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Overview

The central goal of this book is to present new techniques for studying the behaviour
of mean-field systems with disordered interactions. We will focus in particular
on certain problems of statistical inference, and on spin glasses. We will also
consider simpler models of statistical mechanics for which the interactions are not
disordered, as a useful training ground. We will mostly be interested in computing
the asymptotic behaviour of a fundamental quantity called the free energy, in the
limit of large system size. In the context of statistical inference, the free energy
is essentially the mutual information between the observations and the signal that
we wish to recover; knowing its limit behaviour allows us to identify how much
of the signal can be recovered from the observations. The purpose of this work is
to present a way to approach this class of problems using techniques from partial
differential equations, and specifically, the theory of Hamilton-Jacobi equations.
We strove to make this book self-contained, and in particular, no prior knowledge
of Hamilton-Jacobi equations or other partial differential equations is assumed.

To get a sense of what spin glasses are, let us start by describing the simplest
such model, namely the Sherrington-Kirkpatrick (SK) model [236]. This model
is often motivated by considering the problem of splitting N individuals into two
groups. An assignment of individuals into two groups can be encoded by a vector
σ ∈ ΣN ∶= {−1,+1}N , with the understanding that σi represents the group to which
the individual indexed by i is assigned. For each pair of individuals (i, j), we are
given a number gi j that encodes the quality of the interaction between individuals i
and j, with gi j being large if i and j get along very well, and gi j being very negative
if they cannot stand each other. We would like to find an assignment into groups
that maximizes the sum total of the interactions, that is, we want to maximize, over
the set ΣN , the “comfort function”

cN(σ) ∶=
N
∑

i, j=1
gi jσiσ j. (0.1)

Given the problem we are trying to encode, it would probably have felt more natural
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to write 1{σi=σ j} in place of σiσ j above. However, the form σiσ j is more standard,
partly for historical reasons having to do with the modelling of magnetic materials.
Since σiσ j = 21{σi=σ j} −1, writing one or the other is inconsequential. It will be
convenient not to impose any symmetry on the matrix (gi j)1⩽i, j⩽N , so the interaction
between i and j, with i ≠ j, is actually encoded by gi j+g ji. It will also be convenient
to include some diagonal terms (gii)1⩽i⩽N ; these terms only change the comfort
function by an additive constant, and their contribution will in any case be of lower
order.

In order to gain some insight into a typical instance of this optimization problem,
we assume a particular structure on the interaction parameters (gi j)1⩽i, j⩽N . Namely,
we assume that the (gi j)1⩽i, j⩽N are independent standard Gaussian random variables.
By “standard Gaussian”, we always mean Gaussian random variables with zero
mean and unit variance.

j k

i

−

++

Figure 0.1 A simple example of frustration.

One quickly realizes that the optimization of the comfort function (0.1) is not
going to be easy because the coefficients (gi j)1⩽i, j⩽N do not have a sign. A glimpse
of the difficulty can already be perceived when we consider situations in which
three individuals i, j and k are as depicted in Figure 0.1, that is, with gi j > 0 and
gik > 0, but with g jk < 0. In view of the sign of gi j, we would rather want i and j to
belong to the same group, and similarly with i and k. But the sign of gik suggests to
rather have i and k in different groups, and all of these “local preferences” cannot be
reconciled at once. Physicists use the word frustration to describe situations of this
nature, and, a glass is a system that is subject to such frustrations. More generally,
the presence of these frustrations suggests that it is likely to be difficult to optimize
the function (0.1). For instance, a naive method that would try to optimize each
spin σi one at a time in order to decrease the value of (0.1) is unlikely to reach the
global optimum. The word “glass” points to the fact that this phenomenology is also
present for regular window glass, as well as a number of other materials. Indeed, the
making of a glass requires the very rapid cooling of an initially liquid material. A
slow cooling would have allowed the material to find its preferred crystal structure,
but the fast cooling has blocked the particles in a highly disordered configuration,
and the complex geometric arrangement of the particles is believed to create jams
that render the finding of the preferred crystalline state very difficult to achieve.
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In order to gain insight into the problem of optimizing the comfort function (0.1),
it is useful to first focus on the evaluation of the asymptotic behaviour of the
maximum itself, and more generally of quantities of the form

1
N
E log ∑

σ∈ΣN

exp( β√
N

N
∑

i, j=1
gi j σiσ j), (0.2)

where β ⩾ 0 is a tunable parameter, and E denotes the expectation with respect to
the randomness of the (gi j). The quantity in (0.2) is called the free energy, and it is
closely related to the random probability measure, called the Gibbs measure, that
assigns to each configuration σ ∈ ΣN a probability proportional to

exp( β√
N

N
∑

i, j=1
gi j σiσ j). (0.3)

To understand the presence of the factor of N−1/2 in the exponential above, one
needs to realize that the maximum of the comfort function (0.1) will typically
be of order N3/2, see Exercise 6.1. With the factor of N−1/2 in the exponential
in (0.2), we thus ensure that the terms that have the largest contribution to the
sum in (0.2) are exponential in N. Since we are then summing over 2N terms,
this allows us to interpolate between a situation in which the entropy dominates,
for small β , where the Gibbs measure resembles the uniform law over ΣN , and
a situation in which the energy dominates, for large β , where the Gibbs measure
concentrates on the configurations that essentially realize the maximal value of the
comfort function (0.1). In particular, a good approximation of βN−3/2 times the
maximum of the comfort function (0.1) is obtained by choosing β sufficiently large,
not depending on N, in (0.2). This is made precise in Exercise 6.3.

The problem of identifying the large-N limit of the free energy (0.2) turns out to
be surprisingly difficult. Starting in the late 1970’s, Giorgio Parisi and collaborators
[176, 177, 178, 216, 217, 218, 219, 220] proposed a way to solve this problem
using sophisticated non-rigorous techniques, and the limit of (0.2) is now known as
the Parisi formula. A rich phenomenology progressively emerged concerning the
structure of the associated Gibbs measure, which turns out to organize itself along an
ultrametric structure. Some key elements of this picture that were uncovered in the
physics literature were then progressively put on a rigorous mathematical footing
[131, 209, 210, 249, 252, 253]. Although many interesting questions remain, the
mathematical understanding of the SK model, and of some generalizations thereof,
is by now very substantial [41, 48, 61, 133, 209, 210, 212, 213, 214, 251].

There are however many seemingly innocent generalizations of the SK model
that mostly remain mathematically mysterious. Motivated in part by considerations
that relate to artificial neural networks (see e.g. [256]), we would like for instance
to consider generalizations of the SK model in which the spins are organized over
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two (or more) layers. To encode this precisely, we can represent a configuration as
a pair σ = (σ1,σ2) ∈ Σ2

N , where σ1 = (σ1,i)1⩽i⩽N and σ2 = (σ2,i)1⩽i⩽N represent the
spins in each of the two layers, and where we choose the layers to be of the same
size for convenience of notation. The energy function can then be written as

HN(σ) ∶=
1√
N

N
∑

i, j=1
gi jσ1,iσ2, j. (0.4)

We will refer to this as the bipartite model. An illustration of the graph of interac-
tions between the coordinates of σ is in Figure 0.2. Perhaps surprisingly, this model
is much less understood than the SK model. In particular, the limit free energy of
this model has not yet been identified rigorously.

Figure 0.2 Illustration of the bipartite model for N = 6. Elementary units are organized in
two layers and only interact across layers.

Inspired by [42, 43, 64, 130, 199], we propose to approach this problem using a
point of view based on partial differential equations [193, 195]. It turns out that one
can identify the limit of the free energy (0.2) in the SK model as

lim
N→+∞

− 1
N
E log∑

σΣN

exp(
√

2t
N

N
∑

i, j=1
gi j σiσ j −Nt) = f (t,0), (0.5)

where f = f (t,q) ∶ R⩾0 ×Q2(R⩾0) → R is the solution to the infinite-dimensional
Hamilton-Jacobi equation

∂t f (t,q)−
ˆ 1

0
∂q f (t,q,u)2 du = 0 on R>0×Q2(R⩾0), (0.6)

with Q2(R⩾0) being the space of square-integrable non-decreasing paths from [0,1)
to R⩾0, and ∂q f (t,q, ⋅) denoting the Gateaux derivative of f at (t,q), see (6.74). The
initial condition f (0, ⋅) to this equation is described by a functional transform of the
Bernoulli measure δ−1+δ+1 encoding the “reference” law of one spin. Theorems 6.7
and 6.8 state this result more precisely. One of the most interesting aspects of this
statement is that it suggests a very natural candidate for the limit free energy of the
bipartite model and its generalizations, also phrased in the language of Hamilton-
Jacobi equations, see Questions 6.9 and 6.11 for precise statements. An inequality
between the limit free energy and this candidate limit is proved in [194, 196], but
the converse bound remains an open problem.
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The same approach has already led to more complete results concerning certain
problems of statistical inference, as will be explained in detail in this book. For
clarity of exposition, we will focus on the following relatively simple situation. We
observe a noisy version of a rank-one matrix of the form xx∗, where x = (x1, . . . ,xN)
is a vector of independent and identically distributed (i.i.d.) random variables, and
the superscript ∗ denotes the transposition operator. Precisely, we assume that we
observe the matrix

Y ∶=
√

2t
N

xx∗+W, (0.7)

where t ⩾ 0 is a free parameter that allows us to vary the signal-to-noise ratio, and
W = (Wi j)1⩽i, j⩽N is a matrix of independent standard Gaussian random variables.
We will see in Chapter 4 that this problem is closely related to that of community
detection in random networks of Erdős-Rényi type with diverging average degree.
We wish to answer the following question: given the observation of Y , can we
recover meaningful information about the signal xx∗? One way to assess this is to
monitor the minimal mean-square error

mmseN(t) ∶=
1

N2 inf
g
E∣xx∗−g(Y)∣2 = 1

N2E∣xx∗−E[xx∗ ∣Y ]∣2 (0.8)

between the signal xx∗ and its noisy observation Y . Here, the infimum is taken
over the set of measurable functions g, and for a matrix a, we write ∣a∣ ∶=

√
tr(aa∗),

with tr denoting the trace operator. Assuming that Ex1 = 0 for simplicity, we can
compare this minimal mean-square error with the error one would make by simply
using the null estimator, defining

varN(t) ∶=
1

N2E∣xx∗∣2. (0.9)

It turns out that there exists a critical parameter tc ∈ (0,+∞) such that the following
holds: for t < tc, essentially no information can be obtained about xx∗, in the sense
that the difference between mmseN(t) and varN(t) becomes vanishingly small as
N becomes large; while for t > tc, this difference remains bounded away from
zero as N tends to infinity. In fact, we will be able to characterize exactly the
large-N limit of mmseN(t). This result can be obtained using a variety of methods
[32, 33, 34, 96, 109, 160, 161]. We will use a Hamilton-Jacobi approach developed
in [69, 71, 72, 75, 192, 193], and identify the large-N limit of the minimal mean-
square error (0.8) to be

lim
N→+∞

mmseN(t) = (E∣x1∣2)
2−∂t f (t,0), (0.10)

where f ∶R⩾0×R⩾0→R is the solution to the Hamilton-Jacobi equation

∂t f (t,h)−(∂h f (t,h))2 = 0 on R>0×R>0, (0.11)
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subject to some explicit initial condition. This Hamilton-Jacobi approach has
been extended to a very large class of other models of statistical inference in [75]
(alternative approaches have not yet reached this level of generality).

Before going into this, we will train our skills on the analysis of the much
simpler Curie-Weiss model and its generalizations. The Curie-Weiss model is the
non-disordered version of the SK model: its energy function is obtained by setting
all the interaction parameters gi j to be equal to 1 in (0.1). The identification of
the limit free energy of this model is a straightforward consequence of Cramér’s
theorem on large deviations for sums of i.i.d. random variables. This shortcut
through large deviations does not seem to be available for problems in statistical
inference or spin glasses. Our first goal will be to recover the limit free energy of
the Curie-Weiss model and its variants using the Hamilton-Jacobi approach. This
will give us the opportunity to develop this approach and its associated toolbox in
the simplest possible context. This toolbox will then be ready for us to use, with no
further addition necessary, when we turn to the problems of statistical inference.

Organization of the book

This book is organized as follows. We start in Chapter 1 with an introduction to the
basics of statistical mechanics, where we motivate the notion of a Gibbs measure on
physical grounds, and introduce the Curie-Weiss model as well as its generalizations.
In Chapter 2, we develop the fundamentals of convex analysis and large deviation
principles, and use these to compute the limit of the free energy in the Curie-Weiss
model and its generalizations. This large-deviation approach is not applicable to the
disordered models we want to consider next, so we need to develop an alternative
approach.

In Chapter 3, we define the notion of viscosity solution to a Hamilton-Jacobi
equation, and use it to recover the limit free energy of the Curie-Weiss model. We
discover technical challenges to applying the same method to generalized versions of
the Curie-Weiss model, and develop a new “selection principle” based on convexity
to overcome these. We then turn to statistical inference in Chapter 4, focusing on the
problem of recovering a large symmetric rank-one matrix from a noisy observation.
We discover that the tools developed in the previous chapter apply to this setting
as well, and allow us to give a closed-form description of its phase transitions.
Chapter 5 is preparatory work for a discussion of the more challenging case of spin
glasses. The first half of this chapter is a self-contained introduction to Poisson point
processes, including limit theorems on extreme values of independent and identically
distributed random variables, which we believe to be of wide interest. We finally
turn to the setting of spin glasses in Chapter 6. For the Sherrington-Kirkpatrick
model, we show how to relate the Parisi formula with the Hamilton-Jacobi approach.
We conclude with a more informal discussion on the status of current research for
more challenging models. Appendix A is a self-contained presentation of many of
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the basic results in real analysis and probability theory that are used throughout the
book. Solutions to the exercises are also provided.

Related works

Our main goal with this book is to provide the reader with an inviting presentation
of some results and open problems in mean-field disordered systems which we find
fascinating, following the common thread of the Hamilton-Jacobi approach. We
wish to stress however that we do not claim this to be the one-and-only definitive
way to approach these problems.

Trying to survey the range of works and topics related to those discussed in
this book is a daunting task. We will attempt to fulfill it to the best of our abilities,
hoping that the references listed here will at least provide the reader with good entry
points to explore further according to their interests. Apologies to all those whose
work is not included here.

Chapters 1 and 2 cover very classical material on statistical mechanics, convex
analysis, and large deviations. References on these topics include [117], [53, 108,
137, 186, 229], and [92, 93, 257] respectively.

Concerning the theory of viscosity solutions to Hamilton-Jacobi equations
discussed in Chapter 3, the most classical reference on the topic is probably [84];
we also mention [38, 39, 115] for more accessible presentations that focus on first-
order equations. The notion of viscosity solution was introduced in [83, 85, 114],
and the Hopf-Lax and Hopf formulas were introduced in [139, 158] and proved to
be viscosity solutions in [164] and [37, 165] respectively. The infinite-dimensional
Hamilton-Jacobi equations discussed in Chapter 6 are developed in [73, 74, 194].

The problems of statistical inference discussed in Chapter 4 are also explored
in the surveys [184, 267], along with several aspects not covered here. We also
mention the monograph [174] presenting the interplay between statistical mechanics,
information theory, and combinatorial optimization, with extensive coverage of a
class of methods called message-passing or belief-propagation algorithms that have
shown their usefulness in a wide variety of circumstances.

The calculation of the limit free energy (or mutual information) for the inference
problem discussed in Chapter 4 and its generalizations has been approached using a
large variety of techniques. Together with an interpolation in the spirit of [131, 132,
133], these may involve algorithmic approaches in [32, 95, 96, 147, 161], a cavity
method in the spirit of [13] in [160, 162, 171, 181, 227], concentration of measure in
[109], or adaptive interpolation in [33, 34, 35, 167, 168, 226]. The Hamilton-Jacobi
approach presented in Chapter 4 has been developed in [69, 71, 72, 75, 192, 193].
Examples of models that are covered by this approach but currently not by other
techniques are discussed in Section 7 of [167].

In Chapter 4 on statistical inference, we are mostly concerned with determining
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whether or not one can recover meaningful information about the signal from a noisy
observation, and if so how much. In practice, it is also fundamental to know whether
or not one can recover this information in a reasonable amount of time. We barely
scratch the surface on this point in Section 4.4. The example in Proposition 4.21
shows a situation in which for some regime of parameters, it is theoretically possible
to recover meaningful information about the signal, but the standard (and rapid)
PCA method completely fails. In fact, one expects that in this regime, there is no
polynomial-time algorithm that recovers meaningful information about the signal.
This difference between the moment when one can theoretically infer non-trivial
information about the signal, and the one when one can do so efficiently, is often
called the statistical-to-computational gap. It is believed to exist in a wide variety
of situations, and we refer to [31, 123, 124, 267] for surveys on this.

In Section 4.5, we discuss the relationship between the inference problem (0.7)
and the problem of detecting communities from the observation of a random graph
where the probability for an edge to be drawn between two nodes depends on the
community of each node. A survey on this problem of community detection is [1];
we also refer to [91] where many predictions were put forward at the physics level
of rigour. In the setting in which the average degree of the graph of connections
remains bounded, the identification of the regime of parameters for which one
can reconstruct non-trivial information about the community structure from the
observation of the random graph was achieved in [170, 187, 190] for models with
two communities. To the best of our knowledge, the identification of a closed-
form description of this regime of parameters remains open in settings with more
than two communities, and the difficulties seem to be of a similar nature as those
encountered in the analysis of the bipartite spin-glass model (0.4). We refer in
particular to [5] for positive results in this direction, and again to [91] for several
predictions. A related problem concerns the determination of the asymptotic mutual
information between the community structure and the graph of connections. This
problem was successfully resolved in “convex” cases [4, 80] and even in some
“non-convex” cases [3, 128, 148, 188, 191, 266], but a fully general solution has
still not been identified [128]. (What counts as a “convex” or a “non-convex” model
should hopefully become clear upon reading Chapter 6.) This problem seems very
similar to those presented in Questions 6.9 and 6.11 in the context of spin glasses,
as discussed further in [105, 152].

Books with a focus on spin glasses include [55, 60, 63, 67, 81, 88, 178, 202, 204,
210, 238, 252, 253]. The construction of Poisson-Dirichlet cascades in Sections 5.5
and 5.6 essentially follows [210]. We also refer to [210] for a complete proof of the
Parisi formula (6.8).

The idea that the limit free energy of the SK model should be described by
the Parisi formula emerged in the series of works [216, 217, 218] based on the
non-rigorous replica method. The physical understanding of the model progressed
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further in many contributions including [177, 176, 178, 219]. A mathematical proof
of the Parisi formula was then obtained in [131, 249]. A more robust proof was later
found in [209, 211] using the idea of ultrametricity discussed in Section 5.7, and
also inspired by [11, 13, 21, 57, 127, 206, 207, 208]. We refer to [210] for a more
thorough presentation of historical developments on this topic. The Parisi formula
for spherical models was obtained in [77, 248], and takes a form that was predicted
in [86].

Early contributions in the physics literature on the bipartite spin-glass model (0.4)
include [119, 120, 151, 155]. On the mathematical side, the limit free energy of
spin glasses with multiple types has been identified in a number of cases. For
Hamiltonians such that (6.163) holds, the limit free energy has been identified in
[41, 205, 212, 213, 214] when ξ is convex over RD×D; see also [47, 48, 154, 215]
in the spherical case. The more general case when ξ is convex over the space of
positive semi-definite matrices is obtained in [70, 73, 194, 196] using some of the
ideas presented here. For fully general models in the form of (6.163), Theorem 6.12
from [70] imposes strong constraints on what the limit free energy can be; it is at
present unclear whether this statement is a complete characterization of the limit
free energy or not (even though there are choices of (t,q) such that (6.171) is
satisfied for multiple pairs (q′,p), it may still be the case that, for instance, there is
only one continuous function f that satisfies the properties listed in Theorem 6.12).
Spin glasses with multiple types were already present in the first proof of the Parisi
formula from [249, 250, 252, 253], in the form of two copies of the original system
coupled together through a constraint on their overlap.

That there exist connections between limit free energies of statistical-mechanics
systems and solutions to Hamilton-Jacobi equations dates back at least to [64, 199];
see also [49] for a survey of related contemporary research topics. In the context of
spin glasses, heuristic connections between limit free energies and Hamilton-Jacobi
equations were first pointed out in [8, 42, 43, 130], under a replica-symmetric or
one-step replica symmetry breaking assumption. The possibility to rephrase the
Parisi formula in terms of a Hamilton-Jacobi equation as in Theorems 6.7 and 6.8 is
from [195, 197]. Theorems 6.10 and 6.12 are from [194] (generalized in [196]) and
[70] respectively. A high-temperature version of Theorem 6.12 is in [97].

For spherical models with multiple types, the limit free energy is identified in
some non-convex cases in [242, 243, 244, 245] using an approach inspired by the
early work [254], and in [29] for the bipartite spherical SK model. We also mention
[51, 144, 153, 173] for a geometric analysis of the energy landscape of spin glasses
with multiple types; see also [23, 24, 118, 240] in the single-type case.

By taking a low-temperature limit, the determination of the limit free energy
of spin glasses allows one to infer the asymptotic value of the maximum of the
Hamiltonian; see Exercise 6.3 and [26, 78, 102]. In the context of the Sherrington-
Kirkpatrick model, with HN as in (6.3), this would amount to determining the
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asymptotic behaviour of the maximum of HN(σ)/N over σ ∈ ΣN ; we denote the
limit by OPT. One may ask whether there exists an efficient algorithm for actually
finding a configuration σ ∈ ΣN such that HN(σ)/N is close to OPT. A specific
value ALG described by an analogue of the Parisi formula was identified such that
there exists an efficient algorithm that can identify a configuration σ with HN(σ)/N
approximately equal to ALG with high probability [110, 183, 235, 241]. Moreover,
it was argued in [141] that no algorithm within a broad class can exist which
improves upon this value. Whether or not ALG =OPT depends on the specifics of
the spin-glass model at hand. Remarkably, these results on algorithmic thresholds
have been extended to non-convex models such as the bipartite model in (0.4),
despite the fact that we do not know of a characterization of OPT or of the free
energy in this case [142, 143]. The reference [27] surveys a number of results
related to optimization algorithms for spin glasses.

The study of mean-field spin glasses has inspired developments in many other
contexts. Works that explore connections between spin glasses and neural networks
include [9, 40, 44, 45, 46, 89, 122, 135, 169, 256]; see [7, 18, 90, 113, 121, 136,
225, 255] for overviews. For a suitable choice of the reference measure denoted
by PN in Chapter 6, the law of the spins of a given type in the bipartite model (0.4)
is the same as the law of the spins in the Hopfield model [40]. Some versions of the
perceptron model can be obtained similarly. The Hopfield and perceptron models
were introduced in [17, 140, 166, 172, 180] as toy models for memory storage and
retrieval or classification tasks. Early works on the statistical mechanics of these
models include [19, 20, 125, 126, 221, 222, 223]; recent rigorous works include
[56, 101, 253, 264]. Among many other topics related to spin glasses, we mention
random constraint satisfaction problems [98, 100, 157, 174, 179, 182], the random
assignment and travelling salesman problems [14, 15, 175], error correcting codes
in information theory [228], and combinatorial problems such as graph colouring
[79, 99, 198]. A recent book on “spin glass theory and far beyond” is [67].
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Course outline

We describe here how the series of lectures in Zurich were organized. We do not
believe that this is the optimal organization, and some of the results discussed in
the book were not known at the time (in particular Theorem 6.12), but we hope
that it can still be of some interest. This series of lectures comprised 12 sessions of
2×45 min. The first session was an overview of motivations and a description of the
plan for the course. The second session started with a refresher on large deviations
concluding with Theorem 2.16, followed by the contents of Section 1.1. The third
session covered the rest of Chapter 1 and finished with Theorem 2.19. The fourth
session covered Sections 3.1 and 3.2. The fifth session contained the proof of the
comparison principle in Theorem 3.5 in the simpler case where the space domain Rd

is replaced by the torus, the statements of the variational formulas in Theorems 3.8
and 3.13 without proofs, and concluded with Corollary 2.20 recovered using the
Hamilton-Jacobi approach. The plan for the sixth session was to cover Section 3.6,
with a direct proof of the convex selection principle in Theorem 3.21 that bypasses
Lemma 3.23, and also to present some material from Subsection 2.1.3 on subdiffer-
entials. This actually spilled over to the seventh session. The rest of this session
was spent discussing the setup of the statistical inference problem in Chapter 4,
and motivating it informally in relation with the problem of community detection
discussed in Section 4.5. The eighth session covered Section 4.1 and Section 4.3 up
to (4.83), mostly skipping Section 4.2 except for the simple Gaussian integration
by parts in (4.29) and some simple generalization of it. The ninth session was
meant to cover the rest of Section 4.3, taking the concentration of the free energy
for granted (any estimate stating that (4.101) tends to zero with N will do, and one
can show an upper bound of the order of N−1/3 on this quantity using simple argu-
ments based on the Efron-Stein and Gaussian Poincaré inequalities in Exercises 4.7
and 4.8). This actually spilled over a bit to the tenth session. Also, the proof of
Theorem 4.9 was only obtained under the additional assumption that Ex1 = 0, since
the convex selection principle was only shown in the form of Theorem 3.21, but
the more refined Lemma 3.22 is needed to conclude in general here. The major
part of the tenth session was spent covering Section 6.2 and its analogue for the
bipartite model, and discussing the new difficulties that show up. The eleventh
session started with a discussion of the random energy model from Section 6.3,
and then presented the main results of Section 5, in particular Proposition 5.13, as
well as elementary properties of the Poisson-Dirichlet process from Section 5.5. In
the last session, the Poisson-Dirichlet cascades from Section 5.6 were defined, the
contents of Section 6.4 were covered without proving everything, and with some
hand-waving for the remainder of Chapter 6. A recording of these lectures can be
found at https://tinyurl.com/HJ-ETHZ.

Tomas Dominguez
University of Toronto

Jean-Christophe Mourrat
ENS Lyon and CNRS

https://tinyurl.com/HJ-ETHZ


Chapter 1
Introduction to statistical mechanics

In this chapter, we introduce the basic objects from statistical mechanics that we
will explore throughout the rest of the book. In Section 1.1, we introduce and
motivate the notion of a Gibbs measure from a physical point of view, as well
as the notion of free energy. The rest of the book will be devoted to computing
this fundamental quantity for models of increasing complexity. In Section 1.2,
we consider the classical Ising model, and give a brief historical overview of its
developments. Finally, in Section 1.3, we trivialize the geometry of the Ising model
to obtain the Curie-Weiss model. The Curie-Weiss model is simple enough that its
free energy can be computed exactly using the classical large deviation principles
discussed in Chapter 2, but it is rich enough to capture many of the challenges
present in more sophisticated models. For this reason, we will then use it as a
test-bed for the development of the Hamilton-Jacobi approach.

1.1 Gibbs measures

We start by motivating the notion of a Gibbs measure on physical grounds. In
this section we will avoid delving into too many technicalities, so we will allow
ourselves to not be as rigorous as in the rest of the book. Consider a system of N
units, which can each be in one of K states {1,2, . . . ,K}. We can think of these
units as being particles. We think of K as being fixed, while N is very large and will
be sent to infinity. Each state k ∈ {1, . . . ,K} has an associated energy ek > 0, and we
assume that the system is “isolated” in the sense that its total energy is fixed, say
at Ne for some constant e in the convex hull of {e1, . . . ,eK}. The state of the system
can be represented by a vector x = (x1, . . . ,xN) ∈ {1, . . . ,K}N , and we denote by

Nk(x) ∶=
N
∑
n=1

1{xn=k}. (1.1)

12
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the number of units in state k. The constraint on the total energy can be encoded as

K
∑
k=1

Nk(x)ek =Ne. (1.2)

We assume that the system is uniformly distributed among all possible config-
urations x that satisfy the constraint (1.2). This assumption can be related to
Hamiltonian dynamics and the Boltzmann hypothesis, but we simply take it for
granted here.

A natural question is to determine the probability of finding a particular unit in
state k,

P{xi = k} = 1
N

N
∑
n=1

P{xn = k} = 1
N
ENk(x), (1.3)

when the number N of units in the system is very large. We will argue, without
full rigour nor attention to taking integer parts at the right places, that Nk(x)/N
converges in probability to a constant as N tends to infinity, and we will identify
this constant. In order to do so, we fix a probability vector

p = (p1, . . . , pK) ∈RK
⩾0 with

K
∑
k=1

pk = 1, (1.4)

and we determine the asymptotic behaviour of the number of configurations x such
that (N1(x), . . . ,NK(x)) = (N p1, . . . ,N pK). For a fixed N, this number is given by
the multinomial coefficient

( N
N p1
)(N −N p1

N p2
)⋯(N −∑

K−1
k=1 N pk

N pK
) = N!
(N p1)!⋯(N pK)!

. (1.5)

Using that N! = exp(N logN −N +O(logN)), we can rewrite this as

exp(N logN −N +
K
∑
k=1
[(N pk) log(N pk)−N pk]+O(logN))

= exp(−N
K
∑
k=1

pk log pk+O(logN)). (1.6)

This motivates the introduction of the quantity

S(p) ∶= −
K
∑
k=1

pk log(pk), (1.7)

which is called the entropy of p. The calculation leading to (1.6) shows that, if p
and p′ are probability vectors with S(p) > S(p′), then there are exponentially more
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configurations with (N1(x), . . . ,NK(x)) = (N p1, . . . ,N pK) than there are configura-
tions with (N1(x), . . . ,NK(x)) = (N p′1, . . . ,N p′K). In other words, if S(p) > S(p′),
then the configurations consistent with p vastly outnumber those that are consistent
with p′, and so if we pick one configuration uniformly at random, it is overwhelm-
ingly more likely that we observe p rather than p′. To be more precise, with
overwhelming probability, we will observe (N1(x), . . . ,NK(x)) ≃ (N p∗1 , . . . ,N p∗K),
for the vector p∗ that maximizes the entropy (1.7) within the set

Λ ∶= {p ∈ [0,1]K ∣
K
∑
k=1

pk = 1 and
K
∑
k=1

pkek = e}. (1.8)

Using the strict concavity of the entropy, one can show that this maximizer p∗ exists
and is unique. Our initial question regarding the probability of finding a particular
unit in a given state has therefore been answered: asymptotically as N tends to
infinity, the proportion of particles in state k ∈ {1, . . . ,K} is about p∗k . We can in fact
go a bit further and make p∗ more explicit. By the Lagrange multiplier theorem,
there exist constants α,β ∈R such that for every k ∈ {1, . . . ,K},

∂pkS(p∗) = α +βek. (1.9)

Rearranging gives a constant Z such that for every k ∈ {1, . . . ,K},

p∗k =
exp(−βek)

Z
, (1.10)

and since ∑K
k=1 p∗k = 1, the constant Z can be rewritten as

Z =
K
∑
k=1

exp(−βek). (1.11)

The probability measure on {1, . . . ,K} with probability vector p∗ given by (1.10) is
called the Gibbs measure at inverse temperature β . When one builds the theory of
thermodynamics from first principles, this Lagrange multiplier β is defined to be the
inverse temperature of the physical system (up to multiplication by the Boltzmann
constant which we set equal to 1 here). The parameter β is fixed in such a way that
the average energy of the system with respect to the Gibbs measure is e,

∑K
k=1 ek exp(−βek)
∑K

k=1 exp(−βek)
=

K
∑
k=1

p∗k ek = e. (1.12)

In most physical systems, there is room for very high energy levels, so we typically
have β > 0; however, this is not guaranteed in our current context, and will depend
on how e compares with the arithmetic average of (e1, . . . ,eK). A direct calculation



1.1 Gibbs measures 15

allows us to relate the entropy, the average energy and the inverse temperature of
the system,

S(p∗) =
K
∑
k=1

p∗k log(Z exp(βek)) = log(Z)+βe. (1.13)

The quantity log(Z) should be called the free entropy; however, throughout the book
we will call any quantity of this form the free energy of the system. In the language
of physics, the free energy should be minus the free entropy divided by β , so that it
is indeed expressed in the same units as e. But since the interpretation of the inverse
temperature will become less transparent as we proceed, and since the term free
energy is much more commonly used, we will stick to the less proper terminology.
The quantity Z itself is often called the partition function. We mention in passing
that the identity (1.13) is a shadow of a convex-duality relationship between the
entropy and the free energy of a system, if we think of them as functions of e and −β

respectively; in particular,

−S(p∗) = sup
β ′∈R
(−β

′e− log
K
∑
k=1

exp(−β
′ek)). (1.14)

We also refer to Corollaries 4.14 and 4.15 in [59] for a more general view on this.
We have therefore been able to show that the probability of finding a microscopic

unit of the system in a particular state is given by the Gibbs measure at inverse tem-
perature β , and that the inverse temperature β can be measured from macroscopic
quantities of the system such as the free energy, the entropy and the average energy.
Although we have considered a setting in which the microscopic and macroscopic
parts of the system are made of identical units, a refined version of the argument
allows to lift this restriction. To frame our findings in concrete terms, suppose we
have a piece of material at equilibrium in a room at inverse temperature β , and
assume the accessible energy levels of the material are (e1, . . . ,eK). We should
then expect to find the piece of material in state k with probability proportional to
exp(−βek). For further motivation on the physical terminology and the notion of a
Gibbs measure, we refer the interested reader to Chapter 1 in [117].

Exercise 1.1. Let (ak)k⩾1 be a sequence of real numbers.

(i) Show that, for each K ⩾ 1, we have

lim
N→+∞

∣ 1
N

log(
K
∑
k=1

exp(Nak))− max
1⩽k⩽K

ak∣ = 0. (1.15)

(ii) How rapidly can K grow with N for (1.15) to still remain valid?
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1.2 The Ising model

The Ising model is undoubtedly the most famous model in the field of statistical
mechanics. It was introduced by Willhelm Lenz and his student Ernst Ising in 1920
to gain a theoretical understanding of the phase transition from ferromagnetic to
paramagnetic behaviour first observed in 1895 by Pierre Curie. In the lab, Curie
found that, when subjected to a magnetic field, certain materials have a “memory”
of the magnetic field they have been exposed to, while others do not. Materials of
the former kind are said to exhibit ferromagnetic behaviour, while materials of the
latter kind are said to exhibit paramagnetic behaviour. Perhaps surprisingly, Curie
observed that materials can be made to transition from ferromagnetic to paramag-
netic behaviour by increasing their temperature [87]. Shortly after these empirical
observations, Auguste Piccard and Pierre Weiss gave a partly phenomenological ex-
planation of what they called the magnetocaloric phenomenon, and proposed some
formulas for the magnetic susceptibility of materials near the critical temperature at
which the phase transition occurs [262]. It was following this line of investigation
that Wilhelm Lenz and Ernst Ising introduced the Ising model in 1920.

In the Ising model, atoms are arranged on a finite box in the integer lattice Zd .
Each atom carries a magnetic moment called a spin which can either be in the −1
or in the +1 orientation. The atoms interact with their nearest neighbours in such a
way as to favour the alignment of spins. To formalize this model, let

BN ∶= {−N, . . . ,N}d (1.16)

denote the box of side-length 2N in the integer lattice. Given two lattice points
i, j ∈ BN , we write i ∼ j to mean that i and j are nearest-neighbours in the sense that
they differ by one unit in at most one coordinate. A configuration of spins may
be encoded by a vector σ ∈ {±1}BN ∶= {−1,+1}BN , and the interactions between the
spins can be described by the energy function, or Hamiltonian, of the system,

HN(σ) ∶= ∑
i, j∈BN

i∼ j

σiσ j. (1.17)

Physicists would typically add a minus sign to the Hamiltonian, but here we omit
this minus sign for convenience of notation. With our sign convention, the system
has a preference for larger values of the energy function as opposed to smaller
ones. The discussion in Section 1.1 implies that, at inverse temperature β > 0, the
probability of finding the system in the configuration σ is the Gibbs weight

GN(β ,σ) ∶=
exp(βHN(σ))

ZN(β)
(1.18)

with partition function

ZN(β) ∶= ∑
σ∈{±1}BN

exp(βHN(σ)). (1.19)
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In view of the Hamiltonian in (1.17), this means that the system will have a prefer-
ence for configurations in which neighbouring spins are equal. In the presence of
an external magnetic field of intensity h ∈R, the Hamiltonian at inverse temperature
β > 0 is enriched with the term h∑i∈BN σi to obtain

HN(β ,h,σ) ∶= β ∑
i, j∈BN

i∼ j

σiσ j +h∑
i∈BN

σi (1.20)

whose associated Gibbs measure is

GN(β ,h,σ) ∶=
expHN(β ,h,σ)

ZN(β ,h)
(1.21)

for the enriched partition function

ZN(β ,h) ∶= ∑
σ∈{±1}BN

expHN(β ,h,σ). (1.22)

From a physical perspective, it would be more natural that the inverse temperature β

multiplies both terms in (1.20), in other words to replace h by βh in (1.20), but the
parametrization chosen in (1.20) is much more convenient to work with; and this is
why we include it into the definition of HN as opposed to encoding the dependency
in β as in (1.18). To study the empirical observations of Curie from a theoretical
point of view, we need to understand the mean magnetization

mN(β ,h) ∶= ∑
σ∈{±1}BN

( 1
∣BN ∣

∑
i∈BN

σi)GN(β ,h,σ), (1.23)

where ∣BN ∣ denotes the cardinality of the box BN . One possible approach to un-
derstand the behaviour of the mean magnetization (1.23) when the number of
particles N tends to infinity is to start by studying the free energy

FN(β ,h) ∶=
1
∣BN ∣

logZN(β ,h). (1.24)

Indeed, a direct computation shows that mN(β ,h) = ∂hFN(β ,h). Moreover, using
a box-decomposition argument, it is possible to show that the sequence (FN)N⩾1
admits a limit f ∶R⩾0×R→R, and that if (β ,h) is a point of differentiability of f ,
then

m(β ,h) ∶= lim
N→+∞

mN(β ,h) = ∂h f (β ,h). (1.25)

The limit free energy f therefore encodes much of the physical information about
the system. It also has the advantage of being more “robust” to perturbations of the
model than the mean magnetization mN(β ,h)— for instance, it does not depend on
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boundary conditions one might introduce to encode some interaction between the
spins on the inner boundary of the box BN and the outside environment. In contrast
to the empirical evidence found by Curie, Ising [145] was able to show that in the
one-dimensional setting, d = 1, the limit magnetization curve h↦m(β ,h) remains
smooth for every fixed β > 0. He also suggested that the same would happen in
higher dimensions, d ⩾ 2. However, in 1936, Rudolf Peierls was able to prove that
in any dimension d ⩾ 2, the function h↦m(β ,h) does in fact have a discontinuity
at h = 0 when β is sufficiently large [224]. This is depicted in Figure 1.1 and is
in agreement with Curie’s empirical observations. Indeed, it implies that at low
temperature and for h > 0, the difference between the fraction of spins in the +1 and
in the −1 directions remains bounded away from zero, no matter how small h is.
In other words, the system retains some global ordering even in the limit of h > 0
going to zero. In contrast, in the high temperature regime, the random fluctuations
dominate and no ordering can be preserved as h > 0 is sent to zero.

−1

1

h

mN (β, h)

−1

1

h

mN (β, h)

Figure 1.1 Dependence of the magnetization (1.23) on the magnetic intensity h in the
two-dimensional Ising model for N large and β > 0 small (on the left) and large (on the
right).

The one-dimensional and two-dimensional Ising models are explored in Exer-
cises 1.2 and 1.3. In Exercise 1.2, we compute the limit of the free energy (1.24)
in the one-dimensional Ising model explicitly. In higher dimensions, d ⩾ 2, it is
by no means guaranteed that a self-contained description of the limit free energy
should exist. Surprisingly, in the 1940’s, Lars Onsager and others managed to
give an explicit description of the limit free energy of the two-dimensional Ising
model [149, 150, 203, 246, 265]. This allowed them to determine several critical
exponents which were completely unexpected. By opening a first window into
the study of critical phenomena and discovering many unexpected results, their
work became extremely influential. The approach developed in this series of works
rested on an ambitious generalization of the method used in Exercise 1.2 for the
one-dimensional Ising model based on “transfer matrices”. Among other hurdles,
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it required the asymptotic analysis of the determinants of large Toeplitz matrices,
which itself appealed to considerations involving orthogonal polynomials. Other
approaches to determine the limit free energy were developed later, for instance by
leveraging connections with domino tilings [68, 185]. The calculation of the limit
free energy for the two-dimensional Ising model is, in some sense, miraculous, and
generalizations to higher dimensions, d ⩾ 3, are unlikely to be found. In contrast,
the models we consider in the rest of the book are of mean-field type. This means
that the rich geometry of the integer lattice is replaced by a much simpler geometry,
typically that of the complete graph, making the models invariant under any permu-
tation of the index set. This very high degree of symmetry gives more hope that the
identification of the limit free energy will be amenable to robust analytic techniques.
For much more about the Ising model, we refer the interested reader to [117].

Exercise 1.2. For every inverse temperature β > 0 and magnetic intensity h ∈ R,
consider the one-dimensional free energy (1.24),

FN(β ,h) ∶=
1
N

log ∑
σ∈{±1}N

exp(β
N−1
∑
i=1

σi σi+1+βσN σ1+h
N
∑
i=1

σi), (1.26)

(i) By rewriting FN in terms of the Nth power of a 2-by-2 matrix, show that

lim
N→+∞

FN(β ,h) = log(eβ cosh(h)+(e2β cosh2(h)−2sinh(2β))
1
2). (1.27)

(ii) Deduce that the limit (1.25) of the mean magnetization is continuous in h. It
may be helpful to refer to Propositions 2.11 and 2.15 as well as Exercise 2.6.

Exercise 1.3. Through a slight abuse of notation, consider the Hamiltonian

HN(σ) ∶= ∑
i, j∈BN+1

i∼ j

σiσ j (1.28)

on {±1}BN with the boundary condition σi ∶= 1 for i ∉ BN and the convention that
the sum (1.28) is taken over the edge set of the lattice BN+1 as opposed to its vertex
set. For each pair of neighbours i ∼ j ∈ BN+1 with σiσ j = −1, draw an edge centred
at the midpoint i+ j

2 in the direction orthogonal to the edge (i, j). These edges create
contours that delimit regions in which the sign of the spins is constant. Denote by
Γ(σ) the set of these edges and consider the Gibbs measure defined for a bounded
and measurable f = f (σ) by

⟨ f (σ)⟩ ∶=
∑σ∈{±1}BN f (σ)exp(βHN(σ))
∑σ∈{±1}BN exp(βHN(σ))

. (1.29)

(i) Show that HN(σ)+2∣Γ(σ)∣ does not depend on σ ∈ {±1}BN .
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(ii) Show that if σ0 =−1, then the origin must be surrounded by at least one contour
in Γ(σ).

(iii) For any contour γ , show that ⟨1{γ⊆Γ(σ)}⟩ ⩽ exp(−2β ∣γ ∣).

(iv) Show that for β sufficiently large liminfN→+∞⟨σ0⟩ > 0.

(v) Conclude that for large β the Ising model exhibits ferromagnetic behaviour.

1.3 The Curie-Weiss model

The Curie-Weiss model is the non-disordered mean-field model obtained by triv-
ializing the geometry of the Ising model. In the Curie-Weiss model, the energy
associated with each configuration σ ∈ {±1}N ∶= {−1,+1}N at inverse temperature
t ⩾ 0 and with external magnetic field of intensity h ∈R is

HN(t,h,σ) ∶=
t
N

N
∑

i, j=1
σiσ j +h

N
∑
i=1

σi. (1.30)

Up to relabelling the spin coordinates, this corresponds to the one-dimensional
Ising model on the box BN/2 where the restriction that a spin only interacts with its
nearest neighbours is dropped, and a spin can instead interact with all other spins.
To ensure that the Hamiltonian (1.30) remains of order N despite these additional
terms, the interaction term in (1.30) is divided by N. We have chosen to denote the
inverse temperature parameter by t ⩾ 0 as opposed to β ⩾ 0 as this parameter can
be interpreted as a time variable in the partial differential equation that will appear
later. Just like in the Ising model, the probability of finding the Curie-Weiss model
in the configuration σ ∈ {±1}N is the Gibbs weight

GN(t,h,σ) ∶=
expHN(t,h,σ)

ZN(t,h)
, (1.31)

with partition function

ZN(t,h) ∶= ∑
σ∈{±1}N

expHN(t,h,σ). (1.32)

As in Exercise 1.3, we denote the Gibbs average of any bounded and measurable
function f ∶ {±1}N →R by

⟨ f (σ)⟩ ∶=
∑σ∈{±1}N f (σ)expHN(t,h,σ)
∑σ∈{±1}N expHN(t,h,σ)

. (1.33)



1.3 The Curie-Weiss model 21

Notice that the bracket ⟨⋅⟩ depends on N, t and h, although this dependence is
kept implicit in the notation. As discussed in Section 1.2, a key goal of ours is to
understand the mean magnetization

mN(t,h) ∶= ⟨
1
N

N
∑
i=1

σi⟩ (1.34)

as a function of the model parameters, in the regime of large N. To understand this
object in the setting of the Curie-Weiss model, we will first study the free energy

FN(t,h) ∶=
1
N

log
1

2N ∑
σ∈{±1}N

expHN(t,h,σ). (1.35)

The factor of 2−N in (1.35) has been introduced so that we can interpret the normal-
ized sum 2−N∑σ∈{±1}N as integration against the uniform probability measure on
{±1}N ; its presence is inconsequential as it amounts to subtracting log2 from FN .

In Chapter 2 we will use the classical theory of large deviations to explicitly
compute the limit of the free energy (1.35). This will be possible as the Hamilto-
nian (1.30) depends on a spin configuration σ ∈ {±1}N only through the sample
average

SN(σ) ∶=
1
N

N
∑
i=1

σi. (1.36)

Indeed, the Hamiltonian (1.30) can be written as

HN(t,h,σ) =N(tSN(σ)2+hSN(σ)). (1.37)

From the formula for the limit free energy, we will be able to leverage the envelope
theorem discussed in Section 2.4 to understand the magnetization (1.34).

Unfortunately, for more complex mean-field models, it is not possible to deter-
mine the limit of the free energy by expressing the Hamiltonian as a function of a
simple quantity such as SN(σ) whose large deviations can be figured out separately.
In Chapter 3 we will therefore develop a Hamilton-Jacobi approach independent of
large deviation principles to determine the limit of the free energy (1.35). To face as
many of the difficulties presented by more complex models as possible in a simple
setting where large deviation principles can be used to verify our results, we will
also consider variants of the Curie-Weiss model which generalize it in two ways:

(i) we will replace the term SN(σ)2 in the Hamiltonian (1.37) by ξ(SN(σ)) for
an arbitrary smooth function ξ ∈C∞(R;R);

(ii) we will replace the uniform probability measure on {±1}N by an arbitrary prob-
ability measure PN on RN whose support is contained in the closed Euclidean
ball of radius

√
N centred at the origin.
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The free energy of the generalized Curie-Weiss model is therefore

FN(t,h) ∶=
1
N

log
ˆ
RN

expN(tξ(SN(σ))+hSN(σ))dPN(σ). (1.38)

The free energy (1.35) can be recovered by setting ξ(x) = x2 and by choosing PN to
be the uniform probability measure on {±1}N . Once we have understood how to
use the Hamilton-Jacobi approach to determine the limit of the free energy in the
generalized Curie-Weiss model, we will see that the techniques developed along
the way can be used to study many interesting models such as rank-one matrix
estimation, community detection, and, at least partially, spin glass models.



Chapter 2
Convex analysis and large deviation principles

In this chapter we use the theory of large deviations to establish a variational
formula for the limit of the free energy in the generalized Curie-Weiss model. In
Section 2.1, we give a brief introduction to convex analysis. In particular, we
prove the Fenchel-Moreau duality theorem and the local Lipschitz continuity of
convex functions. While not really pertaining to convex analysis, we also show the
Rademacher theorem on the almost everywhere differentiability of locally Lipschitz
continuous functions. We conclude the section by introducing and studying the
basic properties of subdifferentials of convex functions. In Section 2.2, we prove
large deviation principles, which we then use in Section 2.3 to compute the limit of
the free energy in the generalized Curie-Weiss model. Section 2.4 is devoted to the
envelope theorem, which allows us to differentiate the variational formula for the
limit free energy and study the limit mean magnetization in the Curie-Weiss model.

2.1 Convex analysis

Convex analysis is the branch of real analysis devoted to the study of convex sets
and convex functions. Although this theory can be developed on very general vector
spaces [108], we will restrict our attention to the Euclidean space Rd . A set C ⊆Rd

is convex if for every x,y ∈C and α ∈ (0,1),

αx+(1−α)y ∈C. (2.1)

A function f ∶Rd →R∪{+∞} is convex if for every x,y ∈Rd and α ∈ (0,1),

f (αx+(1−α)y) ⩽ α f (x)+(1−α) f (y). (2.2)

This definition generalizes the classical definition of convexity of a real-valued
function f defined on a convex set C ⊆Rd . Indeed, if a function f ∶C→R is convex
in the classical sense, then extending it to be +∞ on Rd ∖C gives a function which

23
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is convex in the sense (2.2). Conversely, if a function f ∶Rd →R∪{+∞} is convex
in the sense (2.2), then it is convex in the classical sense on its effective domain

dom f ∶= {x ∈Rd ∣ f (x) < +∞}, (2.3)

which is a convex set. We say that a function f ∶Rd →R∪{+∞} is proper if its
effective domain is not empty. The convexity of functions and sets are intimately
related. A function f ∶Rd →R∪{+∞} is convex if and only if its epigraph

epi f ∶= {(x,λ) ∈Rd ×R ∣ f (x) ⩽ λ} (2.4)

is convex, while a set C ⊆Rd is convex if and only if its indicator function

IC(x) =
⎧⎪⎪⎨⎪⎪⎩

0 if x ∈C
+∞ otherwise

(2.5)

is convex. The notion of lower semi-continuity will also play an important role.
We say that a function f ∶Rd →R∪{+∞} is lower semi-continuous if its epigraph
is closed. It is readily verified that a function f ∶ Rd → R∪{+∞} is lower semi-
continuous if and only if, for every sequence (xn)n⩾1 ⊆Rd converging to some point
x ∈Rd , we have f (x) ⩽ liminfn→+∞ f (xn).

Exercise 2.1. Let C1,C2 ⊆Rd be convex sets. Show that the set difference

C2−C1 ∶= {x2−x1 ∣ x1 ∈C1 and x2 ∈C2} (2.6)

is also convex.

Exercise 2.2. Let C be a convex set whose interior is not empty. Show that

int(C) = int(C), (2.7)

where we use the notation int(A) to denote the interior of a set A. Deduce that
∂C = ∂C.

Exercise 2.3. Let C be a closed convex set whose interior is not empty. Prove that C
is the closure of its interior,

C = int(C) (2.8)

Exercise 2.4. Let A be a subset of Rd , and denote by

conv(A) ∶= {
n
∑
i=1

αixi ∣ xi ∈ A,λi ∈ [0,1] with
n
∑
i=1

λi = 1, and n ⩾ 1} (2.9)

its convex hull. Show that any x ∈ conv(A) is a convex combination of at most d+1
points of A.
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Exercise 2.5. Let A be a compact subset of Rd . Prove that its convex hull conv(A)
is also compact.

Exercise 2.6. Let X be a bounded random variable taking values in Rd . Show that
the log-Laplace transform ψ ∶Rd →R defined by

ψ(λ) ∶= logEexp(λ ⋅X) (2.10)

is convex.

Exercise 2.7. Fix an index set I, and for each α ∈ I, let fα ∶Rd →R∪{+∞} be a
convex function. Show that the supremum function

sup
α∈I

fα (2.11)

is convex. Prove the same statement with convex replaced by lower semi-continuous.

Exercise 2.8. Let f = f (x,y) ∶Rd ×Rk →R∪{+∞} be a convex function (of the
pair (x,y)). For every x ∈Rd , we define

g(x) ∶= inf
y∈Rk

f (x,y).

Assuming that g takes values in R∪{+∞}, show that g is convex.

Exercise 2.9. We fix a function f ∶Rd →R∪{+∞} and define

L ∶= {g ∶Rd →R∪{+∞} ∣ g ⩽ f and g is lower semi-continuous}. (2.12)

Assuming that the set L is not empty, we define the lower-semicontinuous envelope
f ∶Rd →R∪{+∞} of the function f as the supremum of all functions in L, that is
f = supg∈Lg. For every x ∈Rd , we write

liminf
y→x

f (y) ∶= lim
r↘0

inf{ f (y) ∣ ∣y−x∣ ⩽ r}. (2.13)

(i) Show that f is lower semi-continuous.

(ii) Show that for every x ∈Rd , we have f (x) = liminfy→x f (y).

