ 0, ∀𝜇ℎ ∈ 𝛬ℎ and ‖𝜆𝑘+1ℎ ‖ ≤ ‖𝜆̃𝑘+1ℎ ‖.

Since (𝜆̃𝑘+1ℎ − 𝜆𝑘+1ℎ , 𝜆ℎ) ≤ 0, we then have

(𝜆̃𝑘+1ℎ − 𝜆𝑘+1ℎ , 𝜆ℎ) + ‖𝜆𝑘+1ℎ ‖

2 ≤ ‖𝜆̃𝑘+1ℎ ‖

2,

which is equivalent to

(𝜆ℎ − 𝜆𝑘+1ℎ , 𝜆ℎ − 𝜆𝑘+1ℎ ) ≤ (𝜆ℎ − 𝜆̃𝑘+1ℎ , 𝜆ℎ − 𝜆̃𝑘+1ℎ ).

This amounts to write

‖𝑒𝑘+1ℎ ‖ ≤ ‖𝑒𝑘+1ℎ ‖, where 𝑒𝑘ℎ = 𝜆ℎ − 𝜆̃𝑘ℎ. (94)

Hence, the convergence to zero of the sequence ‖𝑒𝑘+1ℎ ‖, will imply the convergence to zero of the sequence ‖𝑒𝑘+1ℎ ‖.

Theorem 5.1. Let 𝐾0 =
𝑐#
𝑐𝑐
where 𝑐𝑐 is the inf-sup constant of Lemma 4.4. Denote by 𝑐𝑐,# the continuity constant of the bilinear form 𝑐 in

X × 𝐿2(𝜔), namely the smallest positive constant such that

|𝑐(𝑉 , 𝜇)| ≤ 𝑐𝑐,#‖𝑈‖X‖𝜇‖,∀𝑉 ∈ X, 𝜇 ∈ 𝐿2(𝜔). (95)

If the parameter 𝛼 is chosen such that

0 < 1 + 𝛼(𝛼𝑐2𝑐,# − 2𝑐#)𝐾−2
0 ℎ2 < 1 (96)

then

lim
𝑘→+∞

‖𝑒𝑘+1ℎ ‖ = 0.

Proof. First we have

𝒂𝜌(𝑬𝑘+1
ℎ , 𝑉ℎ) + 𝒃(𝑉ℎ, 𝐸𝑘+1ℎ ) − 𝒄(𝑉ℎ, 𝑒𝑘ℎ) = 0, ∀𝑉ℎ ∈ Xℎ. (97)

Take 𝑉ℎ = 𝑬𝑘+1
ℎ , we get

𝒂𝜌(𝑬𝑘+1
ℎ ,𝑬𝑘+1

ℎ ) = 𝒄(𝑬𝑘+1
ℎ , 𝑒𝑘ℎ) − 𝒃(𝑬𝑘+1

ℎ , 𝐸𝑘+1ℎ )
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

=0

= 𝒄(𝑬𝑘+1
ℎ , 𝑒𝑘ℎ). (98)

The third line of the scheme (81) and (93) amount to write

(𝜆̃𝑘+1ℎ , 𝜇̃ℎ) = (𝜆𝑘ℎ, 𝜇̃ℎ) + 𝛼𝒄(𝑈
𝑘+1
ℎ , 𝜇̃ℎ) + 𝛼(𝛷ℎ, 𝜇̃ℎ),

𝒄(𝑈ℎ, 𝜆𝑘ℎ − 𝜆ℎ) ≥
⟨

𝛷ℎ, 𝜆
𝑘
ℎ − 𝜆ℎ

⟩

.
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For 𝜇̃ℎ = 𝑒𝑘ℎ, we get

(𝜆̃𝑘+1ℎ , 𝑒𝑘ℎ) = (𝜆𝑘ℎ, 𝑒
𝑘
ℎ) + 𝛼𝒄(𝑈

𝑘+1, 𝑒𝑘ℎ) + 𝛼(𝛷ℎ, 𝑒
𝑘
ℎ),

(𝜆ℎ, 𝑒𝑘ℎ) ≥ (𝜆ℎ, 𝑒𝑘ℎ) + 𝛼𝒄(𝑈ℎ, 𝑒
𝑘
ℎ) + 𝛼(𝛷ℎ, 𝑒

𝑘
ℎ).

