Jochen Staudacher

Stefano Moretti

Felix Fritz
email: felix.fritz@dauphine.eu

socialranking: A package for evaluating ordinal power relations in cooperative game theory

Keywords: power relation, social ranking solution, cooperative game theory, dominance, cp-majority, Copeland, Kramer-Simpson, ordinal Banzhaf, dominance, lexicographical excellence, relations

This document gives a brief introduction to power relations and social ranking solutions aimed at ranking elements based on their contributions within coalitions. This document accompanies version 1.0.0 of the package socialranking.

Introduction

In the literature of cooperative games, the notion of power index [START_REF] Shapley | A method for evaluating the distribution of power in a committee system[END_REF][START_REF] Banzhaf | Weighted voting doesn't work: A mathematical analysis[END_REF][START_REF] Holler | Power, voting, and voting power: 30 years after[END_REF] has been widely studied to analyze the "influence" of individuals taking into account their ability to force a decision within groups or coalitions. In practical situations, however, the information concerning the strength of coalitions is hardly quantifiable. So, any attempt to numerically represent the influence of groups and individuals clashes with the complex and multiattribute nature of the problem and it seems more realistic to represent collective decision-making mechanisms using an ordinal coalitional framework based on two main ingredients: a binary relation over groups or coalitions and a ranking over the individuals.

The main objective of the package socialranking is to provide answers for the general problem of how to compare the elements of a finite set N given a ranking over the elements of its power-set (the set of all possible subsets of N). To do this, the package socialranking implements a portfolio of solutions from the recent literature on social rankings [START_REF] Moretti | Some axiomatic and algorithmic perspectives on the social ranking problem[END_REF][START_REF] Khani | An ordinal banzhaf index for social ranking[END_REF][START_REF] Haret | Ceteris paribus majority for social ranking[END_REF][START_REF] Fayard | Ordinal social ranking: Simulation for CP-majority rule[END_REF][START_REF] Bernardi | Ranking objects from a preference relation over their subsets[END_REF][START_REF] Algaba | Lexicographic solutions for coalitional rankings[END_REF][START_REF] Allouche | Social ranking manipulability for the CP-majority, banzhaf and lexicographic excellence solutions[END_REF].

Quick start

A power relation (i.e, a ranking over subsets of a finite set N ; see the Section 2 for a formal definition) can be constructed using the functions PowerRelation() or as.PowerRelation(). Functions used to analyze a given PowerRelation object can be grouped into three main categories:

• Comparison functions, only comparing two elements;

• Score functions, calculating the scores for each element;

• Ranking functions, creating SocialRanking objects. Comparison and score functions are often used to evaluate a social ranking solution (see section 2 for a formal definition). Listed below are some of the most prominent functions and solutions introduced in the aforementioned papers. These functions may be called as follows. Lastly, an incidence matrix for all given coalitions can be constructed using powerRelationMatrix(pr) or as.relation(pr) from the relations package [START_REF] Meyer | Relations: Data structures and algorithms for relations[END_REF].

The incidence matrix may be displayed using relations::relation_incidence().

ab 1 1 1 1 1 1 1 1 ## abc 0 1 1 1 1 1 1 1 ## ac 0 1 1 1 1 1 1 1 ## bc 0 1 1 1 1 1 1 1 ## a 0 0 0 0 1 1 1 1 ## c 0 0 0 0 1 1 1 1 ## {} 0 0 0 0 0 0 1 1 ## b 0 0 0 0 0 0 0 1

PowerRelation objects

We first introduce some basic definitions on binary relations. Let X be a set. A set R ⊆ X × X is said a binary relation on X. For two elements x, y ∈ X, xRy refers to their relation, more formally it means that (x, y) ∈ R. A binary relation (x, y) ∈ R is said to be

• reflexive, if for each x ∈ X, xRx, • transitive, if for each x, y, z ∈ X, xRy and yRz ⇒ xRz, • total, if for each x, y ∈ X, x ̸ = y ⇒ xRy or yRx, • symmetric, if for each x, y ∈ X, xRy ⇔ yRx,
• asymmetric, if for each x, y ∈ X, (x, y) ∈ R ⇒ (y, x) / ∈ R, and

• antisymmetric, if for each x, y ∈ X, xRy ∩ yRx ⇒ x = y. A preorder is defined as a reflexive and transitive relation. If it is total, it is called a total preorder. Additionally if it is antisymmetric, it is called a linear order.

Let N = {1, 2, . . . , n} be a finite set of elements, sometimes also called players. For some p ∈ {1, . . . , 2 n }, let P = {S 1 , S 2 , . . . , S p } be a set of coalitions such that S i ⊆ N for all i ∈ {1, . . . , p}. Thus P ⊆ 2 N , where 2 N denotes the power set of N , the set of all subsets or coalitions of N ,

S ∈ 2 N ⇔ S ⊆ N.
T (N) denotes the set of all total preorders on N , T (P) the set of all total preorders on P. A single total preorder ⪰∈ T (P) is said a power relation.

In a given power relation ⪰∈ T (P) on P ⊆ 2 N , its symmetric part is denoted by ∼ (i.e., S ∼ T if S ⪰ T and T ⪰ S), whereas its asymmetric part is denoted by ≻ (i.e., S ≻ T if S ⪰ T and not T ⪰ S). In other terms, for S ∼ T we say that S is indifferent to T , whereas for S ≻ T we say that S is strictly better than T . Lastly for a given power relation in the form of S 1 ⪰ S 2 ⪰ . . . ⪰ S m , coalitions that are indifferent to one another can be grouped into equivalence classes i such that we get the quotient order 1 ≻ 2 ≻ . . . ≻ m .