(iii) Show that if f is convex, then f is convex.
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2.1.1 The Fenchel-Moreau duality theorem

The main result in convex analysis that we will discuss is the Fenchel-Moreau
theorem. This result ensures that a convex and lower semi-continuous function is
equal to its convex bi-dual. It will play an important role in obtaining variational
formulas for limit free energies from the Hamilton-Jacobi approach. For instance,
it will be used in Chapter 3 to recover the formula for the limit free energy in the
Curie-Weiss model that we will prove in this chapter. The convex dual of a proper
function f ∶Rd →R∪{+∞} is the function f ∗ ∶Rd →R∪{+∞} defined by

f ∗(λ) ∶= sup
x∈Rd
(λ ⋅x− f (x)), (2.14)

If f ∗ is proper, then we can iterate this operation and obtain the convex bi-dual of f ,
which is the function f ∗∗ ∶Rd →R∪{+∞} defined by

f ∗∗(x) ∶= ( f ∗)∗(x) = sup
λ∈Rd
(x ⋅λ − f ∗(λ)). (2.15)

For instance, if f (x) ∶= p ⋅x+a is the affine function with normal vector p ∈Rd and
intercept a ∈R, then its convex dual is given by

f ∗(λ) ∶=
⎧⎪⎪⎨⎪⎪⎩

−a if λ = p
+∞ otherwise

(2.16)

while its convex bi-dual is f itself,

f ∗∗(x) = p ⋅x+a = f (x). (2.17)

This is a very important special case of the Fenchel-Moreau theorem. Indeed, to
prove the Fenchel-Moreau theorem we will first show that a convex and lower semi-
continuous function f ∶Rd →R∪{+∞} is the supremum of its affine minorants, and
we will then leverage this observation as well as the basic properties of the convex
dual established in Exercise 2.10. A function g ∶Rd →R is an affine minorant of f if
g is an affine function and g ⩽ f . This representation result for convex functions will
be deduced from the supporting hyperplane theorem, which itself is a special case
of the Hahn-Banach separation theorem. The Hahn-Banach separation theorem is
the geometrically intuitive statement that any two disjoint convex sets C1,C2 ⊆Rd

may be separated by a hyperplane. Although this result is classical, to keep the
book as self-contained as possible, we will provide a full proof. We will first use
projection operators onto closed and convex sets to show that convex sets can be
linearly separated from singletons that they do not contain, and that this separation
is strict if the convex set is closed. We will then deduce the Hahn-Banach separation
theorem from this special case.
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Lemma 2.1 (Projection). If C ⊆Rd is a non-empty closed convex set and x ∈Rd ,
then there exists a unique point PC(x) ∈C with

∣x−PC(x)∣2 = inf{∣x−y∣2 ∣ y ∈C}. (2.18)

Moreover, a point y ∈C is the projection PC(x) of x onto C if and only if for all z ∈C,

(x−y) ⋅ (z−y) ⩽ 0. (2.19)

Proof. Fix z ∈C, and observe that

inf{∣x−y∣2 ∣ y ∈C} = inf{∣x−y∣2 ∣ y ∈C and ∣x−y∣ ⩽ ∣x− z∣}.

The infimum on the right side is achieved at some point PC(x) as it consists in
minimizing the continuous function y ↦ ∣x− y∣2 over a compact set. To prove
the uniqueness of this minimizer, suppose that y1,y2 are two minimizers, and let
y = y1+y2

2 be their average. Introduce the differences x1 ∶= y1−x and x2 ∶= y2−x, and
observe that

∣x1∣2+ ∣x2∣2 =
1
2
∣x1+x2∣2+

1
2
∣x2−x2∣2.

This implies that

∣y1−x∣2+ ∣y2−x∣2 = 2∣y−x∣2+ ∣y2−y1∣2 ⩾ ∣y1−x∣2+ ∣y2−x∣2+ ∣y2−y1∣2,

where the second inequality uses the fact that ∣y−x∣2 ⩾ ∣yi−x∣2 for i = 1 and i = 2. Re-
arranging shows that y2 = y1 and establishes the uniqueness of the projection PC(x).
We now show that the projection y = PC(x) satisfies (2.19). Fix z ∈C and α ∈ (0,1).
The convexity of C implies that PC(x)+α(z−PC(x)) ∈C, so the definition of PC(x)
reveals that

∣PC(x)−x∣2 ⩽ ∣PC(x)−x+α(z−PC(x))∣2

= ∣PC(x)−x∣2+2α(PC(x)−x) ⋅ (z−PC(x))+α
2∣z−PC(x)∣2.

Rearranging, dividing by α and letting α tend to zero shows that y = PC(x) satis-
fies (2.19). Conversely, suppose that y ∈C satisfies (2.19), and fix z ∈C. If y = x, it is
clear that y = PC(x), so let us assume that y ≠ x. Expanding (2.19) reveals that

0 ⩾ (x−y) ⋅ (z−y) = (x−y) ⋅ (z−x+x−y) = (x−y) ⋅ (z−x)+ ∣x−y∣2.

It follows by the Cauchy-Schwarz inequality that

∣x−y∣2 ⩽ ∣x−y∣∣z−x∣.

Dividing by ∣x−y∣ ≠ 0 and leveraging the uniqueness of PC(x) shows that y = PC(x),
and completes the proof. ∎
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Theorem 2.2 (Supporting hyperplane). If C ⊆Rd is a non-empty convex set and
x ∉C, then there exists a non-zero vector v ∈Rd with

v ⋅x ⩽ inf{v ⋅y ∣ y ∈C}. (2.20)

Moreover, if C is closed, then the vector v can be chosen so that the inequality
in (2.20) is strict.

Proof. We decompose the proof into two steps.

Step 1: closed C. The vector v ∶= PC(x) − x is well-defined and non-zero by
Lemma 2.1. Moreover, its characterization (2.19) ensures that for any z ∈C,

0 ⩾ (x−PC(x)) ⋅ (z−PC(x)) = −v ⋅ (z−v−x) = −v ⋅ z+v ⋅x+ ∣v∣2.

Rearranging shows that v ⋅z⩾ v ⋅x+∣v∣2 which establishes (2.20) with strict inequality.

Step 2: general C. Without loss of generality, we may assume that the interior of
the set C is not empty, that is, int(C) ≠ ∅. Indeed, if int(C) is empty, then C must
lie in an affine set of dimension less than d, and the normal vector v ∈Rd to any
hyperplane containing this affine set satisfies (2.20), provided that we adjust the
sign of v so that v ⋅x ⩽ 0.

We now distinguish two cases. First, if x ∉ C, then applying Step 1 to C
gives (2.20) for C. On the other hand, if x ∈C∖C ⊆ ∂C, then Exercise 2.2 yields
a sequence (xn)n⩾1 ⊆Rd ∖C converging to x. Applying Step 1 to C and xn gives a
sequence (vn)n⩾1 of non-zero vectors with vn ⋅xn ⩽ vn ⋅ z for all z ∈C. Since vn ≠ 0,
the normalized vector

vn ∶=
vn

∣vn∣
is well-defined and lies in the unit ball. It follows by compactness of the unit ball
that the sequence (vn)n⩾1 admits a subsequential limit v ≠ 0 with v ⋅x ⩽ v ⋅ z for all
z ∈C. This completes the proof. ∎

Theorem 2.3 (Hahn-Banach). If C1,C2 ⊆ Rd are disjoint non-empty convex sets,
then there exists a non-zero vector v ∈Rd with

sup{v ⋅x1 ∣ x1 ∈C1} ⩽ inf{v ⋅x2 ∣ x2 ∈C2}. (2.21)

Proof. Consider the set

C ∶=C2−C1 = {x2−x1 ∣ x1 ∈C1 and x2 ∈C2},

and recall that it is convex by Exercise 2.1. Moreover, as C1 and C2 are disjoint,
we have 0 ∉C. It follows by the supporting hyperplane theorem that there exists a
non-zero vector v ∈Rd with 0 ⩽ v ⋅x for every x ∈C, or equivalently v ⋅x1 ⩽ v ⋅x2 for
all x1 ∈C1 and x2 ∈C2. This completes the proof. ∎
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Proposition 2.4 (Envelope of affine minorants). A function f ∶Rd →R∪{+∞} is
convex and lower semi-continuous if and only if it is the supremum of its affine
minorants.

Proof. Every affine function is convex and lower continuous, and the supremum of
a family of convex and lower semi-continuous functions is also convex and lower
semi-continuous by Exercise 2.7. This establishes the converse implication. Notice
also that the equivalence is clearly valid when f is identically +∞. From now on,
we therefore assume that f is proper, convex and lower semi-continuous, we fix
x ∈Rd as well as µ < f (x), and we aim to find an affine function g such that g ⩽ f
and g(x) ⩾ µ . Since f is convex and lower semi-continuous, its epigraph (2.4) is
convex and closed. Moreover, it does not contain the pair (x,µ). It follows by the
supporting hyperplane theorem for closed sets that there exist p ∈Rd , a ∈R, and
c1 < c2 such that for every (y,λ) ∈ epi f ,

p ⋅x+aµ = c1 < c2 ⩽ p ⋅y+aλ . (2.22)

Recall that we assume that f is proper; that is, there exists x0 ∈ Rd such that
f (x0) < +∞. Since {x0}×[ f (x0),+∞) is a subset of epi f , we must have that a ⩾ 0.
We decompose the rest of the proof into two steps. First we treat the case a > 0, and
then the case a = 0.

Step 1: a > 0. Dividing (2.22) by a > 0, we find that f (y) ⩾ a−1 p ⋅ (x− y)+µ for
every y ∈ dom f , and this inequality clearly extends to every y ∈Rd . The mapping
y↦ a−1 p ⋅ (x−y)+µ is thus an affine minorant of f , and takes the value µ at x, as
desired.

Step 2: a = 0. As a preliminary step we show that the set of affine minorants of f is
not empty. Applying the same reasoning as that leading to (2.22) with x replaced
by x0, and, say, with µ replaced by f (x0)−1 < +∞, we get the existence of p0 ∈Rd

and a0 ⩾ 0 such that

p0 ⋅x0+a0( f (x0)−1) < p0 ⋅y+a0λ

for every (y,λ) ∈ epi f . Since (x0, f (x0)) ∈ epi f , it cannot be that a0 = 0. Arguing
as in Step 1, we thus deduce that the mapping g0(y) ∶= a−1

0 p0 ⋅ (x0−y)+ f (x0)−1 is
an affine minorant of f . Coming back to the main thread of the argument, in the
case when a = 0, we obtain from (2.22) that for every y ∈ dom f ,

c2−c1+ p ⋅ (x−y) ⩽ 0.

Using the affine minorant g0 just constructed, we deduce that for every M > 0, and
y ∈ dom f ,

f (y) ⩾ g0(y)+M(c2−c1+ p ⋅ (x−y)), (2.23)
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and this inequality is in fact valid for every y ∈Rd . Since c2−c1 > 0, we can make
sure that the value on the right side of (2.23) at y = x is as large as desired, in
particular larger than µ , by choosing M sufficiently large. Once M is thus chosen,
the right side of (2.23) defines a suitable affine minorant of f . This completes the
proof. ∎

The Fenchel-Moreau theorem extends this result by identifying an explicit set
of affine minorants of f whose supremum is f . In essence, for each slope p, we
optimize the intercept to build the affine minorant with slope p that just touches
f . In Exercise 2.10, it is shown that the convex bi-dual of a proper function f ∶
Rd →R∪{+∞} is a convex and lower semi-continuous minorant of f . The Fenchel-
Moreau theorem states that as soon as f is convex and lower semi-continuous, the
inequality f ⩾ f ∗∗ is in fact an equality.

Theorem 2.5 (Fenchel-Moreau). A proper function f ∶Rd →R∪{+∞} is convex
and lower semi-continuous if and only if it is equal to its convex bi-dual,

f = f ∗∗. (2.24)

Remark 2.6. Throughout this section, we chose to avoid considering functions
that may also take the value −∞; as a result, we required that f ∗ be proper in order
to define the bi-dual f ∗∗. When stating the identity (2.24), we understand that it
implicitly implies that f ∗∗ is well-defined, or in other words, that f ∗ is proper. If
f is not proper, that is if f is constant and equal to +∞, then we could decide that
f ∗ = −∞ and f ∗∗ = +∞, which is indeed equal to f in this case as well.

Proof of Theorem 2.5. Since f ∗∗ is convex and lower semi-continuous by (i) in
Exercise 2.10, the converse implication is clear. To show the direct implication, we
fix a proper convex and lower semi-continuous function f ∶Rd →R∪{+∞}, and
aim to show that f ∗∗ = f . We start by showing that f ∗∗ is well-defined and that
f ∗∗ ⩾ f . Let x ∈Rd and ε > 0. Invoking Proposition 2.4 gives an affine minorant g
of f with g(x) ⩾ f (x)−ε . Since g ⩽ f , we can use (iii) in Exercise 2.10 to obtain
that g∗ ⩾ f ∗. Recalling from (2.16) that the dual of an affine function is proper, we
obtain that f ∗ is proper as well. It thus follows that f ∗∗ is well-defined, and another
application of (iii) in Exercise 2.10 yields that g∗∗ ⩽ f ∗∗. Remembering that an
affine function satisfies the Fenchel-Moreau theorem by (2.17) shows that in fact

f (x)−ε ⩽ g(x) ⩽ f ∗∗(x).

Letting ε tend to zero completes the proof of the inequality f ⩽ f ∗∗. The converse
inequality is immediate, see part (ii) of Exercise 2.10. ∎

Remark 2.7. As was pointed out in the previous remark, we chose throughout
to exclude the possibility that convex functions take the value −∞. If we were to
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allow for this possibility, we would then modify the definition and require that (2.2)
holds whenever it is unambiguous; or equivalently, that it holds for every x,y ∈Rd

such that f (x) < +∞ and f (y) < +∞. If a convex function f takes the value −∞ at
some point x ∈Rd , then on any half-line emanating from x, the function f will either
be −∞ all the way; or else it must take the value −∞ for a while, and then jump
to +∞, with the value of f at the transition point being some arbitrary element of
R∪{−∞,+∞}. If f is also lower semi-continuous, then it must be −∞ on some
closed convex set, and +∞ outside of it. There cannot be any affine minorant to a
function that takes the value −∞ somewhere, and in particular, if we were to define
the bi-dual for such a function, it could only be the constant function equal to −∞.

Exercise 2.10. Let f ∶Rd →R∪{+∞} be a proper function. Show that its convex
dual satisfies the following properties.

(i) f ∗ is convex and lower semi-continuous.

(ii) f ∗∗ ⩽ f .

(iii) If f ⩽ g for some proper function g ∶Rd →R∪{+∞}, then f ∗ ⩾ g∗.

Exercise 2.11. Consider the norm function f (x) ∶= 1
2 ∣x∣2. Show that f ∗ = f .

Exercise 2.12. Let f ∶Rd→R be a real-valued Lipschitz continuous convex function
with Lipschitz constant L. Show that f ∗(x) = +∞ for all x ∈Rd with ∣x∣ > L.

Exercise 2.13. Let f ∶Rd →R∪{+∞} be a convex function, and denote by f the
lower semi-continuous envelope of f , as defined in Exercise 2.9. Show that we have
f ∗ = ( f )∗ and f ∗∗ = f .

Exercise 2.14. Let K be a closed convex cone — this means that K is a closed
convex set with the additional property that, for all x ∈K and λ > 0, we have λx ∈K.
We also assume that K is not empty. The polar of K is the closed convex cone

K○ ∶= {v ∈Rd ∣ v ⋅x ⩽ 0 for all x ∈K}. (2.25)

Show that K =K○○.

Exercise 2.15. We use the notion of cone and of the polar of a set K as defined in
Exercise 2.14. Let C be a closed convex set. The normal to C at a point x ∈C is the
closed convex cone

nC(x) ∶= {v ∈Rd ∣ v ⋅ (x′−x) ⩽ 0 for all x′ ∈C}. (2.26)

The tangent to C at a point x ∈C is the closed convex cone

TC(x) ∶= {λ(x′−x) ∣ x′ ∈C and λ ⩾ 0}. (2.27)
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(i) Show that for all x ∈ int(C), we have nC(x) = {0} and TC(x) =Rd .

(ii) Show that for all x ∈C, we have nC(x) =TC(x)○ and TC(x) = nC(x)○.

(iii) Fix x ∈C. Prove that v ∈TC(x) if and only if there is a sequence (xi)i⩾1 ⊆C con-
verging to x and a sequence (ti)i⩾1 ⊆R>0 decreasing to 0 with t−1

i (xi−x) → v.

Exercise 2.16. The purpose of this exercise is to generalize Lemma 2.1 to the
Hilbert space setting. Let H be a Hilbert space and let C ⊆H be a closed convex
subset of H.

(i) Show that for every x ∈H, there is a unique point PC(x) ∈C with

∥x−PC(x)∥2 = inf{∥x−y∥2 ∣ y ∈C}. (2.28)

(ii) Prove that a point y ∈C is the projection PC(x) of x onto C if and only if for all
z ∈C,

(x−y) ⋅ (z−y) ⩽ 0. (2.29)

Exercise 2.17. The purpose of this exercise is to prove the Riesz representation
theorem on a Hilbert space H.

(i) Let C be a closed subspace of H, and denote by

C⊥ ∶= {x ∈H ∣ x ⋅y = 0 for all y ∈C} (2.30)

its orthogonal complement. Use Exercise 2.16 to show that H =C⊕C⊥.

(ii) Let f ∶H →R be a continuous linear functional on H. Show that there exists a
unique y ∈H with f (x) = x ⋅y for all x ∈H.

2.1.2 Continuity and almost everywhere differentiability

In this section we will show that a convex function is locally Lipschitz continuous
on the interior of its effective domain. Although this does not pertain to convex
analysis, we will also show Rademacher’s theorem stating that a locally Lipschitz
continuous function is almost everywhere differentiable. The multi-dimensional
version of Rademacher’s theorem relies on its one-dimensional counterpart whose
proof is the content of Exercise 2.18.

We start by showing that a convex function that is locally bounded from above
is in fact locally bounded and locally Lipschitz continuous. For every r > 0 and
x ∈Rd , we denote by Br(x) the open Euclidean ball of radius r centred at x.

Lemma 2.8. Let f ∶Rd →R∪{+∞} be a proper and convex function. If there exist
δ > 0 and x∗ ∈ Rd such that f is bounded from above by M > 0 on the open ball
B2δ (x∗), then the following assertions hold.
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(i) There exists m ∈R such that for every x ∈ B2δ (x∗), we have m ⩽ f (x) ⩽M.

(ii) For every x,y ∈ Bδ (x∗), we have ∣ f (x)− f (y)∣ ⩽ M−m
δ
∣x−y∣.

Proof. The convexity of f reveals that for any x ∈ B2δ (x∗),

f (x∗) = f(1
2
(2x∗−x)+ 1

2
x) ⩽ 1

2
f (x∗+(x∗−x))+ 1

2
f (x) ⩽ 1

2
M+ 1

2
f (x).

This implies that f (x) ⩾ 2 f (x∗)−M, so the first assertion holds with m ∶= 2 f (x∗)−M.
To prove the second assertion, fix x,y ∈ Bδ (x∗) and consider the point z ∶= y+δ

y−x
∣y−x∣

in B2δ (x∗). Since y lies on the line segment joining x and z,

y = ∣y−x∣
δ + ∣y−x∣

z+ δ

δ + ∣y−x∣
x,

the convexity of f implies that

f (y)− f (x) ⩽ ∣y−x∣
δ + ∣y−x∣

( f (z)− f (x)) ⩽ M−m
δ
∣y−x∣.

Interchanging the roles of x and y completes the proof. ∎

Proposition 2.9 (continuity). Let f ∶ Rd → R∪ {+∞} be a proper and convex
function. If C ⊆ int(dom( f )) is a compact set, then there exists L < +∞ such that
for every x,y ∈C,

∣ f (x)− f (y)∣ ⩽ L∣x−y∣. (2.31)

Proof. For each x ∈Rd and r > 0, denote by Cr(x) ∶= ∏d
i=1[xi− r,xi+ r] the cube of

side-length 2r centred at x, or equivalently the closed `∞-ball of radius r centred
at x. We fix x∗ ∈C ⊆ int(dom f ), and pick δ = δ(x∗) > 0 and r > 0 such that x∗ ∈
B2δ (x∗) ⊆ Cr(x∗) ⊆ dom( f ). Denote by (vi)i⩽2d the vertices of Cr(x∗), and observe
that any point in the cube Cr(x∗) may be written as a convex combination of the
vertices (vi)i⩽2d . In particular, for any y ∈ B2δ (x∗), there exist non-negative scalars
(αi)i⩽2d with

y =
2d

∑
i=1

αivi and
2d

∑
i=1

αi = 1.

It follows by convexity of f that f (y)⩽max{ f (v0), . . . , f (vn)}. Invoking Lemma 2.8
shows that f is Lipschitz continuous on Bδ (x∗), and remembering that C is compact
implies that f is in fact Lipschitz continuous on C. This completes the proof. ∎

Together with Rademacher’s theorem on the almost everywhere differentiability
of Lipschitz functions, this result implies that a real-valued convex function is
almost everywhere differentiable.
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Theorem 2.10 (Rademacher). If U ⊆Rd is open and f ∶U →R is Lipschitz continu-
ous, then f is differentiable almost everywhere on U.

Proof. The proof proceeds in three steps. First, we use the one-dimensional
Rademacher theorem to show that for every direction vector ν ∈ Rd , the direc-
tional derivative

Dν f (x) ∶= d
dt
∣
t=0

f (x+ tν) (2.32)

exists almost everywhere on U , then we show that it is almost everywhere given by
∇ f (x)⋅ν , and finally we use the separability and compactness of the unit sphere and
the Lipschitz continuity of f to conclude that f is differentiable almost everywhere.

Step 1: almost everywhere existence of the directional derivative. Fix a direction
vector ν ∈Rd ∖{0}, and denote by

Aν ∶= {x ∈U ∣Dν f (x) exists}

the set of points where the derivative of f in the direction ν exists. Denote by ν⊥

the orthogonal complement of the subspace Rν , so that by Exercise 2.17, we have
the decomposition Rd =Rν ⊕ν⊥. By the one-dimensional Rademacher theorem
established in Exercise 2.18, for each y ∈ ν⊥, the intersection of the set U ∖Aν

with the line parallel to Rν through the point y is of zero measure. It follows by
the Fubini-Tonelli theorem that U ∖Aν is of zero measure, and therefore that the
directional derivative Dν f exists almost everywhere on U .

Step 2: Dν f (x) = ∇ f (x) ⋅ν almost everywhere. Fix a direction vector ν ∈ Rd as
well as a smooth function φ ∈C∞c (U ;R) of compact support. A linear change of
variables reveals that for any t > 0 small enough,ˆ

U
( f (x+ tν)− f (x)

t
)φ(x)dx = −

ˆ
U

f (x)(φ(x− tν)−φ(x)
−t

)dx.

Since f is Lipschitz continuous and φ is compactly supported, both integrands in
this equality are uniformly bounded and vanish outside a compact set. Using the
dominated convergence theorem to let t tend to zero shows thatˆ

U
Dν f (x)φ(x)dx = −

ˆ
U

f (x)(∇φ(x) ⋅ν)dx.

In particular, choosing ν = ei for the canonical basis vector ei ∈Rd reveals thatˆ
U

∂xi f (x)φ(x)dx = −
ˆ

U
f (x)∂xiφ(x)dx.

It follows thatˆ
U

Dν f (x)φ(x)dx = −
d
∑
i=1

νi

ˆ
U

f (x)∂xiφ(x)dx =
ˆ

U
(∇ f (x) ⋅ν)φ(x)dx, (2.33)
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where here we just use ∇ f (x) as a notation for

∇ f (x) = (∂x1 f (x), . . . ,∂xd f (x)) = (De1 f (x), . . . ,Ded f (x)),

which is well-defined almost everywhere on U by the previous step. Since the
function Dν f −∇ f ⋅ν is uniformly bounded by the Lipschitz continuity of f , apply-
ing the equality (2.33) along a sequence (φn)n⩾1 of smooth functions of compact
support that approximate Dν f −∇ f ⋅ν in L1(Rd;R) shows that Dν f =∇ f ⋅ν almost
everywhere on U .

Step 3: concluding that f is differentiable almost everywhere. Let (νi)i⩾1 ⊆ Sd−1 be
a countable set of direction vectors that is dense in the unit sphere Sd−1 ⊆Rd . By
the additivity of measure as well as Steps 1 and 2, the complement of the set

A ∶=
∞
⋂
i=1
{x ∈U ∣ ∇ f (x) exists, Dνi f (x) exists and Dνi f (x) = ∇ f (x) ⋅νi}

has zero measure. Here we understand the phrase “∇ f (x) exists” to mean that
∂xi f (x) =Dei f (x) exists for every i ∈ {1, . . . ,d}.

We now fix x ∈ A and show that f is differentiable at x. If we introduce the error
function

R(x,ν ,t) ∶= f (x+ tν)− f (x)
t

−∇ f (x) ⋅ν ,

this comes down to proving that, given ε > 0, it is possible to find δ = δ(ε,x) > 0
such that for all ν ∈ Sd−1 and t > 0 with ∣t ∣ < δ , we have

∣R(x,ν ,t)∣ ⩽ ε. (2.34)

Writing L for the Lipschitz constant of f , we have that ∣∂xi f (x)∣ ⩽ L and ∣∇ f (x)∣ ⩽√
dL, so the Cauchy-Schwarz inequality implies that R is Lipschitz continuous in ν .

Indeed, for any ν ,ν ′ ∈ Sd−1, we have

∣R(x,ν ,t)−R(x,ν ′,t)∣ ⩽ (
√

d+1)L∣ν −ν
′∣.

By the compactness of Sd−1, there is a finite sub-collection (νi)i⩽n of direction
vectors with the property that the open balls (Bε(νi))i⩽n cover the unit sphere Sd−1.
Since each error term R(x,νi,t) vanishes as t tends to zero, it is possible to find δ > 0
such that ∣R(x,νi,t)∣ ⩽ ε whenever ∣t ∣ < δ and 1 ⩽ i ⩽ n. Now, if ν ∈ Sd−1 belongs to
the open ball Bε(νi) and ∣t ∣ < δ , then

∣R(x,ν ,t)∣ ⩽ ∣R(x,νi,t)∣+ ∣R(x,νi,t)−R(x,ν ,t)∣ ⩽ ε +(
√

d+1)ε.

Redefining ε establishes (2.34) and completes the proof. ∎

Exercise 2.18. The purpose of this exercise is to prove the one-dimensional
Rademacher theorem for a Lipschitz function F ∶ [a,b] →R.
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(i) For any step function of the form φ ∶= ∑n
i=1 φi1[ai−1,ai), with φ1, . . . ,φn ∈R and

a ⩽ a0 ⩽⋯ ⩽ an ⩽ b, define

T(φ) ∶=
n
∑
i=1

φi(F(ai)−F(ai−1)). (2.35)

Prove that the operator T admits a unique extension to a continuous functional
on L2([a,b];R).

(ii) Use Exercise 2.17 to find f ∈ L2([a,b];R) such that, for all x ∈ [a,b], we have

F(x) = F(a)+
ˆ x

a
f (t)dt. (2.36)

(iii) Using the Lebesgue differentiation theorem in Theorem A.16, conclude that
the function F is almost everywhere differentiable on [a,b].

Exercise 2.19. Let A be a d-by-k matrix, b ∈Rd , and c ∈Rk. We denote by A∗ the
transpose of the matrix A, and by ⩽ the partial order on Rd given by its product
structure; in other words, for every x,y ∈ Rd , we write x ⩽ y to mean that the
inequality holds coordinate by coordinate. The goal of this exercise is to identify a
general condition under which the “linear programs”

inf{b ⋅x ∣ x ∈Rd, x ⩾ 0, Ax ⩾ c} and sup{c ⋅y ∣ y ∈Rk, y ⩾ 0, A∗y ⩽ b} (2.37)

are equal.

(i) Slightly adapting the notation in (2.5), for every set A, we may write I{x∈A}
instead of IA(x); for instance, we understand that I{x⩾0} is equal to 0 if x ⩾ 0,
and is +∞ otherwise. What is the convex dual of the mapping x↦ I{x⩾0}?

(ii) For every x,z ∈Rd , we write φ(x) ∶= I{x⩾0}+ I{Ax⩾c} and

ψ(z) ∶= inf
y∈Rk
(c ⋅y+ I{y⩽0}+ I{A∗y⩾z}). (2.38)

Show that φ =ψ∗.

(iii) For each z ∈Rd , we define the set

Kz ∶= {y ∈Rk ∣ y ⩾ 0 and A∗y ⩽ z}. (2.39)

Assuming that Kz is a compact set for every z in a neighbourhood of b, show
that the two variational problems in (2.37) are equal.
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2.1.3 The subdifferential of a convex function

The local Lipschitz continuity of a real-valued convex function and the Rademacher
theorem imply that a real-valued convex function is differentiable almost every-
where. It is at times useful to also be able to study the differentiability of a convex
function at every single point of its effective domain using the notion of subdif-
ferential. The subdifferential of a convex function f ∶Rd →R∪{+∞} at a point
x ∈ dom f is the set

∂ f (x) ∶= {p ∈Rd ∣ f (y) ⩾ f (x)+ p ⋅ (y−x) for all y ∈Rd}. (2.40)

We start by showing that the subdifferential of f at a point in the interior of its
effective domain is not empty.

Proposition 2.11. Let f ∶Rd →R∪{+∞} be a convex function. For every point
x ∈ int(dom f ), the subdifferential ∂ f (x) is not empty.

Proof. We consider the convex set C ∶= {(y,µ) ∈ dom( f )×R ∣ f (y) < µ}, and fix
x ∈ int(dom f ). Since (x, f (x)) ∉ C the supporting hyperplane theorem gives a
non-zero vector (v,b) ∈Rd ×R with

0 ⩽ v ⋅ (y−x)+b(µ − f (x))

for every (y,µ) ∈ C. Since µ can be arbitrarily large, we must have b ⩾ 0. If we had
b = 0, then we would have 0 ⩽ v ⋅(y−x) for all y in a neighbourhood of x ∈ int(dom f ),
which is not possible since (v,b) is non-zero. This means that b > 0 so the vector
p ∶= −v/b is well-defined and satisfies

µ ⩾ f (x)+ p ⋅ (y−x)

for all (y,µ) ∈ C. Letting µ tend to f (y) reveals that p ∈ ∂ f (x), which means that
the subdifferential ∂ f (x) is not empty. ∎

It turns out that a convex function is differentiable at a point x in the interior
of its effective domain if and only its subdifferential at x consists of a singleton.
To prove this, we will leverage the fact that a convex function is differentiable at a
point in the interior of its effective domain if and only if its directional derivative
is a linear function of the direction. The directional derivative of a real-valued
convex function f ∶Rd →R∪{+∞} at x ∈ int(dom f ) in the direction of ν ∈Rd is
the function

Dν f (x) ∶= lim
t↘0

f (x+ tν)− f (x)
t

. (2.41)

The convexity of f implies that the difference quotient defining the directional
derivative is a decreasing function of t, so the directional derivative is well-defined
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as a monotone limit. In general, the linearity of the directional derivative does not
suffice to characterize the differentiability of a function; however, it does suffice for
locally Lipschitz continuous functions, a fact that we already used at least implicitly
in the proof of the Rademacher theorem. Combining this with the local Lipschitz
continuity of convex functions yields the following result.

Lemma 2.12. A convex function f ∶Rd→R∪{+∞} is differentiable at x ∈ int(dom f )
if and only if the map ν↦Dν f (x) is linear. In this case, we have Dν f (x) =∇ f (x)⋅ν .

Proof. On the one hand, if f is differentiable, then for any direction vector ν ∈Rd ,
we have Dν f (x) = ∇ f (x) ⋅ν . Conversely, suppose that ν ↦Dν f (x) is linear, that
is, there exists a ∈Rd such that Dν f (x) = a ⋅ν for every ν ∈Rd . We assume for the
sake of contradiction that f is not differentiable at x. Let (νn)n⩾1 with ∣νn∣ = 1 for
all n ⩾ 1 and (tn)n⩾1 ⊆R>0 be a sequence converging to 0 such that the error term

R(x,νn,tn) ∶= ∣
f (x+ tnνn)− f (x)

tn
−a ⋅νn∣

does not converge to zero. Up to passing to a subsequence, assume that (νn)n⩾1
converges to some ν0 in the unit sphere. Remembering Proposition 2.9, denote by
L < +∞ the Lipschitz constant of f in a neighbourhood of x. The triangle inequality
implies that

R(x,νn,tn) ⩽ R(x,ν0,tn)+(L+ ∣a∣)∣νn−ν0∣.

Leveraging the assumption that Dν0 f (x) = a ⋅ν0 to let n tend to infinity contradicts
the absurd hypothesis that the sequence (R(x,νn,tn))n⩾1 does not converge to zero.
This completes the proof. ∎

Theorem 2.13. A convex function f ∶Rd →R∪{+∞} is differentiable at a point
x ∈ int(dom f ) if and only if ∂ f (x) consists of a singleton. In this case, we have
∂ f (x) = {∇ f (x)}.

Proof. We first show the direct implication. Recall from Proposition 2.11 that
the subdifferential ∂ f (x) is not empty. We fix p ∈ ∂ f (x). By definition of the
subdifferential, for every v ∈Rd and λ > 0,

f (x+λv)− f (x) ⩾ λv ⋅ p.

Dividing by λ and letting λ tend to zero shows that (∇ f (x)− p) ⋅v ⩾ 0. Choosing
v = p−∇ f (x) reveals that p = ∇ f (x), so ∂ f (x) = {∇ f (x)}.

Conversely, suppose that the subdifferential is a singleton, ∂ f (x) = {p}, and fix
a direction vector ν ∈Rd . The convexity of f and the definition of the directional
derivative imply that for all λ ∈R,

f (x)+λDν f (x) ⩽ f (x+λν).
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This implies that the convex sets

C ∶= {(x+λν , f (x)+λDν f (x)) ∣ λ ∈R}

and
C′ ∶= {(y,µ) ∈ dom f ×R ∣ f (y) < µ}

are disjoint. It follows by the Hahn-Banach separation theorem that there exists a
non-zero vector (a,b) ∈R×Rd with

a( f (x)+λDν f (x))+b ⋅ (x+λν) ⩽ aµ +b ⋅y (2.42)

for all (y,µ) ∈C′ and λ ∈R. Taking λ = 0 shows that

a f (x)+b ⋅x ⩽ aµ +b ⋅y (2.43)

for all (y,µ) ∈C′. Since µ can be arbitrarily large, we must have a ⩾ 0. If we had
a= 0, then we would have 0⩽ b ⋅(y−x) for all y in a neighbourhood of x ∈ int(dom f ),
which is not possible since (a,b) is non-zero. Dividing through by a and letting µ

tend to f (y) in (2.43) shows that −b/a ∈ ∂ f (x), and therefore b/a = −p. Combining
this with (2.42) and letting µ tend to f (y) in the resulting bound gives

f (x)+λDν f (x)− p ⋅ (x+λν) ⩽ f (y)− p ⋅y

for all y ∈ dom f and λ ∈R. Taking y = x reveals that λ(Dν f (x)− p ⋅ν) ⩽ 0 for all
λ ∈ R, which implies that Dν f (x) = p ⋅ν . In particular, the map ν ↦ Dν f (x) is
linear. Invoking Lemma 2.12 completes the proof. ∎

The next proposition gives a sort of continuity property of the subdifferential as
we vary the base point.

Proposition 2.14. Let f ∶Rd →R∪{+∞} be a convex function, and let (xn, pn)n⩾1
be a sequence of points in dom f ×Rd with pn ∈ ∂ f (xn) for each n ⩾ 1 that converges
to some point (x, p) ∈ dom f ×Rd . If f is continuous at x ∈ dom f , then p ∈ ∂ f (x).

Proof. Fix y ∈Rd as well as n ⩾ 1. Since pn ∈ ∂ f (xn), we have

f (y) ⩾ f (xn)+ pn ⋅ (y−xn)

Letting n tend to infinity and using the continuity of f at x completes the proof. ∎

We recall that if the point x in Proposition 2.14 belongs to int(dom f ), then the
continuity of f at x is automatically satisfied by Proposition 2.9. Although we will
not use this fact, we also mention that one can use Proposition 2.14 to show that if a
convex function f is uniformly Lipschitz continuous on its effective domain, then
the subdifferential of f at every point x ∈ dom f is not empty, including at points x
that sit on the boundary of dom f .
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Proposition 2.15. Let x ∈Rd , and for each integer n ⩾ 1, let fn ∶Rd →R∪{+∞}
be a convex function such that x ∈ int(dom fn) and with fn differentiable at x ∈Rd .
If ( fn)n⩾1 converges pointwise to some function f ∶Rd →R∪{+∞} with x ∈ dom f ,
and if the sequence of derivatives (∇ fn(x))n⩾1 converges to some vector p ∈ Rd ,
then p ∈ ∂ f (x).

Proof. Since fn is differentiable at x ∈ int(dom f ), we have ∇ fn(x) ∈ ∂ fn(x) by
Theorem 2.13. It follows by definition of the subdifferential that, for every y ∈Rd ,

fn(y) ⩾ fn(x)+∇ fn(x)(y−x).

Letting n tend to infinity and using the pointwise convergence of fn to f completes
the proof. ∎

For a more in-depth discussion of convex analysis, we refer the interested reader
to [53, 108, 137, 186, 229].

Exercise 2.20. We use the notation conv(C) from Exercise 2.4 for the convex hull
of a set C, and the notation nC(x) from Exercise 2.15 for the normal cone at x ∈C.
Let f ∶Rd →R∪{+∞} be a convex function such that dom f has non-empty interior.
For each x ∈ dom f , let

S(x) ∶= { lim
i→+∞

∇ f (xi) ∣ (xi)i⩾1 ⊆ intdom f converges to x and

for every i ⩾ 1, the function f is differentiable at xi} (2.44)

be the set of limits of gradients of f along sequences that converge to x. Suppose
that f is Lipschitz on dom f , and show that

∂ f (x) = ndom f (x)+conv(S(x)). (2.45)

Although we do not prove this, let us mention that the Lipschitz assumption is not
necessary. Indeed, if f ∶ Rd → R∪{+∞} is a convex and lower semicontinuous
function such that dom f has non-empty interior, then

∂ f (x) = ndom f (x)+conv(S(x)). (2.46)

We refer the interested reader to Theorem 25.6 in [229] or Theorem 4.5 in [50] for
a proof of this more general formula.

2.2 Large deviation principles

One of the first quantities that one tries to understand in any basic course in probabil-
ity theory is the sample average of a sequence of i.i.d. coin tosses. More specifically,
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given a collection of independent Bernoulli random variables (Xn)n⩾1 with mean
p ∈ [0,1], one is often presented with two main results about the sample average

SN ∶=
1
N

N
∑
n=1

Xn (2.47)

of N of these random variables. The first is the law of large numbers, which states
that the sample average SN converges almost surely to the mean p as the number
of trials N goes to infinity. The second is the central limit theorem, which is the
assertion that the typical deviations of the sample average from the mean p are of
order 1/

√
N and are normally distributed. Large deviation principles are concerned

with the rare deviations, of order one, of the sample average SN from its mean p.
In the setting of i.i.d. coin tosses, studying large deviations comes down to

analyzing the asymptotic behaviour of the probabilities

P{SN =
k
N
} = (N

k
)pk(1− p)N−k (2.48)

for k ∈ {0, . . . ,N}. Stirling’s formula implies that for a fixed x = k
N ∈ (0,1), we have

log(N
k
) = −N(x log(x)+(1−x) log(1−x))+O(log(N)). (2.49)

This means that

logP{SN =
k
N
} = −NI(x)+O(log(N)) (2.50)

for the rate function

I(x) ∶= x log( x
p
)+(1−x) log( 1−x

1− p
). (2.51)

The probability that SN lies above x ∈ [p,1) is therefore bounded from below by

P{SN ⩾ x} ⩾ P{SN =
⌈Nx⌉

N
} = exp(−NI(x)+O(log(N))), (2.52)

and bounded from above by

P{SN ⩾ x} ⩽
N
∑

k=⌊xN⌋
P{SN =

k
N
} ⩽ exp(−NI(x)+O(log(N))), (2.53)

where we have used that I is increasing on the interval [p,1) in the second inequality.
Combining these bounds and letting N tend to infinity reveals that for every x ∈ [p,1),

lim
N→+∞

1
N

logP{SN ⩾ x} = −I(x). (2.54)
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Similar arguments can be used to show that for x ∈ (0, p].

lim
N→+∞

1
N

logP{SN ⩽ x} = −I(x). (2.55)

In particular, the large deviations of (SN)N⩾1 from its mean p are entirely described
by the rate function I. As shown in Exercise 2.21, the equalities (2.54) and (2.55)
are equivalent to the fact that for every Borel set A ⊆R,

− inf
x∈int(A)

I(x) ⩽ liminf
N→+∞

1
N

logP{SN ∈ A}

⩽ limsup
N→+∞

1
N

logP{SN ∈ A} ⩽ − inf
x∈A

I(x), (2.56)

where we recall that we write int(A) to denote the interior of the set A. This string of
inequalities is more amenable to generalization than (2.54) and (2.55) as it requires
neither that we stipulate the mean p of the random variables (SN)N⩾1, nor that the
underlying space be ordered. We will therefore say that a sequence (SN)N⩾1 of
random variables taking values in a topological space S satisfies a large deviation
principle with rate function I ∶ S →R if, for every Borel set A ⊆ S , we have

limsup
N→+∞

1
N

logP{SN ∈ A} ⩽ − inf
x∈A

I(x), (2.57)

and
liminf
N→+∞

1
N

logP{SN ∈ A} ⩾ − inf
x∈int(A)

I(x). (2.58)

Since int(A) ⊆ A ⊆ A, there is no loss in generality in restricting our attention to
closed sets in the upper bound (2.57), and to open sets in the lower bound (2.58).
Heuristically, if (SN)N⩾1 satisfies a large deviation principle, then for every x ∈ S ,

P{SN ≃ x} ≃ exp(−NI(x)), (2.59)

so SN should concentrate around the minima of its rate function. This is consistent
with the fact that the rate function (2.51) is minimized at the mean p. Although the
theory of large deviations can be developed for rather general spaces S, we will
restrict our attention to the case S =R here, and derive a general criterion involving
log-Laplace transforms to determine when a sequence (SN)N⩾1 satisfies a large
deviation principle. Extending this result to the case of S = Rd is an interesting
exercise which we leave to the curious reader.

The log-Laplace transform of a random variable X is the function ψ ∶ R →
R∪{+∞} defined by

ψ(λ) ∶= logEexp(λX). (2.60)
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To motivate the general large deviation principle that we will prove, and see how
the log-Laplace transform is related to it, consider a sequence (Xn)n⩾1 of bounded
and centred i.i.d. random variables and denote by

SN ∶=
1
N

N
∑
n=1

Xn (2.61)

the sample average of N of these random variables. Chebyshev’s inequality implies
that for any x ∈R and λ ⩾ 0, we have

P{SN ⩾ x} ⩽ exp(−λNx)Eexp(λNSN) = exp(−N(λx− 1
N

ψN(λN))), (2.62)

where ψN denotes the log-Laplace transform of SN . If we write ψ =ψ1 for the log-
Laplace transform of X1, then the independence of the random variables (Xn)n⩾1
reveals that

1
N

ψN(λN) = 1
N

logEexp(λNSN) = logEexp(λX1) =ψ(λ). (2.63)

Substituting this into (2.62) and taking the infimum over all λ ⩾ 0 in the resulting
bound shows that

1
N

logP{SN ⩾ x} ⩽ −sup
λ⩾0
(λx−ψ(λ)). (2.64)

This suggests that the sample mean SN might satisfy a large deviation principle with
rate function given by the convex dual ψ∗. This is indeed correct and known as
Cramér’s theorem. It is a special case of the general large deviation principle that
we now prove.

Theorem 2.16 (General LDP on R). Let (SN)N⩾1 be a sequence of real random vari-
ables, and for each integer N ⩾ 1 denote by ψN ∶R→R the log-Laplace transform
of SN . If there exists ψ ∈C1(R;R) such that for all λ ∈R, we have

lim
N→+∞

1
N

ψN(λN) =ψ(λ), (2.65)

then (SN)N⩾1 satisfies a large deviation principle with rate function ψ∗.

The knowledgeable reader will recognize in Theorem 2.16 a version of the
Gärtner-Ellis theorem (see for instance Theorem 2.3.6 of [92]), with a slightly less
general but significantly simpler assumption. Although we will not prove this here,
we point out that Theorem 2.16 is also valid as stated for random variables taking
values in Rd .
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Proof of Theorem 2.16. We start by deriving a handful of convenient properties of
the convex dual

ψ
∗(x) = sup

λ∈R
(λx−ψ(λ)). (2.66)

Evaluating (2.66) at λ = 0, and using that ψ(0) = 0, we see that ψ∗ is non-negative,

ψ
∗ ⩾ 0. (2.67)

We set m ∶=ψ ′(0). Since ψ is convex by Exercise 2.6 and the fact that a limit of
convex functions is convex, we have that ψ is bounded from below by the linear
function λ ↦mλ (this can be seen as a consequence of Theorem 2.13). It follows
that

ψ
∗(m) = 0 and sup

λ⩽0
(λx−ψ(λ)) ⩽ sup

λ⩽0
(λx−λm) = 0 (2.68)

for every x ⩾ m. In particular, for every x ⩾ m, the supremum in (2.66) can be
restricted to R⩾0,

ψ
∗(x) = sup

λ⩾0
(λx−ψ(λ)). (2.69)

We decompose the rest of the proof into four steps. First we derive an upper bound
for the probability that SN is greater than some x ⩾ m, and we use this bound to
establish the large deviation upper bound. We then obtain a lower bound for the
probability that SN is an a small neighbourhood of some value x ∈R, and finally we
use this lower bound to establish the large deviation lower bound.

Step 1: upper bound on P{SN ⩾ x}. In this step, we show that for every x ⩾m,

limsup
N→+∞

1
N

logP{SN ⩾ x} ⩽ −ψ
∗(x). (2.70)

Given λ ⩾ 0, Chebyshev’s inequality implies that

P{SN ⩾ x} ⩽ exp(−λNx)Eexp(λNSN) = exp(−λNx+ψN(λN)).

It follows by the assumption (2.65) that

limsup
N→+∞

1
N

logP{SN ⩾ x} ⩽ψ(λ)−λx.

Taking the supremum over λ ⩾ 0 and remembering (2.69) establishes (2.70).

Step 2: large deviation upper bound. We now show the large deviation upper bound;
that is, we prove that for every closed set A ⊆R,

limsup
N→+∞

1
N

logP{SN ∈ A} ⩽ − inf
x∈A

ψ
∗(x). (2.71)
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First, we observe that by the same reasoning as in Step 1, for every x ⩽m,

limsup
N→+∞

1
N

logP{SN ⩽ x} ⩽ −ψ
∗(x). (2.72)

Given a closed set A ⊆ R, we use the value m = ψ ′(0) defined before Step 1 to
partition the probability that SN lies in A,

P{SN ∈ A} ⩽ P{SN ∈ A∩(−∞,m]}+P{SN ∈ A∩[m,+∞)}. (2.73)

If A∩[m,+∞) is not empty, then we denote by x ⩾m its infimum. This infimum
belongs to A since A is closed, and

P{SN ∈ A∩[m,+∞)} ⩽ P{SN ⩾ x}.

It follows by (2.70) that

limsup
N→+∞

1
N

logP{SN ∈ A∩[m,+∞)} ⩽ −ψ
∗(x) ⩽ − inf

x∈A
ψ
∗(x). (2.74)

The last inequality remains valid if A∩[m,+∞) is empty provided that we under-
stand that log0 = −∞, and that if A itself is empty, then the infimum over A is +∞.
Similar observations based on (2.72) as opposed to (2.70) reveal that

limsup
N→+∞

1
N

logP{SN ∈ A∩(−∞,m]} ⩽ − inf
x∈A

ψ
∗(x).

Combining this with (2.74) and (2.73), we obtain (2.71).

Step 3: lower bound for P{SN ≃ x}. Since ψ∗ is convex, non-negative and vanishes
at m by Exercise 2.10 and equations (2.67) and (2.68), it must be non-increasing on
(−∞,m] and non-decreasing on [m,+∞). Moreover, as ψ ′ is continuous, its image
must be an interval of R whose endpoints we denote by d− ⩽ d+ ∈ [−∞,+∞]. In this
step, we fix x ∈ (d−,d+) and show that for every ε > 0,

liminf
N→+∞

1
N

logP{SN ∈ [x−ε,x+ε]} ⩾ −ψ
∗(x). (2.75)

Looking at the optimality condition for the supremum in (2.69), it is natural to
define λ ∈R to be such that x =ψ ′(λ). Such a λ exists since x belongs to (d−,d+).
For definiteness, we assume that λ ⩾ 0 and observe that

P{SN ∈ [x−ε,x+ε]} ⩾ exp(−λN(x+ε))Eexp(λNSN)1{SN∈[x−ε,x+ε]}. (2.76)

In order to conclude, we would like to remove the indicator function in the expecta-
tion above. Loosely speaking, we would like to verify that our choice of λ ensures
that

Eexp(λNSN)1{SN∉[x−ε,x+ε]}
Eexp(λNSN)

≪ 1.
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This is a question about a probability upper bound very much like the one studied
in Step 1. For every µ ⩾ 0, we have

Eexp(λNSN)1{SN⩾x+ε} ⩽ exp(−Nµ(x+ε))Eexp((λ +µ)NSN)
= exp(−Nµ(x+ε)+ψN(Nλ +Nµ))). (2.77)

Similarly, for every µ ⩾ 0, we have

Eexp(λNSN)1{SN⩽x−ε} ⩽ exp(Nµ(x−ε))Eexp((λ −µ)NSN)
= exp(Nµ(x−ε)+ψN(Nλ −Nµ))). (2.78)

Since ψ ∈C1(R;R), any µ > 0 sufficiently small will be such that

∣ψ(λ +µ)−ψ(λ)−µψ
′(λ)∣+ ∣ψ(λ −µ)−ψ(λ)+µψ

′(λ)∣ ⩽ εµ

4
.

Fixing such a µ > 0, recalling the convergence (2.65) and remembering that we
chose ψ ′(λ) = x, we obtain that for every N sufficiently large,

∣ψN(Nλ +Nµ)−ψN(Nλ)−Nµx∣ + ∣ψN(Nλ −Nµ)−ψN(Nλ)+Nµx∣ ⩽ Nεµ

2
.

Combining this with (2.77) and (2.78) reveals that for every N sufficiently large,

Eexp(λNSN)1{SN∉[x−ε,x+ε]} ⩽ 2exp(− Nεµ

2
)Eexp(λNSN),

and in particular,

Eexp(λNSN)1{SN∈[x−ε,x+ε]} ⩾
1
2
Eexp(λNSN).

Substituting this into (2.76), we get that, for every N sufficiently large,

P{SN ∈ [x−ε,x+ε]} ⩾ 1
2

exp(−λN(x+ε))Eexp(λNSN).

Observing that the left side of (2.75) only gets smaller as ε decreases, letting N tend
to infinity and then ε tend to zero establishes (2.75).

Step 4: large deviation lower bound. Finally, we show the large deviation lower
bound; that is, we prove that for every open set A ⊆R,

limsup
N→+∞

1
N

logP{SN ∈ A} ⩾ − inf
x∈A

ψ
∗(x). (2.79)

To start with, we extend (2.75) to every x ∈R. If x ∉ [d−,d+] this is immediate since
in this case ψ∗(x) = +∞, by a small variant of Exercise 2.12. Suppose that d+ < +∞
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and that x = d+. Since d− ⩽ d+ are the endpoints of the interval spanned by ψ ′, and
since ψ ′(0) =m, we must have that m ⩽ d+. Since ψ∗ is non-decreasing on [m,+∞),
it follows that

ψ
∗(d+) ⩾ lim

x→d+
x<d+

ψ
∗(x),

so again (2.75) holds. The same argument also applies to the case when d− < +∞
and x = d−. We now pick an open set A ⊆ R. For every x ∈ A, we can find ε > 0
sufficiently small that [x−ε,x+ε] ⊆ A. We deduce from (2.75) that

liminf
N→+∞

1
N

logP{SN ∈ A} ⩾ −ψ
∗(x).

Taking the supremum over x ∈ A establishes (2.79) and completes the proof. ∎

Theorem 2.17 (Cramér). If (Xn)n⩾1 is a sequence of i.i.d. random variables with
finite log-Laplace transform ψ ∶ R → R, then the sequence (SN)N⩾1 of sample
averages (2.61) satisfies a large deviation principle with rate function ψ∗.

Proof. Using that ψ takes only finite values, one can check that ψ must be continu-
ously differentiable. The claim is then an immediate consequence of the general
large deviation result in Theorem 2.16 and the equality (2.63) which relates the
log-Laplace transform of SN to that of X1. ∎

To finish our discussion of large deviation principles, we explore the necessity of
assuming that the rate function in Theorem 2.16 be continuously differentiable. This
possibly surprising assumption will also appear in the Hamilton-Jacobi approach
when we prove the convex selection principle in Section 3.6.

Example 2.18. In this example we show that the assumption ψ ∈ C1(R;R) in
Theorem 2.16 is necessary. Consider a sequence (SN)N⩾1 of Rademacher random
variables,

P{SN = 1} = P{SN = −1} = 1
2
,

and denote by ψN the log-Laplace transform of SN (which here does not actually
depend on N). A direct computation shows that ψN(λ) = logcosh(λ), and by
Exercise 1.1,

ψ(λ) ∶= lim
N→+∞

1
N

ψN(λN) = lim
N→+∞

1
N

log(eNλ

2
+ e−Nλ

2
) = ∣λ ∣.

Since ψ is Lipschitz with Lipschitz constant equal to one, Exercise 2.12 implies
that

ψ
∗(x) =

⎧⎪⎪⎨⎪⎪⎩

0 x ∈ [−1,1],
+∞ otherwise.
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If Theorem 2.16 were true, then for all N large enough, we would have

1
N

logP{SN ∈ (−1/2,1/2)} ⩾ − inf
x∈(−1/2,1/2)

ψ
∗(x)− 1

2
= −1

2
,

and therefore

0 = P{SN ∈ (−1/2,1/2)} ⩾ exp(−N/2).

This contradiction establishes the necessity of the assumption ψ ∈C1(R;R).

We briefly discuss further the phenomenon at play in this example, without going
into details — the reader can safely skip this imprecise paragraph. Suppose that
a sequence (SN)N⩾1 of random variables with log-Laplace transform ψN satisfies
a large deviation principle with rate function I that may or may not be convex.
Informally, this means that (2.59) holds. In Example 2.18 we would need to have
I(x) = 0 for x ∈ {−1,+1} and I(x) = +∞ otherwise. In general, when (2.59) holds,
we should expect that

lim
N→+∞

1
N

ψN(λN) = I∗(λ), (2.80)

and Theorem 2.16 states that if ψ = I∗ is C1, then I∗∗ is the correct rate function.
Using the Fenchel-Moreau theorem and Exercise 2.10, one can show that in general,
the convex bi-dual I∗∗ is the convex envelope, or largest convex minorant, of the
function I. The assumption in Theorem 2.16 that the function ψ is continuously
differentiable can be seen to be equivalent to the statement that the convex dual ψ∗

has no flat piece, a flat piece being an open interval over which ψ∗ is affine (see also
Exercise 2.23 for a related statement). This means that whenever (2.59) holds, the
assumption that ψ is continuously differentiable implies that the convex envelope
of I has no flat piece. This can only occur if I was convex in the first place, and then
indeed I∗∗ = I by the Fenchel-Moreau theorem.