hen,

(𝑒𝑘+1, 𝑒𝑘ℎ) ≥ (𝑒𝑘ℎ, 𝑒
𝑘
ℎ) + 𝛼𝒄(𝑬

𝑘+1
ℎ , 𝑒𝑘ℎ)

or equivalently,

𝛼𝒄(𝑬𝑘+1
ℎ , 𝜇ℎ) ≤ (𝑒𝑘+1 − 𝑒𝑘ℎ, 𝑒

𝑘
ℎ).

Using (98) we find

𝒂𝜌(𝑬𝑘+1
ℎ ,𝑬𝑘+1

ℎ ) ≤ − 1
𝛼
(𝑒𝑘+1 − 𝑒𝑘ℎ, 𝑒

𝑘
ℎ) = − 1

2𝛼
(

‖𝑒𝑘+1ℎ ‖

2 − ‖𝑒𝑘ℎ‖
2 − ‖𝑒𝑘+1ℎ − 𝑒𝑘ℎ‖

2) , (99)

here in the last equality we have used the identity

(𝑏 − 𝑎, 𝑏 − 𝑎) − (𝑏, 𝑏) + (𝑎, 𝑎) = (𝑏, 𝑏 − 𝑎) − (𝑎, 𝑏 − 𝑎) − (𝑏, 𝑏) + (𝑎, 𝑎)

= (𝑏, 𝑏) − (𝑏, 𝑎) − (𝑎, 𝑏 − 𝑎) − (𝑏, 𝑏) + (𝑎, 𝑎)

= (𝑎, 𝑎 − 𝑏) − (𝑎, 𝑏 − 𝑎)

= 2(𝑎, 𝑎 − 𝑏).

he estimate (99) implies that

2𝛼𝑐#‖𝑬𝑘+1
ℎ ‖

2
X + ‖𝑒𝑘+1ℎ ‖

2 ≤ ‖𝑒𝑘ℎ‖
2 + ‖𝑒𝑘+1ℎ − 𝑒𝑘ℎ‖

2, (100)

here 𝑐# is the coercivity constant of 𝒂𝜌. The next step is to evaluate ‖𝑒𝑘+1ℎ − 𝑒𝑘ℎ‖
2.

Let 𝜇̃ℎ ∈ Mℎ and 𝜇ℎ ∈ 𝛬ℎ be given by

𝜇̃ℎ = 𝑒𝑘+1ℎ − 𝑒𝑘ℎ, 𝜇ℎ = 𝜆ℎ − (𝜆𝑘ℎ − 𝜆̃
𝑘+1
ℎ )

hen,

𝜇̃ℎ = 𝜇ℎ − 𝜆ℎ.

e take this 𝜇̃ℎ in the third line of (93) to obtain

(𝜆̃𝑘+1ℎ , 𝜇̃ℎ) = (𝜆𝑘ℎ, 𝜇̃ℎ) + 𝛼𝒄(𝑈
𝑘+1
ℎ , 𝜇̃ℎ) − 𝛼(𝛷ℎ, 𝜇̃ℎ),

hile by the third line of (57) one has

(𝜆ℎ, 𝜇ℎ − 𝜆ℎ) ≤ (𝜆ℎ, 𝜇ℎ − 𝜆ℎ) + 𝛼𝒄(𝑈ℎ, 𝜇ℎ − 𝜆ℎ) − 𝛼(𝛷ℎ, 𝜇ℎ − 𝜆ℎ).