Example 1.

Let N = {1, 2} be two players with its corresponding power set 2 N = {{1, 2}, {1}, {2}, ∅}. The following power relation is given:

⪰ = {({1, 2}, {1, 2}), ({1, 2}, {2}), ({1, 2}, ∅), ({1, 2}, {1}), ({2}, {2}), ({2}, ∅), ({2}, {1}), (∅, ∅), (∅, {2}), (∅, {1}), ({1}, {1}) }
This power relation can be rewritten in a consecutive order as: {1, 2} ≻ {2} ∼ ∅ ≻ {1}. Its quotient order is formed by three equivalence classes 1 = {{1, 2}}, 2 = {{2}, ∅}, and 3 = {{1}}; so the quotient order of ⪰ is such that {{1, 2}} ≻ {{2}, ∅} ≻ {{1}}.

Note that the way the set ⪰ is presented in the example is somewhat deliberate to better visualize occurring symmetries and asymmetries. This also lets us neatly represent a power relation in the form of an incidence matrix in chapter 4.

Creating PowerRelation objects

A power relation in the socialranking package is defined to be reflexive, transitive and total. In designing the package it was deemed logical to have the coalitions specified in a consecutive order, as seen in Example 1. Each coalition in that order is split either by a ">" (left side strictly better) or a "~" (two coalitions indifferent to one another). The following code chunk shows the power relation from Example Some may have spotted a "SingleCharElements" class missing in class(prLong) that has been there in class(pr). "SingleCharElements" influences how coalitions are printed. If it is removed from class(pr), the output will include the same curly braces and commas displayed in prLong.

class(pr) <class(pr)[-which(class(pr) == "SingleCharElements")] pr ## {1, 2} > ({2} ~{}) > {1}

Internally a PowerRelation is a list with four attributes.

While coalitions are formally defined as sets, meaning the order doesn't matter and each element is unique, the package tries to stay flexible. As such, coalitions will only be sorted during initialization, but duplicate elements will not be removed.

#! -1, 2 in the coalition {1, 1, 2, 2, 2} prAtts ## 11222 > (12 ~{}) prAtts$elements ## [1] 1 2 prAtts$coalitionLookup(c(1,2)) ## [1] 2 prAtts$coalitionLookup(c(2,1)) ## [1] 2 prAtts$coalitionLookup(c(2,1,2,1,2)) ## [1] 1 prAtts$elementLookup(2) ## [[1]] ## [1] 1 1 ## ## [[2]] ## [1] 1 1 ## ## [[3]] ## [1] 1 1 ## ## [[4]] ## [1] 2 1

Manipulating PowerRelation objects

It is strongly discouraged to directly manipulate PowerRelation objects, as its attributes are so tightly coupled. This would require updates in multiple places. Instead, it is advisable to simply create new PowerRelation objects.

To permutate the order of equivalence classes, it is possible to take the equivalence classes in $eqs and use a vector of indexes to move them around.

PowerRelation(rev(pr$eqs)) ## 2 > (1 ~{}) > 12

For permutating individual coalitions, using as.PowerRelation.list() may be more convenient since it doesn't require nested list indexing.

coalitions <unlist(pr$eqs

, recursive = FALSE) compares <-c(">", "~", ">") as.PowerRelation(coalitions[c(2,1,3,4)], comparators = compares) ## 1 > (12 ~{}) > 2

notice that the length of comparators does not need to match # length(coalitions)-1 as.PowerRelation(rev(coalitions), comparators = c("~", ">")) ## (2 ~{}) > (1 ~12)

not setting the comparators parameter turns it into a linear order as.PowerRelation(coalitions) ## 12 > 1 > {} > 2

appendMissingCoalitions()

Let ⪰∈ T (P). We may have not included all possible coalitions, such that P ⊂ 2 N , P ̸ = 2 N . appendMissingCoalitions() appends all the missing coalitions 2 N -P as a single equivalence class to the end of the power relation.

makePowerRelationMonotonic()

A power relation ⪰∈ T (P) is monotonic if S ⪰ T ⇒ T ⊂ S
for all S, T ⊆ N . In other terms, given a monotonic power relation, for any coalition, all its subsets cannot be ranked higher. makePowerRelationMonotonic() turns a potentially non-monotonic power relation into a monotonic one by moving and (optionally) adding all missing coalitions in 2 N -P to the corresponding equivalence classes.

Creating power sets

As the number of elements n increases, the number of possible coalitions increases to

|2 N | = 2 n
. createPowerset is a convenient function that not only creates a power set 2 N which can be used to call PowerRelation or as.PowerRelation, but also formats the function call in such a way that makes it easy to rearrange the ordering of the coalitions.