For a more general and in-depth discussion of large deviation principles, we
refer the interested reader to [92, 93, 257].

Exercise 2.21. Show that (2.54) and (2.55) are equivalent to the string of inequalities
(2.56).

Exercise 2.22. Let X be a Bernoulli random variable with parameter p ∈ [0,1], and
denote by ψ its log-Laplace transform. Show that the convex dual of ψ is the rate
function (2.51),

ψ
∗(x) = x log( x

p
)+(1−x) log( 1−x

1− p
). (2.81)
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2.3 Analyzing the Curie-Weiss model

The large deviation principle in Theorem 2.16 allows us to compute the limit
free energy in the generalized Curie-Weiss model introduced in Section 1.3. We
recall that this model is defined in terms of a probability measure PN on RN with
the property that ∣σ ∣ ⩽

√
N for PN-a.e. sample σ , as well as a smooth function

ξ ∈C∞(R;R) on the real line. For every σ ∈RN , we denote by

SN(σ) ∶=
1
N

N
∑
i=1

σi (2.82)

its sample average, or magnetization. For every σ in the support of PN , we have that

∣SN(σ)∣2 = ∣
1
N

N
∑
i=1

σi∣
2

⩽ 1
N

N
∑
i=1

σ
2
i =
∣σ ∣2
N
⩽ 1. (2.83)

This means that the magnetization lies in the interval [−1,1],

SN(σ) ∈ [−1,1]. (2.84)

The free energy in the generalized Curie-Weiss model is given by

FN(t,h) ∶=
1
N

log
ˆ
RN

expN(tξ(SN(σ))+hSN(σ))dPN(σ). (2.85)

To see how a large deviation principle for the sequence (SN)N⩾1 can shed light on
the asymptotic behaviour of the free energy (2.85), we denote by ψN the log-Laplace
transform of SN and suppose that the limit

ψ(h) ∶= lim
N→+∞

1
N

ψN(hN) = lim
N→+∞

FN(0,h) (2.86)

exists and defines a continuously differentiable function ψ ∈C1(R;R). The general
large deviation principle in Theorem 2.16 then implies that the sequence (SN)N⩾1
satisfies a large deviation principle with rate function ψ∗. Heuristically, this means
that for every m ∈ [−1,1],

P{SN ≃m} ≃ exp(−Nψ
∗(m)). (2.87)

If we fix an integer K ⩾ 1 and denote by −1 =m0 <m1 < . . . <mK = 1 a partition of
the interval [−1,1] into sub-intervals of width 2/K, then we can localize the free
energy according to the approximate magnetization of its spin configurations,

FN(t,h) ≃
1
N

log
K
∑
k=0

ˆ
RN

1{SN(σ)∈[mk,mk+1)} expN(tξ(mk)+hmk)dPN(σ). (2.88)
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Here mK+1 can be any value larger than one, say mK+1 = +∞. The large deviation
principle (2.87) implies that for K large enough and 1 ⩽ k ⩽K,

ˆ
RN

1{SN(σ)∈[mk,mk+1)}dPN(σ) ≃ exp(−Nψ
∗(mk)). (2.89)

It follows by Exercise 1.1 that for large enough values of K,

FN(t,h) ≃ max
0⩽k⩽K

(ξ(mk)+hmk−ψ
∗(mk)). (2.90)

We should therefore be able to leverage a large deviation principle for the magnetiza-
tion (2.82) to show that the limit free energy (2.85) in the generalized Curie-Weiss
model is given by

lim
N→+∞

FN(t,h) = sup
m∈[−1,1]

(ξ(m)+hm−ψ
∗(m)). (2.91)

By choosing ξ(x) = x2 and PN to be uniform on {±1}N ∶= {−1,+1}N , we will be
able to deduce a formula for the limit of the free energy (1.35) in the Curie-Weiss
model.

Theorem 2.19. For each integer N ⩾ 1, we denote by FN ∶ R⩾0 ×R→ R the free
energy (2.85) in the generalized Curie-Weiss model, and suppose that for every
h ∈R the limit

ψ(h) ∶= lim
N→+∞

FN(0,h) (2.92)

exists. If ψ ∈C1(R;R), then the limit free energy f ∶R⩾0×R→R in the generalized
Curie-Weiss model is given by

f (t,h) ∶= lim
N→+∞

FN(t,h) = sup
m∈[−1,1]

(tξ(m)+hm−ψ
∗(m)). (2.93)

Proof. For each integer N ⩾ 1, we denote by ψN the log-Laplace transform of the
magnetization SN defined in (2.82). The function ψ ∈C1(R;R) can be written as

ψ(h) = lim
N→+∞

FN(0,h) = lim
N→+∞

1
N

ψN(hN), (2.94)

so the general large deviation principle in Theorem 2.16 implies that the se-
quence (SN)N⩾1 satisfies a large deviation principle with rate function ψ∗. This
means that for every Borel set A ⊆R, we have

limsup
N→+∞

1
N

logPN{SN ∈ A} ⩽ inf
x∈A

ψ
∗(x) (2.95)

and
liminf
N→+∞

1
N

logPN{SN ∈ A} ⩾ − inf
int(A)

ψ
∗(x). (2.96)
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The rest of the proof proceeds in two steps. First we establish the upper bound
in (2.93), and then we obtain the matching lower bound.

Step 1: the upper bound. We fix an integer K ⩾ 1, and for each k ∈ {−K, . . . ,K −1},
we introduce the set

Ak ∶= [
k
K
,
k+1

K
].

The bound (2.84) implies that

SN(σ) ∈ [−1,1] =
K−1
⋃

k=−K
Ak

for every σ in the support of PN . It follows by monotonicity of the logarithm that

FN(t,h) ⩽
1
N

log
K−1
∑

k=−K

ˆ
RN

1{SN∈Ak} expN(tξ(SN)+hSN)dPN

⩽ 1
N

log
K−1
∑

k=−K
max
m∈Ak
(expN(tξ(m)+hm))PN{SN ∈ Ak}

⩽ log(2K)
N

+ max
−K⩽k<K

(max
m∈Ak
(tξ(m)+hm)+ 1

N
logPN{SN ∈ Ak}).

Using the large deviation upper bound (2.95) to let N tend to infinity reveals that

limsup
N→+∞

FN(t,h) ⩽ max
−K⩽k<K

(max
m∈Ak
(tξ(m)+hm)− inf

m∈Ak
ψ
∗(m)). (2.97)

We next observe that since ξ ∈C∞(R;R), there exists a constant C < +∞ such that
for every m,m′ ∈ [−1,1],

∣ξ(m)−ξ(m′)∣ ⩽C∣m−m′∣.

For each k ∈ {−K, . . . ,K−1}, and m ∈ Ak, we therefore have that

max
m′∈Ak
(tξ(m′)+hm′)−ψ

∗(m) ⩽ tξ(m)+hm−ψ
∗(m)+C+h

K
.

Taking the supremum over m ∈ Ak and over k ∈ {−K, . . . ,K−1}, and then combining
this with (2.97), we obtain that

limsup
N→+∞

FN(t,h) ⩽ sup
m∈[−1,1]

(tξ(m)+hm−ψ
∗(m))+C+h

K
.

Letting K tend to infinity then yields the upper bound

limsup
N→+∞

FN(t,h) ⩽ sup
m∈[−1,1]

(tξ(m)+hm−ψ
∗(m)). (2.98)
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Step 2: the lower bound. We fix ε > 0, m0 ∈ [−1,1], δ > 0, and consider the open set
Uδ ∶= (m0−δ ,m0+δ). The monotonicity of the logarithm implies that

FN(t,h) ⩾
1
N

log
ˆ
RN

1{SN∈Uδ} expN(tξ(SN)+hSN)dPN

⩾ inf
m∈Uδ

(tξ(m)+hm)+ 1
N

logPN{SN ∈Uδ}.

Using the large deviation lower bound (2.96) to let N tend to infinity reveals that

liminf
N→+∞

FN(t,h) ⩾ inf
m∈Uδ

(tξ(m)+hm)−ψ
∗(m0).

Letting δ tend to zero and leveraging the continuity of the map m↦ tξ(m)+hm
gives the lower bound

liminf
N→+∞

FN(t,h) ⩾ tξ(m0)+hm0−ψ
∗(m0).

Since m0 ∈ [−1,1] was arbitrary, this completes the proof. ∎

Corollary 2.20. The limit of the free energy (1.35) in the (standard) Curie-Weiss
model is given by

f (t,h) ∶= lim
N→+∞

FN(t,h) = sup
m∈[−1,1]

(tm2+hm−ψ
∗(m)) (2.99)

for the function ψ∗ ∶R→R defined by

ψ
∗(m) ∶= 1+m

2
log(1+m)+ 1−m

2
log(1−m), for m ∈ [−1,1], (2.100)

with the understanding that 0log(0) = 0, and ψ∗ = +∞ on R∖[−1,1].

Proof. The Curie-Weiss model corresponds to the generalized Curie-Weiss model
with ξ(x) = x2 and PN uniform on the set {±1}N . This means that for every h ∈R,

FN(0,h) =
1
N

log
1

2N ∑
σ∈{±1}N

exp(h
N
∑
i=1

σi) = logcosh(h).

In particular, the limit

ψ(h) = lim
N→+∞

FN(0,h) = logcosh(h)

exists and defines a continuously differentiable function ψ ∈C1(R;R). It follows
by Theorem 2.19 that the limit free energy is

f (t,h) = sup
m∈[−1,1]

(tm2+hm−ψ
∗(m))
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for the convex dual

ψ
∗(m) = sup

h∈R
(hm−ψ(h)) = sup

h∈R
(hm− logcosh(h)).

The symmetry of ψ implies that of ψ∗, so it suffices to compute the convex dual for
m ∈ [0,1]. The derivative of the function g(h) ∶= hm−ψ(h) is g′(h) =m− tanh(h).
Since tanh(h) ∈ (−1,1), if m = 1 the function g is increasing and

ψ
∗(1) = lim

h→+∞
(h− logcosh(h)) = log(2).

On the other hand, if m ∈ [0,1), then g admits a unique critical point h∗ which
satisfies

tanh(h∗) =m.

Since g is concave, we must have ψ∗(m) = g(h∗). A direct computation shows that

e2h∗ = 1−m
1+m

from which it is readily verified that

ψ
∗(m) ∶= 1+m

2
log(1+m)+ 1−m

2
log(1−m). (2.101)

(The attentive reader will have observed that this must coincide with the rate
function (2.51), up to a change of variables.) This completes the proof. ∎

2.4 The envelope theorem and the Curie-Weiss magnetization

The original motivation for introducing the free energy (1.35) was to understand
the asymptotic behaviour of the mean magnetization

mN(t,h) ∶= ⟨
1
N

N
∑
i=1

σi⟩ (2.102)

in the Curie-Weiss model, and to show that for large enough values of the inverse
temperature parameter t, it exhibits ferromagnetic behaviour. Recall that ⟨⋅⟩ denotes
the average under the Gibbs measure (1.31), see (1.33). A direct computation
reveals that the mean magnetization is the derivative of the free energy,

mN(t,h) = ∂hFN(t,h). (2.103)

The sequence (FN)N⩾1 is convex in h by Exercise 2.6 and, by Corollary 2.20, it
converges to the limit free energy

f (t,h) ∶= sup
m∈[−1,1]

(tm2+hm−ψ
∗(m)), (2.104)
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where ψ∗ ∶R→R is given by

ψ
∗(m) ∶= 1+m

2
log(1+m)+ 1−m

2
log(1−m). (2.105)

We would like to pass to the limit in (2.103), and to study the properties of ∂h f .
This should hopefully allow us to identify the phase transition of the model from
paramagnetic to ferromagnetic behaviour as we increase t, similarly to (v) of
Exercise 1.3.

The problem of differentiating a function which, like the function f in (2.104),
is defined as the envelope, or supremum, of a family of functions, is sufficiently
important that we will discuss it in general. Given a continuous function g ∈
C(Rd ×Rd;R) that is continuously differentiable in its first variable, we will show
that the function

f (x) ∶= sup
y∈Rd

g(x,y) (2.106)

is differentiable at a point x ∈Rd if and only if the function y↦∇xg(x,y) is constant
on the set of optimizers

Ox ∶= {y ∈Rd ∣ f (x) = g(x,y)}. (2.107)

This holds in particular whenever Ox is a singleton. In this case, the derivative of f
can be computed by simply bringing the derivative into the supremum.

Theorem 2.21 (Envelope). Let g ∈C(Rd ×Rd;R) be a continuous function that is
continuously differentiable in its first variable, let f ∶Rd →R be its envelope (2.106),
and let Ox be as in (2.107). We fix x ∈Rd , and assume that there exists a compact
set K which contains Ox′ ≠ ∅ for every x′ in a small enough neighbourhood of x.
As x′ ∈Rd tends to x, we have the expansion

f (x′) = f (x)+ sup
y∈Ox

{(x′−x) ⋅∇xg(x,y)}+o(∣x−x′∣). (2.108)

In particular, the envelope function f ∶Rd →R is differentiable at x ∈Rd if and only
if the set

Dx ∶= {∇xg(x,y) ∣ y ∈ Ox} (2.109)

is a singleton. In this case, for any y ∈ Ox, we have ∇ f (x) = ∇xg(x,y).

Proof. We decompose the proof into three steps.

Step 1: lower bound for (2.108). Since g is continuously differentiable, we have for
every y ∈ Ox that, as x′ tends to x,

g(x′,y) = g(x,y)+(x′−x) ⋅∇xg(x,y)+o(∣x−x′∣). (2.110)
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Moreover, since Ox is contained in the compact set K, the expansion (2.110) holds
uniformly over y ∈ Ox. By the definition of f as a supremum and the fact that y ∈ Ox,
we obtain that, as x′ tends to x,

f (x′) ⩾ f (x)+(x′−x) ⋅∇xg(x,y)+o(∣x−x′∣). (2.111)

Taking the supremum over y ∈ Ox yields the lower bound for (2.108).

Step 2: upper bound for (2.108). We now turn to the converse bound. Let (xn)n⩾1 ⊆
Rd ∖{x} be a sequence converging to x. Our goal is to show that

limsup
n→+∞

1
∣xn−x∣

( f (xn)− f (x)− sup
y∈Ox

{(xn−x) ⋅∇xg(x,y)}) ⩽ 0. (2.112)

For every n ⩾ 1 sufficiently large, we can pick yn ∈ Oxn . Since Oxn ⊆K for every n
sufficiently large, we can, after the extraction of a subsequence, assume that (yn)n⩾1
converges to some point y ∈Rd . In fact, it suffices that we show (2.112) for every
sequence (xn,yn)n⩾1 with xn ≠ x converging to x, with yn ∈ Oxn , and with yn converg-
ing to some y ∈Rd . This can be seen by arguing by contradiction: if (2.112) fails to
hold for some sequence (xn)n⩾1, then we can construct another sequence (xn,yn)n⩾1
with yn ∈ Oxn , with (2.112) still failing, and with yn converging to some y. So we
assume that these conditions hold from now on. For every y′ ∈Rd , we have

g(xn,y′) ⩽ sup
y∈Rd

g(xn,y) = g(xn,yn),

and letting n tend to infinity, we obtain that g(x,y′) ⩽ g(x,y)— in other words, we
have that y ∈ Ox. By the definition of f as a supremum and the fundamental theorem
of calculus, we have

g(xn,yn)− f (x) ⩽ g(xn,yn)−g(x,yn) =
ˆ 1

0
(xn−x) ⋅∇xg(txn+(1− t)x,yn)dt.

Since yn ∈ Oxn and y ∈ Ox, we obtain that

f (xn) ⩽ f (x)+ sup
y∈Ox

{(xn−x) ⋅∇xg(x,y)}

+ ∣xn−x∣ ∣
ˆ 1

0
∇xg(txn+(1− t)x,yn)dt −∇xg(x,y)∣. (2.113)

Since ∇xg is continuous, we have

lim
n→+∞

ˆ 1

0
∇xg(txn+(1− t)x,yn)dt = ∇xg(x,y),

so letting n tend to infinity in (2.113) yields (2.112).
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Step 3: differentiability condition. By (2.108), it is clear that if the set Dx in (2.109)
is a singleton, then f is differentiable at x, and ∇ f (x) = ∇xg(x,y) for every y ∈ Ox.
Conversely, suppose that the function f is differentiable at x. Using (2.111) and the
differentiability assumption, we obtain that, for every y ∈ Ox and as x′ tends to x,

(x′−x) ⋅ (∇ f (x)−∇xg(x,y)) ⩾ o(∣x′−x∣).

This means that ∇xg(x,y) = ∇ f (x), so Dx is a singleton as announced. ∎

To apply this result to determine the limit of the mean magnetization (2.102)
as N tends to infinity, given t ∈R⩾0 and h ∈R, we need to study the set of maximizers
of the function gt,h ∶ [−1,1] →R defined by

gt,h(m) ∶= tm2+hm−ψ
∗(m). (2.114)

We will focus in particular on the case when h is close to zero. Figure 2.1 displays
the graph of this function for (t,h) = (0.1,0) and (t,h) = (0.6,0), and it suggests
that there should be a transition at some critical inverse temperature tc ∈ (0.1,0.6),
where the number of maximizers jumps from one to two.

m

0.1m2 − ψ∗(m)

m

0.6m2 − ψ∗(m)

Figure 2.1 Graphs of m↦ tm2−ψ
∗(m) for t = 0.1 and t = 0.6 in the Curie-Weiss model.

Proposition 2.22. If t ⩽ 1
2 , then for every h ∈R, the function (2.114) has a unique

maximizer mh(t) ∈ [−1,1]. On the other hand, if t > 1
2 , then for all ∣h∣ small enough,

the function (2.114) has exactly two local maximizers m−h(t) ⩽m+h(t) ∈ [−1,1]. In
all cases, these local maximizers are solutions to the fixed point equation

m = tanh(h+2tm). (2.115)

For t > 1
2 , there exists m∗(t) > 0 (not depending on h) such that for all ∣h∣ small

enough,
m−h(t) < −m∗(t) <m∗(t) <m+h(t). (2.116)
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Proof. Fix t ∈R⩾0 and h ∈R. A direct computation gives that for every m ∈ [−1,1],

∂mgt,h(m) = 2tm+h+ 1
2

log(1−m
1+m

).

It follows that the critical points m of gt,h are the solutions to the critical point
equation

m = e2(h+2tm)−1
e2(h+2tm)+1

= tanh(h+2tm).

Differentiating one more time, wee see that, for every m ∈ [−1,1],

∂
2
mgt,h(m) = 2t − 1

1−m2 .

We now distinguish two cases. First, if t ⩽ 1
2 , then ∂ 2

mgt,h(m) ⩽ 0, with the inequality
being strict for every non-zero m ∈ [−1,1]. This means that ∂mgt,h is a decreasing
function that tends to +∞ as m approaches −1 and tends to −∞ as m approaches 1. It
follows by the intermediate value theorem that gt,h has a unique critical point mh(t),
and the sign of ∂mgt,h on each side of this critical point reveals that it is a maximizer.
In the case t > 1

2 , the function ∂ 2
mgt,h has exactly two zeros,

±m∗(t) ∶= ±
√

1− 1
2t
,

and it is positive on the interval (−m∗(t),m∗(t)) and negative on its complement.
Since ∂mgt,0(0) =0, the continuity of h↦∂mgt,h implies that for ∣h∣ small enough, the
function ∂mgt,h must have a zero on the interval (−m∗(t),m∗(t)). Since ∂mgt,h tends
to +∞ as m approaches −1, decreases for m ⩽−m∗(t), increases on (−m∗(t),m∗(t))
and has a zero in this interval before decreasing to −∞ as m approaches 1, it must
have two zeros m±h(t) ∈ [−1,1] outside the interval (−m∗(t),m∗(t)). Analyzing the
sign of ∂mgt,h reveals that these are the only local maximizers of gt,h; the critical
point in the interval (−m∗(t),m∗(t)) is a local minimizer. This completes the
proof. ∎

If t > 1
2 and h > 0, then gt,h(m+h(t)) > gt,h(m−h(t)), so the envelope theorem and

Proposition 2.22 imply that m(t,h) = ∂h f (t,h) =m+h(t). The sequence (m+h(t))h>0
is uniformly bounded by one, and by (2.115) any of its subsequential limits as h↘ 0
must satisfy the fixed point equation m = tanh(2tm). Together with the separation
bound (2.116), this means that it must be m+0(t). That is,

lim
h↘0

m(t,h) =m+0(t) > 0. (2.117)

A similar argument shows that

lim
h↗0

m(t,h) =m−0(t) = −m+0(t) < 0, (2.118)
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where the last equality uses the symmetry of the fixed point equation (2.115) when
h = 0. The qualitative behaviour of the mapping h↦m(t,h) is therefore similar to
that in the two-dimensional Ising model depicted in Figure 1.1. The phase transition
at the critical temperature tc = 1

2 is explored further in Exercise 2.24. By varying
the choice of the function ξ and the sequence of measures PN in the generalized
Curie-Weiss model, one can devise models with a wide variety of behaviours, such
as multiple phase transitions [107].

Exercise 2.23. Let f ∶Rd →R be a function such that

lim
∣x∣→+∞

f (x)
∣x∣
= +∞. (2.119)

We also assume that the function f is strictly convex, that is, for every x ≠ y ∈Rd

and α ∈ (0,1), we have

f (αx+(1−α)y) < α f (x)+(1−α) f (y). (2.120)

Show that the effective domain of f ∗ is Rd and that f ∗ is continuously differentiable.

Exercise 2.24. Denote by f ∶R⩾0×R→R the limit free energy (2.104) in the Curie-
Weiss model and by tc ∶= 1

2 its critical inverse temperature parameter. We recall
from Proposition 2.22 that if t ⩽ tc, then the function (2.114) for h = 0 has a unique
maximizer m0(t) = 0, while it has two maximizers ±m0(t) if t > tc.

(i) Identify ∂t f (t,0), and show that it is a continuous function of t.

(ii) Identify an exponent δ ⩾ 0 such that, as h tends to zero and in a sense to be
specified,

f (tc,h) ≃ ∣h∣1+1/δ .

(iii) Identify an exponent β ⩾ 0 such that, as t tends to tc and in a sense to be
specified,

m0(t) ≃ (t − tc)β+,

where x+ ∶=max(0,x) denotes the positive part.

The notation used here for the exponents δ and β follows the convention of the
physics literature. In dimensions d ⩾ 4, the Ising model on Zd has the same critical
exponents as the Curie-Weiss model, with a logarithmic correction when d = 4
[10, 12]. For the two-dimensional Ising model, we have δ = 15 and β = 1

8 [149, 150,
203, 246, 265]. There is no known or conjectured closed-form description of these
exponents in three dimensions; sophisticated numerical estimates are derived in
[111, 112, 156].



Chapter 3
Hamilton-Jacobi equations

In Chapter 2, we computed the limit of the free energy in the Curie-Weiss model
via large deviation principles. Unfortunately, this approach seems inapplicable
for the models coming from statistical inference or spin glass theory which we
are ultimately interested in. In this chapter, we introduce the Hamilton-Jacobi
approach, and we use it to compute the limit of the free energy in the Curie-Weiss
model and its generalization. The approach centres around the observation that the
finite-volume free energy satisfies an approximate Hamilton-Jacobi equation, up
to a small error term. Section 3.1 presents this computation in the context of the
Curie-Weiss and generalized Curie-Weiss models, and justifies the need to introduce
a precise notion of solution to a Hamilton-Jacobi equation. The notion of a viscosity
solution is defined in Section 3.2, and we observe that any subsequential limit of the
free energy in the Curie-Weiss model must be a viscosity solution. We then show in
Section 3.3 that there can be at most one viscosity solution to a Hamilton-Jacobi
equation with a prescribed initial condition. This already guarantees that we have
identified the limit free energy of the Curie-Weiss model uniquely. In Section 3.4, in
order to recover the explicit formula for the limit free energy found in the previous
chapter, we develop variational representations of viscosity solutions whenever
the initial condition or the non-linearity in the equation is convex (or concave). In
Section 3.5, we explore whether any aspect of this variational structure is preserved
in the absence of convexity or concavity. Finally, in Section 3.6, we focus on a
new difficulty that emerges when trying to analyze the generalized Curie-Weiss
model. To overcome this, we present a convenient criterion for deciding when a
given convex function is the viscosity solution to a Hamilton-Jacobi equation.

3.1 A Hamilton-Jacobi approach to Curie-Weiss

Recall from Section 1.3 that, given a smooth function ξ ∈C∞(R;R) and a probabil-
ity measure PN on RN with the property that ∣σ ∣ ⩽

√
N for PN-a.e. σ , the Hamiltonian

59
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of the generalized Curie-Weiss model at the point (t,h,σ) ∈R⩾0×R×RN is defined
by

HN(t,h,σ) ∶=Ntξ( 1
N

N
∑
i=1

σi)+h
N
∑
i=1

σi. (3.1)

The free energy in the generalized Curie-Weiss model is given by

FN(t,h) ∶=
1
N

log
ˆ
RN

expHN(t,h,σ)dPN(σ), (3.2)

and the average of any bounded and measurable function f ∶RN →R with respect
to the Gibbs measure (1.31) is denoted by

⟨ f (σ)⟩ ∶=
´
RN f (σ)expHN(t,h,σ)dPN(σ)´

RN expHN(t,h,σ)dPN(σ)
. (3.3)

We recall that, although this is kept implicit in the notation, the bracket ⟨⋅⟩ depends
on the choice of parameters t and h. The (standard) Curie-Weiss model corresponds
to the choice ξ(x) = x2 and PN uniform on the hypercube {±1}N ∶= {−1,+1}N . To
illustrate the Hamilton-Jacobi approach in the simplest possible setting, let us first
focus on this situation.

In the context of the Curie-Weiss model, a direct computation shows that

∂tFN(t,h) = ⟨(
1
N

N
∑
i=1

σi)
2

⟩ and ∂hFN(t,h) = ⟨
1
N

N
∑
i=1

σi⟩. (3.4)

It follows that

∂tFN(t,h)−(∂hFN(t,h))
2 = ⟨( 1

N

N
∑
i=1

σi)
2

⟩−⟨ 1
N

N
∑
i=1

σi⟩
2

=Var( 1
N

N
∑
i=1

σi). (3.5)

Another direct computation reveals that

∂
2
h FN(t,h) = ⟨

1
N
(

N
∑
i=1

σi)
2

⟩− 1
N
⟨

N
∑
i=1

σi⟩
2

=N Var( 1
N

N
∑
i=1

σi). (3.6)

Together with (3.5), this implies that the finite-volume free energy (3.2) in the
Curie-Weiss model satisfies

∂tFN(t,h)−(∂hFN(t,h))
2 = 1

N
∂

2
h FN(t,h). (3.7)

Since PN is uniform on the hypercube {±1}N , the free energy at “time” 0 is inde-
pendent of N. Indeed,

FN(0,h) =
1
N

log
1

2N ∑
σ∈{±1}N

exp(h
N
∑
i=1

σi) =
1
N

log(1
2
(eh+e−h))

N

= logcosh(h).
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We introduce the notation

ψ(h) ∶= logcosh(h) = F1(0,h) = FN(0,h). (3.8)

These observations suggest that the limit free energy f ∶R⩾0×R→R in the Curie-
Weiss model should satisfy the Hamilton-Jacobi equation

∂t f −(∂h f )2 = 0 on R>0×R, (3.9)

subject to the initial condition f (0, ⋅) =ψ . In Corollary 2.20, we showed that

f (t,h) = sup
m∈[−1,1]

(tm2+hm−ψ
∗(m)). (3.10)

By the envelope theorem (Theorem 2.21), one can show that at every point (t,h) of
differentiability of f , we have

∂t f (t,h) =m2
0(t,h) and ∂h f (t,h) =m0(t,h), (3.11)

for a maximizer m0(t,h) of the right side of (3.10). In particular, the limit free
energy f does indeed satisfy the Hamilton-Jacobi equation (3.9) at all its points
of differentiability. Together with Rademacher’s theorem (Theorem 2.10), this
implies that f satisfies the equation (3.9) almost everywhere. Notice that f is
Lipschitz continuous because each FN is, by (3.4). A natural question arises at this
point. Could we identify the limit free energy f as the unique Lipschitz continuous
function with f (0, ⋅) = ψ which satisfies the equation (3.9) almost everywhere?
Unfortunately, the answer is no. In fact, the following construction shows that
this Hamilton-Jacobi equation admits infinitely many almost-everywhere solutions
which are Lipschitz continuous.

Example 3.1. For simplicity, we will construct infinitely many Lipschitz functions
that satisfy the Hamilton-Jacobi equation (3.9) almost everywhere and are constant
equal to zero at the initial time. Similar constructions can be performed for more
general initial conditions. Temporarily disregarding the question of the initial
condition, we start by noticing that the functions (t,h) ↦ 0, (t,h) ↦ t + h and
(t,h) ↦ t −h are all solutions to (3.9). It thus follows that the Lipschitz function

f̃ (t,h) ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

t +h if h ∈ [−t,0]
t −h if h ∈ [0,t]
0 otherwise

(3.12)

displayed in Figure 3.1 is an almost everywhere solution to (3.9), as it is obtained by
“gluing together” these different solutions, and we can disregard the measure-zero
set of points where they are joined together. We also have f̃ (0, ⋅) = 0.
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−t t

t

h

f̃(h)

t− h−t+ h

Figure 3.1 Graph of the function h↦ f̃ (t,h), for a fixed value of t > 0.

Evidently, the null solution also satisfies these properties, so we already have
two almost-everywhere solutions with the same initial condition. Moreover, any
translation in space of f̃ also satisfies this property; and we can also delay the
“emergence of the corner” to some arbitrary time. So in fact there are uncountably
many Lipschitz functions that solve the equation (3.9) almost everywhere and vanish
at the initial time.

We could try to impose uniqueness of solutions by strengthening the regularity
assumptions; for instance, we could impose that a solution f to (3.9) be in C1(R⩾0×
R;R) and satisfy the equation everywhere. The problem with this idea is that in this
case, the set of solutions can be empty, and indeed, we have already seen in (2.117)
and (2.118) that our candidate solution f in (3.10) is not everywhere differentiable.
We therefore need to identify a notion of solution that is more stringent than the
“almost-everywhere solutions” explored above, but less stringent than asking the
solution to be in C1(R⩾0×R;R). In a nutshell, we will also require the function
f to satisfy a certain form of the maximum principle. We observe that whenever
two functions f and g satisfy the Hamilton-Jacobi equation (3.10) with “viscosity”
parameter ε > 0,

∂t f −(∂h f )2 = ε∆ f on R>0×R,

if their initial conditions are ordered, say f (0, ⋅) ⩽ g(0, ⋅), then this ordering is
preserved at all later times t ⩾ 0 as well, f (t, ⋅) ⩽ g(t, ⋅). While we will obtain this
monotonicity property as a consequence of the definition of solution explained
below, we point out that one can essentially also go the other way around [16].

Before introducing this appropriate notion of solution, let us see what the
computations leading to (3.7) would look like in the context of the generalized
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Curie-Weiss model. In this setting, one can readily see that

∂tFN(t,h) = ⟨ξ(
1
N

N
∑
i=1

σi)⟩ and ∂hFN(t,h) = ⟨
1
N

N
∑
i=1

σi⟩, (3.13)

and that (3.6) still holds. It follows that

∂tFN(t,h)−ξ(∂hFN(t,h)) = ⟨ξ(
1
N

N
∑
i=1

σi)⟩−ξ(⟨ 1
N

N
∑
i=1

σi⟩). (3.14)

If the variance of the magnetization is small, we therefore expect ∂tFN −ξ(∂hFN) to
be close to zero. Recall that for every σ in the support of PN , the magnetization is
bounded by one,

∣ 1
N

N
∑
i=1

σi∣ ⩽ (
1
N

N
∑
i=1

σ
2
i )

1
2

= ∣σ ∣√
N
⩽ 1, (3.15)

and so this bound also holds with probability one under the Gibbs measure. More-
over, as ξ is smooth, there exists a constant C < +∞ such that for every x,y ∈ [−1,1],

∣ξ(y)−ξ(x)−(y−x)ξ ′(x)∣ ⩽C(x−y)2.
This implies that

∣ξ( 1
N

N
∑
i=1

σi)−ξ(⟨ 1
N

N
∑
i=1

σi⟩)−ξ
′(⟨ 1

N

N
∑
i=1

σi⟩)(
1
N

N
∑
i=1

σi−⟨
1
N

N
∑
i=1

σi⟩)∣

⩽C∣ 1
N

N
∑
i=1

σi−⟨
1
N

N
∑
i=1

σi⟩∣
2

. (3.16)

Averaging with respect to the Gibbs measure (3.3), substituting the resulting bound
into (3.14), and recalling (3.6) yields that

∣∂tFN(t,h)−ξ(∂hFN(t,h))∣ ⩽CVar( 1
N

N
∑
i=1

σi) =
C
N

∂
2
h FN(t,h). (3.17)

If we assume that the limit

ψ(h) ∶= lim
N→+∞

FN(0,h) (3.18)

of the initial conditions exists, which is for instance the case when PN is a product
measure, then we expect the limit free energy f ∶R⩾0×R→R in the generalized
Curie-Weiss model to satisfy the Hamilton-Jacobi equation

∂t f −ξ(∂h f ) = 0 on R>0×R (3.19)

subject to the initial condition f (0, ⋅) = ψ . This will however be harder to prove
rigorously than for the Curie-Weiss model due to the presence of the absolute value
in the inequality (3.17). The problem is that functions that are only known to satisfy
the inequality (3.17) do not necessarily satisfy the maximum principle, while the
notion of viscosity solutions takes this property as its foundation. We will explain
how to circumvent this difficulty by leveraging the convexity of the solutions.
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3.2 Viscosity solutions to Hamilton-Jacobi equations

In this section, given a locally Lipschitz continuous non-linearity H ∶Rd →R and a
Lipschitz continuous initial condition ψ ∶Rd →R, we define a notion of solution
f = f (t,x) ∶R⩾0×Rd →R to the Hamilton-Jacobi equation

∂t f −H(∇ f ) = 0 on R>0×Rd, (3.20)

subject to the initial condition f (0, ⋅) =ψ . We understand the gradient to be taken
with respect to the x variable, leaving the t variable aside: ∇ f (x) = (∂x1 f , . . . ,∂xd f ).
The equations arising in the context of the Curie-Weiss and generalized Curie-
Weiss models correspond to the one-dimensional case, d = 1 and, respectively, the
non-linearities H(p) = p2 and H(p) = ξ(p).

A natural way to define a solution to the equation (3.20) is to add a small
“viscosity” parameter ε > 0, and to consider the second-order parabolic equation

∂t fε −H(∇ fε) = ε∆ fε on R>0×Rd (3.21)

subject to the initial condition fε(0, ⋅) =ψ . That smooth solutions exist for (3.21)
can be shown by classical techniques, because the Laplacian term is dominant on
very small scales, being of higher order than the non-linear term in the equation. The
solution to the Hamilton-Jacobi equation (3.20) can then be defined as the limit of
the solutions to (3.21) as the viscosity parameter ε tends to zero. Although we will
not pursue this route rigorously here, let us suppose for a moment that for each ε > 0,
we have been able to define a smooth solution fε ∶R⩾0×Rd →R to (3.21), and that
we have been able to show that, as ε tends to zero, the sequence ( fε)ε>0 converges
to some function f ∶R⩾0×Rd →R in the topology of local uniform convergence.

We would like to say, in some sense to be discovered, that the limit thus obtained
is a solution to (3.20). As was seen in the previous section, the main difficulty is that
we do not want to impose a solution to (3.19) to be differentiable everywhere; but we
do not obtain unique solutions if we simply ignore the points of non-differentiability.
In analogy with the notion of weak solutions, we would like to introduce smooth
test functions and somehow move the derivatives of f onto the test functions, so that
we could introduce some constraint for what a solution is allowed to do at points
of non-differentiability. This transfer of the derivatives onto the test functions will
not be obtained by some integration by parts here. Rather, we seek a strategy that
accords well with the fact that our approximations ( fε)ε>0 satisfy the maximum
principle. We pick a test function φ ∈C∞(R>0 ×Rd;R), and assume that f −φ

achieves a strict local maximum at the point (t∗,x∗) ∈R>0×Rd . If f is smooth at
(t∗,x∗), then we clearly have

(∂tφ(t∗,x∗),∇φ(t∗,x∗)) = (∂t f (t∗,x∗),∇ f (t∗,x∗)), (3.22)
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so we expect that
∂tφ(t∗,x∗)−H(∇φ(t∗,x∗)) = 0. (3.23)

This identity may no longer be valid when f is not differentiable at (t∗,x∗), but
we will now argue that the quantity on the left side of (3.23) must always be
non-positive.

Using Exercise 3.1, we can find a sequence (t∗ε ,x∗ε )ε>0 converging to (t∗,x∗)
with the property that, for every ε > 0 sufficiently small, the function fε −φ achieves
a local maximum at (t∗ε ,x∗ε ) ∈R>0×Rd , and therefore

∂t( fε −φ)(t∗ε ,x∗ε ) = 0, ∇( fε −φ)(t∗ε ,x∗ε ) = 0, and ∆( fε −φ)(t∗ε ,x∗ε ) ⩽ 0. (3.24)

It follows by (3.21) that

(∂tφ −H(∇φ))(t∗ε ,x∗ε ) = (∂t f −H(∇ f ))(t∗ε ,x∗ε ) = ε ∆ fε(t∗ε ,x∗ε ) ⩽ ε ∆φ(t∗ε ,x∗ε ).

Letting ε tend to zero and leveraging the smoothness of φ shows that

(∂tφ −H(∇φ))(t∗,x∗) ⩽ 0. (3.25)

We have thus shown that whenever a smooth function φ is such that f −φ has a
strict local maximum at (t∗,x∗) ∈R>0×Rd , the inequality (3.25) holds at (t∗,x∗).
An analogous argument shows that whenever a smooth function φ is such that f −φ

has a strict local minimum at (t∗,x∗) ∈R>0×Rd , we have

(∂tφ −H(∇φ))(t∗,x∗) ⩾ 0. (3.26)

As we will see in the next section, these properties of f we just derived are suffi-
cient to determine it uniquely, once the initial condition f (0, ⋅) is fixed. We will
therefore take them as the definition of being a solution to the Hamilton-Jacobi
equation (3.20).

When f −φ has a local maximum at (t∗,x∗), we will often say that “φ touches f
from above at (t∗,x∗)”. The reason is that, for our purposes, adding a constant
to the test function φ is irrelevant to the discussion, so we may as well assume
indeed that ( f −φ)(t∗,x∗) = 0. For this reason, we may also call the point (t∗,x∗)
the “contact point”. We feel that the wording has some intuitive appeal, as we can
imagine taking some arbitrary smooth function φ that is way above f , and then
progressively “sliding it down” until the graphs of φ and f touch — at the contact
point. This is illustrated in Figure 3.2. Notice that not every point can be “touched”
in this way. For instance, there is no smooth function that touches the absolute value
function from above at the origin.
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f(t, x)

ϕ+(t, x)

ϕ−(t, x)

(t∗, x∗)

R≥0 × Rd

R

Figure 3.2 The function φ+ touches the function f from above at the point (t∗,x∗) while
the function φ− touches the function f from below at the point (t∗,x∗).

Definition 3.2. A continuous function u ∶R⩾0×Rd →R is a viscosity subsolution
to the Hamilton-Jacobi equation (3.20) if, for every (t∗,x∗) ∈ R>0 ×Rd and φ ∈
C∞(R>0 ×Rd;R) with the property that u−φ has a local maximum at the point
(t∗,x∗) ∈R>0×Rd , we have

(∂tφ −H(∇φ))(t∗,x∗) ⩽ 0. (3.27)

A continuous function v ∶R⩾0×Rd →R is a viscosity supersolution to the Hamilton-
Jacobi equation (3.20) if, for every (t∗,x∗) ∈ R>0 ×Rd and φ ∈C∞(R>0 ×Rd;R)
with the property that v−φ has a local minimum at the point (t∗,x∗) ∈R>0×Rd , we
have

(∂tφ −H(∇φ))(t∗,x∗) ⩾ 0. (3.28)

A continuous function f ∶R⩾0×Rd→R is a viscosity solution to the Hamilton-Jacobi
equation (3.20) if it is both a viscosity subsolution and a viscosity supersolution
to (3.20).

As shown in Exercises 3.2–3.4, in the definition of a viscosity subsolution or
viscosity supersolution, replacing “local maximum” by “strict local maximum” or
by “global maximum”, or replacing the requirement that φ ∈C∞(R>0×Rd;R) by the
requirement that φ ∈C1(R>0×Rd;R) lead to equivalent definitions. In Exercise 3.5,
we verify that a C1 function that satisfies the equation (3.20) everywhere is indeed
a viscosity solution, so the notion of viscosity solution is more “permissive” than
prescribing the function to be C1(R⩾0×Rd;R) and to solve the equation everywhere.
One can also show that a viscosity solution must satisfy the equation (3.20) at
every point of differentiability, see for instance Theorem 10.1.2.1 in [115]. By the
Rademacher theorem (Theorem 2.10), a Lipschitz viscosity solution must therefore
satisfy the equation (3.20) almost everywhere. In other words, the notion of viscosity
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solution is indeed more stringent than that of “almost-everywhere solution” explored
in Section 3.1. This is corroborated by the fact that the solution constructed in
Example 3.1 is not a viscosity solution to the Hamilton-Jacobi equation (3.9).

Example 3.3. Recall the definition of the function f̃ in Example 3.1, fix t0 > 0,
and consider the smooth function φ(t,x) = t. Observe that f̃ −φ ⩽ 0, and f (t0,0)−
φ(t0,0) =0, so f̃ −φ has a local maximum at (t0,0). If f̃ were a viscosity subsolution
to the Hamilton-Jacobi equation (3.9), we would have (∂tφ −(∂xφ)2)(t0,0) ⩽ 0.
However, we see that (∂tφ −(∂xφ)2)(t0,0) = 1. This shows that f̃ is not a viscosity
solution to (3.9).

We now verify that any subsequential limit of the sequence (FN)N⩾1 of free
energies in the Curie-Weiss model is a viscosity solution to the Hamilton-Jacobi
equation (3.9). Notice first that the sequence of free energies (FN)N⩾1 is precompact
in the topology of local uniform convergence, by the Arzelà-Ascoli theorem. Indeed,
the function FN(0, ⋅) does not depend on N by (3.8), and ∂hFN and ∂tFN take values
in the compact interval [−1,1] by (3.4).

Proposition 3.4. For each N ⩾ 1, let FN denote the free energy (1.35) of the
(standard) Curie-Weiss model, and let f ∶ R⩾0 ×R→ R be a subsequential limit
of (FN)N⩾1 in the topology of local uniform convergence. The function f is a
viscosity solution to the Hamilton-Jacobi equation (3.9) with initial condition
f (0,h) =ψ(h) ∶= logcosh(h).

Proof. This is essentially the argument that led us to (3.25). Recall from (3.7) that

∂tFN −(∂hFN)2 =
1
N

∂
2
h FN on R⩾0×R. (3.29)

Fix a smooth function φ ∈C∞(R>0×R;R) with the property that f −φ has a strict
local maximum at (t∗,h∗) ∈R>0×R. Since (FN)N⩾1 converges locally uniformly
to f , using Exercise 3.1 it is possible to find a sequence (tN ,hN)N⩾1 ⊆ R>0 ×R
converging to (t∗,h∗) with the property that, for every N large enough, FN −φ has a
local maximum at (tN ,hN). Since t∗ > 0, we have that tN > 0 for every N sufficiently
large, so the derivatives in t and h of FN −φ must vanish at (tN ,hN), and we must
also have that ∂ 2

h (FN −φ)(tN ,hN) ⩽ 0. Using also the identity (3.29), we obtain

(∂tφ −(∂hφ)2)(tN ,hN) =
1
N

∂
2
h FN(tN ,hN) ⩽

1
N

∂
2
h φ(tN ,hN).

Since φ is smooth, letting N tend to infinity shows that f is a viscosity subsolution
to the Hamilton-Jacobi equation (3.9). A similar argument shows that it is also a
viscosity supersolution to this equation. By (3.8), the initial condition is satisfied.
This completes the proof. ∎
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Exercise 3.1. Let ( fN)N⩾1 be a sequence of continuous functions on Rd converging
locally uniformly to a function f ∶Rd →R. If f has a strict local maximum at x ∈Rd ,
show that there exists r > 0 and a sequence of points (xN)N⩾1 ⊆Rd converging to x
such that, for every N sufficiently large, we have fN(xN) = supBr(x) fN .

Exercise 3.2. Show that in the definition of a viscosity subsolution, replacing “local
maximum” by “strict local maximum” yields an equivalent definition.

Exercise 3.3. Show that in the definition of a Lipschitz viscosity subsolution,
replacing “local maximum” by “global maximum” or “strict global maximum”
yields an equivalent definition.

Exercise 3.4. Show that in the definition of a viscosity subsolution, replacing the
regularity of test functions “φ ∈C∞(R>0×Rd;R)” by “φ ∈C1(R>0×Rd;R)” yields
an equivalent definition.

Exercise 3.5. Show that if f ∈C1(R⩾0×Rd;R) satisfies (3.20) everywhere, then f
is a viscosity solution.

3.3 Uniqueness of solutions via the comparison principle

The result in Proposition 3.4 ensures that any subsequential limit of the free energy
in the Curie-Weiss model is a viscosity solution to (3.9). In particular, this shows
that a viscosity solution to this equation with initial condition ψ exists. To show
that the finite-volume free energies indeed converge to the solution to (3.9), we
need to assert the uniqueness of solutions to Hamilton-Jacobi equations with a
prescribed initial condition. We will in fact show a more general result known as
the comparison principle. The comparison principle formalizes the idea that the
Hamilton-Jacobi equation (3.20) should preserve the ordering of initial conditions.
In fact, since the equation is invariant under the addition of a constant to the solution,
we will show that if u is a subsolution and v is a supersolution to (3.20), then the
function u−v achieves its supremum at time zero. In particular, if u(0, ⋅) ⩽ v(0, ⋅),
then this ordering is preserved by the evolution.

If we assume for a moment that u and v are smooth functions, then we can
argue heuristically to get a sense of why this result might be true. For smooth
functions u and v, saying that u and v are a subsolution and a supersolution to the
Hamilton-Jacobi equation (3.20) amounts to saying that

∂tu−H(∇u) ⩽ 0 and ∂tv−H(∇v) ⩾ 0. (3.30)

Arguing by contradiction, suppose that

sup
R⩾0×Rd

(u−v) > sup
{0}×Rd

(u−v). (3.31)
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Up to subtracting a small increasing function of t to u, such as εt for some suffi-
ciently small ε > 0, we can make sure that (3.31) is still valid, and also that we have
improved (3.30) into

∂tu−H(∇u) < 0 and ∂tv−H(∇v) ⩾ 0. (3.32)

Now, if we assume that the supremum on the left side of (3.31) is achieved at some
point (t∗,x∗), then we must have t∗ > 0, so the first order derivatives of u and v
must coincide at this point. But this contradicts (3.32), so (3.31) cannot be true. Of
course, there is much left to be desired with this argument, since we assumed that u
and v are smooth, and also that the supremum on the left side of (3.31) is achieved
at some point. We start by discussing how one can go around the second problem.

To simplify the discussion, we will temporarily assume that the space Rd is
replaced by the unit torus Td = Rd/Zd , so that the variable x lives in a compact
space without boundary. We take u,v ∶R⩾0×Td →R to be a viscosity subsolution
and supersolution to (3.20) respectively, and we assume that they are smooth. Our
starting point is again to argue by contradiction, assuming that there exists some
time T > 0 with

sup
[0,T ]×Td

(u−v) > sup
{0}×Td

(u−v). (3.33)

Denoting χ(t) ∶= ε

T−t , we can select ε > 0 sufficiently small that

sup
[0,T ]×Td

(u−v−χ) > sup
{0}×Td

(u−v−χ). (3.34)

Since u− v is uniformly bounded over [0,T ] ×Td , it is clear that approximate
optimizers of the left side of (3.34) will remain away from the final time T . Using
also that [0,T ]×Td is compact, we can construct an optimizer (t∗,x∗) ∈ [0,T ]×Td

for this supremum, and it is clear that we must in fact have t∗ ∈ (0,T). Once this is
verified, we can use the differential condition at the maximum to ascertain that

∂t(u−v)(t∗,x∗)− ε

(T − t∗)2
= ∂t(u−v−χ)(t∗,x∗) = 0 (3.35)

and
∇(u−v)(t∗,x∗) = 0. (3.36)

Since v is a smooth supersolution to the equation, we can combine this with the
second inequality in (3.30) to obtain that

(∂tu−H(∇u))(t∗,x∗)− ε

(T − t∗)2
= (∂tv−H(∇v))(t∗,x∗) ⩾ 0. (3.37)

This contradicts the assumption (3.30) that u is a smooth subsolution to the Hamilton-
Jacobi equation (3.20). The role of the perturbation function χ is therefore two-fold.
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First, it ensures that the optimum t∗ is detached from the right endpoint of the
interval [0,T ], that is, t∗ < T . The function χ also allows us to strengthen the
inequalities (3.30) into those in (3.32), if we understand that the function u is
redefined to be u−χ .

In order to establish the comparison principle rigorously, we need to resolve two
main problems. The first, and most fundamental, is of course that u and v cannot
be assumed to be differentiable everywhere. The second is that the spatial variable
takes values in Rd rather than the torus. To tackle the first of these problems, we will
“double the variables”, and rather optimize a function that involves u(t,x)−v(t′,x′)
plus a smooth penalty term that strongly encourages (t,x) and (t′,x′) to stay close
together. This will naturally provide us with smooth test functions that touch u and
v from above and below respectively. The second problem, that the variable x lives
in an unbounded space, will be tackled by introducing another “cutoff” function,
similar to the function χ used above, but in the space variable. This additional
spatial cutoff will in fact allow us to prove a somewhat stronger result than the
comparison principle. To state this concisely, we denote the Lipschitz semi-norm of
a function h ∶Rd →R by

∥h∥Lip = sup
x≠x′
∣h(x′)−h(x)∣
∣x′−x∣

, (3.38)

and introduce the space of uniformly Lipschitz functions in space

L = {u ∶R⩾0×Rd →R ∣ u is continuous with sup
t⩾0
∥u(t, ⋅)∥Lip < +∞}. (3.39)

Theorem 3.5 (Comparison principle). Let u,v ∈L be a viscosity subsolution and a
viscosity supersolution to the Hamilton-Jacobi equation (3.20) respectively. Intro-
duce the Lipschitz constant L ∶=max(supt⩾0∥u(t, ⋅)∥Lip,supt⩾0∥v(t, ⋅)∥Lip) as well as
the local Lipschitz constant

V ∶= sup{∣H(p
′)−H(p)∣
∣p′− p∣

∣ ∣p∣, ∣p′∣ ⩽ L}. (3.40)

For every R,M ∈R with M > 2L, the mapping

(t,x) ↦ u(t,x)−v(t,x)−M(∣x∣ +Vt −R)+ (3.41)

achieves its supremum at a point in {0}×Rd .

In the statement above, we use the notation r+ ∶=max(0,r) to denote the positive
part of a real number r ∈R. Since the proof of Theorem 3.5 is a bit long, we suggest
that the reader ignore any term related to the cutoff in space M(∣x∣+Vt −R)+ and its
smoothed variants on first reading, in effect showing the comparison principle with
the unbounded space domain Rd replaced by the compact space Td .
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Proof of Theorem 3.5. Suppose for the sake of contradiction that there exists T > 0
with

sup
[0,T ]×Rd

(u−v−ϕ) > sup
{0}×Rd

(u−v−ϕ), (3.42)

where ϕ(t,x) ∶= M(∣x∣ +Vt −R)+. The proof proceeds in three steps. First we
smoothen and perturb (3.42), then we use a variable doubling argument to obtain a
system of inequalities, and finally we contradict this system of inequalities.

Step 1: smoothing and perturbing. Let ε0 ∈ (0,1) be a parameter to be determined,
and let θ ∈C∞(R;R) be a non-decreasing function such that, for every r ∈R,

(r−ε0)+ ⩽ θ(r) ⩽ r+.

We introduce the function

Φ(t,x) ∶=Mθ((ε0+ ∣x∣2)
1/2+Vt −R)

defined on R⩾0×Rd . The choice of θ and the bound (a+b)+ ⩽ a++b+ imply that

ϕ(t,x) ⩽Φ(t,x)+Mε0 ⩽ ϕ(t,x)+Mε
1/2
0 +Mε0,

where we have used that (a+b)
1
2 ⩽ a

1
2 +b

1
2 for a,b > 0. It follows by (3.42) that

sup
{0}×Rd

(u−v−Φ) < sup
[0,T ]×Rd

(u−v−Φ)+Mε0+Mε
1/2
0 ,

so choosing ε0 > 0 small enough guarantees that

sup
[0,T ]×Rd

(u−v−Φ) > sup
{0}×Rd

(u−v−Φ). (3.43)

This is a smoothed version of the hypothesis (3.42) we aim to contradict. We now
also add a cutoff function in time. For a small parameter ε > 0 to be determined, we
introduce the function

χ(t,x) ∶=Φ(t,x)+ ε

T − t
,

defined on R⩾0×Rd . Choosing ε > 0 small enough ensures that

sup
[0,T ]×Rd

(u−v−χ) > sup
{0}×Rd

(u−v−χ). (3.44)

Step 2: system of inequalities. For each α ⩾ 1, we define the function Ψα ∶ [0,T ]×
Rd ×[0,T ]×Rd →R∪{−∞} by

Ψα(t,x,t′,x′) ∶= u(t,x)−v(t′,x′)− α

2
(∣t − t′∣2+ ∣x−x′∣2)−χ(t,x). (3.45)
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We now argue that the function Ψα achieves its supremum at a point (tα ,xα ,t′α ,x′α)
which remains bounded as α tends to infinity. In order to do so, we write C < +∞ to
denote a constant whose value might change as we proceed through the argument,
and which may depend on T , M, R, V , supt⩽T ∣u(t,0)∣, supt⩽T ∣v(t,0)∣ and L. For
every x ∈Rd with ∣x∣ > R+1, the bound Φ(t,x) ⩾M(∣x∣ +Vt −R−1)+ reveals that

Ψα(t,x,t′,x′) ⩽ L(∣x∣ + ∣x′∣)+u(t,0)−v(t′,0)− α

2
∣x−x′∣2−Φ(t,x)

⩽ L(∣x∣ + ∣x′∣)− α

2
∣x−x′∣2−M∣x∣ +C

⩽ (2L−M)∣x∣ +L∣x−x′∣ − α

2
∣x−x′∣2+C

⩽ (2L−M)∣x∣ + L2

2α
+C.