o by taking the difference

(𝑒𝑘+1ℎ , 𝑒𝑘+1ℎ − 𝑒𝑘ℎ) ≤ (𝑒𝑘ℎ, 𝑒
𝑘+1
ℎ − 𝑒𝑘ℎ) + 𝛼𝒄(𝑬

𝑘+1
ℎ , 𝑒𝑘+1ℎ − 𝑒𝑘ℎ) (101)

hen the estimate (95) yields

‖𝑒𝑘+1ℎ − 𝑒𝑘ℎ‖
2 ≤ 𝛼𝒄(𝑬𝑘+1

ℎ , 𝑒𝑘+1ℎ − 𝑒𝑘ℎ) ≤ 𝛼𝑐𝑐,#‖𝑬𝑘+1
ℎ ‖X‖𝑒

𝑘+1
ℎ − 𝑒𝑘ℎ‖.

his estimate is finally equivalent to

‖𝑒𝑘+1ℎ − 𝑒𝑘ℎ‖
2 ≤ 𝛼2𝑐2𝑐,#‖𝑬

𝑘+1
ℎ ‖

2
X.

y (100), we deduce that,

(2𝛼𝑐# − 𝛼2𝑐2𝑐,#)‖𝑬
𝑘+1
ℎ ‖

2
X + ‖𝑒𝑘+1ℎ ‖

2 ≤ ‖𝑒𝑘ℎ‖
2,

or equivalently

‖𝑒𝑘+1ℎ ‖

2 ≤ ‖𝑒𝑘ℎ‖
2 + 𝛼(𝛼𝑐2𝑐,# − 2𝑐#)‖𝑬𝑘+1

ℎ ‖

2
X. (102)

We therefore chose 𝛼 > 0 small enough such that 𝛼𝑐2𝑐,# − 2𝑐# < 0. So that we will conclude if one can show that

‖𝑒𝑘ℎ‖ ≤ 𝐾0ℎ
−1
‖𝑬𝑘+1

ℎ ‖X. (103)

Indeed if this estimate is valid then (102) becomes
𝑘+1 2 2 # −2 2 𝑘 2
20
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Fig. 1. The surface 𝑆 = 𝜑(𝜔).

and by (94)

‖𝑒𝑘+1ℎ ‖

2 ≤ (1 + 𝛼(𝛼𝑐2𝑐,# − 2𝑐#)𝐾−2
0 ℎ2)‖𝑒𝑘ℎ‖

2.

By iteration we finally find

‖𝑒𝑘ℎ‖ ≤ (1 + 𝛼(𝛼𝑐2𝑐,# − 2𝑐#)𝐾−2
0 ℎ2)

𝑘
2
‖𝑒0ℎ‖,

and proves the convergence ‖𝑒𝑘ℎ‖ to zero if 0 < 1 + 𝛼(𝛼𝑐2𝑐,# − 2𝑐#)𝐾−2
0 ℎ2 < 1.

It remains to prove (103). For that purpose, we use the identity (97), which says that

𝒄(𝑉ℎ, 𝑒𝑘ℎ) = 𝒂𝜌(𝑬𝑘+1
ℎ , 𝑉ℎ) + 𝒃(𝑉ℎ, 𝐸𝑘+1ℎ ), ∀𝑉ℎ ∈ Xℎ,

which reduces to

𝒄(𝑉ℎ, 𝑒𝑘ℎ) = 𝒂𝜌(𝑬𝑘+1
ℎ , 𝑉ℎ) ∀𝑉ℎ ∈ Xℎ ∩ ker 𝑏,

Hence using Lemma 4.4, we deduce that

𝑐𝑐‖𝑒
𝑘
ℎ‖ℎ ≤ 𝑐#‖𝑬𝑘+1

ℎ ‖X.