RStudio offers shortcuts such as Alt+Up or Alt+Down (Option+Up or Option+Down on MacOS) to move one or multiple lines of code up or down (see fig. 1).

createPowerset(

c("a", "b", "c"), result = "print") ## as.PowerRelation("

abc ## > ab ## > ac ## > bc ## > a ## > b ## > c ## > {} ## ")
<-createPowerset(1:2, includeEmptySet = FALSE) ps ## [[1]] ## [1] 1 2 ## ## [[2]] ## [1] 1 ## ## [[3]] ## [1] 2 as.PowerRelation(ps) ## 12 > 1 > 2 # equivalent PowerRelation(list(ps)) ## (12 ~1 ~2) as.PowerRelation(createPowerset(letters[1:4])) ## abcd > abc > abd > acd > bcd > ab > ac > ad > bc > bd > cd > a > b > c > d > {}

Generating PowerRelation objects

Given a list of coalitions, it is possible to loop through all possible permutations of power relations using powerRelationGenerator(). Calling gen() in the example below always produces a unique PowerRelation object. If all permutations have been exhausted, NULL is returned.

coalitions <-list(c(1,2), 1, 2) gen <-powerRelationGenerator(coalitions) while(!is.null(pr <-gen())) { print(pr) } ## (12 ~1 ~2) ## (12 ~1) > 2 ## (12 ~2) > 1 ## (1 ~2) > 12 ## 12 > (1 ~2) ## 1 > (12 ~2) ## 2 > (12 ~1) ## 12 > 1 > 2 ## 12 > 2 > 1 ## 1 > 12 > 2 ## 2 > 12 > 1 ## 1 > 2 > 12 ## 2 > 1 > 12
Permutations over power relations can be split into two parts:

1. generating partitions, or, generating differently sized equivalence classes, and 2. moving coalitions between these partitions.

In the code example above, we started with a single partition of size three, wherein all coalitions are considered equally preferable. By the end, we have reached the maximum number of partitions, where each coalition is put inside an equivalence class of size 1.

The partition generation can be reversed, such that we first receive linear power relations.

gen <-powerRelationGenerator(coalitions, startWithLinearOrder = TRUE) while(!is.null(pr <gen()

)) { print(pr) } ## 12 > 1 > 2
Notice that the "moving coalitions" part was not reversed, only the order the partitions come in.

Similarly, we are also able to skip the current partition. Note: the number of possible power relations grows tremendously fast as the number of coalitions rises. To get to that number, first consider how many ways n coalitions can be split into k partitions, also known as the Stirling number of second kind,

S(n, k) = 1 k! k j=0 (-1) j k j (k -j) n .
The number of all possible partitions given n coalitions is known as the Bell number (see also numbers::bell()),

B n = k j=0 S(n, k).
Given a set of coalitions P ∈ 2 N , the number of total preorders in T (P) is

|T (P)| = |P| k=0 k! * S(|P|, k)
of coalitions # of partitions # of total preorders

SocialRanking Objects

The main goal of the socialranking package is to rank elements based on a given power ranking. More formally we try to map R : T (P) → T (N), associating to each power relation ⪰∈ T (P) a total preorder R(⪰) (or R ⪰) over the elements of N .

In this context iR ⪰ j tells us that, given a power relation ⪰ and applying a social ranking solution R(⪰), i is ranked higher than or equal to j. From here on out, > and ~also denote the asymmetric and the symmetric part of a social ranking, respectively, i > j indicating that i is strictly better than j, whereas in i ~j, i is indifferent to j.

In literature, iI ⪰ j and iP ⪰ j are often used to denote the symmetric and asymmetric part, respectively. iI ⪰ j therefore means that iR ⪰ j and jR ⪰ i, whereas iP ⪰ j implies that iR ⪰ j but not jR ⪰ j.

In section 3.1 we show how a general SocialRanking object can be constructed using the doRanking function. In the following sections, we will introduce the notion of dominance [START_REF] Moretti | Some axiomatic and algorithmic perspectives on the social ranking problem[END_REF], cumulative dominance [START_REF] Moretti | An axiomatic approach to social ranking under coalitional power relations[END_REF] and CP-Majority comparison [START_REF] Haret | Ceteris paribus majority for social ranking[END_REF] that lets us compare two elements before diving into the social ranking solutions of the Ordinal Banzhaf Index [START_REF] Khani | An ordinal banzhaf index for social ranking[END_REF], Copeland-like and Kramer-Simpson-like methods [START_REF] Allouche | Social ranking manipulability for the CP-majority, banzhaf and lexicographic excellence solutions[END_REF], and lastly the Lexicographical Excellence Solution [START_REF] Algaba | Lexicographic solutions for coalitional rankings[END_REF] (Lexcel) and the Dual Lexicographical Excellence solution [START_REF] Serramia | On the dominant set selection problem and its application to value alignment[END_REF] (Dual Lexcel).

Example 2. Let {a, b} ≻ ({a, c} ∼ {b, c}) ≻ ({a} ∼ {c}) > ∅ ≻ {b} be a power ranking.

Using the following social ranking solutions, we get:

• a > b > c for lexcelRanking • a > c

Creating SocialRanking objects

A SocialRanking object represents a total preorder in T (N) over the elements of N . Internally they are saved as a list of vectors, each containing players that are indifferent to one another. This is somewhat similar to the equivalenceClasses attribute in PowerRelation objects.

The function doRanking offers a generic way of creating SocialRanking objects. Given a sortable vector or list of scores it determines the power relation between all players, where the names of the elements are determined from the names() attribute of scores. Hence, a PowerRelation object is not necessary to create a SocialRanking object.

we define some arbitrary score vector where "a" scores highest. # "b" and "c" both score 1, thus they are indifferent.

Comparison Functions

Comparison functions only compare two elements in a given power relation. They do not offer a social ranking solution. However in cases such as CP-Majority comparison, those comparison functions may be used to construct a social ranking solution in some particular cases.