We have used that the function y↦Ly− α

2 y2 achieves its maximum at y = L
α

. Observe
also that the supremum of (3.45) is bounded from below by Ψα(0,0,0,0), which
does not depend on α , and that M > 2L. This implies that xα remains bounded as α

tends to infinity, and that

α(∣tα − t′α ∣2+ ∣xα −x′α ∣2)+χ(tα ,xα) ⩽C. (3.46)

It follows that, up to the extraction of a subsequence, there exist t0 ∈ [0,T ] and
x0 ∈ Rd such that tα → t0, t′α → t0, xα → x0 and x′α → x0 as α → +∞. By (3.46),
we have that χ(tα ,xα) remains bounded, and thus in particular, it must be that
t0 ∈ [0,T). On the other hand, the continuity of u, v and χ together with the bounds

sup
[0,T ]×Rd

(u−v−χ) ⩽Ψα(tα ,xα ,t′α ,x
′
α) ⩽ u(tα ,xα)−v(t′α ,x′α)−χ(tα ,xα)

imply that
(u−v−χ)(t0,x0) = sup

[0,T ]×Rd
(u−v−χ).

By (3.44), we thus deduce that t0 ∈ (0,T). This means that tα ,t′α ∈ (0,T) for all α

large enough. We have therefore found a quadruple (tα ,xα ,t′α ,x′α) such that Ψα

achieves its supremum at (tα ,xα ,t′α ,x′α), and with tα ,t′α ∈ (0,T) for α large enough.
With this in mind, we fix α ⩾ 1 large enough, and introduce the smooth functions
φ ,φ ′ ∈C∞((0,T)×Rd;R) defined by

φ(t,x) ∶= v(t′α ,x′α)+
α

2
(∣t − t′α ∣2+ ∣x−x′α ∣2)+χ(t,x),

φ
′(t′,x′) ∶= u(tα ,xα)−

α

2
(∣t′− tα ∣2+ ∣x′−xα ∣2)−χ(tα ,xα).

Since (tα ,xα ,t′α ,x′α) maximizes Ψα , the function u−φ achieves its maximum at
the point (tα ,xα) ∈ R>0 ×Rd , while the function v−φ ′ achieves its minimum at
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(t′α ,x′α) ∈ R>0 ×Rd . It follows by the definition of a viscosity subsolution and
supersolution that

(∂tφ −H(∇φ))(tα ,xα) ⩽ 0 and (∂tφ
′−H(∇φ

′))(t′α ,x′α) ⩾ 0. (3.47)

This is the system of inequalities that we now strive to contradict.

Step 3: reaching a contradiction. A direct computation shows that

(∂tφ −H(∇φ))(tα ,xα) = α(tα − t′α)+∂tΦ(tα ,xα)+
ε

(T − tα)2

−H(∇φ(tα ,xα)), (3.48)

and
(∂tφ

′−H(∇φ
′))(t′α ,x′α) = α(tα − t′α)−H(∇φ

′(t′α ,x′α)). (3.49)

To compare these two quantities, we would like to use the local Lipschitz continuity
of the non-linearity H. With the definition of V in mind, we must therefore verify
that

∣∇φ(tα ,xα)∣ ⩽ L and ∣∇φ
′(t′α ,x′α)∣ ⩽ L. (3.50)

Fix z ∈Rd and ε > 0. Since u−φ achieves a local maximum at (tα ,xα) ∈R>0×Rd ,
and u is uniformly Lipschitz continuous with Lipschitz constant L,

φ(tα ,xα +εz)−φ(tα ,xα) ⩾ u(tα ,xα +εz)−u(tα ,xα) ⩾ −εL∣z∣.

Dividing by ε and letting ε tend to zero reveals that ∇φ(tα ,xα) ⋅z ⩾ −L∣z∣. Choosing
z = −∇φ(tα ,xα) gives the first inequality in (3.50); the second inequality is obtained
in an identical manner. Together with (3.49) and the definition of V , this implies
that (3.49) is bounded from above by

α(tα − t′α)−H(∇φ(tα ,xα))+V ∣∇φ(tα ,xα)−∇φ
′(t′α ,x′α)∣

= α(tα − t′α)−H(∇φ(tα ,xα))+V ∣∇Φ(tα ,xα)∣.

A direct computation shows that V ∣∇Φ(tα ,xα)∣ ⩽ ∂tΦ(tα ,xα), so in fact

(∂tφ
′−H(∇φ

′))(t′α ,x′α) ⩽ α(tα − t′α)+∂tΦ(tα ,xα)−H(∇φ(tα ,xα))
< (∂tφ −H(∇φ))(tα ,xα) ⩽ 0,

where the strict inequality is due to the term ε

(T−t)2 in (3.48), and the final inequality
leverages the first inequality in (3.47). This contradicts the second inequality in
(3.47) and completes the proof. ∎

Corollary 3.6. If u,v ∈L are a viscosity subsolution and a viscosity supersolution
to the Hamilton-Jacobi equation (3.20) respectively, then

sup
R⩾0×Rd

(u−v) = sup
{0}×Rd

(u−v). (3.51)
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Proof. Suppose for the sake of contradiction that there is a point (t∗,x∗) ∈R>0×Rd

such that
(u−v)(t∗,x∗) > sup

{0}×Rd
(u−v). (3.52)

In the notation of Theorem 3.5, we choose M ∶= 2L+1 and R ∶= ∣x∗∣ +Vt∗, so that

u(t∗,x∗)−v(t∗,x∗)−M(∣x∗∣ +Vt∗−R)+ = (u−v)(t∗,x∗).

By the assumption (3.52), this is strictly greater than

sup
x∈Rd
(u(0,x)−v(0,x)) ⩾ sup

x∈Rd
(u(0,x)−v(0,x)−M(∣x∣ −R)+).

This contradicts Theorem 3.5 and thus completes the proof. ∎

Finally, we verify that the comparison principle implies the uniqueness of a
viscosity solution with a given initial condition.

Corollary 3.7. If u,v ∈L are two viscosity solutions to the Hamilton-Jacobi equation
(3.20) with the same initial condition u(0, ⋅) = v(0, ⋅), then u = v.

Proof. Since u is a viscosity subsolution and v is a viscosity supersolution to the
Hamilton-Jacobi equation (3.20), the comparison principle in Corollary 3.6 implies
that u ⩽ v. A symmetric argument reveals that v ⩽ u, and completes the proof. ∎

To relate this uniqueness result back to the limit free energy in the Curie-Weiss
model, we recall what we have done so far. Using the Arzelà-Ascoli theorem,
we argued that the sequence (FN)N⩾1 of free energies in the Curie-Weiss model
is precompact. In Proposition 3.4, leveraging the approximate Hamilton-Jacobi
equation (3.7), we showed that any subsequential limit must be a viscosity solution
to the Hamilton-Jacobi equation (3.9) with initial condition ψ(h) ∶= logcosh(h).
Together with the uniqueness result in Corollary 3.7, this implies that (FN)N⩾1 must
itself converge to the unique solution f to the Hamilton-Jacobi equation (3.7).

We have thus succeeded in showing the convergence of the free energy in the
Curie-Weiss model, and we have found an intrinsic characterization of its limit in
terms of Hamilton-Jacobi equations. We could go about and study properties of
this limit using PDE techniques, most importantly the comparison principle we
have just seen. For instance, we can observe that the initial condition ψ = logcosh
for the Curie-Weiss model is non-negative and bounded from above by a parabola:
there exists C < +∞ such that ψ(h) ⩽Ch2. Using the comparison principle, we
deduce that the solution f will remain non-negative and bounded from above by the
solution with the initial condition h↦Ch2. This solution can be identified explicitly
as (t,h) ↦ Ch2

1−4Ct , for t < 1/(4C). So we deduce in particular that f will remain
differentiable at h = 0, with null derivatives, at least up until the time t = 1/(4C).
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Of course, we also know from the arguments based on large deviation principles
that the limit free energy can be written as a variational formula, see Corollary 2.20.
As we will now see, this variational formula can be recovered using general re-
sults for solutions to Hamilton-Jacobi equations of the form (3.20), under suitable
convexity assumptions.

Exercise 3.6. Let H ∶Rd →R be a uniformly Lipschitz non-linearity with Lipschitz
constant V > 0, let f be a viscosity subsolution to (3.20), and let Φ ∈C∞(R>0 ×
Rd;R) be a smooth function with ∂tΦ ⩾V ∣∇Φ∣. Show that f −Φ is a subsolution
to (3.20).

Exercise 3.7. Let f be a Lipschitz viscosity solution to (3.20), and let L ∶= ∥ f (0, ⋅)∥Lip
denote the Lipschitz constant of its initial condition. Show that supt⩾0∥ f (t, ⋅)∥Lip ⩽L.

Exercise 3.8. Fix L ∈R. Let f and g be two Lipschitz viscosity solutions to (3.20)
with supt⩾0 ∥ f (t, ⋅)∥Lip ⩽ L, supt⩾0 ∥g(t, ⋅)∥Lip ⩽ L, and let V be defined by (3.40).
Suppose that there exist x ∈Rd and T > 0 with f (0, ⋅) = g(0, ⋅) on BV T (x). Prove
that f (T,x) = g(T,x).

Exercise 3.9. Let K ∶Rd →R be a Lipschitz function, let f be a Lipschitz viscosity
solution to (3.20), and let g be a Lipschitz viscosity solution to ∂tg−K(∇g) = 0 on
R>0 ×Rd . Suppose that f (0, ⋅) = g(0, ⋅), that L denotes a Lipschitz constant of f
and g, and that H and K coincide on BL(0). Prove that f = g.

3.4 Variational representations of viscosity solutions

The Hamilton-Jacobi approach we have developed so far is able to identify the
limit free energy in the Curie-Weiss model as the unique viscosity solution to the
Hamilton-Jacobi equation (3.9). In this section, we develop variational represen-
tations for the solution to the Hamilton-Jacobi equation (3.20), under appropriate
convexity assumptions. This will allow us to recover the variational formula for
the limit free energy in the Curie-Weiss model obtained in Corollary 2.20 using the
Hamilton-Jacobi approach. We will prove two variational formulas, the Hopf-Lax
formula in the setting when the non-linearity H is convex, and the Hopf formula in
the setting when the initial condition ψ is convex. This implies in particular that
solutions to the Hamilton-Jacobi equation (3.20) do exist under the stated convexity
assumptions. A general result of existence of solutions for these equations can
be obtained using the classical Perron method, but we will not develop this point
here, and only refer the interested reader to [36, 84, 104] for more on this. In the
context of the problems of statistical mechanics that we aim to study, the existence
of solutions should come for free since the limit free energy is expected to be such
a solution.



76 Chapter 3 Hamilton-Jacobi equations

As we will see, under different assumptions, the Hopf-Lax and the Hopf for-
mulas allow us to write the solution to the Hamilton-Jacobi equation (3.20) with
initial condition ψ as a saddle-point problem for the functional defined, for each
(t,x) ∈R⩾0×Rd and (y, p) ∈Rd ×Rd , by

Jt,x(y, p) ∶=ψ(y)+ p ⋅ (x−y)+ tH(p). (3.53)

More precisely, the Hopf-Lax and Hopf formulas are representations of the value
of the solution to the Hamilton-Jacobi equation (3.20) at the point (t,x) ∈R⩾0×Rd

as saddle-point problems over the variables (y, p) ∈Rd ×Rd . Notice that for each
fixed (y, p) ∈Rd ×Rd , the mapping (t,x) ↦ Jt,x(y, p) is a solution to (3.20), so we
can think of the Hopf-Lax and Hopf formulas as representations of the solution
with initial condition ψ as envelopes of this family of solutions. At a point of
differentiability of this envelope function, the function will be tangent to one
particular solution in this set indexed by (y, p) ∈Rd ×Rd , and since the equation
is of first order, a function that is tangent to a smooth solution at a point must
solve the equation at that point. Of course, this is only an informal discussion, and
the purpose of the next two sections is to prove the Hopf-Lax and Hopf formulas
rigorously.

Since the proofs in this section are a bit long and the ideas developed there will
not reappear later, the reader may consider skipping these proofs on first reading.

3.4.1 Hopf-Lax formula

The Hopf-Lax formula is a variational representation for the unique solution to the
Hamilton-Jacobi equation (3.20) in the setting when the non-linearity H is convex.
It reads as follows.

Theorem 3.8 (Hopf-Lax formula [164]). If ψ ∶Rd →R is a Lipschitz continuous
initial condition and H ∶Rd →R is a convex and locally Lipschitz continuous non-
linearity, then the Hopf-Lax function

f (t,x) ∶= sup
y∈Rd

inf
p∈Rd
Jt,x(y, p) = sup

y∈Rd
(ψ(y)− tH∗(y−x

t
)) (3.54)

is the unique viscosity solution in L to the Hamilton-Jacobi equation (3.20).

We recall from (2.14) that H∗ denotes the convex dual of H. If we assume that
the non-linearity H is concave instead of convex, then we can appeal to Theorem 3.8
to obtain a variational representation of the viscosity solution to (3.20) as well.
Indeed, this follows from the observation that a function f is a viscosity solution
to (3.20) if and only if the function g ∶= − f is a viscosity solution to

∂tg+H(−∇g) = 0. (3.55)
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In the case when H is concave, we thus obtain that the solution f to (3.20) with
initial condition ψ is given by

f (t,x) = inf
y∈Rd

sup
p∈Rd
Jt,x(y, p). (3.56)

To prove Theorem 3.8, we first verify that the function (3.54) satisfies the right
initial condition, and that the supremum in its definition is attained. We then show
that it satisfies a semigroup property from which we deduce that it belongs to
the space L. Finally, we show that it is the unique viscosity solution in L to the
Hamilton-Jacobi equation (3.20) with initial condition ψ .

Lemma 3.9. Under the assumptions of Theorem 3.8, the Hopf-Lax function (3.54)
satisfies the right initial condition,

f (0, ⋅) =ψ. (3.57)

Proof. We interpret the formula in (3.54) at t = 0 as

f (0,x) = sup
y∈Rd

inf
p∈Rd
(ψ(y)+ p ⋅ (x−y)).

Taking y = x on the right side of this expression gives the lower bound

f (0,x) ⩾ψ(x).

On the other hand, given y ∈Rd , choosing

p = p(y) ∶=
⎧⎪⎪⎨⎪⎪⎩

−∥ψ∥Lip
x−y
∣x−y∣ if y ≠ x

0 otherwise

gives the upper bound

f (0,x) ⩽ sup
y∈Rd
(ψ(y)+ p(y) ⋅ (x−y)) = sup

y∈Rd
(ψ(y)−∥ψ∥Lip∣x−y∣) ⩽ψ(x),

where we have used the Lipschitz continuity of the initial condition ψ . Combining
these lower and upper bounds completes the proof. ∎

Lemma 3.10. Under the assumptions of Theorem 3.8, for any (t,x) ∈ R⩾0 ×Rd ,
there exists y ∈Rd with

f (t,x) =ψ(y)− tH∗(y−x
t
). (3.58)
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Proof. Fix λ > 0 and y ∈Rd , and observe that

H∗(y) = sup
p∈Rd
(p ⋅y−H(p)) ⩾ λ ∣y∣ − sup

∣z∣⩽λ
∣H(z)∣,

where the inequality is obtained by taking p = λ
y
∣y∣ . Since H is locally Lipschitz

continuous, and therefore locally bounded, the supremum on the right side of this
expression is finite. Dividing by ∣y∣, letting λ tend to infinity, and then letting ∣y∣
tend to infinity reveals that

liminf
∣y∣→+∞

H∗(y)
∣y∣
= +∞. (3.59)

This confirms that tH∗( y−x
t ) should be interpreted as +∞ when t = 0 and y ≠ x. It

also implies that, given a point (t,x) ∈R⩾0 ×Rd , it is possible to find R > 0 large
enough such that for all y ∈Rd with ∣y−x∣ > tR, we have

tH∗(y−x
t
) ⩾ (∥ψ∥Lip+1)∣y−x∣. (3.60)

It follows by the Lipschitz continuity of ψ that for all y ∈Rd with ∣y−x∣ > tR, we
have

ψ(y)− tH∗(y−x
t
) ⩽ψ(x)− ∣y−x∣.

This means that the supremum defining the Hopf-Lax function in (3.54) may be
restricted to a bounded set. Together with the fact that the function y↦ ψ(y)−
tH∗( y−x

t ) is upper semicontinuous and locally bounded from above, as H∗(z) ⩾
−H(0), this implies that the supremum on the right side of (3.54) is achieved at
some point y ∈Rd . This completes the proof. ∎

Lemma 3.11 (Semigroup property). Under the assumptions of Theorem 3.8, for
every pair t > s ⩾ 0 and x ∈Rd ,

f (t,x) = sup
y∈Rd
( f (s,y)−(t − s)H∗(y−x

t − s
)). (3.61)

Proof. Fix y,z ∈Rd . Since H∗ is convex by Exercise 2.10, we have

H∗(y−x
t
) ⩽ s

t
H∗(y− z

s
)+ t − s

t
H∗(z−x

t − s
).

Substituting this bound into (3.54) yields

f (t,x) ⩾ψ(y)− sH∗(y− z
s
)−(t − s)H∗(z−x

t − s
).
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Taking the supremum over all y ∈Rd gives

f (t,x) ⩾ f (s,z)−(t − s)H∗(z−x
t − s
),

and taking the supremum over all z ∈Rd establishes the lower bound

f (t,x) ⩾ sup
y∈Rd
( f (s,y)−(t − s)H∗(y−x

t − s
)).

To obtain the matching upper bound, we invoke Lemma 3.10 to find y ∈Rd with

f (t,x) =ψ(y)− tH∗(y−x
t
).

Defining z ∶= s
t x+ t−s

t y, we observe that

z−x
t − s
= y−x

t
= y− z

s
.

In particular, taking y ∈Rd in (3.54) gives

f (s,z)−(t − s)H∗(z−x
t − s
) ⩾ψ(y)− sH∗(y− z

s
)−(t − s)H∗(z−x

t − s
)

=ψ(y)− tH∗(y−x
t
)

= f (t,x).

Taking the supremum over z ∈Rd establishes the matching upper bound and com-
pletes the proof. ∎

Lemma 3.12. Under the assumptions of Theorem 3.8, we have f ∈L with

sup
t⩾0
∥ f (t, ⋅)∥Lip = ∥ψ∥Lip. (3.62)

Proof. Fix (t,x,x′) ∈R⩾0×Rd ×Rd and invoke Lemma 3.10 to find y ∈Rd with

f (t,x) =ψ(y)− tH∗(y−x
t
).

Taking y−x+x′ ∈Rd in (3.54) gives the lower bound

f (t,x′) ⩾ψ(y−x+x′)− tH∗(y−x
t
).

It follows that

f (t,x)− f (t,x′) ⩽ψ(y)−ψ(y−x+x′) ⩽ ∥ψ∥Lip∣x−x′∣.
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Reversing the roles of x and x′ gives y′ ∈Rd with

f (t,x′)− f (t,x) ⩽ψ(y′)−ψ(y′−x′+x) ⩽ ∥ψ∥Lip∣x−x′∣.

Combining these two bounds establishes the spatial Lipschitz continuity (3.62) of
the Hopf-Lax function. To conclude that f ∈L, there remains to show that f is also
continuous in time; we show that it is in fact Lipschitz continuous in time as well.
Fix x ∈Rd and t > s ⩾ 0. The semigroup property in Lemma 3.11 implies that

f (t,x) ⩾ f (s,x)−(t − s)H∗(0) ⩾ f (s,x)−(t − s)H(0). (3.63)

Combining the semigroup property in Lemma 3.11 with the spatial Lipschitz conti-
nuity (3.62) reveals that

f (t,x) ⩽ f (s,x)+ sup
y∈Rd
(∥ψ∥Lip∣y−x∣ −(t − s)H∗(y−x

t − s
))

= f (s,x)+(t − s) sup
z∈Rd
(∥ψ∥Lip∣z∣ −H∗(z))

⩽ f (s,x)+(t − s) sup
∣p∣⩽∥ψ∥Lip

sup
z∈Rd
(z ⋅ p−H∗(z)),

where the final inequality uses that ∥ψ∥Lip∣z∣ = z ⋅ ∥ψ∥Lipz
∣z∣ . Invoking the Fenchel-

Moreau theorem (Theorem 2.5) and remembering (3.63) establishes the temporal
Lipschitz continuity of the Hopf-Lax function,

∣ f (t,x)− f (s,x)∣ ⩽ ∣t − s∣ sup
∣p∣⩽∥ψ∥Lip

∣H(p)∣. (3.64)

The convexity of the non-linearity H has played its part. This completes the proof.
∎

Proof of Theorem 3.8. The proof proceeds in two steps. First we show that the
Hopf-Lax function (3.54) is a viscosity supersolution to the Hamilton-Jacobi equa-
tion (3.20), and then that it is also a viscosity subsolution to this equation. Together
with Lemma 3.12 and the uniqueness result in Corollary 3.7, this proves that the
Hopf-Lax function (3.54) is the unique viscosity solution in L to the Hamilton-
Jacobi equation (3.20).

Step 1: viscosity supersolution. Consider a smooth function φ ∈C∞(R>0×Rd;R)
with the property that f −φ has a local minimum at the point (t∗,x∗) ∈R>0×Rd . By
definition of a local minimum, for every s ∈ (0,t∗) sufficiently small and y ∈Rd , we
have

φ(t∗,x∗)−φ(t∗− s,x∗+ sy) ⩾ f (t∗,x∗)− f (t∗− s,x∗+ sy).
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It follows by the semigroup property in Lemma 3.11 that

φ(t∗,x∗)−φ(t∗− s,x∗+ sy) ⩾ sH∗(sy
s
) = sH∗(y).

Dividing by s and letting s tend to zero reveals that

∂tφ(t∗,x∗)−y ⋅∇φ(t∗,x∗)+H∗(y) ⩾ 0.

Taking the infimum over y ∈Rd and invoking the Fenchel-Moreau theorem (Theo-
rem 2.5) shows that

(∂tφ −H(∇φ))(t∗,x∗) = ∂tφ(t∗,x∗)−H∗∗(∇φ(t∗,x∗)) ⩾ 0.

The convexity of the non-linearity H has played its part. This verifies the supersolu-
tion criterion for the Hopf-Lax function f .

Step 2: viscosity subsolution. Consider a smooth function φ ∈C∞(R>0 ×Rd;R)
with the property that f −φ has a local maximum at the point (t∗,x∗) ∈R>0×Rd ,
and suppose for the sake of contradiction that there is δ > 0 such that for all (t′,x′)
sufficiently close to (t∗,x∗), we have

(∂tφ −H(∇φ))(t′,x′) ⩾ δ > 0.

Using the convexity of H and the Fenchel-Moreau theorem, this may be recast as
the assumption that for all (t′,x′) sufficiently close to (t∗,x∗) and all y ∈Rd , we
have

∂tφ(t′,x′)−y ⋅∇φ(t′,x′)+H∗(y) ⩾ δ . (3.65)

Leveraging the semigroup property in Lemma 3.11 and arguing as in the proof of
Lemma 3.10, it is possible to find R > 0 with the property that for all s > 0 sufficiently
small there is ys ∈Rd with ∣x∗−ys∣ ⩽ Rs and

f (t∗,x∗) = f (t∗− s,ys)− sH∗(ys−x
s
).

Writing u(r) ∶= (rt∗+(1− r)(t∗− s),rx∗+(1− r)ys), it follows by the fundamental
theorem of calculus and the absurd assumption (3.65) with y = ys−x∗

s that

φ(t∗,x∗)−φ(t∗− s,ys) =
ˆ 1

0

d
dr

φ(u(r))dr

=
ˆ 1

0
(s∂tφ +(x∗−ys) ⋅∇φ)(u(r))dr

⩾ sδ − sH∗(ys−x∗

s
)

= sδ + f (t∗,x∗)− f (t∗− s,ys).



82 Chapter 3 Hamilton-Jacobi equations

Rearranging shows that for s sufficiently small,

f (t∗− s,ys)−φ(t∗− s,ys) ⩾ sδ + f (t∗,x∗)−φ(t∗,x∗).

This contradicts the local maximality of f −φ at (t∗,x∗) and completes the proof.
∎

3.4.2 Hopf formula

The Hopf formula is a variational representation for the unique solution to the
Hamilton-Jacobi equation (3.20) in the setting when the initial condition ψ is
convex. It reads as follows.

Theorem 3.13 (Hopf formula [37, 165]). If ψ ∶Rd →R is a Lipschitz continuous
and convex initial condition, and H ∶ Rd → R is a locally Lipschitz continuous
non-linearity, then the Hopf function

f (t,x) ∶= sup
p∈Rd

inf
y∈Rd
Jt,x(y, p) = sup

p∈Rd
inf

y∈Rd
(ψ(y)+ p ⋅ (x−y)+ tH(p)) (3.66)

is the unique viscosity solution in L to the Hamilton-Jacobi equation (3.20).

Compared with the Hopf-Lax formula in (3.54), notice that the supremum is now
taken over p while the infimum is taken over y. Assuming that the infimum over y
is achieved and that ψ is smooth, a differentiation in y shows that p = ∇ψ(y) at the
optimum. For each fixed y, the mapping (t,x)↦ψ(y)+∇ψ(y)⋅(x−y)+tH(∇ψ(y))
is the solution to the Hamilton-Jacobi equation (3.20) with initial condition given
by the tangent of ψ at y. Since ψ is convex, the comparison principle tells us that
the solution to (3.20) should indeed lie above this family of solutions.

If we assume instead that the initial condition ψ is concave, then we can again
use the observation around (3.55) and appeal to Theorem 3.13 to obtain that the
viscosity solution to (3.20) is given by

f (t,x) = inf
p∈Rd

sup
y∈Rd
Jt,x(y, p). (3.67)

We now turn to the proof of Theorem 3.13. In order to do so, we first verify that
the function (3.66) satisfies the right initial condition, and that the supremum in its
definition is attained. We next argue that this function is jointly convex and belongs
to the space L. Finally, we show that it satisfies a semigroup property, and deduce
that it is the unique viscosity solution in L to the Hamilton-Jacobi equation (3.20).
It will be convenient to notice that the Hopf function (3.66) can be written as

f (t,x) = sup
p∈Rd
(p ⋅x+ tH(p)−ψ

∗(p)) = (ψ∗− tH)∗(x). (3.68)
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Lemma 3.14. Under the assumptions of Theorem 3.13, the Hopf function (3.66)
satisfies the right initial condition,

f (0, ⋅) =ψ. (3.69)

Proof. Taking t = 0 in the representation (3.68) and combining the convexity of ψ

with the Fenchel-Moreau theorem (Theorem 2.5) completes the proof. ∎

Lemma 3.15. Under the assumptions of Theorem 3.13, for every (t,x) ∈R⩾0×Rd ,
there exists p ∈Rd with ∣p∣ ⩽ ∥ψ∥Lip such that

f (t,x) = p ⋅x+ tH(p)−ψ
∗(p). (3.70)

Proof. Observe that ψ∗(p) = +∞ whenever ∣p∣ > ∥ψ∥Lip by Exercise 2.12. This
means that the supremum in (3.68) may be restricted to the compact ball of ra-
dius ∥ψ∥Lip about the origin. Using also that the function ψ∗ is lower semi-
continuous, by part (i) of Exercise 2.10, this implies that the supremum in (3.68) is
achieved, as announced. ∎

Lemma 3.16. Under the assumptions of Theorem 3.13, the Hopf function f is
jointly convex and belongs to the space L with

sup
t⩾0
∥ f (t, ⋅)∥Lip = ∥ψ∥Lip. (3.71)

Proof. The first equality of (3.68) is a representation of f as a supremum of affine
functions of (t,x), so f is jointly convex by Exercise 2.7. To prove Lipschitz
continuity, we fix t,t′ ⩾ 0 as well as x,x′ ∈ Rd , and invoke Lemma 3.15 to find
p ∈Rd with ∣p∣ ⩽ ∥ψ∥Lip and f (t,x) = p ⋅x+ tH(p)−ψ∗(p). The Cauchy-Schwarz
inequality implies that

f (t,x)− f (t′,x′) ⩽ p ⋅ (x−x′)+H(p)(t − t′)
⩽ ∣p∣∣x−x′∣ + ∣H(p)∣∣t − t′∣
⩽ ∥ψ∥Lip∣x−x′∣ + sup

∣q∣⩽∥ψ∥Lip

∣H(q)∣ ∣t − t′∣.

An identical argument with the roles of (x,t) and (x′,t′) reversed establishes the
Lipschitz continuity (3.71) of the Hopf function. It also shows that f is continuous
in (t,x), and thus that f ∈L. ∎

Lemma 3.17 (Semigroup property). Under the assumptions of Theorem 3.13, for
every t,s ⩾ 0 and x ∈Rd ,

f (t + s, ⋅) = ( f ∗(t, ⋅)− sH)∗. (3.72)
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Proof. We will use properties (i)-(iii) of the convex dual established in Exercise 2.10.
Property (ii) implies that (ψ∗− tH)∗∗ ⩽ψ∗− tH. Combining this with the represen-
tation (3.68) of the Hopf function reveals that

f ∗(t, ⋅)− sH = (ψ∗− tH)∗∗− sH ⩽ψ
∗−(t + s)H,

and leveraging property (iii) gives the upper bound

( f ∗(t, ⋅)− sH)∗ ⩾ (ψ∗−(t + s)H)∗ = f (t + s, ⋅). (3.73)

Similarly, property (ii) implies that

ψ
∗−(t + s)H ⩾ (ψ∗−(t + s)H)∗∗.

Multiplying through by t
t+s = 1− s

t+s reveals that

ψ
∗− tH ⩾ s

t + s
ψ
∗+ t

t + s
(ψ∗−(t + s)H)∗∗. (3.74)

The functions ψ∗ and (ψ∗−(t + s)H)∗∗ are both convex by property (i), so, as a
positive linear combination of convex functions, the right side of (3.74) defines a
convex function. It follows by the Fenchel-Moreau theorem and two applications of
property (iii) that

(ψ∗− tH)∗∗ ⩾ s
t + s

ψ
∗+ t

t + s
(ψ∗−(t + s)H)∗∗,

and therefore,

(ψ∗−(t + s)H)∗∗−(ψ∗− tH)∗∗ ⩽ s
t + s
((ψ∗−(t + s)H)∗∗−ψ

∗)

⩽ s
t + s
(ψ∗−(t + s)H−ψ

∗)

= −sH,

where the second inequality uses property (ii). Leveraging the dual representa-
tion (3.68), this inequality may be rewritten as

f ∗(t + s, ⋅) ⩽ f ∗(t, ⋅)− sH.

Remembering that f is convex by Lemma 3.16, appealing to the Fenchel-Moreau
theorem, and using property (iii) once more gives the lower bound

f (t + s, ⋅) = f ∗∗(t + s, ⋅) ⩾ ( f ∗(t, ⋅)− sH)∗.

Together with the upper bound (3.73), this completes the proof. ∎
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Proof of Theorem 3.13. The proof proceeds in two steps. First we show that
the Hopf function (3.66) is a viscosity subsolution to the Hamilton-Jacobi equa-
tion (3.20), and then that it is also a viscosity supersolution to this equation. Together
with Lemma 3.16 and the uniqueness result in Corollary 3.7, this proves that the
Hopf function (3.66) is the unique viscosity solution in L to the Hamilton-Jacobi
equation (3.20).

Step 1: viscosity subsolution. Consider a smooth function φ ∈C∞(R>0 ×Rd;R)
with the property that f −φ has a local maximum at the point (t∗,x∗) ∈R>0×Rd .
Invoking Lemma 3.15, we may find p ∈Rd with ∣p∣ ⩽ ∥ψ∥Lip and

f (t∗,x∗) = p ⋅x∗+ t∗H(p)−ψ
∗(p).

Together with the definition of a local maximum, this implies that for s ⩾ 0 small
enough, z ∈Rd and ε ⩾ 0 small enough,

φ(t∗,x∗)−φ(t∗− s,x∗+εz) ⩽ f (t∗,x∗)− f (t∗− s,x∗+εz)
⩽ −p ⋅εz+ sH(p), (3.75)

where we used the expression (3.68) for f (t∗−s,x∗+εz) in the second step. Taking
s = 0, dividing by ε , and letting ε tend to zero shows that (∇φ(t∗,x∗)− p) ⋅ z ⩾ 0.
Since z ∈Rd is arbitrary, this means that

p = ∇φ(t∗,x∗). (3.76)

On the other hand, taking ε = 0, dividing by s, and letting s tend to zero in (3.75)
reveals that

∂tφ(t∗,x∗) ⩽H(p).

Rearranging and remembering (3.76) shows that (∂tφ −H(∇φ))(t∗,x∗) ⩽ 0, which
is the required subsolution criterion.

Step 2: viscosity supersolution. Consider a smooth function φ ∈C∞(R>0×Rd;R)
with the property that f −φ has a local minimum at the point (t∗,x∗) ∈R>0×Rd .
We fix λ ∈ (0,1] and (t′,x′) ∈ R⩾0 ×Rd . The joint convexity of f established in
Lemma 3.16 and the definition of a local minimum imply that, for λ small enough,

f (t′,x′)− f (t∗,x∗) ⩾ 1
λ
( f (t∗+λ(t′− t∗),x∗+λ(x′−x∗))− f (t∗,x∗))

⩾ 1
λ
(φ(t∗+λ(t′− t∗),x∗+λ(x′−x∗))−φ(t∗,x∗)).

Letting λ tend to zero shows that

f (t′,x′)− f (t∗,x∗) ⩾ (t′− t∗)∂tφ(t∗,x∗)+∇φ(t∗,x∗) ⋅ (x′−x∗).
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Together with the semigroup property in Lemma 3.17 and two applications of
property (ii) in Exercise 2.10, this implies that

f (t∗,x∗) = ( f ∗(t∗− s, ⋅)− sH)∗(x∗)

⩾ (( f (t∗,x∗)− s∂tφ(t∗,x∗)+∇φ(t∗,x∗) ⋅ (⋅−x∗))∗− sH)∗(x∗).

To leverage this bound, observe that

( f (t∗,x∗)− s∂tφ(t∗,x∗)+∇φ(t∗,x∗) ⋅ (⋅−x∗))∗(q)
= s∂tφ(t∗,x∗)− f (t∗,x∗)+∇φ(t∗,x∗) ⋅x∗+ sup

y∈Rd
y ⋅ (q−∇φ(t∗,x∗)),

which is infinite unless q = ∇φ(t∗,x∗). It thus follows from the definition of the
convex dual that

f (t∗,x∗) ⩾ x∗ ⋅∇φ(t∗,x∗)
−(s∂tφ(t∗,x∗)− f (t∗,x∗)+∇φ(t∗,x∗) ⋅x∗− sH(∇φ(t∗,x∗))).

Rearranging and dividing by s > 0 shows that (∂tφ −H(∇φ))(t∗,x∗) ⩾ 0 and com-
pletes the proof. ∎

Of course, when both the non-linearity H and the initial condition ψ are convex,
the uniqueness result in Corollary 3.7 ensures that the Hopf-Lax and the Hopf
variational representations coincide. It is also possible to show this directly using
the Fenchel-Moreau theorem.

Proposition 3.18. If f ,g ∶Rd →R are two convex functions, then

sup
x∈Rd

inf
y∈Rd
( f (x)+g(y)−x ⋅y) = sup

y∈Rd
inf

x∈Rd
( f (x)+g(y)−x ⋅y). (3.77)

In particular, when ψ ∶ Rd → R and H ∶ Rd → R are both convex, the Hopf-Lax
function (3.54) and the Hopf function (3.66) coincide.

Proof. Using the definition of the convex dual g∗ and then applying the Fenchel-
Moreau theorem to the convex function f shows that

sup
x∈Rd

inf
y∈Rd
( f (x)+g(y)−x ⋅y) = sup

x∈Rd
( f (x)−g∗(x))

= sup
x∈Rd

sup
y∈Rd
(x ⋅y− f ∗(y)−g∗(x)).

Since this expression is symmetric in the pair ( f ,g), this establishes (3.77). More
explicitly, we can write

sup
y∈Rd

sup
x∈Rd
(x ⋅y− f ∗(y)−g∗(x)) = sup

y∈Rd
(g(y)− f ∗(y))

= sup
y∈Rd

inf
x∈Rd
( f (x)+g(y)−x ⋅y).
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When both H and ψ are convex, we can make the change of variables z = x−y
in (3.54) and (3.66) to rewrite the statement that the Hopf-Lax and Hopf formulas
coincide as

sup
z∈Rd

inf
p∈Rd
(ψ(x+ z)+ tH(p)− p ⋅ z) = sup

p∈Rd
inf

z∈Rd
(ψ(x+ z)+ tH(p)− p ⋅ z).

The fact that this identity is valid follows from (3.77). This completes the proof. ∎

Applying the Hopf formula to the non-linearity H(p) = p2 and the convex initial
condition ψ(h) ∶= logcosh(h) in the context of Proposition 3.4, we find that the
limit free energy in the Curie-Weiss model is given by

f (t,h) = sup
m∈Rd
(mh+ tH(m)−ψ

∗(m)) = sup
m∈[−1,1]

(mh+ tm2−ψ
∗(m)), (3.78)

where the second equality combines the fact that ψ is Lipschitz continuous with
Lipschitz constant one with Exercise 2.12. We have therefore given a proof of
Corollary 2.20 on the limit of the free energy in the Curie-Weiss model using only
the Hamilton-Jacobi approach.

3.5 Variational representations in the absence of convexity

In this section, we explore whether any aspect of the variational structures discussed
in the previous section remains in the absence of any convexity or concavity as-
sumption on the non-linearity or the initial condition. The considerations discussed
here will not reappear until Section 6.6, which is the last section of the book, so the
reader may consider skipping this section on first reading.

For the generalized Curie-Weiss model and the model from statistical inference
studied in Chapter 4, as well as for the broader class of models from statistical
inference considered in [71] and discussed briefly at the end of Section 4.3, the
free energy is always convex. If we can show that it converges to the solution to a
Hamilton-Jacobi equation, then we can represent its limit variationally using the
Hopf variational formula. This convexity property of the free energy is however
lost in the realm of spin glasses. In some cases, the non-linearity appearing in
the relevant Hamilton-Jacobi equation is convex. This will allow us to appeal to a
Hopf-Lax formula instead and to still represent the solution variationally; we will
see in Chapter 6 that this variational representation is closely related to the Parisi
formula. However, there are many spin-glass models of interest for which the non-
linearity in the equation is neither convex nor concave. It is therefore interesting to
wonder whether, for general solutions to Hamilton-Jacobi equations, any aspect of
the variational structure displayed in the Hopf and Hopf-Lax formulas is preserved
in the absence of any convexity or concavity assumption on the initial condition
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or the non-linearity. Recall that the Hopf-Lax and Hopf formulas are expressed as
variational problems for the function Jt,x defined in (3.53). The specific property
we want to discuss is whether we can always represent the solution f (t,x) to the
Hamilton-Jacobi equation (3.20) as a critical value of the function Jt,x; in other
words, we ask whether we can find a point (y∗, p∗) such that ∇Jt,x(y∗, p∗) = 0
and f (t,x) = Jt,x(y∗, p∗). The next result shows that this property is indeed valid
as soon as the initial condition or the non-linearity in the equation is convex (or
concave). The gradient ∇Jt,x is understood as being jointly in the two arguments
of Jt,x, that is, ∇Jt,x = (∇yJt,x,∇pJt,x).

Theorem 3.19. Let ψ ∈C1(Rd;R) be Lipschitz continuous and let H ∈C1(Rd;R).
Suppose that among the functions ψ and H, at least one of them is convex or
concave, and let f ∶R⩾0×Rd →R be the viscosity solution to the Hamilton-Jacobi
equation (3.20) with initial condition f (0, ⋅) =ψ . Then

there exists (y∗, p∗) ∈Rd ×Rd with ∇Jt,x(y∗, p∗) = 0
such that f (t,x) = Jt,x(y∗, p∗). (3.79)

We recall that under the assumptions of Theorem 3.19, the viscosity solution
to (3.20) with initial condition ψ exists and admits a variational representation in
terms of Jt,x, by Theorems 3.8 and 3.13. For instance, if H is convex, then by
Theorem 3.8, we have

f (t,x) = sup
y∈Rd

inf
p∈Rd
Jt,x(y, p). (3.80)

We stress that the proof of Theorem 3.19 must leverage the convexity assumption,
say on H here, beyond the validity of the representation (3.80). In other words, in
general, it is not true that the mapping

(t,x) ↦ sup
y∈Rd

inf
p∈Rd
Jt,x(y, p) (3.81)

will satisfy the property in (3.79), even in cases when the supremum and infimum
are achieved. To give an example, consider the one-dimensional case with ψ(y) =
logcosh(y) and H(p) = (p2−1)2. One can then verify that for every x ∈R and t ⩾ 0,

ψ(x) = sup
y∈R

inf
p∈R
Jt,x(y, p), (3.82)

and that the supremum and infimum are achieved. Yet, there will typically be no
(y∗, p∗) with ∇Jt,x(y∗, p∗) = 0 such that ψ(x) = Jt,x(y∗, p∗). For small t ⩾ 0, such
a critical point (y∗, p∗) = (y∗(t,x), p∗(t,x)) is unique, and the mapping (t,x) ↦
Jt,x(y∗(t,x), p∗(t,x)) is in fact the solution to (3.20), as discussed further below in
relation with the method of characteristics.
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Proof of Theorem 3.19. We show the result assuming that H is convex. The other
cases are identical, up to a change of sign or an interchange of the roles of ψ and H.
We recall that since H is convex, the function f satisfies (3.80). We give ourselves a
small parameter δ ∈ (0,1], and define the perturbed non-linearity

Hδ (p) ∶=H(p)+δ ∣p∣2,

so that the mapping Hδ is strictly convex, see (2.120) for a definition of strict
convexity. We denote by J (δ)t,x the functional Jt,x with the non-linearity H replaced
by the perturbed non-linearity Hδ . We decompose the rest of the proof into four steps.
First, we show that the saddle-point problem (3.81) associated with the perturbed
functional J (δ)t,x admits an optimizer. We then prove that the family (H∗

δ
)δ>0

satisfies a lower semicontinuity property as δ tends to zero, and use this to show
that the saddle-point problem (3.81) associated with the perturbed functional J (δ)t,x
is continuous at zero with respect to the perturbation parameter. We then combine
these results to establish (3.79).

Step 1: identifying an optimizer to the perturbed saddle-point problem. In this step,
we show that for each δ ∈ (0,1],

there exists (y∗
δ
, p∗

δ
) ∈Rd ×Rd with ∇J (δ)t,x (y∗δ , p∗

δ
) = 0

such that sup
y∈Rd

inf
p∈Rd
J (δ)t,x (y, p) = J (δ)t,x (y∗δ , p∗

δ
). (3.83)

We will also make sure that (y∗
δ
, p∗

δ
) is chosen in a fixed compact set not depending

on δ > 0, so that we can then extract a converging subsequence as δ → 0.
It follows from (3.59)-(3.60) that we can find a compact set K such that for

every δ ∈ [0,1],

sup
y∈Rd

inf
p∈Rd
J (δ)t,x (y, p) = sup

y∈K
inf

p∈Rd
J (δ)t,x (y, p). (3.84)

Moreover, as was argued below (3.60), the supremum on the right side of (3.84) is
achieved, say at some y∗

δ
∈K. Using that Hδ grows at least quadratically, one can

also make sure that, for every y ∈Rd , there exists pδ (y) such that

inf
p∈Rd
J (δ)t,x (y, p) = J (δ)t,x (y, pδ (y)). (3.85)

Since H is differentiable, we must have that ∇pJ (δ)t,x (y, pδ (y)) = 0. Since Hδ is
strictly convex, there is in fact exactly one pδ (y) that realizes (3.85) (see the solution
to Exercise 2.23 for a detailed argument). The envelope theorem (Theorem 2.21)
therefore ensures that the mapping

y↦ inf
p∈Rd
J (δ)t,x (y, p)



90 Chapter 3 Hamilton-Jacobi equations

is differentiable, and that its gradient is ∇yJ (δ)t,x (y, pδ (y)). By the optimality condi-
tion for y∗

δ
, we conclude that

∇yJ (δ)t,x (yδ , pδ (yδ )) = 0.

This means that∇ψ(yδ ) = pδ (yδ ). In particular, we must have that ∣pδ (y)∣ ⩽ ∥Ψ∥Lip.
We have therefore obtained (3.83), with y∗

δ
∈ K and p∗

δ
∶= pδ (y∗δ ) such that ∣p∗

δ
∣ ⩽

∥Ψ∥Lip.

Step 2: establishing a lower semicontinuity property of (H∗
δ
). Let (qδ )δ>0 be a

family of points in Rd that converge to q ∈Rd . In this step, we show that

liminf
δ→0

H∗
δ
(qδ ) ⩾H∗(q). (3.86)

More explicitly, the claim is that

liminf
δ→0

sup
p∈Rd
(p ⋅qδ −H(p)−δ ∣p∣2) ⩾ sup

p∈Rd
(p ⋅q−H(p)). (3.87)

Assuming first that H∗(q) is finite, we can find p ∈Rd such that

p ⋅q−H(p) ⩾H∗(q)−ε.

Using p as a candidate in the variational problem on the left side of (3.87) yields the
desired inequality, up to an error of ε . Since ε > 0 was arbitrary, this completes the
argument. If instead H∗(q) is infinite, then we can argue similarly, since for each
M ∈R, we can find p ∈Rd with p ⋅q−H(p) ⩾M. This completes the proof of (3.86).

Step 3: showing the perturbed saddle-point problem is continuous at zero. In this
step, we show that

lim
δ→0

sup
y∈Rd

inf
p∈Rd
J (δ)t,x (y, p) = sup

y∈Rd
inf

p∈Rd
Jt,x(y, p). (3.88)

We can rewrite (3.88) as

lim
δ→0

sup
y∈Rd
(ψ(y)−H∗

δ
(y−x

t
)) = sup

y∈Rd
(ψ(y)−H∗(y−x

t
)). (3.89)

Since for each y ∈Rd , the family (H∗
δ
(y))δ>0 is non-increasing, the limit on the left

side of (3.89) exists, and since H∗
δ
⩽H∗, the statement of (3.89) with the equality

sign replaced by ⩾ is valid. For the converse inequality, we recall that the supremum
on the left side of (3.89) is achieved at some y∗

δ
∈K, where K is a fixed compact set.
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Up to the extraction of a subsequence, we may assume that y∗
δ

converges to some
y∗ ∈K. By the result of the previous step, we obtain that

lim
δ→0

sup
y∈Rd
(ψ(y)−H∗

δ
(y−x

t
)) = lim

δ→0
(ψ(y∗

δ
)−H∗

δ
(

y∗
δ
−x

t
))

⩽ψ(y∗)−H∗(y∗−x
t
)

⩽ sup
y∈Rd
(ψ(y)−H∗(y−x

t
)).

This completes the proof of (3.89).

Step 4: concluding. We are now ready to conclude the proof. Up to the extraction
of a subsequence, we may assume that the points y∗

δ
and p∗

δ
constructed in Step 1

converge as δ > 0 tends to zero, say to y∗ ∈K and ∣p∗∣ ⩽ ∥Ψ∥Lip. By the result of the
previous step, we have

f (t,x) = sup
y∈Rd

inf
p∈Rd
Jt,x(y, p) = lim

δ→0
sup
y∈Rd

inf
p∈Rd
J (δ)t,x (y, p)

= lim
δ→0
J (δ)t,x (y∗δ , p∗

δ
)

= Jt,x(y∗, p∗).
Since the functions H and ψ are continuously differentiable, we can also verify by
continuity that ∇Jt,x(y∗, p∗) = 0, as desired. ∎

In fact, for smooth initial condition ψ , say ψ ∈C2(Rd;R), the property in (3.79)
remains valid for small t ⩾ 0 even in the absence of any convexity or concavity
assumption on ψ or H. To explain this best, we start by explaining a classical
method for solving the Hamilton-Jacobi equation (3.20) for a short time called the
method of characteristics.

Suppose for a moment that, for some T ∈ (0,+∞], we have found a smooth
solution f ∈C2([0,T)×Rd;R) to the Hamilton-Jacobi equation (3.20) with initial
condition ψ ∈C2(Rd;R), and that the non-linearity H is also in C2(Rd;R). We fix
i ∈ {1, . . . ,d} and write ui ∶= ∂xi f . Differentiating (3.20), we find that

∂tui(t,x)−∇H(∇ f (t,x)) ⋅∇ui(t,x) = 0. (3.90)

For each t ∈ [0,T) and x ∈ Rd , we define X(t,x) such that X(0,x) = x and X(⋅,x)
solves the ordinary differential equation ∂tX(t,x) =−∇H(∇ f (t,X(t,x))). The curve
t ↦ X(t,x) (or also t ↦ (t,X(t,x))) is called the characteristic starting from x ∈Rd .
We find using (3.90) that

d
dt
(ui(t,X(t,x)))

= ∂tui(t,X(t,x))−∇H(∇ f (t,X(t,x))) ⋅∇ui(t,X(t,x)) = 0. (3.91)
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In other words, the derivatives of f are constant along the curve t ↦(t,X(t,x)); and
in fact, this curve is therefore a straight line, with ∂tX(t,x) = −∇H(∇ψ(x)). Finally,
since

d
dt
( f (t,X(t,x))) = ∂t f (t,X(t,x))−∇H(∇ψ(x)) ⋅∇ f (t,X(t,x))

=H(∇ f (t,X(t,x)))−∇H(∇ψ(x)) ⋅∇ f (t,X(t,x))
=H(∇ψ(x))−∇H(∇ψ(x)) ⋅∇ψ(x), (3.92)

we conclude that

f (t,X(t,x)) =ψ(x)+ t(H(∇ψ(x))−∇H(∇ψ(x)) ⋅∇ψ(x)). (3.93)

To sum up, we have argued that if a solution to the Hamilton-Jacobi equation (3.20)
is sufficiently smooth, then it must satisfy (3.93). Let us now try to use this
observation to actually construct the function f . Given the non-linearity H and
the initial condition ψ , both assumed to be in C2(Rd;R) and with ∇ψ and ∇2ψ

bounded, we set
X(t,x) ∶= x− t∇H(∇ψ(x)). (3.94)

Using a fixed-point argument, one can check that for every t ⩾ 0 sufficiently small,
the mapping x↦ X(t,x) is bijective. This allows us to define the function f accord-
ing to the formula (3.93). One can then verify that f is a classical solution to (3.20)
on [0,T)×Rd for a sufficiently small T > 0, as will be explored in more detail in
Exercise 3.10 below. This perspective thus allows us to understand the possible low
regularity of the viscosity solution in terms of characteristic lines intersecting each
other.

The statement (3.79) we derived in Theorem 3.19 also has a very natural in-
terpretation in terms of characteristic lines. Indeed, the condition that the pair
(y, p) ∈Rd ×Rd satisfies ∇Jt,x(y, p) = 0 can be rewritten as

p = ∇ψ(y) and x = y− t∇H(p). (3.95)

A pair (y, p) therefore satisfies (3.95) if and only if p =∇ψ(y) and the characteristic
line t ↦ X(t,y) = y− t∇H(∇ψ(y)) satisfies X(t,y) = x. In short, there is a one-to-
one correspondence between critical points of Jt,x and characteristic lines that pass
through the point (t,x). Moreover, for a pair (y, p) satisfying (3.95), we have

Jt,x(y, p) =ψ(y)+ p ⋅ (x−y)+ tH(p) (3.96)

=ψ(y)+ t(H(∇ψ(y))−∇H(∇ψ(y)) ⋅∇ψ(y)), (3.97)

in agreement with (3.93).
This connection between the method of characteristics and critical points of Jt,x

has at least two interesting consequences. First, we learn that if ψ and H are
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in C2(Rd;R) with ∇ψ and ∇2ψ bounded, then the property (3.79) is valid for
every t ⩾ 0 sufficiently small, even in the absence of any convexity of concavity
assumption on H or ψ . Second, we can also reinterpret Theorem 3.19 as saying
that if at least one function among ψ or H is convex or concave, then at every
(t,x) ∈ R⩾0 ×Rd , including possibly large t ⩾ 0, there exists a characteristic line
that prescribes the correct value for f (t,x). To state this more precisely, we may
introduce the wavefront

W ∶= {(t, x− t∇H(∇ψ(x)),

ψ(x)+ t(H(∇ψ(x))−∇H(∇ψ(x)) ⋅∇ψ(x))) ∣ t ⩾ 0, x ∈Rd}. (3.98)

Theorem 3.19 states that whenever H or ψ is convex or concave, letting f denote the
viscosity solution to (3.20), we have that the graph of f is a subset of the wavefront.

Since we have just observed that this property is also valid for short times
without any convexity assumption, one may expect that the graph of the viscosity
solution to (3.20) is in fact always a subset of the wavefront. This is however not the
case. Indeed, it was shown in [231] that for any fixed non-linearity H ∈C2(Rd;R)
which is neither convex nor concave, there exists a smooth and Lipschitz continuous
function ψ ∶ Rd → R such that the graph of the viscosity solution to (3.20) with
initial condition ψ is not a subset of the wavefront.

On the other hand, for any given H ∈C2(Rd;R) and Lipschitz continuous ψ ∶
Rd →R, one can show that there always exists a Lipschitz function f ∶R⩾0×Rd →R
whose graph belongs to the wavefront [230]. In particular, such a function f satisfies
the Hamilton-Jacobi equation (3.20) almost everywhere, and f (0, ⋅) = ψ . Such a
function is however not unique in general.