By the definition of the norm ‖ ⋅ ‖ℎ, we get (103) with 𝐾0 =
𝑐#
𝑐𝑐

. ■

6. Numerical tests

In this section we first discuss the performance of the Uzawa algorithm presented in the previous section for solving the discrete
problem Problem 9. We consider the hyperbolic paraboloid shell 𝑆 = 𝜑(𝜔), where the reference domain 𝜔 is

𝜔 =
{

(𝑥, 𝑦) ∈ R2, ∣ 𝑥 ∣ + ∣ 𝑦 ∣< 50
√

2
}

(104)

nd the chart is defined by (see Fig. 1)

𝜑(𝑥, 𝑦) = (𝑥, 𝑦, 1.4 +
𝑥2 − 𝑦2

𝑅2
), with 𝑅 = 50

√

2. (105)

The shell is clamped on 𝜕𝜔, namely, we choose 𝛾0 = 𝜕𝜔 (hence 𝛾1 is empty) and subjected to a uniform pressure 𝑓3 = 𝑞 =
0.25𝑘𝑝∕𝑐𝑚2. In other words, in (8), we choose 𝑓 = (0, 0, 𝑞). As Young’s modulus and Poisson’s ratio we take 𝐸 = 2.85×104 kp/cm2,
= 0.4 respectively, while the thickness of the shell is 𝜀 = 0.8 cm.

Then the function 𝛷 defined by (15) is here given by

𝛷(𝑥, 𝑦) = 0.4𝑅2
√

4(𝑥2 + 𝑦2) + 𝑅4
−
𝑥2 − 𝑦2

𝑅2
− 1.4.

ote that the function 𝛷 (see Fig. 4(a)) satisfies the condition (16) which ensures that the surface satisfies the required conditions
hat we discussed in the introductory section. The numerical tests that we now present have been performed on the finite element
ode FreeFEM++ [26]. We study the convergence of the Uzawa method with respect to the number of iterations.
21
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Fig. 2. The mesh and isovalues for 𝑢3.

Fig. 3. Isovalues for 𝑢𝛽 , 𝛽 = 1, 2.

It is well known that (after the elimination of the unknowns 𝑈 and 𝜓) the Uzawa method can be seen as a fixed-parameter
first-order Richardson iteration by using Schur complement (for the unknown 𝜆) (see [24]). So as stopping criterion we can stop
the process when ‖𝜆𝑘+1 − 𝜆𝑘‖𝐿∞ is very small.

In our problem the contact zone is defined to be the set of points (𝑥, 𝑦) ∈ 𝜔 that satisfies (
(

𝑢 − 𝜀
2 𝑟
)

⋅𝒆3)(𝑥, 𝑦) = 𝛷(𝑥, 𝑦). For contact
problems, the contact zone and the free boundary are a priori unknowns. However, for the considered example we have observed
that, at the origin (0, 0) we have (

(

𝑢ℎ −
𝜀
2 𝑟ℎ

)

⋅ 𝑒3)(0, 0) ≈ 𝛷ℎ(0, 0) when the number of iterations becomes large. Since the analytic
expression of the function 𝛷ℎ is available and by analytical computations we have 𝛷ℎ(0, 0) = −1, we have reported the quantity
|

(

𝑢ℎ −
𝜀
2 𝑟ℎ

)

⋅ 𝑒3(0, 0) −𝛷ℎ(0, 0)| at different steps. The results indicate that this quantity relatively decays to zero by the same rate
as ‖𝜆𝑘+1 − 𝜆𝑘‖𝐿∞ (see Fig. 6). This observation may be interpreted as follows: the type of the considered loading and the position
of the function 𝛷 with respect to the shell imply that the origin (0, 0) belongs to the contact zone at least for the discrete problems.

In Fig. 2(a) the isovalues for 𝑢3 are plotted using the quasi uniform mesh shown in Fig. 2(b). Due to the form of the considered
loading we can expect that the displacement 𝑢3 will be larger than the tangential displacement 𝑢𝛽 , 𝛽 = 1, 2. Fig. 3 shows this
significant difference between 𝑢3 and 𝑢𝛽 , 𝛽 = 1, 2. Indeed the range of 𝑢3 is between 0.029 and −1.09 while the values of 𝑢1 and
𝑢2 varies between −0.005 and 0.005.