Dominance

Definition 1. (Dominance [START_REF] Moretti | Some axiomatic and algorithmic perspectives on the social ranking problem[END_REF]) Given a power relation ⪰∈ T (P) and two elements i, j ∈ N , i dominates j in ⪰ if S ∪ {i} ⪰ S ∪ {j} for each S ∈ 2 N \{i,j} . i also strictly dominates j if there exists S ∈ 2 N \{i,j} such that S ∪ {i} ≻ S ∪ {j}.

The implication is that for every coalition i and j can join, i has at least the same positive impact as j.

The

Cumulative Dominance

When comparing two players i, j ∈ N , instead of looking at particular coalitions S ∈ 2 N \{i,j} they can join, we look at how many stronger coalitions they can form at each point. This property was originally introduced in [START_REF] Moretti | An axiomatic approach to social ranking under coalitional power relations[END_REF] as a regular dominance axiom.

For a given power relation ⪰∈ T (P) and its corresponding quotient order 1 ≻ • • • ≻ m , the power of a player i is given by a vector Score Cumul (i) ∈ N m where we cumulatively sum the amount of times i appears in k for each index k.

Definition 2. (Cumulative Dominance Score) Given a power relation ⪰∈ T (P) and its quotient order 1 ≻ • • • ≻ m , the cumulative score vector Score Cumul (i) ∈ N m of an element i ∈ N is given by:

Score Cumul (i) = k t=1 |{S ∈ t : i ∈ S}| k∈{1,...,m} (1)
Definition 3. (Cumulative Dominance) Given two elements i, j ∈ N , i cumulatively dominates j in ⪰, if Score Cumul (i) k ≥ Score Cumul (j) k for each k ∈ {1, . . . , m}. i also strictly cumulatively dominates j if there exists a k such that Score Cumul (i) k > Score Cumul (j) k .

For a given PowerRelation object pr and two elements e1 and e2, cumulativeScores(pr) returns the vectors described in definition 2 for each element, cumulativelyDominates(pr, e1, e2) returns TRUE or FALSE based on definition 3.

pr <as.PowerRelation("ab > (ac ~bc) > (a ~c) > {} > b") cumulativeScores(pr) [START_REF] Holler | Power, voting, and voting power: 30 years after[END_REF], therefore a also strictly dominates b cumulativelyDominates(pr, "a", "b", strictly = TRUE)

$a ## [1] 1 2 3 3 3 ## ## $b ## [1] 1 2 2 2 3 ## ## $c ## [1] 0 2 3 3 3 ## ## attr(,"class") ## [1] "CumulativeScores" # for each index k, $a[k] >= $b[k] cumulativelyDominates(pr, "a", "b") ## [1] TRUE # $a[3] > $b
[1] TRUE # $b[1] > $c[1], but $c[3] > $b[3] # therefore

CP-Majority comparison

The Ceteris Paribus Majority (CP-Majority) relation is a somewhat relaxed version of the dominance property. Instead of checking if S ∪ {i} ⪰ S ∪ {j} for all S ∈ 2 N \{i,j} , the CP-Majority relation iR ⪰ CP j holds if the number of times S ∪ {i} ⪰ S ∪ {j} is greater than or equal to the number of times S ∪ {j} ⪰ S ∪ {i}.

Definition 4. (CP-Majority [6]) Let ⪰∈ T (P). The Ceteris Paribus majority relation is the binary relation R ⪰

CP ⊆ N × N such that for all i, j ∈ N :

iR ⪰ CP j ⇔ d ij (⪰) ≥ d ji (⪰) (2)
where d ij (⪰) represents the cardinality of the set D ij (⪰), the set of all coalitions S ∈ 2 N \{i,j} for which S ∪ {i} ⪰ S ∪ {j}.

cpMajorityComparisonScore(pr, e1, e2) calculates the two scores d ij (⪰) and -d ji (⪰). Notice the minus sign -that way we can use the sum of both values to determine the relation between e1 and e2.

pr <as.PowerRelation("ab > (ac ~bc) > (a ~c) > {} > b") cpMajorityComparisonScore(pr, "a", "b")

[1] 2 -1 cpMajorityComparisonScore(pr, "b", "a") ## [1] 1 -2 if(sum(cpMajorityComparisonScore(pr, "a", "b")) >= 0) { print("a >= b") } else { print("b > a") } ## [1] "a >= b"
As a slight variation the logical parameter strictly calculates d ij (≻) and -d ji (≻), the number of coalitions S ∈ 2 N \{i,j} where S ∪ {i} ≻ S ∪ {j}.

Now (ac ~bc) is not counted cpMajorityComparisonScore(pr, "a", "b", strictly = TRUE) ## [1] 1 0 # Notice that the sum is still the same sum(cpMajorityComparisonScore(pr, "a", "b", strictly = FALSE)) == sum(cpMajorityComparisonScore(pr, "a", "b", strictly = TRUE)) ## [START_REF] Shapley | A method for evaluating the distribution of power in a committee system[END_REF] TRUE Coincidentally, cpMajorityComparisonScore with strictly = TRUE can be used to determine if e1 (strictly) dominates e2. cpMajorityComparisonScore should be used for simple and quick calculations. The more comprehensive function cpMajorityComparison(pr, e1, e2) does the same calculations, but in the process retains more information about all the comparisons that might be interesting to a user, i.e., the set D ij (⪰) and D ji (⪰) as well as the relation iR ⪰ CP j. See the documentation for a full list of available data. The CP-Majority relation can generate cycles, which is the reason that it is not offered as a social ranking solution. Instead we will introduce the Copeland-like method and Kramer-Simpson-like method in chapters 3.3.2 and 3.3.3 that make use of the CP-Majority functions to determine a power relation between elements. For further readings on CP-Majority, see [START_REF] Fayard | Ordinal social ranking: Simulation for CP-majority rule[END_REF] and [START_REF] Allouche | Social ranking manipulability for the CP-majority, banzhaf and lexicographic excellence solutions[END_REF].

extract more information in cpMajorityComparison

Social Ranking Solutions

Ordinal Banzhaf

The Ordinal Banzhaf Score is a vector defined by the principle of marginal contributions.