In the context of the general non-convex spin-glass models discussed in Sec-
tion 6.6, one can show that any subsequential limit of the free energy must satisfy
a natural Hamilton-Jacobi equation “almost everywhere”. (The quotes are due
because the state space is infinite-dimensional.) It is not known whether the limit
free energy is the viscosity solution to the equation. But surprisingly, it is shown
in [70] that, assuming that the limit free energy exists, its graph must belong to the
wavefront. We do not know whether the graph of the viscosity solution belongs to
the wavefront in this case. We refer to Section 6.6 for a more precise discussion on
this point.

Exercise 3.10. The goal of this exercise is to justify the method of characteristics
for solving the Hamilton-Jacobi equation (3.20) for a short time. We assume that
the non-linearity H and the initial condition ψ both belong to C2(Rd;R). We also
assume that the first and second-order derivatives of ψ are uniformly bounded.

(i) Show that there exists T > 0 such that for every t ∈ [0,T), the mapping

φt ∶ x↦ x− t∇H(∇ψ(x)) (3.99)
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is a C1 diffeomorphism of Rd; in other words, it is bijective and both φt and
its inverse belong to C1(Rd;Rd).

(ii) We define the function u ∶ [0,T) ×Rd → R implicitly by setting, for every
t ∈ [0,T) and x ∈Rd ,

u(t,φt(x)) ∶=ψ(x)+ t(H(∇ψ(x))−∇H(∇ψ(x)) ⋅∇ψ(x)). (3.100)

Show that u ∈C1([0,T)×Rd;R) and that for every t ∈ [0,T) and x ∈Rd , the
gradient of u is constant along the characteristic line t ↦ (t,φt(x)).

(iii) Deduce that u satisfies the Hamilton-Jacobi equation (3.20) at every point in
[0,T)×Rd .

3.6 Leveraging convexity to identify viscosity solutions

The Hopf formula and Proposition 3.4 allowed us to recover the formula obtained
in Corollary 2.20 for the limit free energy in the Curie-Weiss model using the
Hamilton-Jacobi approach. However, if we now try to apply the same reasoning
to recover the formula obtained in Theorem 2.19 for the limit free energy in the
generalized Curie-Weiss model, then we run into a problem. The upper bound

∂tFN −ξ(∂hFN) ⩽
C
N

∂
2
h FN (3.101)

implied by (3.17) should suffice to show that the limit free energy is a viscosity
subsolution to the Hamilton-Jacobi equation (3.19); however the lower bound

∂tFN −ξ(∂hFN) ⩾ −
C
N

∂
2
h FN (3.102)

implied by (3.17) should ring alarm bells since the sign in front of the Laplacian
seems to be wrong. As discussed in Section 3.2, the notion of viscosity solutions is
entirely built around the validity of a maximum principle; but changing the sign in
front of the Laplacian destroys this property. To see this clearly, one can think about
solutions of the backwards heat equation, ∂t f = −∆ f . Solutions to this equation
may blow up in finite time, and it is not difficult to construct examples of initial
conditions that are ordered, f (0, ⋅) ⩽ g(0, ⋅), and such that this ordering is no longer
valid at some subsequent time.

One may wonder whether the negative sign in front of the Laplacian in (3.102)
is just an artefact; maybe a more refined analysis would allow us to obtain a better
estimate. In the case when the function ξ is convex, we have

⟨ξ( 1
N

N
∑
i=1

σi)⟩ ⩾ ξ(⟨ 1
N

N
∑
i=1

σi⟩), (3.103)
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by Jensen’s inequality. This gives the improved lower bound

∂tFN(t,h)−ξ(∂hFN(t,h)) ⩾ 0. (3.104)

Arguing exactly as in the proof of Proposition 3.4, we thereby obtain the following
extension of Theorem 2.19 in the convex setting. Notice that for convex ξ , this is
indeed an extension since we no longer require that ψ ∈C1(R;R).

Proposition 3.20. For each integer N ⩾ 1, denote by FN ∶ R⩾0 ×R→ R the free
energy (3.2) in the generalized Curie-Weiss model, and suppose that for every h ∈R
the limit

ψ(h) ∶= lim
N→+∞

FN(0,h) (3.105)

exists. If ξ is convex, then the limit free energy f ∶ R⩾0 ×R→ R in the general-
ized Curie-Weiss model is the unique viscosity solution to the Hamilton-Jacobi
equation (3.19), and it admits the Hopf representation

f (t,h) ∶= lim
N→+∞

FN(t,h) = sup
m∈[−1,1]

(tξ(m)+hm−ψ
∗(m)). (3.106)

Proof. The sequence (FN)N⩾1 of free energies is precompact by the Arzelà-Ascoli
theorem and the Lipschitz bounds (3.13). Using the inequalities (3.101) and (3.104),
we can follow the proof of Proposition 3.4 to show that any subsequential limit
of (FN)N⩾1 must be a viscosity solution to the Hamilton-Jacobi equation (3.19).
Invoking the uniqueness result in Corollary 3.7, we conclude that (FN)N⩾1 converges
to the unique solution f to the Hamilton-Jacobi equation (3.19). Since each of the
initial conditions h↦FN(0,h) is convex, their limit ψ must also be convex. Invoking
the Hopf formula in Theorem 3.13 yields that

f (t,h) = sup
m∈R
(tξ(m)+hm−ψ

∗(m)). (3.107)

To restrict this supremum to the interval [−1,1], observe that ∂hFN is uniformly
bounded by one by the derivative computation (3.13), so the initial condition ψ must
be Lipschitz continuous with Lipschitz constant one. It follows by Exercise 2.12
that ψ∗ is infinite outside the interval [−1,1]. This completes the proof. ∎

When ξ is convex, we were therefore able to improve upon the bound (3.102)
and conclude. One may wonder if this could be achieved for general ξ . This is
however not possible, as is most clearly demonstrated by considering the case of
ξ(p) = −p2. Indeed, we obtain in this case that

∂tFN +(∂hFN)
2 = − 1

N
∂

2
h FN . (3.108)

So there really is a fundamental problem with the sign here; it is not just that the
bounds we have derived are too crude. And yet, we know from Theorem 2.19
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and the Hopf formula that the sequence (FN)N⩾1 of free energies does indeed
converge to the viscosity solution to the Hamilton-Jacobi equation (3.19) even in
this case, at least when the initial condition ψ is in C1(R;R)! To prove this using the
Hamilton-Jacobi approach, we now introduce a new tool, which we call the convex
selection principle, to identify when a convex function f is a viscosity solution to
the Hamilton-Jacobi equation (3.20).

In Example 3.1, we described a function that satisfies a Hamilton-Jacobi equa-
tion almost everywhere but is not a viscosity solution to this equation. Notice
that this counterexample had corner singularities “in both directions”; formally,
the second derivative was neither bounded from above nor from below. A convex
function cannot look like this, since its Hessian must be non-negative. Roughly
speaking, the convex selection principle states that imposing the function to be
convex completely rules out the emergence of non-viscosity-type singularities, and
thus restores uniqueness. We will establish this result in the setting of the Hamilton-
Jacobi equation (3.20). Recall that the non-linearity H ∶Rd →R is locally Lipschitz
continuous.

Theorem 3.21 (Convex selection principle [75]). If f ∶R⩾0×Rd →R is a jointly
convex and jointly Lipschitz continuous function that satisfies the Hamilton-Jacobi
equation (3.20) on a dense subset of R⩾0×Rd and f (0, ⋅) ∈C1(Rd;R), then f is a
viscosity solution to the Hamilton-Jacobi equation (3.20).

When we say that f satisfies the Hamilton-Jacobi equation (3.20) on a dense
subset of R⩾0×Rd , we mean that the set

{(t,x) ∈R>0×Rd ∣ f differentiable at (t,x) and (∂t f −H(∇ f ))(t,x) = 0} (3.109)

is dense in R⩾0×Rd . Naturally, Theorem 3.21 also holds if we replace “convex”
by “concave” in the statement. We already stressed that, in some sense, the notion
of viscosity solution is tailored to approximations in which a small positive term
times the Laplacian of f appears on the right side of (3.20). In particular, the
notion of viscosity solution is sensitive to the orientation of time; in general, it
is not the case that the time-reversed viscosity solution to some equation will be
the viscosity solution to the time-reversed equation. However, superficially, the
statement of Theorem 3.21 looks invariant under time reversal. The only assumption
that breaks this symmetry is that f (0, ⋅) ∈C1(Rd;R). This already hints at the fact
that this assumption is necessary. In other words, Theorem 3.21 states that under
the convexity assumption, pathological solutions cannot spontaneously emerge if
we start from a smooth initial condition. However, if we start from a Lipschitz
function that is not in C1(Rd;R), then we may be able to exploit the singularities of
the initial condition to create solutions that differ from the viscosity solution.

To prove the convex selection principle, we first show that the function f
in its statement must actually satisfy (3.20) at all its points of differentiability.
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We then prove a convex selection principle with a somewhat weaker version of
the assumption that f (0, ⋅) ∈C1(Rd;R) which will be convenient in Chapter 4 to
analyze the model from statistical inference in full generality. On first reading, the
reader may want to work out a simpler proof using directly the assumption that
f (0, ⋅) ∈C1(Rd;R)— this stronger assumption will be valid in the most interesting
cases discussed in Chapter 4. We recall that for a convex function f ∶R⩾0×Rd →R,
we denote by ∂ f (t,x) ⊆R×Rd the subdifferential of f at the point (t,x) ∈R⩾0×Rd ,
as defined in (2.40).

Lemma 3.22. If f ∶R⩾0×Rd→R is a jointly convex and jointly Lipschitz continuous
function that satisfies the Hamilton-Jacobi equation (3.20) on a dense subset of
R⩾0 ×Rd , then it satisfies the Hamilton-Jacobi equation (3.20) at all its points
of differentiability in R>0×Rd . Moreover, for every (t,x) ∈R⩾0×Rd , there exists
(a, p) ∈ ∂ f (t,x) such that a−H(p) = 0.

Proof. Fix (t,x) ∈R⩾0×Rd , and let (tn,xn)n⩾1 ⊆R>0×Rd be a sequence of points
of differentiability of f converging to (t,x) at which

(∂t f −H(∇ f ))(tn,xn) = 0. (3.110)

Since f is differentiable at the interior point (tn,xn) ∈ R>0 ×Rd , Theorem 2.13
implies that ∂ f (tn,xn) = {(∂t f (tn,xn),∇ f (tn,xn))}. The joint Lipschitz continuity
of f implies that, up to the extraction of a subsequence, we may assume that
the sequence of gradients (∂t f (tn,xn),∇ f (tn,xn))n⩾1 converges to some vector
(a, p) ∈ R×Rd . By Proposition 2.14, we have (a, p) ∈ ∂ f (t,x), and by (3.110)
and the continuity of H, the pair (a, p) ∈ ∂ f (t,x) is such that a−H(p) = 0. This
establishes the second part of the statement. If t > 0 and f is differentiable at (t,x),
then Theorem 2.13 implies that ∂ f (t,x) = {(∂t f (t,x),∇ f (t,x))}. It must therefore
be the case that (a, p) = (∂t f (t,x),∇ f (t,x)), and thus that f satisfies the Hamilton-
Jacobi equation (3.20) at the point (t,x). This completes the proof. ∎

We now state and show the refined version of Theorem 3.21.

Lemma 3.23. Let f ∶R⩾0×Rd →R be a jointly convex and jointly Lipschitz continu-
ous function that satisfies the Hamilton-Jacobi equation (3.20) on a dense subset of
R⩾0×Rd . Suppose that the initial condition ψ ∶= f (0, ⋅) is such that, for every x ∈Rd

and p ∈ ∂ψ(x), there exists b ∈R with (b, p) ∈ ∂ f (0,x) and b−H(p) ⩾ 0. Then f is
a viscosity solution to the Hamilton-Jacobi equation (3.20).

Proof. We decompose the proof into two steps. First we show that f is a viscosity
subsolution to the Hamilton-Jacobi equation (3.20), and then that it is a supersolution
to this equation. The assumption on the initial condition will only play a role in
showing that f is a viscosity supersolution to (3.20).
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Step 1: viscosity subsolution. Consider a smooth function φ ∈C∞(R>0 ×Rd;R)
with the property that f −φ has a local maximum at the point (t∗,x∗) ∈R>0×Rd .
We are going to show that f is differentiable at (t∗,x∗). By Proposition 2.11,
the subdifferential ∂ f (t∗,x∗) contains at least one element, say (a, p) ∈ R×Rd .
By the definition of the subdifferential and of a local maximum, for every (t′,x′)
sufficiently close to (t∗,x∗), we have

a(t′− t∗)+ p ⋅ (x′−x∗) ⩽ f (t′,x′)− f (t∗,x∗) ⩽ φ(t′,x′)−φ(t∗,x∗). (3.111)

It follows from the smoothness of φ that, as (t′,x′) tends to (t∗,x∗),

(t′− t∗)(a−∂tφ(t∗,x∗))+(x′−x∗)(p−∇φ(t∗,x∗)) ⩽ o(∣t′− t∗∣ + ∣x′−x∗∣).

This implies that (a, p) = (∂tφ ,∇φ)(t∗,x∗). Using (3.111) once more, we obtain
that f is differentiable at (t∗,x∗), and that (∂t f ,∇ f )(t∗,x∗) = (∂tφ ,∇φ)(t∗,x∗). It
follows by Lemma 3.22 that

(∂tφ −H(∇φ))(t∗,x∗) = (∂t f −H(∇ f ))(t∗,x∗) = 0.

This completes the verification that f is a viscosity subsolution to the Hamilton-
Jacobi equation (3.20).

Step 2: viscosity supersolution. Consider a smooth function φ ∈C∞(R>0×Rd;R)
with the property that f −φ has a local minimum at the point (t∗,x∗) ∈R>0×Rd .
Together with the convexity of f , this implies that for every (t′,x′) ∈R⩾0×Rd and
ε > 0 small enough,

f (t′,x′)− f (t∗,x∗) ⩾ ε
−1( f ((t∗,x∗)+ε(t′− t∗,x′−x∗))− f (t∗,x∗))

⩾ ε
−1(φ((t∗,x∗)+ε(t′− t∗,x′−x∗))−φ(t∗,x∗)).

Letting ε tend to zero shows that (∂tφ ,∇φ)(t∗,x∗) ∈ ∂ f (t∗,x∗). It therefore suffices
to fix (a, p) ∈ ∂ f (t∗,x∗) and prove that

a−H(p) ⩾ 0. (3.112)

Since (a, p) ∈ ∂ f (t∗,x∗), we have f (0,y) ⩾ f (t∗,x∗)−at∗ +(y− x∗) ⋅ p for every
y ∈Rd . Rearranging shows that for every y ∈Rd ,

f (0,y)−y ⋅ p ⩾ f (t∗,x∗)−at∗− p ⋅x∗. (3.113)

Inspired by the Hopf formula, we would like to consider an optimizer of the
minimization problem

inf
y∈Rd
( f (0,y)−y ⋅ p). (3.114)
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Since we cannot guarantee the existence of this optimizer, we introduce a small
parameter ε > 0 and consider instead the perturbed minimization problem

inf
y∈Rd
( f (0,y)−y ⋅ p+ε

√
1+ ∣y∣2). (3.115)

We see from (3.113) that we may restrict the infimum in (3.115) to values of y
that range in a compact set (which depends on ε). Together with the continuity of
the functions involved, this shows that the infimum in (3.115) is achieved, say at
yε ∈Rd . We observe that

lim
ε→0

inf
y∈Rd
( f (0,y)−y ⋅ p+ε

√
1+ ∣y∣2) = inf

y∈Rd
( f (0,y)−y ⋅ p). (3.116)

Indeed, the existence of the limit on the left side of (3.116) and the fact that it is
lower bounded by the right side are immediate. Conversely, for each δ > 0, we can
find y∗

δ
∈Rd such that

f (0,y∗
δ
)−y∗

δ
⋅ p ⩽ inf

y∈Rd
( f (0,y)−y ⋅ p)+δ ,

and we obtain the upper bound in (3.116) up to an error of δ > 0 by using y∗
δ

as a
candidate in the infimum on the left side of (3.116). Since δ > 0 was arbitrary, this
shows (3.116). Since

inf
y∈Rd
( f (0,y)−y ⋅ p)+ε

√
1+ ∣yε ∣2 ⩽ f (0,yε)−yε ⋅ p+ε

√
1+ ∣yε ∣2

= inf
y∈Rd
( f (0,y)−y ⋅ p+ε

√
1+ ∣y∣2),

we deduce from (3.116) that
lim
ε→0

ε ∣yε ∣ = 0. (3.117)

Using the convexity of f and that yε is a minimizer of (3.115), we have that, for
every y ∈Rd and λ ∈ (0,1],

f (0,yε +y)− f (0,yε) ⩾ λ
−1( f (0,yε +λy)− f (0,yε))

⩾ λ
−1(λy ⋅ p+ε(

√
1+ ∣yε ∣2−

√
1+ ∣yε +λy∣2)).

Letting λ tend to zero shows that for every y ∈Rd ,

f (0,yε +y)− f (0,yε) ⩾ y ⋅ (p−ε
yε√

1+ ∣yε ∣2
),

which means that
pε ∶= p−ε

yε√
1+ ∣yε ∣2

∈ ∂ψ(yε). (3.118)
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Invoking the assumption on the initial condition gives bε ∈ R with (bε , pε) ∈
∂ f (0,yε) and

bε −H(pε) ⩾ 0. (3.119)

Since (bε , pε) ∈ ∂ f (0,yε) and (a, p) ∈ ∂ f (t∗,x∗), we have

f (t∗,x∗) ⩾ f (0,yε)+bεt∗+ pε ⋅ (x∗−yε),
f (0,yε) ⩾ f (t∗,x∗)−at∗+ p ⋅ (yε −x∗).

Combining these two inequalities reveals that

bεt∗+ pε ⋅ (x∗−yε) ⩽ at∗+ p ⋅ (x∗−yε).

Using (3.117) and that ∣pε − p∣ ⩽ ε yields that bε ⩽ a+oε(1), and using also (3.119),
we obtain that a−H(pε) ⩾ oε(1). Since H is continuous, this establishes (3.112)
and completes the proof. ∎

Proof of Theorem 3.21. We write ψ ∶= f (0, ⋅). By Lemma 3.23, it suffices to show
that for every x ∈Rd and p ∈ ∂ψ(x), there exists b ∈R such that (b, p) ∈ ∂ f (0,x)
and b−H(p) ⩾ 0. Invoking Lemma 3.22 gives (b,q) ∈ ∂ f (0,x) with b−H(q) = 0.
Since ψ ∈C1(Rd;R), Theorem 2.13 implies that p = q =∇ψ(x). This completes the
proof. ∎

To apply the convex selection principle to the generalized Curie-Weiss model,
it will be convenient to observe that the set of points (t∗,x∗) ∈R⩾0×Rd for which
there exists a smooth function that touches f from above at (t∗,x∗) is dense. This
will allow us to replace the assumption that f satisfies the Hamilton-Jacobi equa-
tion (3.20) on a dense set by the assumption that whenever a smooth function φ

touches the function f from above at a point (t∗,x∗), the function φ should satisfy
the Hamilton-Jacobi equation (3.20) at the point of contact (t∗,x∗). This version of
the convex selection principle will be well-suited for the generalized Curie-Weiss
model due to the bound (3.17); it is also useful in other contexts such as statistical
inference.

Corollary 3.24. Let f ∶ R⩾0 ×Rd → R be a jointly convex and jointly Lipschitz
continuous function. Suppose that for any point (t∗,x∗) ∈ R>0 ×Rd and smooth
function φ ∈C∞(R⩾0×Rd;R) such that f −φ has a strict local maximum at (t∗,x∗),
we have (∂tφ −H(∇φ))(t∗,x∗) = 0. If moreover f (0, ⋅) ∈C1(Rd;R), then f is a
viscosity solution to the Hamilton-Jacobi equation (3.20).

Proof. Consider a smooth φ ∈C∞(R>0×Rd;R) with the property that f −φ admits
a strict local maximum at the point (t∗,x∗) ∈ R>0 ×Rd . Following Step 1 of the
proof of Lemma 3.23, we see that f is differentiable at the contact point (t∗,x∗)
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with (∂t f ,∇ f )(t∗,x∗) = (∂tφ ,∇φ)(t∗,x∗). By the convex selection principle in
Theorem 3.21, it therefore suffices to show that the set

A ∶= {(t∗,x∗) ∈R>0×Rd ∣ there exists φ ∈C∞(R>0×Rd;R) such that

f −φ has a strict local maximum at (t∗,x∗)}

is dense in R>0×Rd . Fix (t0,x0) ∈R>0×Rd , and let V be a compact neighbourhood
of (t0,x0). For each α ⩾ 1, consider the mapping

φα(t,x) ∶= f (t,x)− α

2
(∣t − t0∣2+ ∣x−x0∣2),

and denote by (tα ,xα) a maximizer of φα on V . Writing L for the joint Lipschitz
constant of f and rearranging the bound

f (tα ,xα)−
α

2
(∣tα − t0∣2+ ∣xα −x0∣2) = φα(tα ,xα) ⩾ φα(t0,x0) = f (t0,x0)

reveals that

(∣tα − t0∣ + ∣xα −x0∣)
2 ⩽ 2

α
∣ f (tα ,xα)− f (t0,x0)∣ ⩽

2L
α
(∣tα − t0∣ + ∣xα −x0∣).

It follows that
∣tα − t0∣ + ∣xα −x0∣ ⩽

2L
α
,

so the sequence (tα ,xα)α⩾1 tends to (t0,x0) as α tends to infinity. In particular,
for α sufficiently large, the point (tα ,xα) is in the interior of V , and so is a local
maximum of φα as a function on R⩾0 ×Rd . It is a strict local maximum for the
mapping

(t,x) ↦ φα(t,x)−(∣t − tα ∣2+ ∣x−xα ∣2).
We have thus shown that for every α sufficiently large, the point (tα ,xα) belongs
to A. Recalling that (tα ,xα) tends to (t0,x0) as α tends to infinity, we conclude that
the set A is dense in R>0×Rd , as desired. ∎

We are finally in a position to use the Hamilton-Jacobi approach to prove
Theorem 2.19 on the limit free energy in the generalized Curie-Weiss model.

Theorem 3.25. For each integer N ⩾ 1, let FN ∶ R⩾0 ×R→ R denote the free en-
ergy (3.2) in the generalized Curie-Weiss model. Suppose that for every h ∈R, the
limit

ψ(h) ∶= lim
N→+∞

FN(0,h) (3.120)

exists, and that ψ ∈C1(R;R). Then, for every t ⩾ 0 and h ∈R, we have that FN(t,h)
converges to f (t,h) as N tends to infinity, where f ∶R⩾0 ×R→R is the viscosity
solution to the Hamilton-Jacobi equation (3.19) with initial condition ψ . Moreover,
this function admits the Hopf representation

f (t,h) = lim
N→+∞

FN(t,h) = sup
m∈[−1,1]

(tξ(m)+hm−ψ
∗(m)). (3.121)
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Proof. The sequence (FN)N⩾1 of free energies is precompact by the Arzelà-Ascoli
theorem and the Lipschitz bounds (3.13). We denote by f any subsequential limit,
and observe that it must be jointly Lipschitz continuous by (3.13), and jointly
convex by the joint convexity of each free energy FN . We may therefore use
the convex selection principle in Corollary 3.24 to prove that f is a viscosity
solution to the Hamilton-Jacobi equation (3.19). Fix φ ∈C∞(R>0×Rd;R) with the
property that f −φ has a strict local maximum at the point (t∗,h∗) ∈R>0×R. Since
(FN)N⩾1 converges to f with respect to the topology of local uniform convergence,
Exercise 3.1 allows us to find a sequence (tN ,hN)N⩾1 converging to (t∗,h∗) such
that FN −φ has a local maximum at (tN ,hN) for each integer N ⩾ 1. The bound (3.17)
gives a constant C < +∞ with

∣∂tFN(tN ,xN)−ξ(∂hFN(tN ,xN))∣ ⩽
C
N

∂
2
h FN(tN ,xN).

At the local maximum (tN ,hN) we have

∂t(FN −φ)(tN ,xN) = 0, ∂h(FN −φ)(tN ,xN) = 0, ∂
2
h (FN −φ)(tN ,xN) ⩽ 0,

from which it follows that

∣∂tφ(tN ,xN)−ξ(∂hφ(tN ,xN))∣ ⩽
C
N

∂
2
h φ(tN ,hN).

Letting N tend to infinity reveals that (∂tφ −ξ(∂hφ))(t∗,h∗) = 0, where we have
used the smoothness of φ . Invoking the convex selection principle in Corollary 3.24
shows that f is a viscosity solution to the Hamilton-Jacobi equation (3.19). Together
with the uniqueness result in Corollary 3.7, this implies that (FN)N⩾1 converges to
the unique viscosity solution f to the Hamilton-Jacobi equation (3.19), and arguing
as in Proposition 3.20 gives the Hopf variational representation (3.121) of f . This
completes the proof. ∎

We have thus been able to recover the key result from Section 2.3 obtained using
large deviation principles. It is worth mentioning that Theorem 3.25 essentially
allows us to deduce a large-deviation principle as a consequence. Indeed, if we
consider a smooth function ξ that is essentially zero near a point m0 ∈ R, and
essentially −∞ elsewhere, then FN(t,0) is essentially computing the probability
that the mean magnetization is around m0, and the formula (3.121) states that this is
essentially exp(−Nψ∗(m0)).

We have thus presented two methods, one based on large deviation principles
and one based on the Hamilton-Jacobi approach, to identify the limit free energy in
the generalized Curie-Weiss model. We do not know of another approach for doing
this.

We close this chapter with a counterexample that shows that the differentiability
assumption ψ ∈C1(Rd;R) in the convex selection principle cannot be dropped in
general, despite the result in Proposition 3.20.
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Example 3.26. Consider the probability measure

PN ∶=
1
2

δ(1,...,1)+
1
2

δ(−1,...,−1)

and the non-linearity ξ(p) ∶= −p2. The generalized Curie-Weiss free energy (3.2)
associated with this non-linearity and this probability measure is given by

FN(t,h) =
1
N

log(1
2

e−tN+hN + 1
2

e−tN−hN).

By Exercise 1.1, we have

lim
N→+∞

FN(t,h) = ∣h∣ − t. (3.122)

In particular, the limiting initial condition ψ(h) ∶= ∣h∣ is not in C1(R;R). On the
other hand, the unique viscosity solution to the Hamilton-Jacobi equation

∂t f +(∂h f )2 = 0 (3.123)

with initial condition ψ is given by the Hopf formula

f (t,h) = sup
m∈R
(− tm2+hm−ψ

∗(m)).

A direct computation shows that

ψ
∗(m) = sup

p∈R
(pm− ∣p∣) =

⎧⎪⎪⎨⎪⎪⎩

0 if ∣m∣ ⩽ 1,
+∞ if ∣m∣ > 1.

This means that

f (t,h) = sup
∣m∣⩽1
(− tm2+hm) =

⎧⎪⎪⎨⎪⎪⎩

h2

4t if ∣h∣ ⩽ 2t
∣h∣ − t if ∣h∣ > 2t.

Since (t,h) ↦ ∣h∣ − t also satisfies the equation (3.123) at every point of differentia-
bility and has the same initial condition, we have thus obtained a counter-example to
the convex selection principle when the differentiability assumption ψ ∈C1(Rd;R)
is dropped. We also see that the limit free energy (3.122) is not the viscosity solution
in this case. Interestingly, we can identify another reference measure PN such that
the associated free energy does converge to f . Indeed, consider now the probability
measure

PN ∶=
1
2

ˆ 1

−1
δ(u,...,u)du.
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In words, if we pick a uniform random variable U over [−1,1], then the law of the
vector (U, . . . ,U) ∈RN is PN . In this case, and still with ξ(p) = −p2, we have

FN(t,h) =
1
N

log
1
2

ˆ 1

−1
expN(− tu2+hu)du,

which, as N tends to infinity, converges to

sup
u∈[−1,1]

(− tu2+hu) = f (t,h).

In particular, we see with these examples that, in situations in which the initial
condition ψ is not in C1(R;R), it is not possible in general to identify the limit free
energy from the knowledge of ψ ∶= limN→+∞FN(0, ⋅) only.



Chapter 4
Statistical inference

So far, we have focused on models coming from statistical mechanics, and we have
developed the Hamilton-Jacobi approach to compute the limit of their associated free
energy. It turns out that certain problems of statistical inference share a very similar
structure. In this chapter we apply the Hamilton-Jacobi approach to the problem of
recovering information about a symmetric rank-one matrix given a noisy observation
of it. To be more precise, we assume that, for some vector x = (x1, . . . ,xN) with
independent and identically distributed coordinates, we observe xx∗ +W , where
the noise term W is made of independent Gaussian random variables, independent
from x. Here and throughout this chapter, the superscript ∗ denotes the transposition
operator. Our goal will be to study whether it is possible to recover meaningful
information about the signal xx∗ from this noisy observation, in the regime of large
N. The answer to this question will depend on the magnitude of the signal-to-noise
ratio. When Ex1 = 0, it turns out that there exists a strictly positive and finite
threshold such that if the signal-to-noise ratio is below this value, then essentially
no information can be reconstructed about the signal from the observation, while if
it is above this value, then there exists an estimator that has a non-trivial correlation
with the signal itself (see Exercise 4.9 for a precise statement).

This critical threshold is analogous to the critical inverse temperature at which
phase transitions occur in the Ising and Curie-Weiss models, and we will determine it
using the techniques presented in the previous chapters and progressively developed
in [69, 71, 72, 75, 192, 193]. In particular, we will appeal to the convex selection
principle introduced in Section 3.6 to identify the limit free energy of this problem.
We point out that, for this particular problem of statistical inference, a more standard
approach similar to the proof of Proposition 3.20 would also work. We prefer to
present an approach based on the convex selection principle since it generalizes to
a much broader class of problems [75]. Alternative methods that so far have not
reached the level of generality of [75] include [32, 33, 34, 35, 95, 96, 109, 147, 160,
161, 162, 167, 168, 171, 181, 226, 227].
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In Section 4.1, we link the problem of statistical inference with the framework
developed in earlier chapters, using the language of Gibbs measures and free
energies to encode the relevant information-theoretic quantities. Section 4.2 contains
a general discussion on Gaussian integration by parts and concentration results. We
then combine these results with the Hamilton-Jacobi approach in Section 4.3 to
identify the limit free energy. The critical signal-to-noise ratio is determined by
analyzing the derivatives of the limit free energy as in Section 2.4. In Section 4.4,
we test the performance of the classical principal-component analysis estimator for
the symmetric rank-one matrix estimation problem, by comparing its associated
mean-square error with the minimal mean-square error determined in Section 4.3.
Finally, in Section 4.5 we see how, from an information-theoretic perspective, the
symmetric rank-one matrix estimation problem is equivalent to the problem of
detecting community structures in a dense random graph for which the probability
of two nodes being connected depends only on the community of each node.

4.1 From statistical inference to statistical mechanics

We give ourselves a random vector x ∶= (x1, . . . ,xN) ∈RN with independent coordi-
nates sampled from a bounded probability measure P1 on the real line. We write
PN ∶= (P1)⊗N to denote the law of x. The problem of symmetric rank-one matrix
estimation that we consider consists in observing

Y ∶=
√

2t
N

xx∗+W ∈RN×N , (4.1)

where W = (Wi j)1⩽i, j⩽N ∈RN×N is made of independent standard Gaussian random
variables independent of the vector x, and we think of it as noise. We call the
parameter t ⩾ 0 the signal-to-noise ratio. Our main focus will be on understanding
how much information we can recover about the symmetric rank-one matrix xx∗

from its noisy observation Y . In particular, we will aim to determine the asymptotic
behaviour, as N tends to infinity, of the minimal mean-square error,

mmseN(t) ∶=
1

N2 inf
g
E∣xx∗−g(Y)∣2 = 1

N2E∣xx∗−E[xx∗ ∣Y ]∣2, (4.2)

between the signal xx∗ and its noisy observation Y . Here, the infimum is taken over
the set of measurable functions g, and for any two matrices a,b of the same size,
we write

a ⋅b ∶= tr(ab∗) and ∣a∣ ∶= (a ⋅a)
1
2 (4.3)

for their entry-wise scalar product and their Euclidean norm, respectively. In the L2

sense of (4.2), the best estimator for recovering xx∗ is the conditional expectation of
this quantity given Y . Notice that in order to compute this conditional expectation,
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one needs to know the laws of x and W , so we implicitly assume that these laws
are known to the observer. We will also be interested in computing the mutual
information,

IN(t) ∶=
1
N
E
ˆ
RN

log(
dPx∣Y
dPN
(x))dPx∣Y (x), (4.4)

between the vector x and the observation Y . Here Px∣Y denotes the conditional law
of x given Y (this is a random object that depends on the realization of Y ; in other
words, it is the evaluation at Y of the mapping which sends each y to the conditional
law of x given that Y = y). The quantity IN(t) is a precise measure of the amount of
information obtained about the vector x when we observe Y ; see for instance [82]
for more on this interpretation, and Exercise 4.3.

In order to analyze quantities such as the minimal mean-square error (4.2) or
the mutual information (4.4), it will be useful to get a better understanding of the
conditional law of the signal x given the observation Y . For every x ∈ RN and
y ∈RN×N , a formal calculation suggests that

P{x = x ∣Y = y} = P{x = x and Y = y}
P{Y = y}

=
exp(− 1

2 ∣y−
√

2t
N xx∗∣2)dPN(x)

´
RN exp(− 1

2 ∣y−
√

2t
N x′x′∗∣2)dPN(x′)

.

(4.5)

More precisely, denoting

H○N(t,x) ∶=
√

2t
N

x ⋅Y x− t
N
∣x∣4 =

√
2t
N

x ⋅Wx+ 2t
N
(x ⋅x)2− t

N
∣x∣4, (4.6)

we have for every bounded measurable function f ∶RN →R that

E[ f (x) ∣Y ] =
´
RN f (x)expH○N(t,x)dPN(x)´

RN expH○N(t,x)dPN(x)
. (4.7)

This is verified rigorously in Exercise 4.2. In other words, the conditional law of x
given Y is the Gibbs measure associated with the Hamiltonian H○N(t, ⋅). Notice also
that the term x ⋅Wx in (4.6) is highly reminiscent of the quantity (0.1) appearing
in the definition of the Sherrington-Kirkpatrick spin-glass model. As in previous
chapters, it will be convenient to focus first on studying the asymptotic behaviour
of the free energy

F○N(t) ∶=
1
N

log
ˆ
RN

expH○N(t,x)dPN(x). (4.8)

Compared with the Curie-Weiss model, one important novelty in the symmetric rank-
one matrix estimation problem is that the Hamiltonian H○N(t, ⋅) is itself a random



108 Chapter 4 Statistical inference

quantity, as it depends on x and W through Y . In particular, the free energy (4.8) is
also random, and we denote its average by

F
○
N(t) ∶=EF○N(t) =

1
N
E log

ˆ
RN

expH○N(t,x)dPN(x). (4.9)

We will often slightly abuse terminology and refer to the average free energy (4.9)
as simply the free energy. Just like in the Curie-Weiss model, we introduce notation
for a random variable whose law is the random Gibbs measure (4.7). For every
bounded and measurable function f ∶RN →R, we write

⟨ f (x)⟩ ∶=
ˆ
RN

f (x)dPx∣Y (x) =
´
RN f (x)expH○N(t,x)dPN(x)´

RN expH○N(t,x)dPN(x)
. (4.10)

Although this is kept implicit in the notation, we stress that the bracket ⟨⋅⟩ is a
random quantity that depends on t and on Y . Whenever we write expressions such
as ⟨g(x,x)⟩, we understand that the variable x is integrated against the conditional
probability measure Px∣Y , while keeping x fixed. In more explicit notation,

⟨g(x,x)⟩ =
ˆ
RN

g(x,x)dPx∣Y (x) =
´
RN g(x,x)expH○N(t,x)dPN(x)´

RN expH○N(t,x)dPN(x)
, (4.11)

not to be confused with E[g(x,x) ∣ Y ] for instance. If we have no information
about the signal x, when t = 0, then x is simply an independent copy of x. On the
other hand, if we have perfect information about x, for instance if we had instead
observed x with no noise, then x would be equal to x.

It will also be convenient to introduce independent copies of x under the Gibbs
average ⟨⋅⟩, often called replicas, which we denote by x′, x′′, or also x1, x2, x3, and
so on if an arbitrary number of replicas needs to be considered. Explicitly, for every
bounded and measurable function f ∶RN ×RN →R,

⟨ f (x,x′)⟩ =
´
RN

´
RN f (x,x′)exp(H○N(t,x)+H○N(t,x′))dPN(x)dPN(x′)

(
´
RN expH○N(t,x)dPN(x))

2 , (4.12)

with the natural generalization of this expression in the case of more replicas. Com-
pared with the setting of spin glasses explored in Chapter 6, the fact that the Gibbs
measure (4.7) is a conditional expectation will fundamentally simplify the analysis.
In the language of physics, the symmetric rank-one matrix estimation problem is
always replica symmetric — this terminology will be clarified in Chapter 6. The
replica symmetry will be derived from the Nishimori identity (named after [201]).
This identity allows us to replace one replica x by the ground-truth signal x, provided
that we average over all sources of randomness.
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Proposition 4.1 (Nishimori identity). For all bounded and measurable functions
f ∶RN ×RN×N →R and g ∶RN ×RN ×RN×N →R, we have

E⟨ f (x,Y)⟩ =E⟨ f (x,Y)⟩, (4.13)

E⟨g(x,x′,Y)⟩ =E⟨g(x,x,Y)⟩, (4.14)

and so on with more replicas, that is, for every integer `⩾ 1 and bounded measurable
function h ∶ (RN)`×RN×N →R,

E⟨h(x1,x2, . . . ,x`,Y)⟩ =E⟨h(x1,x2, . . . ,x`−1,x,Y)⟩. (4.15)

Remark 4.2. The replacement of a replica by the ground-truth signal x can only
be done once: the terms in (4.14) are in general different from E⟨g(x,x,Y)⟩. The
double average is also necessary, as the terms ⟨g(x,x′,Y)⟩ and ⟨g(x,x,Y)⟩ are not
equal in general.

Proof of Proposition 4.1. It clearly suffices to prove (4.15). By Dynkin’s π-λ the-
orem (see Theorem A.5 and Exercise A.3), it suffices to verify this identity for
functions that factorize over the variables. Precisely, we assume that the function h
can be written in the form

h(x1, . . . ,x`,Y) = h1(x1, . . . ,x`−1)h2(x`)h3(Y) (4.16)

for some bounded measurable functions h1,h2,h3. We can then write

E⟨h(x1, . . . ,x`,Y)⟩ =E(⟨h1(x1, . . . ,x`−1,Y)⟩⟨h2(x`)⟩h3(Y))
=E(⟨h1(x1, . . . ,x`−1,Y)⟩E[h2(x) ∣Y ]h3(Y)),

where we used that the Gibbs measure (4.10) is the conditional law of x given the
observation Y in the last identity. Recalling that the measure ⟨⋅⟩ depends on the
randomness only through Y , and thus that ⟨h1(x1, . . . ,x`−1,Y)⟩ is Y -measurable, we
obtain that

E⟨h(x1, . . . ,x`,Y)⟩ =E(E[⟨h1(x1, . . . ,x`−1,Y)⟩h2(x)h3(Y) ∣Y ])
=E(⟨h1(x1, . . . ,x`−1,Y)⟩h2(x)h3(Y))
=E⟨h1(x1, . . . ,x`−1,Y)h2(x)h3(Y)⟩.

Combining this with the definition (4.16) of the function h completes the proof. ∎

Using this identity, we can rewrite the minimal mean-square error (4.2) and
the mutual information (4.4) in terms of the Gibbs average (4.10) and the free
energy (4.9).
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Proposition 4.3. For every t ⩾ 0 and integer N ⩾ 1, the minimal mean-square
error (4.2) is given by

mmseN(t) =
1

N2E∣x∣
4− 1

N2E⟨(x ⋅x)
2⟩. (4.17)

Proof. We expand the square to find that

N2mmseN(t) =E∣xx∗−⟨xx∗⟩∣2 =E∣x∣4−2E(xx∗ ⋅ ⟨xx∗⟩)+E(⟨xx∗⟩ ⋅ ⟨xx∗⟩),

and we can rewrite
⟨xx∗⟩ ⋅ ⟨xx∗⟩ = ⟨x′x′∗ ⋅xx∗⟩.

The Nishimori identity (4.15) yields that

N2mmseN(t) =E∣x∣4−E⟨xx∗ ⋅xx∗⟩ =E∣x∣4−E⟨(x ⋅x)2⟩.

This completes the proof. ∎

Proposition 4.4. For every t ⩾ 0 and integer N ⩾ 1, the mutual information (4.4) is
given by

IN(t) =
t

N2E∣x∣
4−F

○
N(t). (4.18)

Proof. Remembering that the conditional distribution of x given Y is the Gibbs mea-
sure (4.7), we can write the mutual information in terms of the Gibbs average (4.10)
and the free energy (4.9) as

IN(t) =
1
N
E⟨ log(

expH○N(t,x)´
RN expH○N(t,x′)dPN(x′)

)⟩ = 1
N
E⟨H○N(t,x)⟩−F

○
N(t).

Invoking the Nishimori identity (4.15) reveals that

E⟨H○N(t,x)⟩ =EH○N(t,x) =
√

2t
N
Ex ⋅Y x− t

N
E∣x∣4 = 2t

N
E∣x∣4− t

N
E∣x∣4 = t

N
E∣x∣4.

This completes the proof. ∎

Together with the fact that the coordinates of x are independent and identi-
cally distributed, these results imply that understanding the minimal mean-square
error (4.2) and the mutual information (4.4) comes down to understanding the
asymptotic behaviour of the quantity E⟨(x ⋅x)2⟩ and of the free energy (4.9). Indeed,
we have

1
N2E∣x∣

4 = (E∣x1∣2)
2+ 1

N
(E∣x1∣4−(E∣x1∣2)

2) = (E∣x1∣2)2+o(1). (4.19)



4.1 From statistical inference to statistical mechanics 111

To understand the limit of the free energy (4.9), we will use the Hamilton-Jacobi
approach. There are two issues that we need to resolve to be able to do this. The first
is that we need to be able to simplify the time derivative of the free energy (4.9),

∂tF
○
N(t) =

√
1

2tN3E⟨x ⋅Wx⟩+ 2
N2E⟨(x ⋅x)

2⟩− 1
N2E⟨∣x∣

4⟩, (4.20)

by integrating out the Gaussian noise W ; the second is that we need to “enrich”
the free energy (4.9) so that it depends on an additional variable that allows us to
close the equation. The first of these issues will be addressed through the Gaussian
integration by parts formula discussed in the next section, where we will show that

∂tF
○
N(t) =

1
N2E⟨(x ⋅x)

2⟩. (4.21)

The second issue will be tackled in Section 4.3 by enriching the observation Y . The
equality (4.21) reveals that determining the limit free energy is in fact sufficient to
understand both the asymptotic mutual information and the asymptotic minimal
mean-square error [134].

Exercise 4.1. Let A ∈Rd×d be a symmetric rank-one matrix. Show that there exists
a unit vector u ∈Rd , unique up to a sign, and a unique scalar λ ∈R with A = λuu∗.

Exercise 4.2. Show that in the context of the symmetric rank-one matrix estimation
problem, the conditional law of x given Y is the Gibbs measure (4.7) associated
with the Hamiltonian (4.6).

Exercise 4.3. Fix two probability measures P and Q on a separable metric space S,
and write P≪Q to mean that P is absolutely continuous with respect to Q. The
relative entropy of P with respect to Q is defined by

H(P ∣Q) ∶=
⎧⎪⎪⎨⎪⎪⎩

´
S

dP
dQ log( dP

dQ)dQ if P≪Q,

+∞ otherwise.
(4.22)

The mutual information between two random variables X and Z on S is defined by

I(X ;Z) ∶=H(PX ,Z ∣ PX ⊗PZ), (4.23)

where PV denotes the law of a random variable V . We now place ourselves in the
context of the symmetric rank-one matrix estimation problem.

(i) Prove that the mutual information (4.4) is given by

IN(t) =
1
N
I(x;Y). (4.24)
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(ii) Prove that
H(Px,Y ∣ Px,W ) =H(PY ∣ PW )+ I(x;Y), (4.25)

(iii) Show that

F
○
N(t) =

1
N

H(PY ∣ PW ) and H(Px,Y ∣ Px,W ) =
t
N
E∣x∣4. (4.26)

(iv) Deduce the relationship (4.18) between the mutual information (4.4) and the
free energy (4.9).

4.2 Gaussian integration by parts and concentration inequalities

In this section, we temporarily move away from the symmetric rank-one matrix
estimation problem to discuss two classical results about Gaussian random variables,
namely integration by parts and concentration inequalities. In the context of statis-
tical inference and spin glasses, the Gaussian integration by parts formula is very
helpful to compute derivatives of the free energy, while the Gaussian concentration
inequality ensures that the free energy concentrates around its average. In the next
section we will see how to leverage these results to tackle the symmetric rank-one
matrix estimation problem using the Hamilton-Jacobi approach.

We start by presenting the Gaussian integration by parts formula. In its simplest
form, let g be a centred Gaussian random variable with variance ν2, so with density

ϕν(x) ∶=
1√

2πν2
exp(− x2

2ν2). (4.27)

For every differentiable and bounded function F ∈C1(R;R), we have

EgF(g) =
ˆ
R

xF(x)ϕν(x)dx = −ν
2
ˆ
R

F(x)ϕ ′ν(x)dx, (4.28)

so integrating by parts reveals that

EgF(g) = ν
2
ˆ
R

F ′(x)ϕν(x)dx = ν
2EF ′(g) =Eg2EF ′(g). (4.29)

To see what this formula yields in the context of statistical inference, let us fix a pair
1 ⩽ i, j ⩽N, and denote F(W,x) ∶= ⟨xix j⟩. By (4.29),

E⟨Wi jxix j⟩ =EWi jF(W,x) =E∂Wi jF(W,x). (4.30)
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A direct computation shows that ∂Wi jF(W,x) is given by

∂Wi j

⎛
⎝

´
RN xix j exp(

√
2t
N ∑

N
`,`′=1W`,`′x`x`′)dµ(x)

´
RN exp(

√
2t
N ∑

N
`,`′=1W`,`′x`x`′)dµ(x)

⎞
⎠

=
√

2t
N
(⟨x2

i x2
j⟩−⟨xix j⟩2), (4.31)

where we used the shorthand notation

dµ(x) ∶= exp(2t
N
(x ⋅x)2− t

N
∣x∣4)dPN(x). (4.32)

Summing over all i and j, we thus obtain that

E⟨x ⋅Wx⟩ =
√

2t
N
(E⟨∣x∣4⟩−E⟨(x ⋅x′)2⟩), (4.33)

which combined with (4.20) and the Nishimori identity yields (4.21).
When it comes to integration by parts, the identity (4.29) is all we need for

the purposes of this chapter. With a view towards subsequent chapters on spin
glasses, we now present a multivariate version of this Gaussian integration by parts
formula, also allowing for more general functions F ; and then also another variant
that is tailored to the setting of Gibbs measures. Readers who are not interested
in subsequent chapters on spin glasses can safely skip to the end of the proof of
Theorem 4.6, at which place we turn to discussing concentration inequalities.

Theorem 4.5 (Gaussian integration by parts). Let g = (g1, . . . ,gd) be a centred
Gaussian vector in Rd and F ∈C1(Rd;R) be such that E∣g1F(g)∣+E∣∇F(g)∣ < +∞.
We have

Eg1F(g) =
d
∑
i=1

Eg1giE∂xiF(g). (4.34)

Proof. Denote by C the covariance matrix of the Gaussian vector g. The proof
proceeds in three steps. First we prove that when C = Id , we have for any bounded
function G ∈C1(Rd;Rd) with E∣∇G(g)∣ < +∞ that

Eg ⋅G(g) =E∇⋅CG(g). (4.35)

Then we use a change of variables to deduce (4.35) for arbitrary C, and finally we
prove (4.34) by choosing an appropriate G and using an approximation argument.

Step 1: proving (4.35) for C = Id . In the case when the covariance matrix C is the
identity, the Gaussian vector g has density

ϕ(x) ∶= 1
(2π)d

exp(− 1
2
∣x∣2).
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This implies that for any bounded function G ∈C1(Rd;Rd) with E∣∇G(g)∣ < +∞,
we have

Eg ⋅G(g) =
ˆ
Rd

x ⋅G(x)ϕ(x)dx = −
ˆ
Rd
∇ϕ(x) ⋅G(x)dx,

where we used that ∇ϕ(x) = −xϕ(x). Integrating by parts reveals that

Eg ⋅G(g) =
ˆ
Rd

ϕ(x)∇⋅G(x)dx =E∇⋅G(g).

The boundedness of G ensures that the boundary term in this integration by parts
vanishes. This establishes (4.35) when C = Id .

Step 2: deducing (4.35) for general C. Letting z be a standard Gaussian random
vector in Rd and g ∶=C1/2z, the vector g is centred Gaussian with covariance C. It
follows by symmetry of C1/2 and the previous step that

Eg ⋅G(g) =Ez ⋅C1/2G(C1/2z) =Ez ⋅ G̃(z)

for the function G̃(z) ∶= C1/2G(C1/2z). A direct computation reveals that

∇⋅ G̃(z) =
d
∑

i, j,k=1
C

1/2
i j C

1/2
ki ∂xkG j(g) =

d
∑
j=1

∂x j(CG) j(g) = ∇⋅CG(g)

which gives (4.35) for general C.

Step 3: obtaining (4.34). Applying (4.35) to the function G(g) ∶= F(g)e1, where
e1 ∈Rd denotes the first canonical basis vector, and observing that (CG)i =Ci,1F(g)
for 1 ⩽ i ⩽ d establishes (4.34) for F bounded. To lift this assumption, given ε > 0,
define the function φε ∶R→R by

φε(x) ∶=
x√

1+εx2
.

Observe that ∣φε ∣ is bounded by ε−1/2, so φε ○F is differentiable, bounded, and
satisfies E∣∇(φε ○F)∣ < +∞ since ∥∇φε∥∞ ⩽ 1. It follows that

Eg1φε(F(g)) =
d
∑
i=1

Eg1giEφ
′
ε(F(g))∂xiF(g) =

d
∑
i=1

Eg1giE
∂xiF(g)

(1+εF(g)2)3/2
.

Invoking the dominated convergence theorem to let ε tend to zero completes the
proof. ∎

As is suggested by the example in (4.33), the Gaussian integration by parts
formula admits a convenient reformulation that is adapted to the context of Gibbs
measures. With a view towards using it for spin glasses in subsequent chapters,
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we now state and prove it in a general context. We reiterate that the reader only
interested in statistical inference models can safely skip this generalization and
directly move to right after the proof of Theorem 4.6.

Consider a centred Gaussian process made of the two families (y(σ))σ∈Σ and
(z(σ))σ∈Σ indexed by some complete and separable metric space of indices Σ, and
let µ be a finite measure on Σ. Suppose that the covariances of (y(σ))σ∈Σ and
(z(σ))σ∈Σ are given by

Cy(σ1,σ2) ∶=Ey(σ1)y(σ2) and Cz(σ1,σ2) ∶=Ez(σ1)z(σ2) (4.36)

for some bounded and continuous functions Cy ∶ Σ2 → R and Cz ∶ Σ2 → R. The
process (y(σ))σ∈Σ defines the Gibbs measure

dG(σ) ∶= expy(σ)dµ(σ)´
Σ

expy(τ)dµ(τ)
(4.37)

on Σ, and we denote by ⟨⋅⟩ the Gibbs average associated with the Gibbs measure G,
with canonical random variable σ . We also let (σ `)`⩾1 be independent copies of σ

under ⟨⋅⟩. This means that for any integer ` ⩾ 1 and any bounded and measurable
function f ∶ Σ`→R,

⟨ f (σ1 . . . ,σ `)⟩ ∶=
´

Σ` f (σ1, . . . ,σ `)∏`
i=1 expy(σ i)dµ(σ i)

(
´

Σ
expy(σ)dµ(σ))`

. (4.38)

The regularity assumptions on the covariance functions (4.36) ensure that the
integral defining the Gibbs average is well-defined. Indeed, the continuity of Cy can
be used to show that the process (expy(σ))σ∈Σ is continuous in mean and therefore
in probability. In the context of the symmetric rank-one matrix estimation problem,
we would have

Σ ∶=RN , y(x) ∶=
√

2t
N

x ⋅Wx, and dµ(x) = exp(2t
N
(x ⋅x)2− t

N
∣x∣4)dPN(x), (4.39)

and for the calculation leading to (4.33), we would choose z(x) ∶= x ⋅Wx. In general,
the Gaussian integration by parts formula in Theorem 4.5 can be used to compute
Gibbs averages of Gaussian processes as follows.

Theorem 4.6 (Gibbs Gaussian integration by parts). Let C(σ1,σ2) ∶=Ez(σ1)y(σ2)
denote the covariance between the Gaussian processes (z(σ))σ∈Σ and (y(σ))σ∈Σ.
For every n ⩾ 1 and bounded measurable Φ ∶ Σn→R, we have

E⟨Φ(σ1, . . . ,σn)z(σ1)⟩ =E⟨Φ(σ1, . . . ,σn)(
n
∑
i=1

C(σ1,σ i)−nC(σ1,σn+1))⟩.

(4.40)
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Proof. The definition of the Gibbs average (4.38) implies that

E⟨Φ(σ1, . . . ,σn)z(σ1)⟩

=
ˆ

Σn
Φ(σ1, . . . ,σn)Ez(σ1)

n
∏
`=1

expy(σ `)´
Σ

expy(τ)dµ(τ)
dµ(σ `). (4.41)

To simplify this expression, we fix σ1, . . . ,σn ∈Σ and introduce the Gaussian process
(y′(σ))σ∈Σ defined by

y′(σ) ∶= y(σ)−λσ1,σ z(σ1) for λσ1,σ ∶=
Ey(σ)z(σ1)
Ez(σ1)2

.