The constraint
(

𝑢ℎ −
𝜀
2 𝑟ℎ

)

⋅ 𝑒3 and the function 𝛷ℎ are presented in Fig. 4(b), there we observe that the function 𝛷ℎ can be

considered as an obstacle for the unknown
(

𝑢ℎ −
𝜀
2 𝑟ℎ

)

⋅ 𝑒3. In Fig. 5 we plot the ‘‘contact zone’’, and the free boundary after 350
iterations. It seems to be a connected and non convex subset of 𝜔 that contains the origin.
22



Journal of Computational and Applied Mathematics 441 (2024) 115670S. Khenfar et al.
Fig. 4. The constraint
(

𝑢ℎ −
𝜀
2
𝑟ℎ
)

⋅ 𝑒3 and the functions 𝛷 and 𝛷ℎ.

Fig. 5. The contact zone {(𝑥, 𝑦) ∈ 𝜔;
((

𝑢ℎ −
𝜀
2
𝑟ℎ
)

⋅ 𝑒3
)

(𝑥, 𝑦) = 𝛷ℎ(𝑥, 𝑦)}.

Table 1
Convergence results for the Uzawa scheme using P1 ⊕𝐵3 − P1 ⊕𝐵3 − P0.

Iteration 100 150 200 250 300 350

‖𝜆𝑘+1 − 𝜆𝑘‖𝐿2 (𝜔) 0.0485238 0.0327921 0.0288491 0.0220641 0.021193 0.0192298

Value of
The constraint 0.0317884 0.024239 0.0207364 0.0169701 0.0156183 0.0140509
at the point (0,0)

We present in Table 1 and Fig. 6, the evolution of ‖𝜆𝑘+1 − 𝜆𝑘‖𝐿∞(𝜔) and of |
(

𝑢ℎ −
𝜀
2 𝑟ℎ

)

⋅ 𝑒3(0, 0) −𝛷ℎ(0, 0)| at different iterations
with the choice 𝜌 = 103. Note that the number of iterations to stop the algorithm for some reasonable stopping criteria is huge.
23
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Fig. 6. The error as a function of the number of iterations.

Table 2
Convergence results for the Uzawa scheme for 𝛼 = 0.01 and different values of 𝜌.
𝜌 103 105 107 109

‖𝜆𝑘+1ℎ − 𝜆𝑘ℎ‖𝐿2 (𝜔) 0.0119165 0.0119167 0.0119348 0.0087216

|(
(

𝑢ℎ −
𝜀
2
𝑟ℎ
)

⋅ 𝑒3 −𝛷ℎ)(0, 0)| 0.0635194 0.0636253 0.0637142 0.0621998

Table 3
Comparison of the number of iteration for 𝛼 = 0.01 and different values of 𝜌.
𝜌 1 101 103 105 107 109

Number of iterations 701 688 686 686 686 684

Table 4
Convergence results for the Uzawa scheme for 𝜌 = 103 and different values of 𝛼.
𝛼 10−1 10−2 10−3 10−4

‖𝜆𝑘+1ℎ − 𝜆𝑘ℎ‖𝐿2 (𝜔) 0.01851140 0.01191650 0.00732018 0.00148822

Indeed, we have observed that in order to obtain ‖𝜆𝑘+1−𝜆𝑘‖𝐿∞(𝜔) < 10−6 or |
(

𝑢ℎ −
𝜀
2 𝑟ℎ

)

⋅ 𝑒3(0, 0) −𝛷ℎ(0, 0)| < 10−6 more then 100000
iterations is needed but no pathological behaviour is observed. Therefore we have preferred to present the evolution of the errors
up to 350 iterations.