Intuitively speaking, if a player joining a coalition causes it to move up in the ranking, it can be interpreted as a positive contribution. On the contrary a negative contribution means that participating causes the coalition to go down in the ranking.

Definition 5. (Ordinal marginal contribution [START_REF] Khani | An ordinal banzhaf index for social ranking[END_REF]) Let ⪰∈ T (P). For a given element i ∈ N , its ordinal marginal contribution m S i (⪰) with right to a coalition S ∈ P is defined as:

m S i (⪰) =      1 if S ∪ {i} ≻ S -1 if S ≻ S ∪ {i} 0 otherwise (3) Definition 6. (Ordinal Banzhaf relation) Let ⪰∈ T (P). The Ordinal Banzhaf relation is the binary relation R ⪰ Banz ⊆ N × N such that for all i, j ∈ N : iR ⪰ Banz j ⇔ Score Banz (i) ≥ Score Banz (j), (4)
where Score Banz (i) = S m S i (⪰) for all S ∈ N \ {i}. Note that if S / ∈ P or S ∪ {i} / ∈ P, m S i (⪰) = 0. The function ordinalBanzhafScores() returns three numbers for each element, 1. the number of coalitions S where a player's contribution has a positive impact, 2. the number of coalitions S where a player's contribution has a negative impact, and 3. the number of coalitions S for which no information can be gathered, because S / ∈ P or S ∪ {i} / ∈ P.

The sum of the first two numbers determines the score of a player. Players with higher scores rank higher. # both players 1 and 2 have an Ordinal Banzhaf Score of 1 # therefore they are indifferent to one another # note that the empty set is missing, as such we cannot compare {}u{i} with {} ordinalBanzhafScores(pr)

$`1# # [1] 1 0 1 ## ## $`2# # [1] 1 0 1 ##

Copeland-like method

The Copeland-like method of ranking elements based on the CP-Majority rule is strongly inspired by the Copeland score from social choice theory [START_REF] Copeland | A reasonable social welfare function[END_REF]. The score of an element i ∈ N is determined by the amount of the pairwise CP-Majority winning comparisons iR ⪰ CP j, minus the number of all losing comparisons jR ⪰ CP i against all other elements j ∈ N \ {i}.

Definition 7. (Copeland-like relation [10]) Let ⪰∈ T (P). The Copeland-like relation is the binary relation R ⪰

Cop ⊆ N × N such that for all i, j ∈ N :

iR ⪰ Cop j ⇔ Score Cop (i) ≥ Score Cop (j), (5)
where Score

Cop (i) = |{j ∈ N \ {i} : d ij (⪰) ≥ d ji (⪰)}| -|{j ∈ N \ {i} : d ij (⪰) ≤ d ji (⪰)}|
copelandScores(pr) returns two numerical values for each element, a positive number for the winning comparisons (shown in Score Cop (i) on the left) and a negative number for the losing comparisons (in Score Cop (i) on the right). Strongly inspired by the Kramer-Simpson method of social choice theory [START_REF] Simpson | On defining areas of voter choice: Professor tullock on stable voting[END_REF][START_REF] Kramer | A dynamical model of political equilibrium[END_REF], elements are ranked inversely to their greatest pairwise defeat over all possible CP-Majority comparisons.

Definition 8. (Kramer-Simpson-like relation [START_REF] Allouche | Social ranking manipulability for the CP-majority, banzhaf and lexicographic excellence solutions[END_REF]) Let ⪰∈ T (P). The Kramer-Simpsonlike relation is the binary relation R ⪰ KS ⊆ N × N such that for all i, j ∈ N :

iR ⪰ KS j ⇔ Score KS (i) ≤ Score KS (j), (6)
where Score KS (i) = max j d ji (⪰) for all j ∈ N \ {i}.

kramerSimpsonScores(pr) returns a single numerical value for each element, which sorted lowest to highest gives us the ranking solution.

pr <as.PowerRelation("(abc ~ab ~c ~a) > (b ~bc) > ac") unlist(kramerSimpsonScores(pr)) ## a b c ## 0 0 1

kramerSimpsonRanking(pr) ## a ~b > c

There is a small caveat to Definition 8. By default this function does not compare d ii (⪰).

In other terms, the score of every element is the maximum CP-Majority comparison score against all other elements. This is slightly different from the definition found in [START_REF] Allouche | Social ranking manipulability for the CP-majority, banzhaf and lexicographic excellence solutions[END_REF], where the CP-Majority comparison d ii (⪰) is also considered. Since by definition d ii (⪰) = 0, the Kramer-Simpson scores in those cases will never be negative, possibly discarding valuable information.

To still account for the original definition in [START_REF] Allouche | Social ranking manipulability for the CP-majority, banzhaf and lexicographic excellence solutions[END_REF], the functions kramerSimpsonScores and kramerSimpsonRanking offer a compIvsI parameter that can be set to TRUE if one wishes for d ii (⪰) to be included in the comparisons.

Lexicographical Excellence Solution

The idea behind the lexicographical excellence solution (Lexcel) is to reward elements appearing more frequently in higher ranked equivalence classes.