Since Ey′(σ)z(σ1) = 0 and y and z are jointly Gaussian, the process (y′(σ))σ∈Σ
is independent of z(σ1). If we condition on (y′(σ))σ∈Σ and define the function
F ∶R→R by

F(x) ∶=
n
∏
`=1

exp(y′(σ `)+λσ1,σ ` x)´
Σ

exp(y′(τ)+λσ1,τ x)dµ(τ)
,

then the Gaussian integration by parts formula in Theorem 4.5 implies that

Ez(σ1)
n
∏
`=1

expy(σ `)´
Σ

expy(η)dµ(η)
=Ez(σ1)2EF ′(z(σ1)).

A direct computation shows that

F ′(x) =
n
∑
`=1

λσ1,σ `F(x)−nF(x)
´

Σ
λσ1,σn+1 exp(y′(σn+1)+λσ1,σn+1 x)dµ(σn+1)´

Σ
exp(y′(τ)+λσ1,τ x)dµ(τ)

.

It follows that conditionally on (y′(σ))σ∈Σ as well as the replicas σ1, . . . ,σn ∈ Σ,

Ez(σ1)
n
∏
`=1

expy(σ `)´
Σ

expy(τ)dµ(τ)

=
n
∑
`=1

C(σ1,σ `)EF(z(σ1))−nEF(z(σ1))⟨C(σ1,σn+1)⟩′,

where ⟨⋅⟩′ denotes the Gibbs average (4.38) conditionally on σ1, . . . ,σn, and there-
fore with the average only taken with respect to the randomness of σn+1. Since
(y′(σ))σ∈Σ is independent of z(σ1), this equality also holds unconditionally on the
randomness of (y′(σ))σ∈Σ. Substituting it into the right side of (4.41) yields

E
ˆ

Σn
Φ(σ1, . . . ,σn)(

n
∑
`=1

C(σ1,σ `)−n⟨C(σ1,σn+1)⟩′)

n
∏
`=1

expy(σ `)´
Σ

expy(τ)dµ(τ)
dµ(σ `).
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Remembering that the Gibbs average (4.38) is a product measure allows us to absorb
the Gibbs average ⟨⋅⟩′ into the Gibbs average ⟨⋅⟩ to obtain (4.40). This completes
the proof. ∎

We now turn to the Gaussian concentration inequality. This inequality states
that a Lipschitz function of a standard Gaussian random vector will concentrate
around its mean, with a standard deviation of the order of the Lipschitz constant.
To motivate this statement, let us take g a centred Gaussian random variable with
variance ν2, and observe that by Chebyshev’s inequality, we have for every t,λ > 0
that

P{∣g∣ > t} ⩽ 2P{g > t} ⩽ 2exp(−λ t)Eexp(λg) = 2exp(λ 2ν2

2
−λ t). (4.42)

Optimizing over λ to find λ = t
ν2 reveals that

P{∣g∣ > t} ⩽ 2exp(− t2

2ν2). (4.43)

Notice that ν is the Lipschitz constant of the function Fν(g) ∶= νg which maps a
standard Gaussian random variable to a centred Gaussian random variable with
variance ν2. The elementary concentration inequality (4.43) can therefore be written
in terms of a standard Gaussian random variable g as

P{∣Fν(g)−EFν(g)∣ > t} ⩽ 2exp(− t2

2∥Fν∥2Lip
), (4.44)

where the Lipschitz semi-norm ∥⋅∥Lip is defined in (3.38). It turns out that this
formula generalizes to all Lipschitz continuous functions of a Gaussian random
vector.

Theorem 4.7 (Gaussian concentration inequality). If g is a standard Gaussian
vector in Rd and F ∶Rd →R is a Lipschitz continuous function, then for any t ⩾ 0,

P{∣F(g)−EF(g)∣ ⩾ t} ⩽ 2exp(− t2

2∥F∥2Lip
). (4.45)

Proof. Replacing F by F−EF(g) if necessary and using the union bound, it suffices
to show that for every Lipschitz continuous function F ∶Rd →R with EF(g) = 0
and every t ⩾ 0, we have

P{F(g) ⩾ t} ⩽ exp(− t2

2∥F∥2Lip
). (4.46)
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The proof proceeds in two steps. First we prove (4.46) when F is continuously
differentiable, and then we use an approximation argument to establish it in general.

Step 1: F continuously differentiable. By Chebyshev’s inequality, we have for
every λ > 0 that

P{F(g) ⩾ t} ⩽ exp(−λ t)Eexp(λF(g)). (4.47)

To bound the function h(λ) ∶=Eexp(λF(g)), we use a symmetrization trick. Let g̃
be an independent copy of g, and for each s ∈ [0,1], introduce the Gaussian random
variable Zs ∶=

√
sg+
√

1− sg̃. Define the function Gλ (x) ∶= exp(λF(x)), and observe
that by the fundamental theorem of calculus,

h′(λ) =EF(g)Gλ (g) =
ˆ 1

0

d
ds
EF(g)Gλ (Zs)ds.

The independence of g and g̃ as well as the assumption EF(g) = 0 have played their
part. This implies that

h′(λ) =
ˆ 1

0
EF(g)∇Gλ (Zs) ⋅(

g
2
√

s
− g̃

2
√

1− s
)ds.

For each 1 ⩽ i ⩽ d, the Gaussian integration by parts formula reveals that

EgiF(g)∂xiG(Zs) =E∂xi(F(g)∂xiGλ (Zs))
= λE∣∂xiF(g)∣2Gλ (Zs)+

√
sEF(g)∂ 2

xi
Gλ (Zs),

while
Eg̃iF(g)∂xiGλ (Zs) =

√
1− sEF(g)∂ 2

xi
Gλ (Zs).

It follows by the Cauchy-Schwarz inequality and the fact that Zs is equal in distribu-
tion to g for every s ∈ [0,1] that

h′(λ) ⩽ 1
2

λ∥F∥2LipEGλ (g)
ˆ 1

0

1√
s

ds ⩽ λ∥F∥2Liph(λ).

Dividing both sides of this equation by h(λ) and integrating the resulting expression
shows that

logh(λ) ⩽ logh(0)+
λ 2∥F∥2Lip

2
=

λ 2∥F∥2Lip

2
.

Substituting this into (4.47) and optimizing over λ to find λ = t
∥F∥2Lip

establishes (4.46).

Step 2: F general. For each ε > 0, we introduce the function Fε(x) ∶=EF(x+ε g̃),
where g̃ is an independent copy of g. Since the random vector x+ε g̃ is standard
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Gaussian, the function Fε is smooth. Moreover, it is such that ∥Fε∥Lip ⩽ ∥F∥Lip. It
follows by (4.46) applied to Fε that for every integer n ⩾ 1,

P{Fε(g) > t +n−1} ⩽ exp(− (t +n−1)2

2∥F∥2Lip
).

Since (Fε)ε>0 converges to F uniformly, the sequence (Fε(g))ε>0 of random vari-
ables converges in law to F(g). Invoking the Portmanteau theorem (Theorem A.17)
reveals that

P{F(g) > t +n−1} ⩽ liminf
ε→0

P{Fε(g) > t +n−1} ⩽ exp(− (t +n−1)2

2∥F∥2Lip
),

and using the continuity of measure to let n tend to infinity completes the proof. ∎

The Gaussian concentration inequality has many important consequences in the
context of statistical mechanics. For instance, as shown in Exercise 4.4, it gives the
concentration of the maximum of the coordinates of a Gaussian vector around its
average. As we will see in Exercise 6.2 of Chapter 6, this implies that the maximum
of the Hamiltonian in the Sherrington-Kirkpatrick model concentrates around its
average. In the language of physics, one could say that the ground-state energy is
self-averaging. Another quantity that is generally self-averaging is the free energy.
In the context of the symmetric rank-one matrix estimation problem, we can think
of the free energy (4.8) as a function of the Gaussian noise W and the signal x. To
make this dependence explicit, let us temporarily change notation and write the free
energy as

F○N(t,W,x) ∶= F○N(t). (4.48)

Letting a > 0 be such that the support of the measure P1 is contained in the interval
[−
√

a,
√

a], we see that the measure PN is supported in the ball B√aN(0) of radius√
aN centred at the origin. We thus deduce that for t ⩾ 0, x ∈RN and W 1,W 2 ∈RN×N ,

F○N(t,W 1,x) ⩽
√

2t
N3 sup

x∈B√aN(0)
(x ⋅W 1x−x ⋅W 2x)+F○N(t,W 2,x). (4.49)

Using that x ⋅ (W 1−W 2)x = (W 1−W 2) ⋅ (x∗x) and the Cauchy-Schwarz inequality,
we obtain that

F○N(t,W 1,x)−F○N(t,W 2,x) ⩽
√

2t
N3 sup

x∈B√aN(0)
∣x∣2∣W 1−W 2∣ ⩽ a

√
2t
N
∣W 1−W 2∣.

(4.50)
Since the right side of (4.50) is symmetric in the pair (W 1,W 2), this estimate gives
us an upper bound on the Lipschitz semi-norm of the map W ↦ F○N(t,W,x). It



120 Chapter 4 Statistical inference

thus follows by the Gaussian concentration inequality applied conditionally on the
randomness of the signal x that, for any λ > 0,

P{∣F○N(t,W,x)−EW F○N(t,W,x)∣ ⩾ λ} ⩽ 2exp(− Nλ 2

4a2t
), (4.51)

where EW denotes the average only with respect to the randomness of the Gaussian
noise W . To obtain the full concentration of the free energy, it remains to establish
the concentration of EW F○N(t,W,x) about its average with respect to the signal x.
This can be done using the McDiarmid inequality.

Theorem 4.8 (McDiarmid inequality). Let X = (X1, . . . ,Xn) be a vector of inde-
pendent random variables taking values in the measurable space S1×⋯×Sn, let
c1, . . . ,cn ⩾ 0, and let F ∶ S1×⋯×Sn →R be a measurable function such that, for
every i ∈ {1, . . . ,n}, x1 ∈ S1, . . . ,xn ∈ Sn, and x′i ∈ Si,

∣F(x1, . . . ,xi−1,x′i,xi+1, . . . ,xn)−F(x1, . . . ,xi−1,xi,xi+1, . . . ,xn)∣ ⩽ ci. (4.52)

For every t ⩾ 0, we have

P{∣F(X)−EF(X)∣ ⩾ t} ⩽ 2exp(− 2t2

∑n
i=1 c2

i
). (4.53)

Proof. We decompose the proof into two steps.

Step 1: Laplace transform estimate. Let a < b ∈R. In this step, we show that if X is
a random variable taking values in the interval [a,b], then

logEexpλ(X −EX) ⩽ λ 2(b−a)2
8

. (4.54)

As a preliminary observation, any random variable X taking values in the interval
[a,b] must be such that

E(X −EX)2 = inf
c∈R

E(X −c)2 ⩽E(X − a+b
2
)

2

⩽ (b−a
2
)

2

.

We denote by ψ(λ) the left side of (4.54). Since X is bounded, the function ψ is
infinitely differentiable, and a direct calculation gives that

ψ
′(λ) = ⟨X −EX⟩ and ψ

′′(λ) = ⟨(X −EX)2⟩−(⟨X −EX⟩)2,

where we introduced the notation

⟨Z⟩ ∶=
E(Z expλ(X −EX))
Eexpλ(X −EX)
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to denote the Gibbs measure associated with the Hamiltonian λ(X −EX). Although
this is kept implicit in the notation, we point out that this Gibbs measure depends
on λ ; in particular, the quantities ⟨X⟩ and EX are different in general. We see
that ψ ′′ is expressed as the variance of a random variable that takes values in an
interval of length b− a. By the preliminary observation, we deduce that ψ ′′ is
uniformly bounded by (b−a)2/4. Since ψ(0) =ψ ′(0) = 0, integrating this bound
yields (4.54).

Step 2: Chebyshev inequality. We now take up the notation and assumptions of the
theorem, and introduce, for every i ∈ {1, . . . ,n}, the difference

∆i ∶=E[ f (X) ∣ X1, . . . ,Xi]−E[ f (X) ∣ X1, . . . ,Xi−1],

with the understanding that ∆1 =E[ f (X) ∣ X1]−E f (X). We clearly have

f (X)−E f (X) =
n
∑
i=1

∆i.

For every λ ⩾ 0, we now look for an upper bound on

Eexp(λ
n
∑
i=1

∆i) =E
n
∏
i=1

expλ∆i.

Conditionally on X1, . . . ,Xn−1, the random variable ∆n is centred, and by (4.52), it
takes values in an interval of length cn. Since the random variables ∆1, . . . ,∆n−1 are
measurable with respect to X1, . . . ,Xn−1, we can apply the result of the previous step
conditionally on these variables, so that

Eexp(λ
n
∑
i=1

∆i) ⩽Eexp(λ
n−1
∑
i=1

∆i)exp(λ 2c2
n

8
).

Continuing inductively from i = n−1 down to i = 1, we conclude that

Eexp(λ
n
∑
i=1

∆i) ⩽ exp(λ 2

8

n
∑
i=1

c2
i ).

By Chebyshev’s inequality, for every t ⩾ 0 and λ ⩾ 0, we have

P{F(X)−EF(X) ⩾ t} ⩽ exp(−λ t + λ 2

8

n
∑
i=1

c2
i ).

Optimizing over λ yields that

P{F(X)−EF(X) ⩾ t} ⩽ exp(− 2t2

∑n
i=1 c2

i
).

By symmetry and the union bound, we thus obtain (4.53). This completes the
proof. ∎
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To control the deviations of EW F○N(t,W,x) about its average using the McDi-
armid inequality, fix t ⩾ 0,W ∈RN×N and x ∈RN . Recalling (4.6), a direct computa-
tion reveals that for any 1 ⩽ i ⩽N,

∂xiF
○
N(t,W,x) = 4t

N2 ⟨xi (x ⋅x)⟩. (4.55)

Letting a > 0 be such that the support of the measure P1 is contained in the interval
[−
√

a,
√

a], this implies that

∣∂xiF
○
N(t,W,x)∣ ⩽ 4ta3/2

N
. (4.56)

Averaging over the randomness of the Gaussian noise W and using Jensen’s in-
equality shows that this upper bound also holds for the averaged free energy
EW F○N(t,W,x). Combining this with the mean value theorem, we find that for
any i ∈ {1, . . . ,N} and x1, . . . ,xN ,x′i ∈ [−

√
a,
√

a],

∣EW F○N(t,W,x1, . . . ,xi−1,x′i,xi+1, . . . ,xn)

−EW F○N(x1, . . . ,xi−1,xi,xi+1,xn)∣ ⩽
4ta3/2

N
∣xi−x′i ∣ =

8ta2

N
. (4.57)

It follows by the McDiarmid inequality that, for every λ ⩾ 0,

P{∣EW F○N(t,W,x)−EF○N(t,W,x)∣ ⩾ λ} ⩽ 2exp(− Nλ 2

32t2a4). (4.58)

Together with the triangle inequality and the upper bound (4.51), we find, for every
T < +∞, a constant C < +∞ such that for every t ∈ [0,T ] and λ ⩾ 0,

P{∣F○N(t)−F
○
N(t)∣ ⩾ λ} ⩽ 2exp(− Nλ 2

C
). (4.59)

This establishes the exponential concentration of the free energy about its average.
There are many other concentration inequalities for Gaussian and non-Gaussian

random variables which are often used in statistical mechanics. For instance,
alternatively to the McDiarmid inequality, the Efron-Stein inequality discussed
in Exercise 4.7 can be used to establish the concentration of the free energy in
non-Gaussian contexts, such as in Appendix B of [105] for community detection on
sparse graphs. Exercise 4.8 presents the Gaussian Poincaré inequality, which can be
used to obtain concentration results in L2 under a weaker assumption than Lipschitz
continuity of the functional. For much more on concentration inequalities we refer
the interested reader to [59].
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Exercise 4.4. Let a ∈R⩾0 and let (g1, . . . ,gd) be a d-dimensional centred Gaussian
vector with Eg2

i ⩽ a for every i ∈ {1, . . . ,d}. Show that for every t ⩾ 0,

P{∣max
1⩽i⩽d

gi−Emax
1⩽i⩽d

gi∣ ⩾ t} ⩽ 2exp(− t2

2a
). (4.60)

Exercise 4.5. For W = (Wi j)1⩽i, j⩽N ∈RN×N a matrix of independent standard Gaus-
sian random variables, we introduce the norm ∥W∥∗ ∶= sup∣x∣⩽1∣Wx∣. The purpose of
this exercise is to show that there exists a constant C < +∞ such that for every a ⩾C,

P{∥W∥2∗ ⩾ aN} ⩽ exp(− aN
C
). (4.61)

(i) Show that there exists a constant C < +∞ such that for every x ∈RN of unit
norm and all a ⩾ 0,

P{∣Wx∣2 ⩾ aN} ⩽ exp((C− a
C
)N). (4.62)

(ii) Consider a set A ⊆RN with the property that for every x ∈RN with ∣x∣ ⩽ 1, there
exists y ∈ A such that ∣x−y∣ ⩽ 1

2 . Show that

∥W∥∗ ⩽ 2sup
y∈A
∣Wy∣. (4.63)

(iii) Show that one can find such a set A of size exponential in N, and conclude
that (4.61) holds.

(iv) Deduce that for every q ⩾ 1, there exists a constant C < +∞ with

E∥W∥q∗ ⩽CNq/2. (4.64)

Exercise 4.6 (Approximate Gaussian integration by parts). Let X be a centred
random variable with finite third moment E∣X ∣3 < +∞. Show that for every F ∈
C2(R;R) with ∥F ′′∥∞ < +∞,

∣EXF(X)−EX2EF ′(X)∣ ⩽ 3
2
∥F ′′∥∞E∣X ∣3. (4.65)

Exercise 4.7 (Efron-Stein). Let X ∈Rd be a vector of independent random variables,
and let X ′ ∈ Rd be an independent copy of X . Show that for every bounded and
measurable f ∶Rd →R,

Var f (X) ⩽ 1
2

d
∑
i=1

E( f (X)− f (X1, . . . ,Xi−1,X ′i ,Xi+1, . . . ,XN))
2
. (4.66)

Exercise 4.8 (Gaussian Poincaré inequality). Let Z be a standard Gaussian random
variable, and let f ∈C∞c (R;R) be a smooth and compactly supported function. Show
that Var f (Z) ⩽E∣ f ′(Z)∣2.
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4.3 A Hamilton-Jacobi approach to rank-one matrix estimation

To determine the limit free energy in the symmetric rank-one matrix estimation
problem using the Hamilton-Jacobi approach, we need to find a partial differential
equation satisfied by the free energy (4.9) up to an error that vanishes with N. Notice
that the limits of the random free energy (4.8) and its average (4.9), provided that
they exist, are the same. Indeed, by the free energy concentration inequality (4.59),
there exists a constant C < +∞ that depends only on an upper bound on t and on the
support of P1 such that for every λ > 0,

P{∣F○N(t)−F
○
N(t)∣ ⩾ λ} ⩽ 2exp(− Nλ 2

C
). (4.67)

Since the right side of this expression is summable, the Borel-Cantelli lemma
implies that almost surely,

limsup
N→+∞

∣F○N(t)−F
○
N(t)∣ = 0. (4.68)

Using the Gaussian integration by parts formula, we saw in (4.33) that

E⟨x ⋅Wx⟩ =
√

2t
N
(E⟨∣x∣4⟩−E⟨(x ⋅x′)2⟩). (4.69)

Together with the derivative computation in (4.20) this implies that

∂tF
○
N(t) =

1
N2E⟨(x ⋅x)

2⟩. (4.70)

Unfortunately, there is no way of closing this equation if we can only compute
derivatives in t of the free energy. Indeed, the situation is analogous to that en-
countered if we were studying a Curie-Weiss model without any magnetization
part, where there would be no parameter h with respect to which to differentiate
and close the equation. To overcome this issue, we will define an “enriched” free
energy that also depends on an additional parameter h. The enriched free energy
FN(t,h) should extend the free energy F

○
N(t), in the sense that there is some h0 with

FN(⋅,h0) = F
○
N(⋅); it should be simple enough that we can explicitly compute the

limit of its initial condition FN(0,h); and it should be rich enough that it allows us
to close the equation, up to a small error term. In the context of statistical inference
models, we also want to ensure that the enrichment does not destroy the fact that the
Gibbs measure is a conditional expectation. Indeed, this property gives us access
to the Nishimori identity, which plays a fundamental role in simplifying statistical
inference models and distinguishing them from the more complicated spin glass
models we will discuss in Chapter 6.
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In the context of the symmetric rank-one matrix estimation problem, the appro-
priate enrichment of the free energy is obtained by assuming that, in addition to
observing the noisy rank-one matrix Y in (4.1), we also observe a noisy version Ỹ
of the signal vector x,

Ỹ ∶=
√

2hx+ z. (4.71)

The noise vector z = (zi)i⩽N ∈RN is made of independent standard Gaussian random
variables independent of the vector x and the noise matrix W , and the parameter
h ⩾ 0 is a signal-to-noise ratio. The enriched symmetric rank-one matrix estimation
problem is to infer the rank-one matrix xx∗ from the observation of Y ∶= (Y,Ỹ).
Applying Bayes’ formula as in Exercise 4.2 shows that the law of the signal x given
the observation of Y is the Gibbs measure whose Hamiltonian on RN is

HN(t,h,x) ∶=H○N(t,x)+
√

2hỸ ⋅x−h∣x∣2. (4.72)

In other words, for any bounded and measurable function f ∶RN →R, we have

E[ f (x) ∣ Y] =
´
RN f (x)expHN(t,h,x)dPN(x)´

RN expHN(t,h,x)dPN(x)
. (4.73)

The free energy

FN(t,h) ∶=
1
N

log
ˆ
RN

expHN(t,h,x)dPN(x) (4.74)

of this model is again random, as it depends on x, W and z, and we denote its
average by

FN(t,h) ∶=EFN(t,h) =
1
N
E log

ˆ
RN

expHN(t,h,x)dPN(x). (4.75)

We will again often refer to the average free energy (4.75) as simply the free energy.
Through a slight abuse of notation, we will, as before, write ⟨⋅⟩ for the average with
respect to the Gibbs measure (4.73), and write x,x′,x′′, and so on, for independent
random variables sampled according to this probability measure. That is, for every
bounded and measurable function f ∶RN →R, we write

⟨ f (x)⟩ ∶=
´
RN f (x)expHN(t,h,x)dPN(x)´

RN expHN(t,h,x)dPN(x)
, (4.76)

and so on as in (4.12) with more replicas. The derivation of the identity (4.70) is
unchanged for this more general Gibbs measure: we have for all t,h ⩾ 0 that

∂tFN(t,h) =
1

N2E⟨(x ⋅x)
2⟩. (4.77)
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Recalling from (4.71) and (4.72) that

HN(t,h,x) =H○N(t,x)+2hx ⋅x+
√

2hz ⋅x−h∣x∣2, (4.78)

we next observe that for all t,h ⩾ 0,

∂hFN(t,h) =
1

N
√

2h
E⟨z ⋅x⟩+ 2

N
E⟨x ⋅x⟩− 1

N
E⟨∣x∣2⟩. (4.79)

To integrate out the Gaussian noise z, we fix 1 ⩽ i ⩽ N, we write F(z,W,x) ∶= ⟨xi⟩,
and we observe that by the Gaussian integration by parts formula in (4.29),

E⟨zixi⟩ =EziF(z,W,x) =E∂ziF(z,W,x) =
√

2h(E⟨x2
i ⟩−E⟨xi⟩2). (4.80)

It follows that
E⟨z ⋅x⟩ =

√
2h(E⟨∣x∣2⟩−E⟨x ⋅x′⟩), (4.81)

which together with the Nishimori identity implies that

∂hFN(t,h) =
1
N
E⟨x ⋅x⟩. (4.82)

It is reasonable to expect the variance of the inner product, or overlap, N−1x ⋅ x
between a sample x from the Gibbs measure (4.73) and the ground-truth signal x
to be small, simply because it is the average of a large number of variables. If this
is so, then the difference between the time derivative (4.77) and the square of the
spatial derivative (4.82) would also be small, since

∂tFN(t,h)−(∂hFN(t,h))
2 =Var(x ⋅x

N
). (4.83)

This suggests that the enriched free energy (4.75) might converge to the function f
solving the Hamilton-Jacobi equation

∂t f −(∂h f )2 = 0 on R>0×R>0 (4.84)

with the initial condition

ψ(h) ∶= lim
N→+∞

FN(0,h) = F1(0,h). (4.85)

We have used the assumption that PN is a product measure to assert that the initial
condition is independent of N. Notice that the Hamilton-Jacobi equation (4.84) is
the same as the Hamilton-Jacobi equation (3.9) that appeared in the context of the
Curie-Weiss model, with the sole difference that it is posed on R>0×R>0 as opposed
to R>0×R.
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Because of this difference, the Hamilton-Jacobi equation (4.84) that we would
like to use to describe the limit free energy in the symmetric rank-one matrix
estimation problem does not exactly fall within the scope of the Hamilton-Jacobi
equations studied in Chapter 3. Indeed, now the spatial variable is restricted to the
space R>0, which unlike R is a domain with a boundary. The right way forward
would be to extend the analysis in Chapter 3 to equations posed on more general
domains. How to proceed along these lines and conclude for the identification of the
limit free energy in the symmetric rank-one matrix estimation problem is explained
in details in [103], in a setting that closely matches our current one. This approach
is also taken up in [74, 75] in great generality in finite dimension, in [73, 194] for
the infinite-dimensional equations arising in Chapter 6 in relation with spin glasses,
and in [104] for community detection on sparse graphs. The upshot of this analysis
is that, for all equations of relevance to us, we do not have to prescribe any boundary
condition for the solution, and in effect, we can proceed by simply ignoring the
boundary. Intuitively, this is possible because the characteristic lines discussed
below (3.90) always go towards the boundary rather than away from it.

Instead of explaining this, we prefer to use a simpler but less general workaround
here, by taking advantage of the simple geometry of the domain R⩾0 through a sym-
metrization trick. Although this will be convenient in our context, the reader should
not surmise that this is a standard way to handle equations posed on domains with
boundaries, and there are indeed more complicated models of statistical inference or
spin glasses, where R⩾0 is replaced by the space of positive semi-definite matrices,
for which this trick does noes seem to be applicable.

So we will content ourselves with saying that a function f ∶R⩾0×R⩾0→R is a
viscosity solution to the Hamilton-Jacobi equation (4.84) with initial condition ψ if
its symmetrization f̃ ∶R⩾0×R→R defined by

f̃ (t,h) ∶= f (t, ∣h∣) (4.86)

is a viscosity solution the Hamilton-Jacobi equation

∂t f̃ −(∂h f̃ )2 = 0 on R>0×R (4.87)

subject to the symmetrized initial condition ψ̃(h) ∶= ψ(∣h∣). As will be seen, the
main reason why this approach makes sense is that the functions we care about are
non-decreasing in the variable h, when this variable varies in R⩾0. If the function ψ

was decreasing, then the symmetrization would instead create an unphysical sin-
gularity at the origin h = 0 — by this we mean that we would be able to contradict
the definition of viscosity solution for (4.87) by using any point in R⩾0×{0} as a
contact point.

Our main result will be that the limit free energy (4.75) is indeed a solution
to the Hamilton-Jacobi equation (4.84). Together with the Hopf-Lax formula in
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Theorem 3.8 and the observation that the free energy (4.9) can be recovered from
the enriched free energy (4.75),

F
○
N(t) = FN(t,0), (4.88)

this will give us the following result for the limit free energy in the symmetric
rank-one matrix estimation problem.

Theorem 4.9 (Identification of limit free energy). For every N ⩾ 1, we denote by
FN ∶R⩾0×R⩾0→R the enriched free energy (4.75) in the symmetric rank-one matrix
estimation problem. For every t,h ⩾ 0, we have that FN(t,h) converges to f (t,h)
as N tends to infinity, where f ∶R⩾0×R⩾0→R is the unique viscosity solution to the
Hamilton-Jacobi equation (4.84) subject to the initial condition

ψ(h) ∶= F1(0,h) =E log
ˆ
R

exp(
√

2hxz1+2hxx1−hx2)dP1(x). (4.89)

The limit free energy f admits the Hopf-Lax representation, for every t,h ⩾ 0,

f (t,h) = sup
h′⩾0
(ψ(h+h′)− (h

′)2
4t
). (4.90)

In particular, the limit of the free energy F
○
N defined in (4.9) is given by

lim
N→+∞

F
○
N(t) = sup

h⩾0
(ψ(h)− h2

4t
). (4.91)

This result will be proved by applying the convex selection principle to the
symmetrization f̃ of any subsequential limit f of the sequence (FN)N⩾1 of enriched
free energies. To begin with, we will verify that the enriched free energy FN is
jointly convex, Lipschitz continuous and non-decreasing, and that the first two of
these three properties are inherited by f̃ . We say that a function g ∶R⩾0×R⩾0→R
is non-decreasing if, for all t,h,h′ ⩾ 0, we have

h ⩽ h′ Ô⇒ g(t,h) ⩽ g(t,h′). (4.92)

We will then show that each free energy FN satisfies the Hamilton-Jacobi equa-
tion (4.84) up to some explicit error term, and use this to deduce that any smooth
function that touches f from above must satisfy the Hamilton-Jacobi equation
(4.84) at the contact point. This will then allow us to conclude that f̃ is the unique
viscosity solution to the Hamilton-Jacobi equation (4.87) using the convex selection
principle in Lemma 3.23. We will rely on this more general version of the convex
selection principle, as opposed to the cleaner form in Theorem 3.21, because the
symmetrized initial condition ψ̃ is not necessarily continuously differentiable at the
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origin. As can easily be seen, e.g. from (S.27), the symmetrized initial condition ψ̃

does belong to C1(R;R) when Ex1 = 0, and the reader may consider working out a
simpler proof based on Theorem 3.21 under this additional assumption.

We start as announced by showing that the enriched free energy FN is jointly
convex, non-decreasing in the sense of (4.92), and Lipschitz continuous uniformly
over N.

Proposition 4.10. The enriched free energy (4.75) in the symmetric rank-one matrix
estimation problem is jointly convex, non-decreasing, and Lipschitz continuous
uniformly over N.

The proof that the free energy FN is convex involves a somewhat lengthy
calculation. This may come as a surprise, since for the simpler models studied
in previous chapters, the convexity of the free energy was a consequence of the
very general observation presented in Exercise 2.6 that the log-Laplace transform
of a random variable is convex. This argument cannot be applied here however.
One may wonder whether this comes from the fact that we placed some square
roots acting on the parameters t and h in the definition of the problem; and in
the context of spin glasses discussed in Chapter 6, it will be immediate to see
that the function F̃N ∶ (t,h) ↦ FN(t2,h2) is indeed convex. So are we making the
question uselessly complicated here? The main reason we want to insist on showing
the convexity property is that this is a requirement for the validity of the convex
selection principle. The proof of this result relies on the fact that the underlying
Hamilton-Jacobi equation does not explicitly depend on the parameters t and h.
If we were to write down a Hamilton-Jacobi equation for F̃N instead, then the
parameters t and h would have to be explicitly present in the equation; and it turns
out that the convex selection principle is actually false in this more general setting.

In the context of statistical inference, there is however a fundamental information-
theoretic reason to expect that the free energy FN as defined in (4.75) is indeed
convex. For the interested reader, we briefly sketch this argument and why it does
not actually allow us to show the joint convexity of FN . Recall from (4.24) that we
denote by IN(t) the mutual information between the signal x and the observation Y .
By Proposition 4.4, we see that the convexity of FN(⋅,0) is equivalent to the concav-
ity of the mutual information IN . Moreover, one can show that when we observe Y ,
we gain exactly as much information about the signal as if we were observing, for
two independent copies W 1 and W 2 of W , the quantities

√
t
N

xx∗+W 1 and

√
t
N

xx∗+W 2. (4.93)

Notice that compared with the definition of Y in (4.1), the variable t has been
replaced by t/2 in each of the two quantities above. Finally, once we have observed
the first of the two quantities in (4.93), one can verify that we are going to gain
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at most as much information when we subsequently observe the second quantity
in (4.93). In other words, the mutual information IN satisfies a sort of subadditivity
property, and elementary properties of the mutual information allow us to upgrade
this to the fact that IN is a concave function. The argument we just sketched therefore
leads to the conclusion that the function FN(⋅,0) is convex. Minor variants of this
argument yield that the function FN is convex in each of the variables separately.

It may seem plausible that this argument can be generalized and lead to a con-
ceptual information-theoretic proof that the function FN is convex jointly in (t,h).
However, pushing this argument to a setting with multiple variables yields instead
that every entry of the Hessian of FN is non-negative. To our surprise, for the prob-
lem of community detection on sparse graphs, which unlike the situation considered
in this chapter is not reducible to a problem with Gaussian noise, one can indeed
show that the relevant free energy in this context is not convex in general [152].

To sum up this informal discussion, the proof that FN is jointly convex does
have to use some aspects of the particular structure of the class of problems we
consider, and thus at least some calculations do need to be made. We also refer to
Proposition 3.1 of [152] for a somewhat more general view on such calculations.

Proof of Proposition 4.10. The derivative computations (4.77) and (4.82) as well
as the boundedness of the support of P1 imply that the first order derivatives of
the enriched free energy FN are uniformly bounded. This establishes the uniform
Lipschitz continuity of FN . That FN is non-decreasing follows from the derivative
computation (4.82) and the Nishimori identity, ∂hFN(t,h) = N−1E⟨x⟩2 ⩾ 0. To
prove the convexity of FN , we show that its Hessian is non-negative definite.
Differentiating the expression (4.82) in h and recalling (4.78), we can write

N∂
2
h FN(t,h)

=E⟨(x ⋅x)∂hHN(t,h,x)⟩−E⟨(x ⋅x)∂hHN(t,h,x′)⟩

= 1√
2h

E⟨(x ⋅x)(z ⋅x− z ⋅x′)⟩+2E⟨(x ⋅x)(x ⋅x−x′ ⋅x)⟩−E⟨(x ⋅x)(∣x∣2− ∣x′∣2)⟩.

We now use the Gaussian integration by parts formula in (4.29) to integrate out the
noise z, as in the calculations leading to (4.33) or to (4.81). Recalling also that when
the Gibbs measure is an average over the two variables x and x′, the underlying
Hamiltonian is HN(t,h,x)+HN(t,h,x′), we obtain

E⟨(x ⋅x)(z ⋅x)⟩ =
√

2hE⟨(x ⋅x)(∣x∣2−x ⋅x′)⟩,
E⟨(x ⋅x)(z ⋅x′)⟩ =

√
2hE⟨(x ⋅x)(∣x′∣2+x ⋅x′−2x′ ⋅x′′)⟩.

It follows by the Nishimori identity that

N∂
2
h FN(t,h) = 2E⟨(x ⋅x′)2⟩−4E⟨(x ⋅x′)(x ⋅x′′)⟩+2E⟨(x ⋅x′)(x′′ ⋅x′′′)⟩. (4.94)
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We introduce the re-scaled and centred variable

y ∶= 1√
N
(x−⟨x⟩),

with y′,y′′,y′′′ denoting independent copies of y under the measure ⟨⋅⟩, so that

N2E⟨(y ⋅y′)2⟩ =E⟨((x−⟨x⟩) ⋅ (x′−⟨x⟩))2⟩
=E⟨(x ⋅x′−x ⋅ ⟨x⟩−x′ ⋅ ⟨x⟩+⟨x⟩ ⋅ ⟨x⟩)2⟩
=E⟨(x ⋅x′)2⟩−2E⟨(x ⋅x′)(x ⋅x′′)⟩+E⟨(x ⋅x′)(x′′ ⋅x′′′)⟩

= N
2

∂
2
h FN(t,h). (4.95)

This already shows that FN is convex in the h variable. To compute the second
derivative in t, we can rewrite (4.77) in the form of

N2
∂tFN(t,h) =E⟨xx∗ ⋅xx∗⟩, (4.96)

and follow through the same calculation as for the second derivative in h; the only
difference is that each occurrence of x is replaced by xx∗, each occurrence of x is
replaced by xx∗, and so on, with z being replaced by W . This leads to

N3
∂

2
t FN(t,h) = 2E⟨(xx∗ ⋅x′x′∗)2⟩−4E⟨(xx∗ ⋅x′x′∗)(xx∗ ⋅x′′x′′∗)⟩

+2E⟨(xx∗ ⋅x′x′∗)(x′′x′′∗ ⋅x′′′x′′′∗)⟩,

so in terms of the re-scaled and centred variable

ξ ∶= 1
N
(xx∗−⟨xx∗⟩),

we get
1

2N
∂

2
t FN(t,h) =E⟨(ξ ⋅ξ ′)2⟩.

For the cross-derivative, we start from (4.96) and differentiate in h to obtain

N2
∂h∂tFN(t,h) =

1√
2h

E⟨(xx∗ ⋅xx∗)(z ⋅x− z ⋅x′)⟩+2E⟨(xx∗ ⋅xx∗)(x ⋅x−x′ ⋅x)⟩

−E⟨(xx∗ ⋅xx∗)(∣x∣2− ∣x′∣2)⟩.

A Gaussian integration by parts allows us to rewrite the first term on the right side
above as

E⟨(xx∗ ⋅xx∗)(∣x∣2−x ⋅x′−(∣x′∣2+x ⋅x′−2x′ ⋅x′′))⟩.
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An application of the Nishimori identity therefore yields that

N2
∂h∂tFN(t,h) = 2E⟨(xx∗ ⋅x′x′∗)(x ⋅x′)⟩−4E⟨(xx∗ ⋅x′x′∗)(x ⋅x′′)⟩

−2E⟨(xx∗ ⋅x′x′∗)(x′′ ⋅x′′′)⟩,

which can be rewritten in terms of the re-scaled and centred variables as

1
2N

∂h∂tFN(t,h) =E⟨(ξ ⋅ξ ′)(y ⋅y′)⟩.

To see that the Hessian of FN is non-negative definite, we take w = (a,b) ∈R2 and
write

1
2N

w ⋅∇2FN(t,h)w = a2E⟨(ξ ⋅ξ ′)2⟩+b2E⟨(y ⋅y′)2⟩+2abE⟨(ξ ⋅ξ ′)(y ⋅y′)⟩

=E⟨(aξ ⋅ξ ′+by ⋅y′)2⟩ ⩾ 0,

as desired. ∎

Lemma 4.11. If f ∶ R⩾0 ×R⩾0 → R is a jointly convex and Lipschitz continuous
function that is non-decreasing, then its symmetrization f̃ ∶ R⩾0 ×R→ R defined
by f̃ (t,h) ∶= f (t, ∣h∣) is also jointly convex and Lipschitz continuous, with the same
Lipschitz constant.

Proof. The uniform Lipschitz continuity of the symmetrization f̃ is an immediate
consequence of the uniform Lipschitz continuity of f and the reverse triangle
inequality. To show that the symmetrization is also jointly convex, fix α ∈ [0,1],
t,t′ ⩾ 0 and h,h′ ∈R. By non-decreasingness of f ,

f̃ (αt +(1−α)t′,αh+(1−α)h′) = f (αt +(1−α)t′, ∣αh+(1−α)h′∣)
⩽ f (αt +(1−α)t′,α ∣h∣ +(1−α)∣h′∣).

It follows by convexity of f that

f̃ (αt +(1−α)t′,αh+(1−α)h′) ⩽ α f (t, ∣h∣)+(1−α) f (t′, ∣h′∣)
= α f̃ (t,h)+(1−α) f̃ (t′,h′).

This completes the proof. ∎

We now proceed analogously to our treatment of the Curie-Weiss model and aim
to estimate the error term in the approximate Hamilton-Jacobi equation (4.83) in
terms of quantities involving the free energy itself. Compared with (3.7) or (3.17),
a new term appears that relates to the fluctuations of the free energy itself.
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Proposition 4.12. The enriched free energy (4.75) in the symmetric rank-one matrix
estimation problem satisfies the approximate Hamilton-Jacobi equation

0 ⩽ ∂tFN(t,h)−(∂hFN(t,h))
2 ⩽ 1

N
∂

2
h FN(t,h)+E(∂hFN −∂hFN)

2(t,h). (4.97)

Proof. The lower bound in (4.97) is immediate from (4.83) and the non-negativity
of the variance. To establish the upper bound, by (4.83), it suffices to show that

Var(x ⋅x
N
) ⩽ 1

N
∂

2
h FN(t,h)+E(∂hFN −∂hFN)

2(t,h). (4.98)

As in the Curie-Weiss model, it is reasonable to expect this variance term to be
related to ∂ 2

h FN(t,h). Although the value of this derivative was stated in (4.94), we
will compute it slightly differently here for convenience. We write

H′N(h,x) ∶=
1√
2h

z ⋅x+2x ⋅x− ∣x∣2, (4.99)

so that the derivative of the free energy (4.74) prior to averaging may be expressed
concisely as

∂hFN(t,h) =
1
N
⟨H′N⟩.

Differentiating this expression reveals that

∂
2
h FN(t,h) =

1
N
⟨∂hH′N⟩+

1
N
⟨(H′N)2⟩−

1
N
⟨H′N⟩2

= 1
N
⟨(H′N)2⟩−

1
N
⟨H′N⟩2−

1
N(2h)3/2

⟨z ⋅x⟩.

Together with (4.81) and the Nishimori identity, this implies that

∂
2
h FN(t,h) =

1
N
E⟨(H′N)2⟩−

1
N
E⟨H′N⟩2−

1
2hN
(E⟨∣x∣2⟩−E⟨x ⋅x⟩)

= 1
N
E⟨(H′N)2⟩−

1
N
E⟨H′N⟩2−

1
2hN
(E⟨∣x∣2⟩−E∣⟨x⟩∣2).

Notice that the variance of H′N may be written as

Var(H′N) =E⟨(H′N −⟨H′N⟩)
2⟩+E(⟨H′N⟩−E⟨H′N⟩)

2

=E⟨(H′N)2⟩−E⟨H′N⟩2+N2E(∂hFN −∂hFN)
2(t,h).

Up to lower-order terms, the proof consists in showing that the variance of x ⋅x is
bounded from above by the variance of H′N , which in turn is essentially the right
side of (4.97) up to scaling. To justify this precisely, we write

1
N2 Var(H′N) =

1
N

∂
2
h FN(t,h)+E(∂hFN −∂hFN)

2+ 1
2hN2 (E⟨∣x∣

2⟩−E∣⟨x⟩∣2).
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To relate this back to the variance term in (4.98), observe that by the derivative
computation (4.82),

1
N2 Var(H′N)−

1
N2 Var(x ⋅x) = 1

N2E⟨(H
′
N)2⟩−

1
N2E⟨(x ⋅x)

2⟩.

It follows that

Var(x ⋅x
N
) ⩽ 1

N
∂

2
h FN(t,h)+E(∂hFN −∂hFN)

2(t,h)

+ 1
2hN2E⟨∣x∣

2⟩− 1
N2E⟨(H

′
N)2⟩+

1
N2E⟨(x ⋅x)

2⟩. (4.100)

What is important for the sequel is to verify that the second line in this expression is
of lower order in N due to a cancellation between E⟨(H′N)2⟩ and E⟨(x ⋅x)2⟩. But in
fact we can show that this second line in (4.100) is non-positive. We observe that

E⟨(H′N)2⟩ =
1

2h
E⟨(z ⋅x)2⟩+ 2√

2h
E⟨z ⋅x(2x⋅x− ∣x∣2)⟩

+4E⟨x ⋅x(x ⋅x− ∣x∣2)⟩+E⟨∣x∣4⟩.

Fixing i, j ∈ {1, . . . ,N}, two applications of the Gaussian integration by parts formula
in (4.29) reveal that for i ≠ j,

E⟨ziz jxix j⟩ =
√

2hE⟨z jx j(x2
i −xix′i)⟩ = 2hE⟨(x2

i −xix′i)(x2
j +x jx′j −2x jx′′j )⟩.

while for i = j,

E⟨z2
i x2

i ⟩ =
√

2hE⟨zixi(x2
i −xix′i)⟩+E⟨x2

i ⟩
= 2hE⟨(x2

i −xix′i)(x2
i +xix′i −2xix′′i )⟩+E⟨x2

i ⟩.

Together with the Nishimori identity, this shows that

1
2h

E⟨(z ⋅x)2⟩ =E⟨∣x∣4⟩−2E⟨∣x∣2(x ⋅x)⟩−E⟨(x ⋅x)2⟩

+2E⟨(x ⋅x)(x ⋅x′)⟩+ 1
2h

E⟨∣x∣2⟩.

A similar computation using the Gaussian integration by parts formula gives

2√
2h

E⟨z ⋅x(2x ⋅x− ∣x∣2)⟩ = 2E⟨(2x ⋅x− ∣x∣2)(∣x∣2−(x ⋅x′)⟩

= 6E⟨∣x∣2(x ⋅x)⟩−4E⟨(x ⋅x)(x ⋅x′)⟩−2E⟨∣x∣4⟩.
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It follows by the Cauchy-Schwarz inequality that

E⟨(H′N)2⟩ = 3E⟨(x ⋅x)2⟩−2E⟨(x ⋅x)(x ⋅x′)⟩+ 1
2h

E⟨∣x∣2⟩

⩾E⟨(x ⋅x)2⟩+ 1
2h

E⟨∣x∣2⟩.

This shows that the second line in (4.100) is non-positive and establishes the upper
bound (4.98), thereby completing the proof. ∎

To control the error term on the right side of the approximate Hamilton-Jacobi
equation (4.97), at first glance, it seems like we need to establish the concentration
of the derivative of the enriched free energy (4.74) about its average. However,
even in the simpler setting of the Curie-Weiss model with a random external field,
we do not expect this concentration of the derivative to be valid at every single
point. But in any case, we do not expect the term N−1∂hFN(t,h) in (4.97) to tend
to zero at every single point (t,h) either. The whole point of the notion of viscosity
solution is that it suffices to control the size of the error term in (4.97) at appropriate
contact points. In particular, we see from the proof of Theorem 3.25 that it suffices
to establish the smallness of the error term at every point at which the free energy
is touched from above by a smooth function. Leveraging convexity again, we will
show that at such points, the variance of the derivative of the free energy can be
controlled in terms of

E sup
(t,h)∈[0,M]2

∣FN(t,h)−FN(t,h)∣2, (4.101)

for an adequate choice of M <+∞. Leveraging the Gaussian concentration inequality
and a covering argument, we will show that (4.101) is essentially of order N−1. We
start by establishing a Gaussian-type estimate on the tail of the random variable
in (4.101).

Lemma 4.13. For each M ∈R⩾0, there exists a constant C < +∞ such that for all
λ >CN−1/2

√
log(N), we have

P{ sup
(t,h)∈[0,M]2

∣FN(t,h)−FN(t,h)∣ ⩾ λ} ⩽ exp(− Nλ 2

C
). (4.102)

Proof. We write C < +∞ for a constant that does not depend on N or λ , but may
depend on M, and whose value may change as we proceed through the proof. We
introduce the random norm

∥W∥∗ ∶= sup
∣x∣⩽1
∣Wx∣.

To run a covering argument, we begin by establishing the Hölder continuity of
the free energy FN . We fix t,t′,h,h′ ∈ [0,M] as well as x in the support of PN , and
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observe that by the Cauchy-Schwarz inequality and the boundedness of the support
of P1, we have

∣HN(t,h,x)−HN(t′,h′,x)∣ ⩽
RRRRRRRRRRR

√
2t
N
−
√

2t′

N

RRRRRRRRRRR
∣x ⋅Wx∣ + 1

N
∣t − t′∣(2(x ⋅x)2+ ∣x∣4)

+ ∣
√

2h−
√

2h′∣∣x ⋅ z∣ + ∣h−h′∣(2∣x ⋅x∣ + ∣x∣2)

⩽C
√

N(∣
√

t −
√

t′∣∥W∥∗+∣
√

h−
√

h′∣∣z∣)

+CN(∣t − t′∣ + ∣h−h′∣).

Together with the observation that for y ⩾ y′, we have
√

y−
√

y′ ⩽ ∣y− y′∣1/2 as
well as ∣y−y′∣ ⩽ 2∣y∣∣y−y′∣1/2, this bound on the Hamiltonian implies that the free
energy (4.74) is Hölder continuous on [0,M]2 with

∣FN(t,h)−FN(t′,h′)∣ ⩽C(∣t − t′∣1/2+ ∣h−h′∣1/2)X

for the random variable

X ∶= 1+ ∥W∥∗√
N
+ ∣z∣√

N
.

We also recall from Proposition 4.10 that the averaged free energy FN is Lipschitz
continuous, uniformly over N. We thus deduce that for every λ > 0 and ε > 0,

P{ sup
[0,M]2

∣FN(t,h)−FN(t,h)∣ ⩾ λ} ⩽ P{sup
Aε

∣FN(t,h)−FN(t,h)∣ ⩾ λ /2}

+P{X ⩾ ε
−1/2

λ /C}

for the set Aε ∶= εZ2∩[0,M]2. Indeed, every point (t,h) ∈ [0,M]2 is at distance at
most ε from a point in Aε . A union bound and the fact that the cardinality of Aε is
bounded by Cε−2 yield that this is further bounded by

Cε
−2 sup

Aε

P{∣FN(t,h)−FN(t,h)∣ ⩾ λ /2}+P{X ⩾ ε
−1/2

λ /C}.

A simple extension of the proof of the free energy concentration inequality (4.59)
yields that for every λ ⩾ 0 and (t,h) ∈ [0,M]2,

P{∣FN(t,h)−FN(t,h)∣ ⩾ λ} ⩽ 2exp(− Nλ 2

C
).

On the other hand, Exercise 4.5 and (4.43) imply that for some constant C′ < +∞,
and any ε > 0 and λ >C′

√
ε ,

P{X ⩾ ε
−1/2

λ /C} ⩽ exp(− Nλ 2

εC
).
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Combining these two bounds and choosing ε =N−1 reveals that for any λ >C′N−1/2,

P{ sup
[0,M]2

∣FN(t,h)−FN(t,h)∣ ⩾ λ} ⩽CN2 exp(− Nλ 2

C
).

Whenever λ >C′N−1/2
√

log(N) for some sufficiently large constant C′ < +∞, the
term N2 can be absorbed into the exponential to obtain (4.102) and complete the
proof. ∎

We are now ready to verify the key assumption of the convex selection principle
besides the convexity property itself: that any subsequential limit of FN must satisfy
the equation on a dense subset. It is convenient to phrase this in terms of contact
points, just like we did in Section 3.6, see in particular Corollary 3.24.

Lemma 4.14. Let f be any subsequential limit of the sequence (FN)N⩾1 of enriched
free energies in the symmetric rank-one matrix estimation problem, and fix t∗,h∗ > 0.
If φ ∈C∞(R>0×R;R) is a smooth function with the property that f −φ has a strict
local maximum at (t∗,h∗) ∈R>0×R>0, then

(∂tφ −(∂hφ)2)(t∗,h∗) = 0 (4.103)

Proof. Abusing notation, we do not denote the subsequence along which the conver-
gence of FN to f occurs explicitly, in effect pretending that the convergence occurs
along the whole sequence. Using Exercise 3.1, we find a sequence (tN ,hN)N⩾1 con-
verging to (t∗,h∗) such that FN −φ has a local maximum at (tN ,hN); this exercise
also guarantees that the neighbourhood over which (tN ,hN) is a local maximum
can be chosen independently of N. To control the right side of the approximate
Hamilton-Jacobi equation (4.97) at the contact point (tN ,hN), the idea will be to
argue similarly to the proof of Proposition 2.15 where it is shown that whenever a
sequence of convex functions converges, the sequence of derivatives also converges
to the derivative of the limit at every point of differentiability of the limit. The
subsequential limit f of the sequence (FN)N⩾1 of convex functions will be differen-
tiable at the contact point (t∗,h∗). The sequence (FN)N⩾1 also converges to f in the
sense of second moments by Lemma 4.13, and although FN itself is not necessarily
convex, its second derivative is bounded from below by a term of order one which
will suffice to control the error term in (4.97). The proof therefore proceeds in three
steps. First we control the upper deviation of FN from its tangent at (tN ,hN) by a
parabola, then we control the lower deviation of FN from its tangent at (tN ,hN) by a
random parabola, and finally we combine these two ingredients to control the right
side of the approximate Hamilton-Jacobi equation (4.97). Throughout the proof, we
understand that the constant C < +∞ may change from one occurrence to the next,
only making sure that it does not depend on N.
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Step 1: Hessian of FN upper bound. Since FN −φ has a local maximum at (tN ,hN)
and φ is smooth, there exists C < +∞ such that for every h′ ∈R with ∣h′∣ ⩽C−1,

FN(tN ,hN +h′)−FN(tN ,hN) ⩽ φ(tN ,hN +h′)−φ(tN ,hN)
⩽ h′∂hφ(tN ,hN)+C∣h′∣2.

For every N sufficiently large, we have hN > 0, and therefore ∂h(FN −φ)(tN ,hN) = 0.
It follows that for every h′ ∈R with ∣h′∣ ⩽C−1,

FN(tN ,hN +h′)−FN(tN ,hN) ⩽ h′∂hFN(tN ,hN)+C∣h′∣2. (4.104)

In particular, we have
∂

2
h FN(tN ,hN) ⩽C, (4.105)

which is also immediate from the observation that ∂ 2
h (FN −φ)(tN ,hN) ⩽ 0.

Step 2: Hessian of FN lower bound. Recalling the definition of the Hamiltonian H′N
in (4.99), we can write

∂
2
h FN(tN ,hN +h′) = 1

N
⟨(H′N)2⟩−

1
N
⟨H′N⟩2−

1
N(2(hN +h′))3/2

⟨z ⋅x⟩.

Since hN converges to h∗ > 0, it remains bounded away from zero for N sufficiently
large. Using also the non-negativity of the variance, the Cauchy-Schwarz inequality
and the fact that the measure P1 has bounded support, we deduce that for every
∣h′∣ ⩽C−1, we have

∂
2
h FN(tN ,hN +h′) ⩾ −C∣z∣√

N
.