The convergence of the Uzawa method depends strongly on the value of the parameter 𝛼. The optimal choice of this parameter
depends on the eigenvalues of the system. Based on the inequality (96), it must satisfy

0 < 𝛼 < 2𝑐#

𝑐2𝑐,#
but the coercivity and the continuity of the bilinear form depend on the parameter 𝜌. Indeed, for 𝜌 = 0, we have observed that the
method does not converge, choosing 𝜌 > 0 big enough gives a large range of 𝛼 for which the method converges. In order to show
the influence of the parameter 𝜌 on the performance of the algorithm we have made numerical experiments on a mesh consisting
of 512 triangles (6119 degrees of freedom) with fixed value of 𝛼 = 0.01 and different values of 𝜌 = 1, 101, 103, 105, 107 and 109. First
as above, we look at the convergence of the Uzawa algorithm after 350 iterations for different values of 𝜌. The results are listed
in Table 2, where we may remark that the choice of large enough 𝜌 does not significantly influence the error. Secondly, we have
chosen the stopping criteria ‖𝜆𝑘+1 − 𝜆𝑘‖𝐿∞(𝜔) < 0.01, in that case we observe that augmenting the value of 𝜌 reduces slightly the
number of iterations, see Table 3

Finally for a fixed (large enough) value of 𝜌, we have performed numerical tests with different values of 𝛼 and look at the
variation of the error ‖𝜆𝑘+1 − 𝜆𝑘‖𝐿∞(𝜔) after 350 iterations. The results are shown in Table 4, where contrary to the previous case,
we observe that changing 𝛼 and fixing 𝜌 large enough may affect significantly the convergence.

In the context of finite element approximation of PDEs, the rate of convergence depends strongly on the regularity of the solution
of the exact solution and the degree of the used polynomials, an inverse theorem also exists (see [27]). It should be noticed that for
contact problems, the limited regularity of the solution due to the unknown contact boundary limits the convergence rate. For our
problem the exact solution and the a priori regularity are unknown. In order to overcome this issue, we follow the algorithm proposed
in [28, Sec. 6]. Indeed, the prescribed numerical test is solved by our mixed formulation discretized using (P1⊕𝐵3,P1⊕𝐵3,P0) and

3

24

the Uzawa algorithm with fixed parameters 𝜌 = 10 and 𝛼 = 0.01. The meshes are refined uniformly and the mesh size of the mesh
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Fig. 7. The first and the fourth meshes.

Fig. 8. The ‘‘ global’’ rate of the convergence as a function of the mesh size.

𝑛 after 𝑛 refinements is given by ℎmax,𝑛 = 50
√

2∕2(𝑛+4), 𝑛 = 0, 1, 2, 3 (see Fig. 7). Hence if (𝑈𝑛, 𝜓𝑛) is the solution of our Problem 9
for the mesh 𝑛, then we define the numerical convergence rate by

𝜅𝑛 ∶= log2
‖(𝑈𝑛, 𝜓𝑛) − (𝑈𝑛−1, 𝜓𝑛−1)‖X×M
‖(𝑈𝑛+1, 𝜓𝑛+1) − (𝑈𝑛, 𝜓𝑛)‖X×M

.

Hence assuming that

‖(𝑈𝑛, 𝜓𝑛) − (𝑈,𝜓)‖X×M ∼ ℎ𝜅max,𝑛,

we may expect that

lim
𝑛→∞

𝜅𝑛 = 𝜅.

Since the different components have very different order of magnitude, we prefer to use the relative error instead of the absolute
error.

The numerical tests from Fig. 8 show that the algorithm converges with a numerical convergence rate 𝜅𝑛 ≈ 0.5, which is in good
agreement with the theoretical results obtained in Proposition 4.6 and Corollary 4.9. Note that the numerical convergence rate is
not the same for the two components of the error.

Let us finally mention that it would be a very interesting question to investigate whether the rate of convergence can be improved
by an automatic adaptive refinement strategy using a reliable and efficient a posteriori error indicator together with high order
polynomial spaces like P𝑘 + 𝐵𝑘+1,P𝑘−1, 𝑘 ≥ 2.
25
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