For a given power relation ⪰ and its quotient order 1 ≻ • • • ≻ m , we denote by i k the number of coalitions in k containing i:

i k = |{S ∈ k : i ∈ S}| (7)
for k ∈ {1, . . . , m}. Now, let Score Lex (i) be the m-dimensional vector Score Lex (i) = (i 1 , . . . , i m) associated to ⪰. Consider the lexicographic order ≥ Lex among vectors i and j: i ≥ Lex j if either i = j or there exists t : i r = j r , r ∈ {1, . . . , t -1}, and i t > j t .

Definition 9. (Lexicographic-Excellence relation [START_REF] Bernardi | Ranking objects from a preference relation over their subsets[END_REF]) Let ⪰∈ T (P) with its corresponding quotient order

1 ≻ • • • ≻ m . The Lexicographic-Excellence relation is the binary relation R ⪰ Lex ⊆ N × N such that for all i, j ∈ N : iR ⪰ Lex j ⇔ Score Lex (i) ≥ Lex Score Lex (j) (8)
pr <as.PowerRelation("12 > (123 ~23 ~3) > (1 ~2) > 13")

show the number of times an element appears in each equivalence class # e.g. 3 appears 3 times in [[START_REF] Banzhaf | Weighted voting doesn't work: A mathematical analysis[END_REF]] and 1 time in [[4]] lapply(pr$equivalenceClasses, unlist) ## list() lexScores <-lexcelScores(pr) for(i in names(lexScores)) paste0("Lexcel score of element ", i, ": ", lexScores[i])

at index 1, element 2 ranks higher than 3 lexScores

['2'] > lexScores['3'] ## [1] TRUE # at index 2, element 2 ranks higher than 1 lexScores['2'] > lexScores['1'] ## [1] TRUE lexcelRanking(pr) ## 2 > 1 > 3
For some generalizations of the Lexcel solution see also [START_REF] Algaba | Lexicographic solutions for coalitional rankings[END_REF].

Lexcel score vectors are very similar to the cumulative score vectors (3.2.2) in that the number of times an element appears in a given equivalence class is of interest. In fact, applying the base function cumsum on an element's lexcel score gives us its cumulative score.

lexcelCumulated <lapply(lexScores, cumsum) cumulScores <-cumulativeScores(pr) paste0(names(lexcelCumulated), ": ", lexcelCumulated, collapse = ', ') ## [1] "1: 1:4, 2: c(1, 3, 4, 4), 3: c(0, 3, 3, 4)" paste0(names(cumulScores), ": ", cumulScores, collapse = ', ') ## [1] "1: 1:4, 2: c(1, 3, 4, 4), 3: c(0, 3, 3, 4)"

Dual Lexicographical Excellence Solution

Similar to the Lexcel ranking, the Dual Lexcel also uses the Lexcel score vectors from definition 9 to establish a ranking. However, instead of rewarding higher frequencies in high ranking coalitions, it punishes higher frequencies in lower ranking coalitions, or, it punishes mediocrity [START_REF] Serramia | On the dominant set selection problem and its application to value alignment[END_REF].

Take the values i k for k ∈ {1, . . . , m} and the Lexcel score vector Score Lex (i) from section 3.3.4. Consider the dual lexicographical order ≥ DualLex among vectors i and j: i ≥ DualLex j if either i = j or there exists t : i t < j t and i r = j r , r ∈ {t + 1, . . . , m}.

Definition 10. (Dual Lexicographical-Excellence relation [START_REF] Serramia | On the dominant set selection problem and its application to value alignment[END_REF]) Let ⪰∈ T (P). The Dual Lexicographic-Excellence relation is the binary relation R ⪰ DualLex ⊆ N × N such that for all i, j ∈ N :

iR ⪰ DualLex j ⇔ Score Lex (i) ≥ DualLex Score Lex (j) (9)
The S3 class LexcelScores does not account for Dual Lexcel comparisons. Instead -rev(x) is called on a Lexcel score vector x such that the resulting comparisons produces a Dual Lexcel ranking solution.

Incidence Matrix

In our vignette we focused more on the intuitive aspects of power relations and social ranking solutions. To reiterate, a power relation is a total preorder, or a reflexive and transitive relation ⪰∈ P × P, where ∼ denotes the symmetric part and ≻ its asymmetric part.

A power relation can be viewed as an incidence matrix

(b ij) = B ∈ {0, 1} |P|×|P| . Given two coalitions i, j ∈ P, if iRj then b ij = 1, else 0.
With help of the relations package, the functions relations::as.relation(pr) and powerRelationMatrix(pr) turn a PowerRelation object into a relation object.

relations then offers ways to display the relation object as an incidence matrix with relation_incidence(rel) and to test basic properties such relation_is_linear_order(rel), relation_is_acyclic(rel) and relation_is_antisymmetric(rel) (see relations package for more [START_REF] Meyer | Relations: Data structures and algorithms for relations[END_REF]).

Cycles and Transitive Closure

A cycle in a power relation exists, if there is one coalition S ∈ 2 N that appears twice. For example, in {1, 2} ≻ ({1} ∼ ∅) ≻ {1, 2}, the coalition {1, 2} appears at the beginning and at the end of the power relation.