It follows by Taylor’s theorem that for every ∣h′∣ ⩽C−1,

FN(tN ,hN +h′)−FN(tN ,hN)−h′∂hFN(tN ,hN) ⩾ −
C∣z∣√

N
∣h′∣2. (4.106)

Step 3: controlling the right side of (4.97). Combining (4.104) and (4.106) with the
fact that (tN ,hN)N⩾1 converges to (t∗,h∗) gives a neighbourhood V of (t∗,h∗) with

h′(∂hFN −∂hFN)(tN ,hN) ⩽ 2sup
V
∣FN −FN ∣ +C∣h′∣2(1+ ∣z∣√

N
). (4.107)

In particular, given a deterministic λ ∈ [0,C−1], the bound (4.107) for

h′ = λ
∂hFN −∂hFN

∣∂hFN −∂hFN ∣
(tN ,hN)
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reads

λ ∣∂hFN −∂hFN ∣(tN ,hN) ⩽ 2sup
V
∣FN −FN ∣ +Cλ

2(1+ ∣z∣√
N
).

Squaring both sides of this inequality, taking expectations and leveraging the con-
centration inequality in Lemma 4.13 yields

λ
2E(∂hFN −∂hFN)

2(tN ,hN) ⩽ 8Esup
V
(FN −FN)

2+Cλ
4E(1+ ∣z∣√

N
)

2

⩽ C
N1/2 +Cλ

4,

where we have used that E∣z∣2 =NEz2
1 =N. Choosing λ ∶=N−1/8 leads to the upper

bound
E(∂hFN −∂hFN)

2(tN ,hN) ⩽
C

N1/4 .

Substituting this into the approximate Hamilton-Jacobi equation in Proposition 4.12
and remembering the Hessian bound (4.105) gives

0 ⩽ (∂tφ −(∂hφ)2)(tN ,hN) = (∂tFN −(∂hFN)2)(tN ,hN) ⩽
C
N
+ C

N1/4 .

Letting N tend to infinity and using the smoothness of φ completes the proof. ∎

We are now ready to prove Theorem 4.9 using the convex selection principle.
We will appeal to the version of this result given in Lemma 3.23. We point out
that under the additional assumption that Ex1 = 0, this proof can be simplified,
as Step 3 becomes unnecessary, and we can instead rely on the simpler version
of the convex selection principle given by Theorem 3.21. The key observation
is that under this additional assumption, the symmetrized initial condition ψ̃ is
in C1(R;R), by (S.27).

Proof of Theorem 4.9. The Arzelà-Ascoli theorem together with the derivative com-
putations (4.77) and (4.82) and the boundedness of the support of P1 imply that the
sequence (FN)N⩾1 is precompact. Denoting by f a subsequential limit, the idea is to
apply the convex selection principle in Lemma 3.23 to the symmetrization f̃ of f and
show that it is the unique viscosity solution to the Hamilton-Jacobi equation (4.87).
The proof therefore proceeds in four steps. First, we show that f̃ is jointly convex
and Lipschitz continuous; then we prove that it satisfies the Hamilton-Jacobi equa-
tion (4.87) on a dense subset of R⩾0×R, and that the initial condition ψ̃ ∶= f̃ (0, ⋅)
satisfies the assumption in Lemma 3.23; and finally we conclude using the unique-
ness of viscosity solutions and the Hopf-Lax formula.

Step 1: f̃ is jointly convex and Lipschitz continuous. Each free energy FN is jointly
convex, Lipschitz continuous and non-decreasing by Proposition 4.10. Moreover,
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the Lipschitz constant of FN is bounded uniformly over N. It follows by Lemma 4.11
that the symmetrization of each free energy FN is also jointly convex and Lipschitz
continuous uniformly over N. Since this sequence of symmetrizations converges
to f̃ , the function f̃ must also be jointly convex and Lipschitz continuous.

Step 2: f̃ satisfies (4.87) on a dense set. Following the proof of Corollary 3.24, we
deduce from Lemma 4.14 that the set

A ∶= {(t,h) ∈R>0×R>0 ∣ f is differentiable at (t,h)
and (∂t f −(∂h f )2)(t,h) = 0}

is dense in R>0×R>0. We also observe that if t > 0 and h < 0 are such that (t, ∣h∣) is
a point of differentiability of f , then f̃ is differentiable at (t,h) and we have

∂t f̃ (t,h) = ∂t f (t, ∣h∣) and (∂h f̃ (t,h))2 = (∂h f (t, ∣h∣))2.

This implies that f̃ satisfies the Hamilton-Jacobi equation (4.87) on a dense subset
of R⩾0×R.

Step 3: ψ̃ satisfies the assumption of Lemma 3.23. We first verify that the initial
condition ψ̃ satisfies the assumption of Lemma 3.23 at any point h ≠ 0. That
is, for every h ≠ 0 and p ∈ ∂ψ̃(h), we find b ∈ R such that (b, p) ∈ ∂ f̃ (0,h) and
b− p2 ⩾ 0. By the results of the previous steps and Lemma 3.22, there exists
(a,q) ∈ ∂ f̃ (0,h) such that a−q2 = 0. We must have in particular that q ∈ ∂ψ̃(h),
so by Theorem 2.13, we have q = p, and the choice of b = a = p2 satisfies our
requirements. For future reference, we observe that for every h > 0, we thus have
that p = ∂hψ(h) and (∂hψ(h)2,∂hψ(h)) ∈ ∂ f̃ (0,h). Letting h > 0 tend to zero and
using Proposition 2.14, we deduce that

(∂hψ(0)2,∂hψ(0)) ∈ ∂ f̃ (0,0). (4.108)

We now consider the case h = 0. Letting p ∈ ∂ψ̃(0), we look for b ∈R such that
(b, p) ∈ ∂ f̃ (0,0) and b− p2 ⩾ 0. Since p ∈ ∂ψ̃(0), we have that for every y ∈R,

ψ̃(y)− ψ̃(0) =ψ(∣y∣)−ψ(0) ⩾ py.

Letting y tend to zero from the left and from the right of zero, we see that this
implies that ∣p∣ ⩽ ∂hψ(0). Letting b ∶= ∂hψ(0)2, we therefore have that

b− p2 ⩾ b− ∣∂hψ(0)∣2 = 0.

It remains to verify that (b, p) ∈ ∂ f̃ (0,0). By (4.108), for every (t,h) ∈R⩾0×R, we
have that

f̃ (t,h) ⩾ f̃ (0,0)+ tb+h∂hψ(0).
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Using that f̃ (t,−h) = f̃ (t,h), and then that ∣p∣ ⩽ ∂hψ(0), we deduce that for every
(t,h) ∈R⩾0×R,

f̃ (t,h) ⩾ f̃ (0,0)+ tb+ ∣h∣∂hψ(0) ⩾ f̃ (0,0)+ tb+hp.

This shows that (b, p) ∈ ∂ f̃ (0,0), as desired.

Step 4: conclusion. The results of the previous steps ensure that we can invoke the
convex selection principle in Lemma 3.23 to conclude that f̃ is a viscosity solution
to the Hamilton-Jacobi equation (4.87) with initial condition ψ̃ . Together with
the uniqueness result in Corollary 3.7, this implies that the symmetrization of the
sequence (FN)N⩾1 converges to the unique viscosity solution f̃ to the Hamilton-
Jacobi equation (4.87) with initial condition ψ̃ . In particular, the sequence (FN)N⩾1
of functions from R⩾0×R⩾0 to R converges to some limit f , which is the restriction
of f̃ to R⩾0×R⩾0. The Hopf-Lax formula and the computation for the convex dual
of the square function in Exercise 2.11 imply that for all t,h ⩾ 0,

f (t,h) = f̃ (t,h) = sup
h′∈R
(ψ(∣h′∣)− (h

′−h)2
4t

).

Using that h ⩾ 0, we see that it is always better to choose h′ ⩾ 0 in the optimization
problem above, since for every h′ ⩾ 0,

ψ(∣−h′∣)− (−h′−h)2
4t

⩽ψ(∣h′∣)− (h
′−h)2
4t

,

and we thus obtain that

f (t,h) = sup
h′⩾0
(ψ(h′)− (h

′−h)2
4t

) = sup
h′⩾−h
(ψ(h+h′)− (h

′)2
4t
). (4.109)

Recall also from Proposition 4.10 that the function ψ is non-decreasing. In the
supremum on the right side of (4.109), we may therefore restrict the supremum to
h′ ⩾ 0, since when h′ ∈ [−h,0], we have

ψ(h+h′)− (h
′)2

4t
⩽ψ(h).

We have thus shown (4.90). Remembering (4.88) and evaluating this at h = 0 gives
the representation (4.91) and completes the proof. ∎

We can now combine the formula (4.91) for the limit free energy in the sym-
metric rank-one matrix estimation problem obtained in Theorem 4.9 with Proposi-
tions 4.3 and 4.4 to determine the two information-theoretic quantities introduced at
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the beginning of this chapter, the minimal mean-square error (4.2) and the mutual
information (4.4). It will be convenient to denote by

f (t) ∶= sup
h⩾0
(ψ(h)− h2

4t
) (4.110)

the limit free energy in the symmetric rank-one matrix estimation problem, and to
write D for its points of differentiability,

D ∶= {t ∈R⩾0 ∣ f is differentiable at t}. (4.111)

By Rademacher’s theorem (Theorem 2.10), the set D is dense in R⩾0, and by the
envelope theorem (Theorem 2.21), if h∗(t) ⩾ 0 is any maximizer of the right side of
(4.110), then we have for every t ∈ D that

∂t f (t) = h2∗(t)
4t2 . (4.112)

Together with the derivative computation (4.77), this allows us to express the
minimal mean-square error in terms of any maximizer h∗(t). We also recall from
the envelope theorem that for every t ⩾ 0, if there exists a unique maximizer to the
right side of (4.110), then t ∈ D.

Proposition 4.15. At every point of differentiability t ∈ D of the limit free en-
ergy (4.110), the limit minimal mean-square error is given by

mmse(t) ∶= lim
N→+∞

mmseN(t) = (E∣x1∣2)
2− h2∗(t)

4t2 , (4.113)

where h∗(t) denotes any maximizer of the right side of (4.110).

Proof. Proposition 4.3, the asymptotic expansion (4.19), and the derivative compu-
tation (4.77) imply that for every t ⩾ 0,

mmseN(t) = (E∣x1∣2)
2− 1

N2E⟨(x ⋅x)
2⟩+o(1) = (E∣x1∣2)

2−∂tFN(t,0)+o(1).

Together with Proposition 2.15, Theorem 2.13 and the consequence (4.112) of the
envelope theorem, this implies that at any point of differentiability t ∈ D, we have

mmse(t) = (E∣x1∣2)
2−∂t f (t,0) = (E∣x1∣2)

2− h2∗(t)
4t2 ,

as required. ∎

A variational formula for the limit mutual information can be obtained directly
from the variational representation (4.110) of the limit free energy.
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Proposition 4.16. For every t ⩾ 0, the limit mutual information is given by

I(t) ∶= lim
N→+∞

IN(t) = t(E∣x1∣2)
2− sup

h⩾0
(ψ(h)− h2

4t
). (4.114)

Proof. Proposition 4.4 and the asymptotic expansion (4.19) imply that

IN(t) = t(E∣x1∣2)
2−F

○
N(t)+o(1).

Letting N tend to infinity and using the variational formula (4.110) for the limit free
energy completes the proof. ∎

Before moving to the next section, we mention more general models that can
also be handled by the techniques we used to analyze the symmetric rank-one matrix
estimation problem.

A first natural generalization consists in relaxing the symmetry assumption,
and in considering matrices of higher rank. For illustration, we may imagine a
recommendation system collecting ratings for each customer and product. One may
model the fundamental characteristics of a customer by a vector with K coordinates,
for some K relatively small, say K ≃ 10, and represent the list of customers as
an M-by-K matrix u, and where we can postulate that the rows representing the
customers are independent and identically distributed. We also assume that the
products on sale can be similarly represented by an N-by-K matrix v, with i.i.d.
rows representing each product, in such a way that the ratings that users attribute to
the products are essentially a noisy version of the M-by-N matrix uv∗. We would
like to retrieve information about the matrix uv∗ given the noisy observations we
have of it, in the regime in which M and N are both large and of the same order of
magnitude.

We can generalize this model further, so that we can represent, for instance,
a situation in which we have multiple different observations of the interactions
between the rows of u and v, or we have higher-order interactions. To encode
this larger class of problems, we fix integers p,K,L ⩾ 1, and a matrix A ∈ RK p×L

that are deterministic (and known to the observer). Let X be an N-by-K random
matrix, and denote by X⊗p the p-fold tensor product of X , which we think of
as an N p-by-K p matrix. The more general model consists in observing a noisy
version of the matrix X⊗pA, and asking again whether meaningful information can
be recovered about X⊗pA or X from this observation, in the regime of large N.
Under mild assumptions on the law of X (e.g. the rows are i.i.d. and almost surely
bounded in norm by a fixed constant), the techniques that we have used to analyze
the symmetric rank-one matrix estimation problem allow us to answer this more
general question precisely [75].

We have seen in Chapter 3, and in particular in Proposition 3.20, that the
standard Curie-Weiss model can be analyzed more directly, without appealing to
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the convex selection principle. The inequality on the left side of (4.97) can be used
in a similar way to analyze the symmetric rank-one matrix estimation problem. We
chose to present a proof based on the convex selection principle because this is the
only proof we are aware of that is capable of handling the more general inference
problems discussed in the previous paragraph. To obtain this generalization, the
main difficulty is that the variable h ⩾ 0 must be replaced by a positive semi-definite
matrix, so the symmetrization trick we have used to handle the domain R⩾0 no
longer works. In this case, we must therefore make sense of Hamilton-Jacobi
equations posed on domains with boundaries; we refer to [74, 75, 103] for more on
this. The non-linearity appearing in the Hamilton-Jacobi equation is the mapping
q↦ (AA∗) ⋅q⊗p. This mapping is not necessarily convex, so the Hopf-Lax formula
no longer applies in this case. But the free energy is still jointly convex, and the
Hopf representation of solutions can be adapted to this context with a boundary. We
thus end up with a variational representation of the limit free energy, and can thereby
conveniently analyze the minimal mean-square error and mutual information of the
model.

Exercise 4.9. The goal of this exercise is to prove the existence of a “phase tran-
sition” for the limit of the minimal mean-square error (4.2) as we vary the signal-
to-noise ratio, as was announced in the introduction to this chapter. Notice that the
mean-square error of the null estimator (0.9) converges to (E∣x1∣2)2 as N tends to
infinity. Assuming that Ex1 = 0 and that x1 is not constant, show that there exists a
critical parameter tc ∈R>0 such that

for every t < tc, lim
N→+∞

mmseN(t) = (E∣x1∣2)
2
, while (4.115)

for every t > tc, limsup
N→+∞

mmseN(t) < (E∣x1∣2)
2
. (4.116)

(What happens at t = tc depends on the law of x1.)

Exercise 4.10. Let (t,h) ∈R>0×R>0 be a point of differentiability of the limit free
energy f ∶ R⩾0 ×R⩾0 → R in the symmetric rank-one matrix estimation problem.
Denote by h∗(t,h) any maximizer of the right side of (4.90). Prove that

lim
N→+∞

1
N
E∣x−E[x∣Y]∣2 =Ex2

1+
h−h∗(t,h)

2t
−∂hψ(h∗(t,h)). (4.117)

4.4 Comparison with a concrete algorithm

In this section, we discuss a classical and computationally efficient method of
constructing an estimator for the symmetric rank-one matrix xx∗ from its noisy
observation Y known as principal component analysis (PCA). The PCA estimator
x̂x∗ of the rank-one matrix xx∗ is constructed by finding an eigenvector v ∈RN with
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∣v∣2 =N associated with the top eigenvalue of the symmetric matrix Y +Y∗ ∈RN×N ,
and setting

x̂x∗ ∶= λ0vv∗ (4.118)

for the choice of λ0 ⩾ 0 that minimizes the mean-square error

mseN ∶=
1

N2 inf
λ⩾0

E∣xx∗−λvv∗∣2. (4.119)

By comparing the limit mean-square error of the PCA estimator to the limit minimal
mean-square error computed in Proposition 4.15 for a Gaussian prior, a Rademacher
prior and a sparse prior, we will see that the performance of PCA depends greatly
on the identity of this prior. By “prior”, we mean the law of the signal PN = (P1)⊗N .
In this section, we always normalize this measure so that Ex1 = 0 and Ex2

1 = 1.
To study the performance of the PCA estimator, we start by determining its

asymptotic mean-square error. We will rely on a result in random matrix theory
which states that, in probability,

lim
N→+∞

∣x ⋅v∣2
∣x∣2∣v∣2

=max(0,1− 1
4t
). (4.120)

We will take this convergence for granted and refer the interested reader to Sec-
tion 3.1 in [52] for its proof in a more general setting (see also [28]).

Proposition 4.17. For every t ⩾ 0, the asymptotic mean-square error associated
with the PCA estimator is given by

mse(t) ∶= lim
N→+∞

mseN(t) =
⎧⎪⎪⎨⎪⎪⎩

1 if t ⩽ 1
4 ,

1
4t (2−

1
4t ) if t ⩾ 1

4 .
(4.121)

Proof. We start by writing, for any λ ⩾ 0,

E∣xx∗−λvv∗∣2 =E∣x∣4−2λE(x ⋅v)2+λ
2E∣v∣4.

Optimizing over λ and recalling that ∣v∣2 =N reveals that the optimal λ is

λ0 ∶=
E(x ⋅v)2
E∣v∣4

= E(x ⋅v)
2

N2 .

It follows by the asymptotic expansion (4.19) and the assumption Ex2
1 = 1 that

mseN(t) =
E∣x∣4
N2 −(

E(x ⋅v)2
N2 )

2

= 1−(E ∣x ⋅v∣
2

∣x∣2∣v∣2
∣x∣2
N
)

2

+o(1).
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By the law of large numbers, we have that ∣x∣2/N converges to 1 almost surely as N
tends to infinity. Together with (4.120), this gives the convergence in probability

lim
N→+∞

∣x ⋅v∣2
∣x∣2∣v∣2

∣x∣2
N
=max(0,1− 1

4t
).

Remembering that the support of P1 is bounded and invoking the dominated conver-
gence theorem for convergence in probability reveals that

lim
N→+∞

mseN(t) = 1−max(0,1− 1
4t
)

2

.

Expanding and distinguishing cases completes the proof. ∎

This result implies that the critical signal-to-noise ratio of the PCA estimator is
always t∗PCA =

1
4 . It does not depend on the prior, except to the extent that we have

imposed Ex1 = 0 and Ex2
1 = 1. By considering three different priors, we will see that

the PCA estimator can sometimes be optimal, sometimes be sub-optimal but with
a critical signal-to-noise ratio coinciding with the optimal one, and sometimes be
sub-optimal and with a critical signal-to-noise ratio differing from the optimal one.

In the context of the Gaussian prior

dP1(x) ∶=
1√
2π

exp(− x2

2
)dx, (4.122)

the PCA estimator is optimal.

Proposition 4.18. For the Gaussian prior (4.122), the limit minimal mean-square
error is given by

mmse(t) =
⎧⎪⎪⎨⎪⎪⎩

1 if t ⩽ 1
4 ,

1
4t (2−

1
4t ) if t ⩾ 1

4 .
(4.123)

Partial proof. Although the Gaussian prior (4.122) does not have bounded support,
the formula (4.110) for the limit free energy still holds in this setting. This can be
shown by approximation, but we will simply admit it. In the Gaussian setting, the
initial condition ψ can be computed explicitly. Recall that

ψ(h) =E log
ˆ +∞
−∞

exp(
√

2hxz1+2hxx1−hx2)dP1(x),

and let a ∶=
√

2hz1+2hx1 and b ∶= 1+2h, in such a way that the innermost integral
becomes

1√
2π

ˆ +∞
−∞

eax− bx2
2 dx = e

a2
2b
√

2π

ˆ +∞
−∞

e−
(x− a

b )
2

2/b dx = e
a2
2b
√

b
,
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where in the last equality we have identified the density of a Gaussian random
variable with mean a/b and variance 1/b. It follows by independence of z1 and x1
that

ψ(h) = 1
2(1+2h)

E(2hz2
1+4h

√
2hz1x1+4h2x2

1)−
1
2

log(1+2h)

= h− 1
2

log(1+2h).

Any maximizer h∗(t) of (4.110) must therefore satisfy the critical point equation

1− 1
1+2h∗(t)

= h∗(t)
2t

.

Rearranging reveals that h∗(t) = 2t − 1
2 or h∗(t) = 0. If t ⩽ 1

4 , the only non-negative
solution is h∗(t) = 0. This implies that the limit free energy is differentiable at t and,
by Proposition 4.15,

mmse(t) = 1− h2∗(t)
4t2 = 1.

On the other hand, if t > 1
4 , then

ψ(2t − 1
2
)−
(2t − 1

2)2

4t
= t − 1

2
log(4t)− 1

16t
> 1

4
− 1

2
log(1)− 1

4
= 0

so (4.110) is maximized by h∗(t) = 2t − 1
2 . Together with the envelope theorem

(Theorem 2.21), this shows that for t > 1
4 , the free energy is differentiable at t, and

mmse(t) = 1− h2∗(t)
4t2 = 1−

(2t − 1
2)2

4t2 = 2t
4t2 −

1
16t2 =

1
4t
(2− 1

4t
).

This completes the proof. ∎

In the context of a Rademacher prior

P1 ∶=
1
2

δ1+
1
2

δ−1 (4.124)

the PCA estimator is sub-optimal but identifies the correct critical signal-to-noise
ratio. In other words, the PCA estimator recovers part of the signal exactly in
the region where this is feasible, but it does not recover as much of the signal as
the optimal estimator. This is illustrated in Figure 4.1. While we expect the PCA
estimator to be sub-optimal in the entire regime t > 1

4 , we show this rigorously only
for t sufficiently large.



148 Chapter 4 Statistical inference

1
4

1

t

mmse(t)

Figure 4.1 The dotted line is the minimal mean-square error for the Rademacher
prior (4.124) while the solid line is the mean-square error achieved using PCA.

Proposition 4.19. Fix the Rademacher prior (4.124). If t < 1
4 , then mmse(t) = 1. If t

is large enough and is a point of differentiability t ∈D of the limit free energy (4.110),
then

mmse(t) < 1
4t
(2− 1

4t
). (4.125)

Remark 4.20. For t sufficiently large, a minor modification of the proof of Proposi-
tion 4.19 also shows that

limsup
N→+∞

mmseN(t) <
1
4t
(2− 1

4t
),

without having to impose that t ∈ D.

Proof of Proposition 4.19. The proof proceeds in two steps. Writing h∗(t) for any
maximizer of (4.110), first we show that h∗(t) = 0 for t ⩽ 1

4 while h∗(t) > 0 for t > 1
4 ,

and then we prove (4.125) by showing that h∗(t) is essentially 2t for t large enough.

Step 1: h∗(t) = 0 for t ⩽ 1
4 while h∗(t) > 0 for t > 1

4 . The derivative computa-
tion (4.82) for N = 1, the Nishimori identity, and the explicit form of the Rademacher
prior (4.124) imply that

∂hψ(h) =E⟨x ⋅x1⟩ =E⟨x⟩2 =E tanh2 (
√

2hz1+2hx1).

Averaging with respect to the randomness of x1, and using the symmetry of tanh2

and z1 reveals that

∂hψ(h) = 1
2
E tanh2 (

√
2hz1+2h)+ 1

2
E tanh2 (

√
2hz1−2h) =E tanh2 (

√
2hz1+2h).



4.4 Comparison with a concrete algorithm 149

Any maximizer h∗(t) of (4.110) must therefore satisfy the equation

h∗(t) = 2tE tanh2 (
√

2h∗(t)z1+2h∗(t)). (4.126)

The second derivative computation (4.94), the Nishimori identity, and the fact that
x2 = 1 for any x in the support of P1 imply that

∂
2
h ψ(h) = 2E⟨(xx)2⟩−4E⟨xxxx′⟩+2E⟨xx⟩2 = 2−4E⟨x⟩2+2E⟨x⟩4 = 2E(1−⟨x⟩2)2.

This means that 0 ⩽ ∂ 2
h ψ(h) ⩽ 2. Together with the fact that ∂hψ(0) =ψ(0) = 0, this

implies that 0 ⩽ψ(h) ⩽ h2. It follows that for t ⩽ 1
4 and h > 0,

ψ(h)− h2

4t
⩽ h2(1− 1

4t
) ⩽ 0.

This means that for t < 1
4 , we have h∗(t) = 0. On the other hand, if t > 1

4 and h > 0 is
small enough, then

ψ(h)− h2

4t
= h2(1− 1

4t
)+o(h2) > 0,

so h∗(t) > 0.

Step 2: h∗(t) is essentially 2t for t large. For any x ∈R,

∣1− tanh2(x)∣ = 1−(e2x−1
e2x+1

)
2

= 4e2x

e4x+2e2x+1
⩽ 4

e2x+e−2x ⩽ 4e−2∣x∣.

It follows by the critical point equation (4.126) that

∣h∗(t)−2t ∣ ⩽ 2tE∣ tanh2 (
√

2h∗(t)z1+2h∗(t))−1∣

⩽ 8tEexp(−2∣
√

2h∗(t)z1+2h∗(t)∣).

To bound this further, introduce the set Ah∗(t) ∶= {∣
√

2h∗(t)z1∣ > h∗(t)}, and observe
that

∣h∗(t)−2t ∣ ⩽ 8tP(Ah∗(t))+8tEexp(−2∣
√

2h∗(t)z1+2h∗(t)∣)1Ac
h∗(t)

⩽ 8tP(Ah∗(t))+8t exp(−2h∗(t)).

Since z1 is a Gaussian random variable, for any c > 0, we have

P{∣z1∣ > c} = 2√
2π

ˆ +∞
c

exp(− x2

2
)dx ⩽

√
2
π

ˆ +∞
c

x
c

exp(− x2

2
)dx

⩽
√

2
c
√

π
exp(− c2

2
).
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Applying this with c =
√

h∗(t)
2 to bound P(Ah∗(t)) reveals that

∣h∗(t)−2t ∣ ⩽ 16t√
πh∗(t)

exp(− h∗(t)
4
)+8t exp(−2h∗(t)).

One can easily check that any choice of maximizer h∗(t) of (4.110) must diverge
to infinity as t tends to infinity. Using that h∗(t) exceeds a large constant for t
sufficiently large, we deduce from the previous display that h∗(t) in fact grows
linearly with t, and appealing again to the previous display, we obtain that for t
sufficiently large, we have

∣h∗(t)−2t ∣ ⩽ exp(−t/4).

It follows by Proposition 4.15 that for t large enough,

mmse(t) = 1− h2∗(t)
4t2 ⩽ 1−

(2t −e−t/4)2

4t2 = e−t/4

2t
− e−t/2

4t2 .

Increasing t if necessary to ensure that e−t/2 ⩽ 1
4e−t/4 gives the strict upper bound

mmse(t) ⩽ e−t/4

4t
(2− 1

4t
) < 1

4t
(2− 1

4t
)

and completes the proof. ∎

In the context of a sparse prior defined for some p ∈ (0,1) by

P1 ∶= (1− p)δ0+
p
2

δ1/√p+
p
2

δ−1/√p, (4.127)

the PCA estimator can be sub-optimal in a stronger sense: for p > 0 sufficiently
small, there is a region of signal-to-noise ratios for which a non-trivial recovery of
the signal is possible but for which the PCA estimator is trivial.

Proposition 4.21. For the sparse prior (4.124) with p > 0 small enough, there exists
a signal-to-noise ratio t∗(p) < 1

4 such that for every point of differentiability t ∈ D
of the limit free energy (4.110) with t > t∗(p), we have

mmse(t) < 1. (4.128)

Remark 4.22. One can also show that for every t > t∗(p), we have

limsup
N→+∞

mmseN(t) < 1,

without having to impose that t ∈ D.
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1
4

1

t

mmse(t)

Figure 4.2 The dotted line is the minimal mean-square error for the sparse prior (4.127)
with p = 0.05 while the solid line is the mean-square error achieved using PCA.

Proof of Proposition 4.21. A direct computation using the explicit form of the
sparse prior (4.124) shows that

ψ(h) =E log((1− p)+ p
2

exp(
√

2h
p

z1+
2h
√

p
x1−

h
p
)

+ p
2

exp(−
√

2h
p

z1−
2h
√

p
x1−

h
p
)).

The monotonicity of the logarithm together with the independence of z1 and x1 give
the lower bound

E log( p
2

exp(
√

2h
p

z1+
2h
√

p
x1−

h
p
))1{x1=1/

√
p} =

p
2

log( p
2
)+ h

2
.

Similarly,

E log( p
2

exp(−
√

2h
p

z1−
2h
√

p
x1−

h
p
))1{x1=−1/√p} =

p
2

log( p
2
)+ h

2
.

Combining these two bounds reveals that

ψ(h) ⩾ p log( p
2
)+h.

If we set h = 1/2 and choose p∗ small enough so − 1
16 ⩽ p log(p/2) ⩽ 0 whenever

0 ⩽ p ⩽ p∗, we have that

ψ(1
2
)− (1/2)

2

4t
⩾ 1

2
− 1

16
− 1

16t
= 1

16
(7− 1

t
).

It follows that any maximizer h∗(t) of (4.110) must be strictly positive for any t > 1
7 ,

and therefore mmse(t) < 1. Setting t∗(p) = 1
7 completes the proof. ∎
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4.5 The community detection problem

In this section, we analyze the information-theoretic properties of the stochastic
block model. We do so by leveraging a universality property of the free energy (4.9)
that will allow us to map the stochastic block model onto the symmetric rank-
one matrix estimation problem. The stochastic block model is a simple model for
networks with a community structure. It was first introduced in the machine learning
and statistics literature [116, 138, 260, 263], and also emerged independently in a
variety of other scientific disciplines. In the theoretical computer science community
it is often called the planted partition model [58, 65, 106], while the mathematics
literature also refers to it as the inhomogeneous random graph model [54]. This
model has been used as a test bed for clustering and community detection algorithms
used in a variety of contexts including social networks [200], protein-to-protein
interaction networks [76], recommendation systems [163], medical prognosis [247],
DNA folding [66], image segmentation [237], and natural language processing [30].
In this section we focus on the dense stochastic block model with two communities,
which we now define precisely.

Consider N individuals, each belonging to exactly one of two communities.
We encode the individuals as elements of {1, . . . ,N}, and represent the community
structure using a vector

σ ∶= (σ1, . . . ,σN) ∈ ΣN ∶= {−1,+1}N . (4.129)

For convenience, we have changed our notation of the hypercube {−1,+1}N from
{±1}N to ΣN ; we will keep this new notation when we discuss spin glasses in
Chapter 6. We understand that individuals i and j belong to the same community if
and only if σ i = σ j. We sample the labels (σ i)i⩽N independently from a Bernoulli
distribution P1 with probability of success p ∈ (0,1) and expectation m,

p ∶= P1{1} = P{σ i = 1} and m ∶=Eσ1 = 2p−1. (4.130)

The assignment vector σ is thus distributed according to the product law

PN ∶= P⊗N
1 , (4.131)

and the expected sizes of the communities are N p and N(1− p). Using the assign-
ment vector σ , we construct a random undirected graph GN = (Gi j)i, j⩽N with vertex
set {1, . . . ,N} by stipulating that an edge between node i and node j is present with
conditional probability

P{Gi j = 1 ∣ σ} ∶=
⎧⎪⎪⎨⎪⎪⎩

aN if σ i = σ j,

bN if σ i ≠ σ j,
(4.132)

for some aN ,bN ∈ (0,1), independently of all other edges. In other words, the proba-
bility that an edge is present between node i and node j depends only on whether or
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not the individuals i and j belong to the same community. To express (4.132) more
succinctly, it is convenient to introduce the average and the gap of aN and bN ,

cN ∶=
aN +bN

2
and ∆N ∶=

aN −bN

2
∈ (−cN ,cN), (4.133)

in such a way that
P{Gi j = 1 ∣ σ} = cN +∆Nσ iσ j. (4.134)

Our inference task is to try to reconstruct the community structure σ as best we
can, given the observation of the network of interactions GN = (Gi j)i, j⩽N . This is
illustrated in Figure 4.3.

Figure 4.3 The two figures display the same graph of interactions with 100 red nodes and
100 blue nodes, and with each node having on average 10 links with nodes of the same
color and 1 link with a node of a different color (all edges are independent). On the left
figure, the blue and the red nodes have been placed uniformly at random over the entire area,
and the colors have been concealed. On the right figure, the blue and the red nodes have
been classified by placing them randomly to the left and to the right of the area respectively.
In the community detection problem, the left figure is shown to the statistician, whose goal
is to infer the colouring of the nodes.

When p = 1/2, the symmetry between the two communities makes it clear that
we can only hope to recover σ up to a change of sign. We may also consider
the problem of recovering the matrix σ σ

∗, which encodes whether or not two
individuals belong to the same community or not for each pair of individuals.

In the case when ∆N ⩽ 0, it is more likely for an edge to be present between
nodes in different communities, and the model is called disassortative. When ∆N > 0,
connections are more likely between individuals in the same community, and the
model is termed assortative.

The recovery task in the stochastic block model can be interpreted in at least
two different ways, often called exact recovery and detection. The exact recovery
task aims to determine the regimes of aN and bN , or equivalently of cN and ∆N , for
which there exists an algorithm that completely recovers the two communities with
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high probability, up to a global change of sign. A necessary condition for exact
recovery is that the random graph GN be connected; this makes exact recovery
impossible in the sparse regime when the average degree of a node remains bounded
as N diverges. The sharp threshold for exact recovery was obtained in [2, 189],
where it was shown that in the symmetric dense regime, p = 1/2, aN = a log(N)/N
and bN = b log(N)/N, exact recovery is possible, and efficiently so, if and only if√

a−
√

b ⩾ 2. On the other hand, the detection task is to construct a partition of
the graph GN that is positively correlated with the assignment vector σ with high
probability, possibly up to a global change of sign. This is the problem that we will
focus on, in the dense regime where the average degree of a node diverges with N.
More specifically, we will work under the two following assumptions on cN and the
quantity

λN ∶=
N∆2

N
cN(1−cN)

. (4.135)

A1 The sequence (λN)N⩾1 converges to some value λ ⩾ 0.

A2 The sequence (NcN(1−cN))N⩾1 diverges to infinity.

The second of these assumptions implies that the average degree of a node i,

Edeg(i) = (N −1)(cN +m∆N), (4.136)

diverges with N. The sparse regime, when the average degree of a node remains
bounded even in the limit of large system size, is more challenging. In this case,
identifying the regimes of cN and ∆N for which the detection of the communities is
possible has been achieved in [170, 187, 190] (in a setting with two communities).
Concerning the precise identification of the limit mutual information between the
community structure and the random graph GN , we refer the reader interested in the
sparse disassortative regime to [4, 80, 91], and the reader interested in the harder
sparse assortative regime to [3, 91, 105, 128, 148, 188, 191, 266].

As in the symmetric rank-one matrix estimation problem, we may be interested
in studying the large-N limit of the minimal mean-square error for the recovery of
the matrix σ σ

∗, that is,

mmseN ∶=
1
N
E∣σ σ

∗−E[σ σ
∗ ∣GN]∣2, (4.137)

or similarly for the vector σ itself. We will here focus on studying the asymptotic
behaviour of the mutual information

IN ∶=
1
N
E
ˆ

ΣN

log(
dPσ ∣GN

dPN
(σ))dPσ ∣GN(σ) (4.138)
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between the graph GN and the vector σ . The asymptotic behaviour of the minimal
mean-square error in (4.137) can also be identified using similar ideas, in analogy
with the results of Propositions 4.3 and 4.4 and (4.21); see also [95, 160]. Observing
that

P{GN = (Gi j)∣σ = σ} =∏
i< j
(cN +∆Nσ iσ j)Gi j(1−cN −∆Nσ iσ j)1−Gi j , (4.139)

we can use Bayes’ formula to obtain the law of the signal σ conditionally on the
observation of GN . We write it in the form of a Gibbs measure,

P{σ = σ ∣GN = (Gi j)} =
expHSBM

N (σ)PN(σ)´
ΣN

expHSBM
N (τ)dPN(τ)

, (4.140)

for the Hamiltonian

HSBM
N (σ) ∶=∑

i< j
log[(1+ ∆N

cN
σiσ j)

Gi j

(1− ∆N

1−cN
σiσ j)

1−Gi j

]. (4.141)

We denote the associated free energy by

F
SBM
N ∶= 1

N
E log

ˆ
ΣN

expHSBM
N (σ)dPN(σ). (4.142)

In the limit of large N, this free energy coincides with the mutual information (4.138),
up to an additive constant.

Proposition 4.23. Under assumptions (A1) and (A2), the limits of the free en-
ergy (4.142) and of the mutual information (4.138) differ by an additive constant,

IN =
λ

4
−F

SBM
N +o(1). (4.143)

Proof. The explicit form of the likelihood in (4.139) and the definition of the
Hamiltonian in (4.141) imply that

IN =
1
N
EHSBM

N (σ)−F
SBM
N . (4.144)

Since the coordinates of the assignment vector σ are i.i.d. the first term simplifies to

1
N
EHSBM

N (σ) = 1
N
⋅ (N

2
) ⋅[EG12 log(1+ ∆N

cN
σ1σ2)

+E(1−G12) log(1− ∆N

1−cN
σ1σ2)]. (4.145)
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Averaging with respect to the randomness of G12 conditionally on the randomness
of the assignment vector σ reveals that this is equal to

N −1
2
[cNE(1+

∆N

cN
σ1σ2) log(1+ ∆N

cN
σ1σ2)

+(1−cN)E(1−
∆N

1−cN
σ1σ2) log(1− ∆N

1−cN
σ1σ2)], (4.146)

and Taylor expanding the logarithm gives

1
N
EHSBM

N (σ) = N −1
4
⋅ [

∆2
N

cN(1−cN)
+O(

∆3
N

c2
N
+

∆3
N

(1−cN)2
)]. (4.147)

Recalling the definition of the constant λN in (4.135), observing that cN ∈ (0,1) and
remembering (4.144) reveals that

IN =
N −1

N
⋅ λN

4
−F

SBM
N +O(N −1

N
⋅

λ
3/2
N√

NcN(1−cN)
). (4.148)

Invoking assumptions (A1) and (A2) completes the proof. ∎

To determine the limit of the free energy F
SBM
N , we will follow [95, 160] and

argue that it is asymptotically equivalent to the free energy of a rank-one estimation
problem of just the form we have been studying in earlier sections of this chapter.
To see this, we start by simplifying the expression of the Hamiltonian HSBM

N and
discarding some lower-order terms. Taylor expanding the logarithm in the definition
of the Hamiltonian (4.141) reveals that

HSBM
N (σ) = H̃SBM

N (σ)+∑
i< j
[Gi j(

∆2
N

2(1−cN)2
−

∆2
N

2c2
N
)−

∆2
N

2(1−cN)2
]

+∑
i< j
O(Gi j

∆3
N

c3
N
+(1−Gi j)

∆3
N

(1−cN)3
) (4.149)

for the Hamiltonian

H̃SBM
N (σ) ∶=∑

i< j

∆N

cN(1−cN)
(Gi j −cN)σiσ j. (4.150)

If we introduce the free energy

F̃SBM
N ∶= 1

N
E
ˆ

ΣN

expH̃SBM
N (σ)dPN(σ) (4.151)
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associated with the Hamiltonian (4.150), then the equality (4.149) implies that

F
SBM
N = F̃SBM

N + 1
N
∑
i< j

E[Gi j(
∆2

N
2(1−cN)2

−
∆2

N

2c2
N
)−

∆2
N

2(1−cN)2
]

+∑
i< j
O(EGi j

∆3
N

c3
N
+(1−EGi j)

∆3
N

(1−cN)3
). (4.152)

Noticing that EGi j = cN +∆Nm2 and remembering the definition of λN in (4.135),
this becomes

F
SBM
N = F̃SBM

N − N −1
N
⋅ λN

4
+O(N −1

N
⋅

λ
3/2
N√

NcN(1−cN)
). (4.153)

Leveraging the assumptions (A1) and (A2) shows that

F
SBM
N = F̃SBM

N − λ

4
+o(1) (4.154)

so the free energies (4.142) and (4.151) are equal up to an additive constant. The
free energy (4.151) starts to look more like the free energy (4.9) in the symmetric
rank-one matrix estimation problem. Indeed, if we introduce the centred random
variables

G̃i j ∶=
∆N

cN(1−cN)
(Gi j −cN −∆Nσ iσ j), (4.155)

then the Hamiltonian (4.150) may be written as

H̃SBM
N (σ) =∑

i< j
(G̃i jσiσ j +

λN

N
σ iσ jσiσ j). (4.156)

A direct computation shows that the random variables G̃i j have variance

EG̃2
i j =

λN

NcN(1−cN)
E(1−cN −∆Nσ iσ j)(cN +∆Nσ iσ j) (4.157)

= λN

N
+O(λN

N
⋅ (
√

λN

NcN(1−cN)
+ λN

N
)). (4.158)

Recall that under our assumption (A2), the average degree of a node diverges as N
tends to infinity. This gives some credence to the idea that in the limit of large
system size, a sort of central limit theorem takes place and we may as well substitute
the random variables (G̃i j)i j by centred Gaussian random variables with the same
variance. In other words, we may expect the free energy (4.151) to be asymptotically
equivalent to the Gaussian free energy

F
gauss
N (λ) ∶= 1

N
E log

ˆ
ΣN

expHgauss
N (λ ,σ)dPN(σ) (4.159)
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associated with the Hamiltonian

Hgauss
N (λ ,σ) ∶=∑

i< j
(
√

λ

N
Wi jσ jσ j +

λ

N
σ iσ jσiσ j).

As shown in Exercise 4.11, up to an additive constant, this Gaussian free energy is
the free energy (4.9) in the symmetric rank-one matrix estimation problem,

F
gauss
N (λ) = F

○
N(

λ

4
)+ λ

4
− λ

2N
. (4.160)

To show rigorously that the free energies (4.151) and (4.159) are asymptotically
equivalent up to an additive constant, and therefore that the free energy (4.142) in
the stochastic block model is asymptotically equivalent to the free energy (4.9) in
the symmetric rank-one matrix estimation problem for an appropriate choice of
prior and signal-to-noise ratio t, we use an interpolation argument.

Theorem 4.24. Under assumptions (A1) and (A2), the free energy (4.142) in the
stochastic block model is asymptotically equivalent to the free energy (4.9) in the
symmetric rank-one matrix estimation problem with Bernoulli prior,

F
SBM
N = F

○
N(

λ

4
)+o(1). (4.161)

Proof. By the asymptotic equivalences (4.154) and (4.160), it suffices to show that

F̃SBM
N = F

gauss
N (λ)+o(1). (4.162)

To alleviate notation, we will keep the dependence on λ implicit. We proceed by
interpolation. For each t ∈ [0,1], we define the interpolating Hamiltonian

HN,t(σ) ∶=∑
i< j
[(
√

tG̃i j +
√

1− t

√
λ

N
Wi j)σiσ j +(t ⋅

λN

N
+(1− t) ⋅ λ

N
)σ iσ jσiσ j]

and the interpolating free energy

FN(t) ∶=
1
N
E log

ˆ
ΣN

expHN,t(σ)dPN(σ)

in such a way that by the fundamental theorem of calculus

∣F̃SBM
N −F

gauss
N ∣ = ∣FN(1)−FN(0)∣ ⩽ sup

t∈[0,1]
∣F ′N(t)∣. (4.163)
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To compute this derivative, write ⟨⋅⟩t for the average with respect to the Gibbs
measure associated with the interpolating Hamiltonian HN,t , and observe that

F
′
N(t) =

1
2N
√

t
∑
i< j

EG̃i j⟨σiσ j⟩t−
√

λ

2N3/2√1− t
∑
i< j

EWi j⟨σiσ j⟩t

+(λN −λ) ⋅ 1
N2∑

i< j
E⟨σ iσ jσiσ j⟩t . (4.164)

At this point, fix indices i < j and introduce the function F(G̃i j) = ⟨σiσ j⟩t . A direct
computation reveals that

∂G̃i j
F = ⟨σiσ j∂G̃i j

HN,t(σ)⟩t −⟨σiσ j⟩t⟨∂G̃i j
HN,t(σ)⟩t =

√
t(1−⟨σiσ j⟩2t ),

∂
2
G̃i j

F = −2
√

t⟨σiσ j⟩t ⋅∂G̃i j
F = −2t(⟨σiσ j⟩t −⟨σiσ j⟩3t ),

so the approximate Gaussian integration by parts formula in Exercise 4.6 gives

EG̃i j⟨σiσ j⟩t =
√

tEG̃2
i j(1−E⟨σiσ j⟩2t )+O(E∣G̃i j∣3).

On the other hand, the Gaussian integration by parts formula as in (4.29) shows that

EWi j⟨σiσ j⟩t =
√

1− t ⋅
√

λ

N
⋅ (1−E⟨σiσ j⟩2t ).

It follows by (4.164) that

F
′
N(t) =

1
2N
∑
i< j

EG̃2
i j(1−E⟨σiσ j⟩2t )−

λ

2N2∑
i< j
(1−E⟨σiσ j⟩2t )

+O(NE∣G̃12∣3+ ∣λN −λ ∣).

Together with (4.158) and (4.163), this implies that

F̃SBM
N = F

gauss
N +O(λN ⋅ (

√
λN

NcN(1−cN)
+ λN

N
)+NE∣G̃12∣3+ ∣λN −λ ∣).

Observing that

E∣G̃12∣3 ⩽ ∣
∆3

N

c3
N(1−cN)3

∣E∣(1−cN −∆Nσ iσ j)(cN +∆Nσ iσ j)∣

⩽
4λ

3/2
N

N
√

NcN(1−cN)
,

and remembering the assumptions (A1) and (A2) establishes (4.162) and completes
the proof. ∎
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Together with Theorem 4.9 on the limit free energy in the symmetric rank-one
matrix estimation problem and Proposition 4.23 on the relationship between the
mutual information and the free energy in the stochastic block model, this allows us
to deduce the following variational representation for the limit free energy and limit
mutual information in the stochastic block model.

Theorem 4.25. Under assumptions (A1) and (A2), the limit of the free energy in
the stochastic block model admits the variational representation

lim
N→+∞

F
SBM
N = sup

h⩾0
(ψ(h)− h2

λ
),

where
ψ(h) ∶=E log

ˆ
Σ1

exp(
√

2hσz1+2hσσ1−h)dP1(σ), (4.165)

with z1 a standard Gaussian random variable independent of any other randomness.
The limit mutual information in the stochastic block model admits the variational
representation

lim
N→+∞

IN =
λ

4
− sup

h⩾0
(ψ(h)− h2

λ
). (4.166)

Exercise 4.11. Show that the Gaussian free energy (4.159) and the free energy (4.9)
are related by

F
gauss
N (λ) = F

○
N(

λ

4
)+ λ

4
− λ

2N
. (4.167)

Exercise 4.12. In the symmetric dense stochastic block model with p = 1
2 , show that

lim
N→+∞

IN = inf
h⩾0
(λ

4
+ h2

λ
+h−E logcosh(

√
2hz1+2hσ1)).



Chapter 5
Poisson point processes and extreme values

The main goal of this chapter is to lay important groundwork for our study of mean-
field spin glass models in Chapter 6. The material we wish to present involves the
consideration of Poisson point processes. In the first four sections of this chapter, we
therefore give a self-contained introduction to this topic. This part culminates with
limit theorems for extreme values of independent and identically distributed random
variables, which in our view should be of interest to a very broad audience. We then
turn to aspects that are specifically geared towards the analysis of mean-field spin
glasses in the last three sections.

In Section 5.1, we study the topological properties of the space of point measures
on a locally compact and separable metric space. We then define point processes,
which are random variables on the space of point measures, in Section 5.2. In
Section 5.3, we introduce Poisson point processes and study their fundamental
properties. We use these objects to determine the asymptotic behaviour of extremes
of i.i.d. random variables in Section 5.4. We then proceed in Section 5.5 with a
thorough analysis of a special Poisson point process known as the Poisson-Dirichlet
point process. This process plays a fundamental role in the analysis of mean-field
spin glasses, as a building block in the hierarchical construction of the Poisson-
Dirichlet cascades discussed in Section 5.6. Finally, in Section 5.7, we discuss
a characterization of Poisson-Dirichlet cascades in terms of certain distributional
identities, and the fundamental role played by the notion of ultrametricity.

5.1 The space of point measures

A Poisson point process is a special type of point process, which in turn is a random
variable taking values in a space of point measures. In this section, we study the
basic topological properties of the space of point measures on a locally compact and
separable metric space (S,d), endowed with its Borel σ -algebra B(S). In practice,
we will mostly be interested in the case when S is Rd or an open subset of Rd

161
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equipped with the Euclidean distance, but this level of generality does not cause
much additional difficulty, and is at times handy.

A measure λ on S is said to be locally finite if for every compact set K ⊆ S, we
have λ(K) < +∞. A point measure on S is a measure λ on S that is locally finite
and for which there exists a collection of points (xi)i∈I with xi ∈ S satisfying

λ =∑
i∈I

δxi, (5.1)

where δxi denotes the Dirac measure at xi. The space of point measures on S is
denoted by Mδ (S). Notice that a point xi in the representation (5.1) could be
repeated. In particular, measures of the form kδx for some k ∈N and x ∈ S belong to
Mδ (S). By Exercise 5.1, the index set I is always countable. We endowMδ (S)
with the topology of vague convergence. This is the coarsest topology that makes
the mappings

λ ↦
ˆ

S
f dλ (5.2)

continuous for every f ∈Cc(S;R). Here Cc(S;R) is the space of real-valued contin-
uous functions with compact support in S. Specifically, this means that a sequence
(λn)n⩾1 ⊆Mδ (S) converges to a measure λ ∈Mδ (S) if and only if for every con-
tinuous function f ∈Cc(S;R) of compact support,

lim
n→+∞

ˆ
S

f dλn =
ˆ

S
f dλ . (5.3)

Notice that this form of convergence does not preserve the total mass of a point
measure. For instance, the Dirac mass δn, seen as an element ofMδ (R), converges
to the null measure as n tends to infinity. We will mainly be concerned with
random elements taking values inMδ (S) and their convergence. For the classical
convergence theory discussed in Sections A.5 and A.6 of the appendix to apply,
it will be useful to know that the topology of vague convergence on Mδ (S) is
metrizable. We will deduce this from the following result regarding the separability
of the space of compactly supported continuous functions on S.

Lemma 5.1. There exists a countable family F ⊆Cc(S;R) with the property that,
for any f ∈Cc(S;R) and ε > 0, there exists g ∈ F with

sup
x∈S
∣ f (x)−g(x)∣ ⩽ ε and suppg ⊆ {x ∈ S ∣ d(x,supp f ) ⩽ ε}. (5.4)

In particular, the space Cc(S;R) is separable.

Proof. Let D be a countable and dense subset of S. We denote by F+ the set of
functions in Cc(S;R⩾0) that can be written in the form

x↦max
y∈Y
(λy(1−kd(x,y))+), (5.5)
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where Y is a finite subset of D, (λy)y∈Y are non-negative rational numbers, k is
a positive integer, and we recall that d is the distance function on S and that
r+ ∶=max(r,0). Up to decomposing a function f ∈Cc(S;R) into its positive and
negative parts, and setting F to be the set of all functions that can be written as the
difference between two functions in F+, it suffices to fix a non-negative function
f ∈Cc(S;R⩾0) as well as ε > 0 and to construct g ∈ F+ satisfying (5.4). Moreover,
up to replacing ε by ε∥ f ∥∞ in (5.4), we can assume without loss of generality that
f is bounded by one. Since f is supported on a compact set K and is continuous, it
is uniformly continuous. Hence, there exists δ > 0 such that for every x,y ∈ S, we
have ∣ f (x)− f (y)∣ ⩽ ε whenever d(x,y) ⩽ δ . Up to reducing δ if necessary, we can
also assume that δ ⩽ ε . We let k be the smallest integer larger than δ−1. For every
y ∈ D, we pick λy a rational number in the interval [ f (y)−ε, f (y)+ε]. For every
η ∈ (0,δ), we denote by Yη a finite subset of D, made of points that are at distance
at most η from K, such that every x ∈K is at distance at most η from a point in Yη .
The set Yη can be constructed by extracting a finite sub-cover from the open cover
of the compact set K formed by open balls of radius η centred at the points in D.
We write gη for the function (5.5) with these choices of parameters, and with Y
replaced by Yη . The function gη is Lipschitz continuous, with Lipschitz constant at
most k+kε . For every x ∈K, we can find y ∈Yη such that d(x,y) ⩽ η ⩽ δ , and thus

∣ f (x)−gη(x)∣ ⩽ ∣ f (y)−gη(y)∣+ε +kη +kεη ⩽ 2ε +kη +kεη .

On the other hand, for x ∉K but in the support of gη , there is y ∈Yη with d(x,y) ⩽
k−1 ⩽ δ and

gη(x) = λy(1−kd(x,y))+.

It follows that

∣ f (x)−gη(x)∣ = ∣gη(x)∣ ⩽ ∣λy∣ ⩽ ∣ f (y)∣+ε ⩽ ∣ f (x)∣+2ε = 2ε.

Choosing η to be smaller than the minimum between ε/k and 1/k, we have shown
that for every x ∈ S,

∣ f (x)−gη(x)∣ ⩽ 4ε.

Notice also that every point in the support of gη is at distance at most η + k−1 ⩽
η + δ ⩽ 2δ ⩽ 2ε from a point in K. We have therefore constructed a function
satisfying (5.5), up to replacing ε by 4ε . In order to conclude, it remains to verify
that the support of the function gη is compact. In order to do so, it suffices to check
that, for ε > 0 sufficiently small, the set

Kε ∶= {x ∈ S ∣ there exists y ∈K with d(x,y) ⩽ ε} (5.6)

is compact. Since S is locally compact, we can cover K with open balls having
compact closure, simply by picking an open ball having compact closure for each
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point in K. Since K is compact, we can extract a finite sub-cover of K. As soon
as ε > 0 is smaller than the radius of the smallest ball in this finite sub-cover, we see
that the set Kε is compact. This completes the proof. ∎

This result suggests that vague convergence onMδ (S) should be determined
by the set F . If we denote by ( fn)n⩾1 an enumeration of the countable set F , this
would ensure that the metric ρ ∶Mδ (S)×Mδ (S) →R⩾0 defined by

ρ(λ ,λ ′) ∶=
+∞
∑
n=0

2−n
∣
´

S fn dλ −
´

S fn dλ ′∣

1+∣
´

S fn dλ −
´

S fn dλ ′∣
(5.7)

metrizes the vague topology onMδ (S). The fact that (5.7) defines a metric is the
content of Exercise 5.4.