Properly handling power relations and calculating social ranking solutions with cycles is somewhat ill-defined, hence a warning message is shown as soon as one is created.

as.PowerRelation("12 > 2 > (1 ~2) > 12") #! Warning in createLookupTables(equivalenceClasses): Found 2 duplicate coalitions, listed below. This violates transitivity and can cause issues with certain ranking solutions. You may want to take a look at socialranking::transitiveClosure(). #! -{2} #! -{1, 2} ## 12 > 2 > (1 ~2) > 12

Recall that a power relation is transitive, meaning for three coalitions x, y, z ∈ 2 N , if xRy and yRz, then xRz. If we introduce cycles, we pretty much introduce symmetry. Assume we have the power relation x ≻ y ≻ x. Then, even though xRy and yRx are defined as the asymmetric part of the power relation ⪰, together they form the symmetric power relation x ∼ y. transitiveClosure(pr) is a function that turns a power relation with cycles into one without one. In the process of removing duplicate coalitions, it turns all asymmectric relations within a cycle into symmetric relations.

 ("ab > a ~{} > b") ## ab > (a ~{}) > b as.PowerRelation(list(c(1,2), 1, c(), 2)) ## 12 > 1 > {} > 2 as.PowerRelation(list(c(1,2), 1, c(), 2), comparators = c(">", "~", ">")) ## 12 > (1 ~{}) > 2

 as.PowerRelation("ab > abc ~ac ~bc > a ~c > {} > b") # a dominates b, but b does not dominate a c(dominates(pr, "a", "b"), dominates(pr, "b", "a")) ## [1] TRUE FALSE # calculate cumulative scores scores <-cumulativeScores(pr) # show score of element a scores$

 rel <-relations::as.relation(pr) rel ## A binary relation of size 8 x 8. relations::relation_incidence(rel) ## Incidences: ## ab abc ac bc a c {} b

 in createLookupTables(equivalenceClasses): Found 1 coalition that contain elements more than once.

 pr <as.PowerRelation("12 > (1 ~{}) > 2") PowerRelation(pr$eqs[c(2, 3, 1)]) ## (1 ~{}) > 2 > 12

 pr <-PowerRelation(list(list(c("AT", "DE"), "FR"), list("DE"), list(c("AT", "FR"), "AT"))) pr ## ({AT, DE} ~{FR}) > {DE} > ({AT, FR} ~{AT}) # since we have 3 elements, the super set 2ˆN should include 8 coalitions appendMissingCoalitions(pr) ## ({AT, DE} ~{FR}) > {DE} > ({AT, FR} ~{AT}) > ({AT, DE, FR} {DE, FR} ~{})

 pr <as.PowerRelation("a > b > c ~ac > abc") makePowerRelationMonotonic(pr) ## (abc ~ab ~ac ~a) > (bc ~b) > c makePowerRelationMonotonic(pr, addMissingCoalitions = FALSE) ## (abc ~ac ~a) > b > c # notice how an empty coalition in some equivalence class # causes all remaining coalitions to be moved there makePowerRelationMonotonic(as.PowerRelation("ab > c > {} > abc > a > b")) ## (abc ~ab) > (ac ~bc ~c) > (a ~b ~{})

Figure 1 :

 1 Figure 1: Using Alt+Up or Alt+Down to move one or more lines of code By default, createPowerset() returns the power set in the form of a list. This list can be passed directly to as.PowerRelation() to create a linear order.

 ps

 gen <-powerRelationGenerator(coalitions) # partition 3 gen <-generateNextPartition(gen) # partition 2+1 gen <-generateNextPartition(gen) # partition 1+2 gen() ## 12 > (1 ~2)

 > b for dualLexcelRanking • a > b ~c for copelandRanking and kramerSimpsonRanking • a ~c > b for ordinalBanzhafRanking

 scores <c(a = 100, b = 1, c = 1) doRanking(scores) ## a > b ~c # we can also tell doRanking to punish higher scores doRanking(scores, decreasing = FALSE) ## b ~c > aWhen working with types that cannot be sorted (i.e., lists), a function can be passed to the compare parameter that allows comparisons between arbitrary elements. This function must take two parameters (i.e., a and b) and return a numeric value based on the comparison:• compare(a,b) > 0: a scores higher than b,• compare(a,b) < 0: a scores lower than b,• compare(a,b) == 0: a and b are equivalent. scores <list(a = c(3, 3, 3), b = c(2, 3, 2), c = c(7, 0, 2)) doRanking(scores, compare = function(a, b) sum(a) -sum(b)) ## a ~c > b # a and c are considered to be indifferent, because their sums are the same doRanking(scores, compare = function(a,b) sum(a) -sum(b), decreasing = FALSE) ## b > a ~c

 neither b nor c dominate each other cumulativelyDominates(pr, "b", "c") ## [1] FALSE cumulativelyDominates(pr, "c", "b") ## [1] FALSE Similar to the dominance property from our previous section, two elements not dominating one or the other does not indicate that they are indifferent.

1 #

 1 cpMajorityComparison(pr, "a", "b") ## a > b ## D_ab = {c, {}} ## D_ba = {c} ## Score of a = 2 ## Score of b = with strictly set to TRUE, coalition c does # neither appear in D_ab nor in D_ba cpMajorityComparison(pr, "a", "b", strictly = TRUE) ## a > b ## D_ab = {{}} ## D_ba = {} ## Score of a = 1 ## Score of b = 0

 as.PowerRelation("ab > a > {} > b") # player b has a negative impact on the empty set # -> player b's score is 1 -1 = 0 # -> player a's score is 2 -0 = 2 sapply(ordinalBanzhafScores(pr), function(score) sum(score[c(1

 pr <as.PowerRelation("(abc ~ab ~c ~a) > (b ~bc) > ac") scores <-copelandScores(pr) # Based on CP-Majority, a>=b and a>=c (+2), but b>=a(-1)

 pr <as.PowerRelation("b > (a ~c) > ab > (ac ~bc) > {} > abc") kramerSimpsonRanking(pr) ## b > a > c # notice how b's score is negative unlist

 pr <as.PowerRelation("12 > (123 ~23 ~3) > (1 ~2) > 13") lexScores <-lexcelScores(pr) # in regular Lexcel, 1 scores higher than 3 lexScores['1'] > lexScores['3'] ## [1] TRUE # turn Lexcel score into Dual Lexcel score dualLexScores <structure(lapply(lexcelScores(pr), function(r) -rev(r)), class = 'LexcelScores') # now 1 scores lower than 3 dualLexScores['1'] > dualLexScores['3'] ## [1] FALSE # element 2 comes out at the top in both Lexcel and Dual Lexcel lexcelRanking

 pr <as.PowerRelation("ab > a > {} > b") rel <-relations::as.relation(pr) relations::relation_incidence(rel) #relation_is_acyclic(rel), relations::relation_is_antisymmetric(rel), relations::relation_is_linear_order(rel), relations::relation_is_complete(rel), relations::relation_is_reflexive(rel), relations::relation_is_transitive(rel)) ## [1] TRUE TRUE TRUE TRUE TRUE TRUE Note that the columns and rows are sorted by their names in relation_domain(rel), hence why each name is preceded by the ordering number. # a power relation where coalitions {1} and {2} are indifferent pr <as.PowerRelation("12 > (1 ~2)") rel <-relations::as.relation(pr) # we have both binary relations {1}R{2} as well as {2}R{1} relations::relation_incidence(rel) #relation_is_acyclic(rel), relations::relation_is_antisymmetric(rel), relations::relation_is_linear_order(rel), relations::relation_is_complete(rel), relations::relation_is_reflexive(rel), relations::relation_is_transitive(rel)) ## [1] FALSE FALSE FALSE TRUE TRUE TRUE

 pr <-suppressWarnings(as.PowerRelation("c > ac > b > ac > (a ~b) > abc")) transitiveClosure(pr) ## c > (ac ~b ~a) > abc

library(socialranking) pr <-PowerRelation(list(list(c(1,2)), list(2, c()), list(1)

 1 and how a correlating PowerRelation object can be constructed.

))	
	pr	
	## 12 > (2 ~{}) > 1	
	class(pr)	
	## [1] "PowerRelation"	"SingleCharElements"
	Notice how coalitions such as {1, 2} are written as 12 to improve readability. Similarly,
	passing a string to the function as.PowerRelation() saves some typing on the user's
	end by interpreting each character of a coalition as a separate element. Note that spaces
	in that function are ignored.	
	as.PowerRelation("12 > 2~{} > 1")
	## 12 > (2 ~{}) > 1	
	The compact notation is only done in PowerRelation objects where every element is one
	digit or one character long. If this is not the case, curly braces and commas are added
	where needed.	
	prLong <-PowerRelation(list(
	list(c("Alice", "Bob")),	
	list("	

Bob", c()),

	Attribute	Description	Value in pr
	elements	Sorted vector of elements	c(1,2)
		List containing lists, each	list(list(c(1,2)),
	eqs	containing coalitions in the	list(c(2), c()),
		same equivalence class	list(c(1)))
	coalitionLookup	Function to determine a coalition's equivalence class index	function(coalition)
	elementLookup	Function to determine, which coalitions an element takes part in	function(element)
	list("Alice")		
))		
	prLong		
	## {Alice, Bob} > ({Bob} ~{}) > {Alice}	
	class(prLong)		
	## [1] "PowerRelation"	

 For any S ∈ 2 N \{i,j} , we can only compare S ∪ {i} ⪰ S ∪ {j} if both S ∪ {i} and S ∪ {j} take part in the power relation.Additionally, for S = ∅, we also want to compare {i} ⪰ {j}. In some situations however a comparison between singletons is not desired. For this reason the parameter includeEmptySet can be set to FALSE such that ∅ ∪ {i} ⪰ ∅ ∪ {j} is not considered in the CP-Majority comparison.

	# an element i dominates itself, but it does not strictly dominate itself
	# because there is no Sui > Sui
	dominates(pr, 1, 1)
	## [1] TRUE
	dominates(pr, 1, 1, strictly = TRUE)
	## [1] FALSE
	# 1 clearly dominates 2
	dominates(pr, 1, 2)
	## [1] TRUE
	dominates(pr, 2, 1)
	## [1] FALSE
	# 3 does not dominate 1, nor does 1 dominate 3, because
	# {}u3 > {}u1, but 2u1 > 2u3
	dominates(pr, 1, 3)
	## [1] FALSE
	dominates(pr, 3, 1)
	## [1] FALSE

function dominates(pr, e1, e2) only returns a logical value TRUE if e1 dominates e2, else FALSE. Note that e1 not dominating e2 does not indicate that e2 dominates e1, nor does it imply that e1 is indifferent to e2. pr <as.PowerRelation("3 > 1 > 2 > 12 > 13 > 23") pr <as.PowerRelation("ac > bc ~b > a ~abc > ab") # FALSE because ac > bc, whereas b > a dominates(pr, "a", "b") ## [1] FALSE # TRUE because ac > bc, ignoring b > a comparison dominates(pr, "a", "b", includeEmptySet = FALSE) ## [1] TRUE