Theorem 5.2. A sequence (λn)n⩾1 ⊆Mδ (S) converges vaguely to a point measure
λ ∈Mδ (S) if and only if (5.3) holds for all functions f ∈ F . In particular, the
topology induced by the metric in (5.7) is the vague topology onMδ (S).

Proof. The direct implication is immediate. Conversely, we assume that (5.3) holds
for every f ∈ F , and fix f ∈Cc(S;R) as well as ε ∈ (0,1). Letting K be the support
of f , we invoke Lemma 5.1 to find g ∈ F with

sup
x∈S
∣ f (x)−g(x)∣ ⩽ ε and suppg ⊆Kε .

Here Kε denotes the ε-neighbourhood of K defined in (5.6). By the triangle inequal-
ity,

∣
ˆ

S
f dλ −

ˆ
S

f dλn∣ ⩽ ε(λ(Kε)+ sup
n⩾1

λn(Kε))+ ∣
ˆ

S
gdλn−

ˆ
S

gdλ ∣,

so letting n tend to infinity and leveraging the assumption that (5.3) holds for g ∈ F
reveals that

limsup
n→+∞

∣
ˆ

S
f dλ −

ˆ
S

f dλn∣ ⩽ ε(λ(Kε)+ sup
n⩾1

λn(Kε)).

To bound this further, recall from the end of the proof of Lemma 5.1 that, de-
creasing ε if necessary, the set Kε is compact. Decreasing ε further if necessary,
and invoking Lemmas A.7 and 5.1, we can find φ ∈ F with φ ⩾ 1 on Kε . Since
(
´

S φ dλn)n⩾1 converges by assumption, it is uniformly bounded, so

M ∶= sup
n⩾1

λn(Kε) ⩽ sup
n⩾1

ˆ
S

φ dλn < +∞. (5.8)

It follows that
limsup
n→+∞

∣
ˆ

S
f dλ −

ˆ
S

f dλn∣ ⩽ ελ(Kε)+εM.
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Recalling that Kε is compact for ε > 0 sufficiently small, and that λ(Kε) is therefore
finite, and observing that λ(Kε) is non-increasing in ε , we obtain the desired
result. ∎

Theorem 5.2 allows us to appeal to the basic convergence results recalled in
Sections A.5 and A.6 of the appendix for random elements taking values inMδ (S)
endowed with its Borel σ -algebra B(Mδ (S)). In Exercise 5.2, we give a charac-
terization of the Borel σ -algebra B(Mδ (S)) as the smallest σ -algebra onMδ (S)
which makes the evaluation map λ ↦ λ(A) measurable for every measurable set
A ∈ B(S). In the next section, we will want to characterize the convergence of
random elements onMδ (S) through their Laplace transform. To do this, it will be
convenient to know what relatively compact sets inMδ (S) look like. Notice that
the notions of compactness and sequential compactness inMδ (S) are equivalent
by Theorem 5.2.

Lemma 5.3. A set M ⊆Mδ (S) is relatively compact if and only if for all f ∈
Cc(S;R),

sup
λ∈M
∣
ˆ

S
f dλ ∣ < +∞. (5.9)

Proof. For the direct implication, we take a relatively compact set M ⊆Mδ (S), and
for each f ∈Cc(S;R) we define the continuous functional Tf ∶Mδ (S) →R by

Tf (λ) ∶=
ˆ

S
f dλ .

Since M is compact, the set Tf (M) ⊆R is compact, and therefore bounded. This
means that

sup
λ∈M
∣
ˆ

S
f dλ ∣ ⩽ sup

λ∈M
∣
ˆ

S
f dλ ∣ < +∞,

as desired.
For the converse implication, we assume that (5.9) holds for all f ∈Cc(S;R),

and we fix a sequence (λn)n⩾1 ⊆M. We aim to identify an element λ ∈Mδ (S) and
a subsequence of (λn)n⩾1 that converges vaguely to λ . We decompose the rest of
the proof into three steps.

Step 1: convergence on a given compact subset. In this step, we show that for any
given compact set K ⊆ S, one can find λ ∈Mδ (S) and a subsequence (n(k))k⩾1 such
that for every f ∈Cc(S;R) with compact support in K,

lim
k→+∞

ˆ
S

f dλn(k) =
ˆ

S
f dλ . (5.10)

We denote by λn∣K the restriction of λn to K. Arguing as in the proof of Theorem 5.2,
we see that the sequence (λn(K))n⩾1 must remain bounded. Up to the extraction
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of a subsequence, we can thus assume that it converges to some j ⩾ 0, and since
the sequence (λn(K))n⩾1 only takes integer values, the subsequence is ultimately
constant. That is, for n large enough and along the subsequence, we can write

λn∣K =
j

∑
i=1

δxn,i,

for some xn,1, . . . ,xn, j ∈ K. Up to the extraction of a further subsequence, we can
also assume that each of these points converges as n tends to infinity, and we denote
by x1, . . . ,x j ∈K their respective limits. We define λ ∶= ∑ j

i=1 δxi . Let f ∈Cc(S;R) be
a continuous function with compact support in K. For every n sufficiently large,

ˆ
S

f dλn =
j

∑
i=1

f (xn,i),

so letting n tend to infinity along the subsequence reveals that

lim
n→+∞

ˆ
S

f dλn =
j

∑
i=1

f (xi) =
ˆ

S
f dλ .

This is (5.10).

Step 2: covering S with compact sets. In order to patch together the different
measures obtained in the previous step for different choices of the compact set K,
we now build a countable collection U of open sets with compact closure which
covers S. Since S is assumed to be separable, there exists a countable set χ ⊆ S that
is dense in S. We denote by U the collection of all open balls with centre a point
in χ , with radius a rational number, and whose closure is compact. The collection U
is clearly countable; we claim that it covers S. To see this, let x ∈ S. Since S is locally
compact, for r > 0 sufficiently small, the closed ball Br(x) is compact. Since χ is
dense, one can find y ∈ χ whose distance to x is less than r/4. Any open ball centred
at x and with radius some rational number in (r/4,r/2) contains x, and it belongs
to U since its closure still lies in the compact ball Br(x).

Step 3: constructing λ . By the two previous steps and a diagonal extraction
argument, we can find a subsequence (n(k))k⩾1 and, for every U ∈ U , a measure
λU ∈Mδ (S) such that for every f ∈Cc(S;R) with compact support in U , we have

lim
k→+∞

ˆ
S

f dλn(k) =
ˆ

S
f dλU .

It is clear that the restrictions of the measures λU and λV to U ∩V must coincide. We
can thus build a point measure λ ∈Mδ (S) such that for every U ∈ U , the restrictions
of λ and λU to U coincide. Since U covers S, for every f ∈Cc(S;R), we can find
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a finite cover of the support of f made of elements of U , say U1, . . . ,Un. Letting
h1, . . . ,hn be an associated partition of unity as in Lemma A.8, we can write

ˆ
S

f dλn(k) =
n
∑
i=1

ˆ
S

hi f dλn(k),

and since each hi f has compact support in U i, we conclude that

lim
k→+∞

ˆ
S

f dλn(k) =
n
∑
i=1

ˆ
S

hi f dλ =
ˆ

S
f dλ .

The proof is thus complete. ∎

Exercise 5.1. Show that in the expression (5.1), the index set I must be countable.

Exercise 5.2. Show that, for every A ∈ B(S), the mapping

{ Mδ (S) → R∪{+∞}
λ ↦ λ(A) (5.11)

is measurable. Show that the smallest σ -algebra such that each of these mappings
is measurable is the Borel σ -algebra ofMδ (S).

Exercise 5.3. Let (λn)n⩾1 be a sequence of measures inMδ (S), and let λ be a
locally finite measure on S such that, for every f ∈Cc(S;R), we have

lim
n→+∞

ˆ
S

f dλn =
ˆ

S
f dλ . (5.12)

Show that λ must be a point measure.

Exercise 5.4. Show that the function in (5.7) defines a metric onMδ (S).

Exercise 5.5. Show that the spaceMδ (S) endowed with the metric (5.7) is com-
plete.

5.2 Point processes

A point process on S is a random variable taking values inMδ (S), and it serves
as a model for a random distribution of points in S. That is, a point process Λ on S
is a measurable map from some abstract probability space (Ω,A,P) to Mδ (S)
equipped with its Borel σ -algebra B(Mδ (S)). For each ω ∈Ω, the weight assigned
by the point measure Λ(ω) ∈Mδ (S) to any measurable set A ⊆ S gives the number
of points Λ(ω)(A) ⊆ [0,+∞] in the support of Λ(ω) that belong to A. The law of
the random process Λ is the probability measure P○Λ−1 onMδ (S). Two point
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processes Λ and Λ′ have the same law if, for every bounded and measurable function
F ∶Mδ (S) →R,

EF(Λ) =EF(Λ′). (5.13)

A sequence (Λn)n⩾1 of point processes on S converges in law to a point process Λ

on S if, for every bounded and continuous function F ∶Mδ (S) →R,

lim
n→+∞

EF(Λn) =EF(Λ). (5.14)

In the same spirit as Theorem A.23, the next two results simplify these criteria by
showing that it suffices to consider Laplace transform functions of the form

F(λ) ∶= exp(−
ˆ

S
f dλ) (5.15)

for functions f ranging in the set Cc(S;R⩾0). Notice that the quantity
´

S f dλ is
well-defined and finite for every f ∈Cc(S;R⩾0) and λ ∈Mδ (S), since elements
ofMδ (S) are assumed to be locally finite.

Proposition 5.4. Two point processes Λ,Λ′ on S have the same law if and only if,
for every f ∈Cc(S;R⩾0),

Eexp(−
ˆ

S
f dΛ) =Eexp(−

ˆ
S

f dΛ
′). (5.16)

Proof. The direct implication is immediate. Conversely, we assume that (5.16)
holds for every f ∈Cc(S;R⩾0). Consider the collection of sets of the form

{λ ∈Mδ (S) ∣ ∣
ˆ

S
fi d(λ −λ0)∣ < ri for all 1 ⩽ i ⩽ k},

where k ∈N, f1, . . . , fk ∈Cc(S;R), r1, . . . ,rk > 0, and λ0 ∈Mδ (S) are arbitrary. This
collection is closed under finite intersections, and the smallest σ -algebra containing
it is the Borel σ -algebra. By Dynkin’s π-λ theorem (Theorem A.5), it therefore
suffices to show that, for every f1, . . . , fk ∈Cc(S;R), the random vectors

Y ∶= (
ˆ

S
fi dΛ)

1⩽i⩽k
and Z ∶= (

ˆ
S

fi dΛ
′)

1⩽i⩽k

have the same law. Decomposing each function into its positive and negative
parts, and thus considering a vector of length 2k instead of k, we can without
loss of generality assume that f1, . . . , fk take non-negative values. Fix t ∈Rk

⩾0, and
observe that applying the assumption (5.16) to the function f ∶= ∑k

i=1 ti fi reveals
that Ee−t⋅Y = Ee−t ⋅Z . Invoking the uniqueness theorem for Laplace transforms in
Theorem A.23 completes the proof. ∎
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Remark 5.5. If S is an open subset of Rd equipped with the Euclidean topology,
then Proposition 5.4 is also valid if we only assume that (5.16) holds for every f ∈
C∞c (S;R⩾0). Here C∞c (S;R⩾0) denotes the space of non-negative smooth functions
with compact support in S. Indeed, this follows by a density argument similar to that
in Theorem 5.2. In short, denoting by K the support of f , we first find Kε a compact
enlargement of K, and argue as in (5.8) that we can make supn⩾1P{Λn(Kε) ⩾M}
arbitrarily small by taking M sufficiently large. We then conclude by observing that
we can find a sequence of functions in C∞c (S;R⩾0) with support in Kε that converges
to f in the uniform norm. More generally, in the statement of Proposition 5.4, we
can replace Cc(S;R⩾0) by any subset F ⊆Cc(S;R⩾0) that satisfies the approximation
property stated in Lemma 5.1.

We next aim to use Proposition 5.4 to argue that the convergence in law of
a sequence of point processes can be assessed by looking only at the Laplace
transform of the point processes. We start with a preliminary observation clarifying
the notion of convergence in law of point processes with respect to the vague
topology.

Lemma 5.6. A sequence (Λn)n⩾1 of point processes on S converges in law to a point
process Λ on S if and only if, for every f ∈Cc(S;R⩾0), the sequence (

´
S f dΛn)n⩾1

converges in law to
´

S f dΛ.

Proof. The direct implication is immediate. To show the converse implication
we first decompose every f ∈ Cc(S;R) into its positive and negative parts, f+
and f−, and assert the joint convergence in law of (

´
S f+dΛn,

´
S f−dΛn)n⩾1 to-

wards (
´

S f+dΛ,
´

S f−dΛ) by appealing to Proposition A.24. In particular, we have
that for every f ∈Cc(S;R), the sequence (

´
S f dΛn)n⩾1 converges in law to

´
S f dΛ.

We now proceed in two steps to show that (Λn)n⩾1 converges to Λ. First we ar-
gue that (Λn)n⩾1 is tight using Prokhorov’s theorem, and then we prove that Λ is
its only subsequential limit using Proposition 5.4. The result then follows from
Lemma A.19.

Step 1: (Λn)n⩾1 is tight. We fix ε > 0 and denote by ( fk)k⩾1 an enumeration of the
countable set F in Lemma 5.1. Since (

´
S fk dΛn)n⩾1 converges in law to

´
S fk dΛ as

n tends to infinity, for every k ⩾ 1, it is possible to find a constant ck > 0 such that,
for every n ⩾ 1,

P{∣
ˆ

S
fk dΛn∣ > ck} ⩽

ε

2k .

This can be shown directly, or by appealing to the converse of Prokhorov’s the-
orem (Theorem A.21) applied to the complete and separable space R. With the
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sequence (ck)k⩾1 at hand, we introduce the set of point measures

M ∶= {λ ∈Mδ (S) ∣ ∣
ˆ

S
fk dλ ∣ ⩽ ck for all k ⩾ 1}.

An identical argument to that in Theorem 5.2 reveals that for every g ∈Cc(S;R),

sup
λ∈M
∣
ˆ

S
gdλ ∣ < +∞.

It follows by the characterization of relatively compact sets inMδ (S) provided in
Lemma 5.3 that M is relatively compact. Moreover, a union bound and the choice
of the sequence (ck)k⩾1 imply that, for every n ⩾ 1,

P{Λn ∉M} ⩽ P{Λn ∉M} ⩽ ∑
k⩾1

P{∣
ˆ

S
fk dΛn∣ > ck} ⩽ ε.

This shows that the sequence (Λn)n⩾1 is tight. By Prokhorov’s theorem (Theo-
rem A.20), every subsequence of (Λn)n⩾1 admits a further subsequence that con-
verges in law.

Step 2: (Λn)n⩾1 admits a unique subsequential limit. Let (Λn(k))k⩾1 be a sub-
sequence of (Λn)n⩾1 converging in law to some point process Λ′. For every
f ∈Cc(S;R⩾0), we have

Eexp(−
ˆ

S
f dΛ) = lim

k→+∞
Eexp(−

ˆ
S

f dΛn(k)) =Eexp(−
ˆ

S
f dΛ

′).

Proposition 5.4 implies that Λ′ and Λ must have the same law, thereby completing
the proof. ∎

Proposition 5.7 (Convergence via Laplace transforms). A sequence (Λn)n⩾1 of
point processes on S converges in law to a point process Λ on S if and only if, for
every f ∈Cc(S;R⩾0), we have

lim
n→+∞

Eexp(−
ˆ

S
f dΛn) =Eexp(−

ˆ
S

f dΛ). (5.17)

Proof. The direct implication is immediate. For the converse, fix f ∈Cc(S;R⩾0),
and notice that assumption (5.17) implies that for every t ⩾ 0,

lim
n→+∞

Eexp(− t
ˆ

S
f dΛn) =Eexp(− t

ˆ
S

f dΛ).

It follows by Proposition A.24 that the sequence (
´

S f dΛn)n⩾1 converges in law to´
S f dΛ. Invoking Lemma 5.6 completes the proof. ∎

Remark 5.8. If S is an open subset of Rd equipped with the Euclidean topology,
then, as in Remark 5.5, we see that in the statement of Proposition 5.17, we can
replace the condition “ f ∈Cc(S;R⩾0)” by the condition “ f ∈C∞c (S;R⩾0)”.
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5.3 Poisson point processes

A special class of point processes known as Poisson point processes play a par-
ticularly important role in the study of extremes of i.i.d. random variables, spin
glasses, and many other areas. Given a locally finite measure µ on S, we say that
a point process Λ on S is a Poisson point process on S with intensity measure µ

if, for every integer n ⩾ 1 and pairwise disjoint measurable sets (Ak)1⩽k⩽n ⊆ S, the
random variables (Λ(Ak))1⩽k⩽n are independent Poisson random variables, with
Λ(Ak) having mean µ(Ak) for 1 ⩽ k ⩽ n. In this definition, we understand that Λ(A)
is equal to +∞ almost surely if µ(A) = +∞. A Poisson point process is therefore a
point process Λ for which we stipulate that the number of points in the support of Λ

that fall in any measurable set A ⊆ S follows a Poisson distribution with mean µ(A).
We also require that these Poisson counts be independent for pairwise disjoint sets.

It is not clear from the description of a Poisson point process that such an object
should exist or be uniquely defined. We now describe how to generate a Poisson
point process with intensity measure µ . For simplicity, we will assume that µ(S)
is finite; otherwise, we can decompose µ into a sum of measures of finite total
mass, construct independent Poisson point processes for each of these measures,
and verify that the sum of these point processes is a Poisson point process with
intensity measure µ . Let (Xn)n⩾1 be independent random variables with law

µ ∶= µ

µ(S)
, (5.18)

let N be a Poisson random variable with mean µ(S), and define

Λ ∶=
N
∑
i=1

δXi. (5.19)

The following proposition states that this is the unique Poisson point process with
intensity measure µ .

Proposition 5.9 (Poisson point process). Let µ be a locally finite measure on S.
There exists a Poisson point process with intensity measure µ; when µ is finite, the
point process (5.19) is one such. Moreover, given a Poisson point process Λ with
intensity measure µ and a measurable function f ∶ S→R⩾0,

Eexp(−
ˆ

S
f dΛ) = exp(−

ˆ
S
(1−e− f )dµ). (5.20)

In particular, any two Poisson point processes with intensity measure µ have the
same law.

Proof. We start by proving the existence of a Poisson point process with intensity
measure µ . We restrict our attention to the case when µ is finite; otherwise, we can
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decompose µ into a sum of measures of finite total mass, construct independent
Poisson point processes for each of these measures, and verify that the sum of these
point processes is a Poisson point process with intensity measure µ by following
the argument we now present, with slightly heavier notation. Let Λ be the point
process defined in (5.19). For every measurable function f ∶ S→R⩾0, we have

Eexp(−
ˆ

S
f dΛ) =Eexp(−

N
∑
i=1

f (Xi))

= e−µ(S)
+∞
∑
n=0

(µ(S))n
n!

(
ˆ

S
e− f dµ)

n

= exp(−
ˆ

S
(1−e− f )dµ).

In particular, if A1, . . . ,Ak ⊆ S are disjoint measurable sets and t1, . . . ,tk ⩾ 0, then

Eexp(−
k
∑
i=1

tiΛ(Ai)) =
k
∏
i=1

exp(−(1−e−ti)µ(Ai)).

Together with the injectivity of the Laplace transform in Theorem A.23 and the
explicit form of the moment generating function of a Poisson random variable, this
shows that (Λ(Ai))1⩽i⩽k are independent Poisson random variables with respective
means (µ(Ai))1⩽i⩽k. We now turn to the proof of (5.20) and establish the uniqueness
of Poisson point processes. Through a slight abuse of notation, denote by Λ any
Poisson point process with intensity measure µ , and consider a simple function
f ∶ S→R⩾0 of the form

f ∶=
k
∑
i=1

ti1Ai (5.21)

for some pairwise disjoint measurable sets Ai, and some non-negative constants
ti ⩾ 0. The definition of a Poisson point process implies that

Eexp(−
ˆ

S
f dΛ) =

k
∏
i=1

exp((e−ti −1)µ(Ai)) = exp(−
ˆ

S
(1−e− f )dµ),

where we have used the explicit form of the moment generating function of a
Poisson random variable. For a general measurable function f , we can find a
sequence of functions of the form (5.21) that converge to f monotonically, see for
instance Theorem 1.17 in [232], so (5.20) follows from the monotone convergence
theorem. Invoking Proposition 5.4 establishes the uniqueness in law of the Poisson
point process with intensity measure µ and completes the proof. ∎

The set of Poisson point processes is preserved by a number of transformations.
To begin with, let us fix another locally compact separable metric space (S′,d′)
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endowed with its Borel σ -algebra B(S′), and show that mapping the points in the
support of a Poisson point process on S to the space S′ again yields a Poisson point
process. Given a Poisson point process Λ of the form (5.19) and a measurable map
f ∶ S→ S′, we write

f (Λ) ∶=
N
∑
i=1

δ f (Xi) (5.22)

for the image point process on S′.

Proposition 5.10 (Mapping theorem). We fix a locally finite measure µ on S and a
measurable map f ∶ S→ S′ such that µ ○ f −1 is a locally finite measure on S′. If Λ is
a Poisson point process on S with intensity measure µ , then f (Λ) is a Poisson point
process on S′ with intensity measure µ ○ f −1.

Proof. Proposition 5.9 implies that for any measurable function g ∈Cc(S′;R⩾0),

Eexp(−
ˆ

S
gd( f (Λ))) =Eexp(−

ˆ
S

g○ f dΛ) = exp(−
ˆ

S
(1−e−g○ f )dµ).

Changing variables and combining Propositions 5.4 and 5.9 completes the proof. ∎

In addition to using a Poisson point process Λ on S to construct a Poisson
point process on S′, we can also use it to construct a Poisson point process on
the product space S×S′ by appending a random coordinate to each point in its
support. The simplest instance of this construction is to fix a sequence (Yi)i⩾1 of
i.i.d. random variables independent of the random variables (Xi)i⩾1 and N appearing
in the representation (5.19) of Λ, and to define the point process

Λ
∗ ∶=

N
∑
i=1

δ(Xi,Yi). (5.23)

Here we assume again that the measure µ is finite to simplify a bit the discussion,
but this restriction can easily be lifted. If we write µ for the intensity measure of Λ

and PY for the law of Y1, then the explicit construction of a Poisson point process
shows that Λ∗ is a Poisson point process on S×S′ with intensity measure µ ⊗PY .
More generally, if we use a transition function K ∶ S×B(S′) → [0,1] to generate,
independently for each i ∈ I, a point m(Xi) ∈ S′ from the distribution K(Xi, ⋅), and
define the marked point process

Λ
∗ ∶=

N
∑
i=1

δ(Xi,m(Xi)) (5.24)

on S×S′, then the marking theorem ensures that this is a Poisson point process with
intensity measure µ∗(s,s′) ∶= µ(ds)⊗K(s, ds′). We call a function K ∶ S×B(S′) →
[0,1] a transition function if, for each s ∈ S, the section K(s, ⋅) is a probability
measure on B(S′), while, for each A ∈ B(S′), the section K(⋅,A) is measurable on S.
The marking theorem is therefore a generalization of the i.i.d. construction in (5.23).
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Proposition 5.11 (Marking theorem). If Λ is a Poisson point process on S with
intensity measure µ , then the point process Λ∗ in (5.24) is a Poisson point process
on S×S′ with intensity measure µ∗(s,s′) ∶= µ(ds)⊗K(s, ds′).

Proof. Fix a measurable function f ∈Cc(S×S′;R⩾0), and observe that

Eexp(−
ˆ

S
f dΛ

∗) =Eexp(−
N
∑
i=1

f (Xi,m(Xi)))

= e−µ(S)
+∞
∑
n=0

(µ(S))n
n!

(
ˆ

S
Ee− f (s,m(s))dµ(s))

n

= e−µ(S)
+∞
∑
n=0

(µ(S))n
n!

(
ˆ

S

ˆ
S′

e− f (s,s′)K(s, ds′)dµ(s))
n

= exp(−
ˆ

S

ˆ
S′
(1−e− f (s,s′))K(s, ds′)dµ(s)),

where the last equality uses the fact that K(s, ⋅) is a probability measure. Invoking
Propositions 5.4 and 5.9 completes the proof. ∎

For later usage, we now record the following explicit formula translating av-
erages involving Poisson point processes into averages involving their intensity
measure.

Proposition 5.12 (Poisson average). If Λ is a Poisson point process on S with
intensity measure µ , then for any measurable function f ∶ S→R⩾0,

E
ˆ

S
f dΛ =

ˆ
S

f dµ. (5.25)

Proof. Approximating f by a sequence of simple functions as in Proposition 5.9, it
suffices to consider the case when f ∶ S→R⩾0 is of the form

f ∶=
k
∑
i=1

ti1Ai

for some pairwise disjoint measurable sets Ai and non-negative constants ti ∈R⩾0.
The definition of a Poisson point process implies that

E
ˆ

S
f dΛ =

k
∑
i=1

tiEΛ(Ai) =
k
∑
i=1

tiµ(Ai) =
ˆ

S
f dµ,

as required. ∎

Exercise 5.6. Let (Λn)n⩾1 be a sequence of point processes that converges in law to
a Poisson point process Λ with intensity measure µ , and fix a measurable set A ⊆ S
with µ(∂A) = 0. Show that the sequence of random variables (Λn(A))n⩾1 converges
in law to Λ(A).
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5.4 Extremes of i.i.d. random variables

We now analyze the asymptotic behaviour of extreme values of i.i.d. random vari-
ables, which is most conveniently phrased in terms of the convergence to a Poisson
point process. We view this as a fundamental result in probability theory, essentially
on par with the central limit theorem, and we hope that the reader will appreciate
to find a brief and self-contained presentation of this result. It will also inform our
analysis of spin glasses, as will be discussed in the next sections and chapter.

Given a sequence (Xn)n⩾1 of i.i.d. random variables, we denote their running
maximum by

Mn ∶= max
1⩽k⩽n

Xk. (5.26)

The most basic question in the study of extreme values is whether there exist se-
quences (an)n⩾1 ⊆R>0 and (bn)n⩾1 ⊆R such that the normalized running maximum,

a−1
n (Mn−bn), (5.27)

converges in law to a non-trivial limit. Under suitable assumptions on the law of the
random variables, it is elementary to obtain the answer to this question. Poisson
point processes allow us to extend this result and capture the joint convergence
in law of the largest values taken by the sequence (Xk)k⩽n, in the limit of large n.
The next proposition makes this precise in the case of random variables with a
polynomial tail distribution.

Proposition 5.13 (Polynomial tail). Let (Xn)n⩾1 be i.i.d. random variables, and
suppose that there exist c > 0,ζ > 0 such that, as x tends to infinity,

P{X1 ⩾ x} ∼ c
xζ

. (5.28)

Then the point process

Λn ∶=
n
∑
k=1

δn−1/ζ Xk
(5.29)

converges in law on R>0 to the Poisson point process with intensity dµ(x) ∶= cζ

xζ+1 dx.

In Proposition 5.13, and similarly throughout, we say for convenience that a
sequence of point processes converges in law on R>0 to mean that it converges in
law in the sense of the vague topology onMδ (R>0). We implicitly understand that
we have equipped R>0 with the Euclidean topology. One may take issue with the
fact that the definition of Λn may involve Dirac masses at locations outside of R>0
if X1 can take values in (−∞,0]. These Dirac masses can be discarded if desired;
in any case, they are not seen by the topology ofMδ (R>0), so their presence is
irrelevant to the question at hand. The display in (5.28) means that xζP{X1 ⩾ x}
converges to c as x tends to infinity.
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Proof. By Proposition 5.7, it suffices to investigate the convergence of the Laplace
transform of Λn, and by Remark 5.8 it suffices to verify (5.17) for a given smooth and
compactly supported function f ∈C∞c (R>0;R⩾0). The independence of (Xk)1⩽k⩽n
implies that

Eexp(−
ˆ +∞

0
f dΛn) =Eexp(−

n
∑
k=1

f (n−1/ζ Xk)) = (Eexp(− f (n−1/ζ X1)))
n
.

The slight difficulty of this proof is that the assumption (5.28) concerns the cu-
mulative distribution function of X1, while it would, for instance, be easier to
directly have access to an assumption on the density of X1. We resolve this through
integration by parts,

E(1−exp(− f (n−1/ζ X1))) =E
ˆ +∞

0
f ′(y)e− f (y)1{y⩽n−1/ζ X1}dy

=
ˆ +∞

0
f ′(y)e− f (y)P{X1 ⩾ n1/ζ y}dy.

The first equality leverages the fact that f (0) = 0. We now fix ε > 0, and observe
that by assumption (5.28), there exists xε > 0 such that for every x ⩾ xε ,

∣xζP{X1 ⩾ x}−c∣ ⩽ ε. (5.30)

Recalling also that f has compact support in R>0, we see that, for n = n(ε) suffi-
ciently large, we have

∣
ˆ +∞

0
f ′(y)e− f (y)P{X1 ⩾ n1/ζ y}dy− c

n

ˆ +∞
0

f ′(y)e− f (y)y−ζ dy∣

⩽ ε

n

ˆ +∞
0
∣ f ′(y)∣e− f (y)y−ζ dy.

The last integral is finite, and can be absorbed up to a reparametrization of ε > 0.
We can now “undo” the integration by parts,

ˆ +∞
0

f ′(y)e− f (y)y−ζ dy =
ˆ +∞

0
f ′(y)e− f (y)

ˆ +∞
0

ζ

xζ+1
1{x⩾y}dxdy

=
ˆ +∞

0

ˆ x

0
f ′(y)e− f (y)dy

ζ

xζ+1
dx

=
ˆ +∞

0
(1−e− f (x)) ζ

xζ+1
dx.

We have thus shown that, for every ε > 0 and every n sufficiently large,

∣Eexp(− f (n−1/ζ X1))−(1−
c
n

ˆ +∞
0
(1−e− f (x)) ζ

xζ+1
dx)∣ ⩽ ε

n
.
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In other words, we have the asymptotic expansion as n tends to infinity

Eexp(− f (n−1/ζ X1)) = 1− c
n

ˆ +∞
0
(1−e− f (x)) ζ

xζ+1
dx+o(1

n
). (5.31)

It thus follows that

lim
n→+∞

(Eexp(− f (n−1/ζ X1)))
n
= exp(−

ˆ +∞
0
(1−e− f (x)) cζ

xζ+1
dx).

By Proposition 5.9, the latter expression is the Laplace transform of a Poisson point
process on R>0 with intensity dµ(x) = cζ

xζ+1 dx. This completes the proof. ∎

Since
´ +∞

1 x−(ζ+1)dx < +∞, the limit Poisson point process appearing in Propo-
sition 5.13 contains only a finite number of points in the interval [1,+∞). Heuristi-
cally, it thus makes sense to think of Proposition 5.13 as capturing the law of the
largest values of (Xk)k⩽n. However, Proposition 5.13 actually falls short of allowing
us to assert this; in particular, one cannot infer the asymptotic behaviour of the
running maximum Mn from Proposition 5.13 as stated. The reason is that the topol-
ogy ofMδ (R>0) does not allow us to test for properties that require “observing”
the point process arbitrarily far away towards infinity; for instance, if we add a
Dirac mass at position n to Λn, then this does not affect the convergence of Λn in
Mδ (R>0). Fortunately, it is easy to amend for this shortcoming by choosing a
topology more adapted to our needs. Indeed, we can compactify the interval R>0
at +∞ to obtain the set (0,+∞], equipped for instance with the distance

d(x,y) ∶= ∣e−x−e−y∣, (5.32)

with the understanding that e−∞ = 0. Writing dµ(x) ∶= cζ

xζ+1 dx, we note that the
Poisson point process with intensity µ appearing in Proposition 5.13 is a valid
point process inMδ ((0,+∞]). Indeed, since µ([1,+∞]) = µ([1,+∞)) < +∞, the
measure µ is locally finite also on (0,+∞], and likewise for the Poisson point
process. We can strengthen the statement of Proposition 5.13 so that it is now stated
with respect to the more demanding topology ofMδ ((0,+∞]).

Proposition 5.14. Let (Xn)n⩾1 be i.i.d. random variables, and suppose that there
exist c > 0, ζ > 0 such that (5.28) holds as x tends to infinity. The point process Λn
in (5.29) converges in law on (0,+∞] to the Poisson point process with intensity
dµ(x) ∶= cζ

xζ+1 dx.

Proof. The proof is almost identical to that of Proposition 5.13. The only difference
is that the set Cc((0,+∞];R⩾0) contains functions that may not have compact
support in R>0, but instead converge to some limit at +∞. As before, it suffices
to verify (5.17) for functions f ∈C∞c ((0,+∞];R⩾0), and one can also impose that
f is constant over [M,+∞] for M is sufficiently large, by density. The proof of
Proposition 5.13 then applies without further modification. ∎
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Propositions 5.13 and 5.14 can be refined so that we also learn about the index
at which a given extreme value is occurring; see Exercise 5.7.

To further clarify that Proposition 5.14 indeed captures the asymptotic behaviour
of the extremes of the sequence (Xn)n⩾1, we now deduce from it the asymptotic
behaviour of the k largest values of (X`)`⩽n, for each fixed k. To state this result, we
first make a simple observation concerning the Poisson point process Λ appearing
in Proposition 5.14. We recall that the Poisson point process Λ has only a finite
number of points falling in the interval [1,+∞), so we can enumerate its support
decreasingly. Moreover, since

´ +∞
0 x−(ζ+1)dx is infinite, the support of Λ is infinite

almost surely. So with probability one, there exist u1 ⩾ u2 ⩾⋯ such that Λ =∑+∞n=1 δun .

Proposition 5.15. Let (Xn)n⩾1 be i.i.d. random variables, and suppose that there
exist c > 0, ζ > 0 such that (5.28) holds as x tends to infinity. Denote by X1,n ⩾ X2,n ⩾
⋯⩾Xn,n the decreasing ordering of the sequence (Xk)1⩽k⩽n. Let Λ be a Poisson point
process with intensity dµ(x) ∶= cζ

xζ+1 dx, and let u1 ⩾ u2 ⩾⋯ be such that Λ =∑+∞n=1 δun .
For each integer k ⩾ 1, the vector

n−1/ζ (X1,n,X2,n, . . . ,Xk,n) (5.33)

converges in law to (u1, . . . ,uk) as n tends to infinity.

Proof. We introduce the set

C ∶= {λ ∈Mδ ((0,+∞]) ∣

λ =
+∞
∑
n=1

δyn for a strictly decreasing sequence (yn)n⩾1 ⊆R>0}

of point processes with no repeated points in their support. Recall that every measure
inMδ ((0,+∞]) must be locally finite, and in particular, every λ ∈Mδ ((0,+∞])
has a finite number of points in [1,+∞]. Fix a positive integer k, and denote by
F ∶ Mδ ((0,+∞]) → Rk the mapping such that F(λ) outputs the vector of the k
largest elements in the support of λ ; while this will be irrelevant for our purposes,
we can decide to complete F(λ) with zeros in case λ has fewer than k elements in
its support. The key step of the proof is to observe that the mapping F is continuous
at every λ ∈ C. In other words, if (λn)n⩾1 ⊆Mδ ((0,+∞]) converges to some λ ∈ C,
then it must be that F(λn) converges to F(λ). Indeed, let (yn)n⩾1 ⊆R>0 be a strictly
decreasing sequence with λ =∑+∞n=1 δyn , and observe that every function of the form

f (y) ∶=min((a(y−b))+,1),

for arbitrary a,b > 0, belongs to Cc((0,+∞];R). Choosing a = k and b = y1 ±
k−1, with k > 0 sufficiently large, it is not difficult to conclude that the largest
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point in λn converges to the largest point in λ . We can repeat the procedure
recursively, choosing b = y2±k−1, then b = y3±k−1, and so on, thereby concluding
that (F(λn))n⩾1 converges to F(λ) as claimed. At this point, recall the notation Λn

in (5.29). Since the intensity measure dµ(x) ∶= cζ

xζ+1 dx does not contain any atoms,
there are no repeated points in Λ, and the point process Λ thus belongs to C with
probability one. By Proposition 5.14 and Exercise A.10, we deduce that F(Λn)
converges in law to F(Λ), as desired. ∎

Recall the definition of the random variable Mn in (5.26). As a simple conse-
quence of Proposition 5.15, which can also be established by a very direct and
elementary computation, we obtain the convergence in law of n−1/ζ Mn. The limit
law is characterized by the fact that, for every x > 0,

lim
n→+∞

P{Mn ⩽ n1/ζ x} = exp(−c
ˆ +∞

x

ζ

yζ+1
dy) = exp(−cx−ζ ). (5.34)

A random variable whose cumulative distribution function is given, for x > 0, by
x↦ exp(−x−ζ ) is called a Fréchet law of parameter ζ > 0. For i.i.d. random variables
(Xn)n⩾1, in order that there exist sequences (an)n⩾1 ⊆R>0 and (bn)n⩾1 ⊆R such that
the normalized running maximum a−1

n (Mn−bn) converges in law to a Fréchet law
of parameter ζ > 0, it is necessary and sufficient that, for every t > 0, we have

lim
x→+∞

P{X1 ⩾ tx}
P{X1 ⩾ x}

= t−ζ , (5.35)

see for instance Theorem 1.6.2 in [159]. In fact, under this assumption, we can
impose that bn = 0 and ζ log(an) ∼ log(n), and show analogues of Propositions 5.13,
5.14, and 5.15, provided that we re-scale the random variables by a−1

n in place
of n−1/ζ . The proof can be obtained by combining the arguments we have seen with
those in the proof of Theorem 1.6.2 in [159].

Besides Fréchet laws, there are two other possible classes of limit laws for the
re-scaled maximum of i.i.d. random variables. The first class is associated with
random variables with a light tail, such as exponential or Gaussian random variables,
or the logarithm of a random variable satisfying (5.28). For simplicity, we only give
the example of Gaussian random variables here, but the reader can work out other
examples as well.

Proposition 5.16 (Light tail, example of Gaussians). Let (Xn)n⩾1 be independent
standard Gaussian random variables, and let

an ∶= (2logn− loglogn− log(4π))
1
2 . (5.36)

The point process

Λn ∶=
n
∑
k=1

δan(Xk−an) (5.37)
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converges in law on R to a Poisson point process with intensity dµ(x) ∶= e−x dx.

Proof. Fix a function f ∈Cc(R;R⩾0) of compact support, and observe that

Eexp(−
ˆ
R

f dΛn) =Eexp(−
n
∑
k=1

f (an(Xk−an)))

= ( 1√
2πa2

n

ˆ
R

e− f (x) exp(− (x+a2
n)2

2a2
n
)dx)

n

= exp[n log(1− 1√
2πa2

n

ˆ
R
(1−e− f (x))exp(− (x+a2

n)2
2a2

n
)dx)].

Using the definition of the constant an in (5.36) and the fact that f is of compact
support reveals that for x in the support of f ,

n√
2πa2

n

exp(− (x+a2
n)2

2a2
n
) = n√

4π log(n)
exp(−x− 1

2
a2

n)+o(1) = e−x+o(1).

It follows by a Taylor expansion of the logarithm that

Eexp(−
ˆ
R

f dΛn) = exp(−
ˆ
R
(1−e− f (x))e−x dx)+o(1).

Invoking Propositions 5.4 and 5.9 completes the proof. ∎

As before, we can upgrade this statement by compactifying R at +∞, and then
work out the corresponding version of Proposition 5.15.

The last possible class of limit laws concerns random variables whose support is
bounded to the right, and with a probability to fall close to the top of the support that
decays in a power-law fashion. Examples include the uniform law on an interval, or
the law of −1/X1 for X1 satisfying (5.28).

Proposition 5.17 (Polynomial tail near a point). Let (Xn)n⩾1 be i.i.d. random
variables, and suppose that there exist c > 0, α > 0 such that, as x < 0 tends to 0,

P{X1 ⩾ x} ∼ c∣x∣α . (5.38)

Then the point process

Λn ∶=
n
∑
k=1

δn1/α Xk
(5.39)

converges in law on R⩽0 to a Poisson point process with intensity dµ(x) ∶= cα ∣x∣α−1 dx.
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Proof. For a change, we prove this by appealing to Proposition 5.14 and the map-
ping theorem (Proposition 5.10). Letting x increase to zero in (5.38) shows that X1
takes values in R<0, so the random variable Y1 ∶= −1/X1 is well-defined and takes
values in R>0 with probability one. Moreover, as x tends to infinity,

P{Y1 ⩾ x} = P{X1 ⩾ −1/x} ∼ c
xα

.

It follows by Proposition 5.14 that the point process
n
∑
k=1

δn−1/αYk

converges in law on (0,+∞] to a Poisson point process with intensity dν(x) ∶=
cα

xα+1 dx. Together with the mapping theorem applied to the function f (x) ∶= −1
x , this

implies that the point process

Λn ∶=
n
∑
k=1

δ f (n−1/αYk) =
n
∑
k=1

δn1/α Xk

converges in law on R⩽0 to a Poisson point process with intensity µ ∶= ν ○ f −1.
Observe that for any 0 < a < b,

µ([a,b]) =
ˆ −1/b

−1/a

cα

xα+1 dx =
ˆ b

a
cα(−y)α+1 dy

y2 =
ˆ b

a
cα ∣y∣α−1 dy,

where we have used the change of variables y = −1/x. Invoking Propositions 5.4
and 5.9 completes the proof. ∎

As in Proposition 5.15, one can also show that the k largest values of Λn converge
in law to the k largest values of the limit point process.

Exercise 5.7. Under the assumptions of Proposition 5.13, show that the point
process

Λn ∶=
+∞
∑
k=1

δ(k/n,n−1/ζ Xk) (5.40)

converges in law on R⩾0×R>0 to the Poisson point process with intensity dµ(t,x) ∶=
cζ

xζ+1 dt dx.

Exercise 5.8. Fix ζ ∈ (0,1), and let (Xn)n⩾1 be i.i.d. random variables taking values
in R⩾0 such that, as x tends to infinity,

P{X1 ⩾ x} ∼ x−ζ .

Let Λ be a Poisson point process with intensity dµ(x) ∶= ζ

xζ+1 dx, and recall that
there exist u1 ⩾ u2 ⩾⋯ such that Λ =∑+∞n=1 δun .
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(i) Using that ζ < 1, show that
´

xdΛ(x) = ∑+∞n=1 un is finite almost surely. For
every n ⩾ 1, we set

vn ∶=
un

∑+∞k=1 uk
. (5.41)

The goal of this exercise is to show that for each fixed k, after normalization by
∑n

`=1 X`, the ordered k largest values among (X`)`⩽n converge to (v1, . . . ,vk).
Although we will not show it, we mention that this is equivalent to the state-
ment that the point process

n
∑
`=1

δX`/(∑n
i=1 Xi)

converges in law on R>0 to ∑+∞n=1 δvn =
´

δx/
´

ydΛ(y)dΛ(x).

(ii) Show that, for every a > 0 sufficiently large, we have

E(X11{X1∈[a,2a]}) ⩽ 2a1−ζ . (5.42)

(iii) Deduce that

lim
ε→0

limsup
n→+∞

1
n1/ζ

n
∑
k=1

E(Xk1{Xk⩽εn1/ζ}) = 0. (5.43)

(iv) Use this to show that for every ε > 0,

lim
K→+∞

limsup
n→+∞

P{
n
∑
k=K

Xk,n ⩾ εn1/ζ} = 0. (5.44)

(v) Denoting by X1,n ⩾ X2,n ⩾ ⋯ ⩾ Xn,n the decreasing ordering of the sequence
(Xk)1⩽k⩽n, conclude that for every integer k ⩾ 1, the vector

(
X1,n

∑n
`=1 X`

, . . . ,
Xk,n

∑n
`=1 X`

) (5.45)

converges in law to (v1, . . . ,vk). It may be helpful to refer to Exercises A.10
and A.11.

5.5 Poisson-Dirichlet processes

In the context of mean-field spin glasses, the energies attributed to different con-
figurations of the system are not independent random variables. However, one
might imagine that, possibly after clumping together neighbouring configurations
in a suitable way, we ultimately end up with Gibbs weights whose extreme values
resemble the sequence (vn)n⩾1 appearing in Exercise 5.7. This intuition turns out
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to be valid. For a toy model of spin glasses called the random energy model, in
which we assume that the energy values of different configurations are independent,
one can more readily justify this intuition, as will be explained in more detail in
Section 6.3.

In fact, we will ultimately aim to capture not only the asymptotic behaviour of
the largest weights of the Gibbs measure, but also how the configurations associated
with these extreme values are organized in space. Remarkably, this richer structure
is still described by a canonical object called a Poisson-Dirichlet cascade (or also
a Ruelle probability cascade, after [233]). This object is built from a hierarchy of
Poisson point processes as those appearing in Proposition 5.13. In this section, in
order to prepare for the study of Poisson-Dirichlet cascades and their universality,
we delve more deeply into the analysis of this Poisson point process.

The Poisson-Dirichlet point process with parameter ζ > 0 is the Poisson point
process Λ on R>0 with intensity measure

dµ(x) ∶= ζ

xζ+1
dx. (5.46)

For each ε > 0, the Poisson random variable Λ[ε,+∞) has mean µ[ε,+∞), so the
support of Λ has finitely many points in the interval [ε,+∞). Since µ(R>0) is
infinite, the support of Λ has infinitely many points. We can thus order the random
support of Λ into an infinite decreasing sequence (un)n⩾1, so that this Poisson point
process can be represented as

Λ ∶=
+∞
∑
n=1

δun. (5.47)

We will refer to the process (un)n⩾1 as the ordered Poisson-Dirichlet point process
with parameter ζ > 0. In order to be able to normalize this sequence of positive
weights into a probability measure, we need to restrict ourselves to the range
ζ ∈ (0,1) for which the sequence (un)n⩾1 is summable, as shown in the next propo-
sition. For future reference, it will also be convenient to record that for ζ in this
range, the moments of order less than ζ of the sum are finite.

Proposition 5.18. The ordered Poisson-Dirichlet point process (un)n⩾1 with param-
eter ζ > 0 is almost surely summable if and only if ζ ∈ (0,1). Moreover, if ζ ∈ (0,1),
then for every 0 < a < ζ ,

E(
+∞
∑
n=1

un)
a
< +∞. (5.48)

Proof. To see that (un)n⩾1 is summable if and only if ζ ∈ (0,1), recall the repre-
sentation (5.47) of the Poisson point process Λ with intensity measure (5.46), and
observe that

+∞
∑
n=1

un =
ˆ
R>0

xdΛ(x) =
ˆ
(0,1]

xdΛ(x)+
ˆ
(1,+∞)

xdΛ(x).
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The second of these integrals is finite since the support of Λ only has finitely many
points in the interval (1,+∞). If ζ < 1, then the second integral is almost surely
finite since, by Proposition 5.12, its expectation is finite, as

E
ˆ
(0,1]

xdΛ(x) =
ˆ
(0,1]

xdµ(x) =
ˆ 1

0

ζ

xζ
dx.

For ζ ⩾ 1, we write
ˆ
(0,1]

xdΛ(x) =
+∞
∑
n=0

ˆ
(2−(n+1),2−n]

xdΛ(x) ⩾
+∞
∑
n=0

2−(n+1)
Λ(2−(n+1),2−n]. (5.49)

The random variables (Λ(2−(n+1),2−n])n⩾0 are independent Poisson random vari-
ables, and the mean of Λ(2−(n+1),2−n] is

ˆ 2−n

2−(n+1)

ζ

xζ+1
dx = 2ζ n(2ζ −1).

In particular, when ζ ⩾ 1, we can find a constant c > 0 such that for every n ⩾ 0,

P{2−(n+1)
Λ(2−(n+1),2−n] ⩾ c} ⩾ c.

A Borel-Cantelli argument thus ensures that the integral on the left side of (5.49)
diverges almost surely in this case.

Assuming that ζ ∈ (0,1), a similar argument can be used to bound the mo-
ments (5.48). Indeed, using that xa ⩽ 1+x and (x+y)a ⩽ xa+ya for x,y ⩾ 0, we see
that

E(
+∞
∑
n=1

un)
a
⩽E(

ˆ
(0,1]

xdΛ(x))
a
+E(

ˆ
(1,+∞)

xdΛ(x))
a

⩽ 1+E
ˆ
(0,1]

xdΛ(x)+E
ˆ
(1,+∞)

xa dΛ(x)

⩽ 1+
ˆ 1

0

ζ

xζ
dx+

ˆ +∞
1

ζ

x1+ζ−a
dx.

Leveraging the assumption that a < ζ completes the proof. ∎

Henceforth, unless otherwise stated, whenever we speak of a Poisson-Dirichlet
point process, we implicitly assume that ζ ∈ (0,1). Relying on the summability
of (un)n⩾1, we can define the Poisson-Dirichlet process (vn)n⩾1 with parameter
ζ ∈ (0,1) by normalizing the sequence (un)n⩾1,

vn ∶=
un

∑+∞k=1 uk
. (5.50)
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We think of this process as giving the weights of a Gibbs measure supported on the
natural numbers, and we write ⟨⋅⟩ for its associated average, with α denoting the
canonical random variable on this space. We also denote by (α`)`⩾1 independent
copies, or replicas, of the random variable α under this measure. This means that
for any k ⩾ 1 and any bounded function f ∶Nk →R,

⟨ f (α1, . . . ,αk)⟩ ∶= ∑
j1,..., jk⩾1

f ( j1, . . . , jk)v j1⋯v jk . (5.51)

We now prove a fundamental invariance property of the ordered Poisson-Dirichlet
point process that will allow us to explicitly compute free energy functionals
associated with the Gibbs average (5.51). This invariance property will also lead to
deep distributional identities that characterize the Gibbs measures whose ordered
weights are given by a Poisson-Dirichlet process.

Theorem 5.19. Let (Xn,Yn)n⩾1 be i.i.d. pairs of random variables on R>0×Rd in-
dependent of the ordered Poisson-Dirichlet point process (un)n⩾1, with the property
that EXζ

1 < +∞. Let νζ be the probability measure on Rd such that

νζ (B) ∶=
EXζ

1 1{Y1∈B}

EXζ

1

, (5.52)

and let (Y ′n)n⩾1 be a sequence of i.i.d. random variables with law νζ independent of
(un)n⩾1. The Poisson point processes

+∞
∑
n=1

δ(unXn,Yn) and
+∞
∑
n=1

δ((EXζ

1 )1/ζ un,Y ′n)
(5.53)

have the same law.

Proof. Let µ be as in (5.46), and let ν be the law of (X1,Y1) on R>0×Rd . Since
(Xn,Yn)n⩾1 are i.i.d. and independent of (un)n⩾1, the marking theorem (Proposi-
tion 5.11) and the mapping theorem (Proposition 5.10) applied with the function
f (u,x,y) ∶= (ux,y) imply that

+∞
∑
n=1

δ(unXn,Yn)

is a Poisson point process on R>0×Rd with intensity measure (µ⊗ν)○ f −1. Given
two measurable sets A ⊆R>0 and B ⊆Rd , Fubini’s theorem and a change of variables
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reveal that

(µ⊗ν)○ f −1(A×B) =
ˆ
R>0×Rd

ˆ +∞
0

1{ux∈A}1{y∈B}ζ u−1−ζ dudν(x,y)

=
ˆ
R>0×Rd

xζ 1{y∈B}
ˆ +∞

0
1{v∈A}ζ v−1−ζ dvdν(x,y)

= µ(A)
ˆ
R>0×Rd

xζ 1{y∈B}dν(x,y)

=EXζ

1 (µ⊗νζ )(A×B).

Similarly, the marking theorem and the mapping theorem applied with the function
g(u) ∶= (EXζ

1 )1/ζ u imply that

+∞
∑
n=1

δ((EXζ

1 )1/ζ un,Y ′n)

is a Poisson point process with intensity measure (µ ○g−1)⊗νζ . Given a measurable
set A ⊆R>0, a change of variables reveals that

µ ○g−1(A) =
ˆ +∞

0
1{(EXζ

1 )1/ζ u∈A}ζ u−1−ζ du =EXζ

1

ˆ +∞
0

1{v∈A}ζ v−1−ζ dv

=EXζ

1 µ(A).

Since the Poisson point processes in (5.53) have the same intensity measure, they
have the same law by Proposition 5.9. This completes the proof. ∎

Proposition 5.20. Let (Xn)n⩾1 be i.i.d. random variables on R>0 that are inde-
pendent of the ordered Poisson-Dirichlet point process (un)n⩾1 with parameter
ζ ∈ (0,1). If EXζ

1 < +∞, then

E log⟨Xα⟩ =
1
ζ

logEXζ

1 . (5.54)

Proof. Theorem 5.19 implies that

E log
+∞
∑
n=1

unXn =E log
+∞
∑
n=1
(EXζ

1 )
1/ζ

un =
1
ζ

logEXζ

1 +E log
+∞
∑
n=1

un. (5.55)

Remembering the definition of the Poisson-Dirichlet process in (5.50) and of the
Gibbs measure in (5.51) completes the proof. ∎

This result is slightly generalized in Exercise 5.9. Its counterpart for the Poisson-
Dirichlet cascades discussed in the next section will be used to determine the initial
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condition for the infinite-dimensional Hamilton-Jacobi equation arising in the
context of the spin-glass models studied in the next chapter. Another consequence
of the invariance property in Theorem 5.19 is the Bolthausen-Sznitman invariance
for the ordered Poisson-Dirichlet point process.

Lemma 5.21 (Bolthausen-Sznitman invariance for PDP [57]). Let (gn)n⩾1 be a
sequence of independent centred Gaussian random variables with variance v > 0,
independent of the ordered Poisson-Dirichlet point process (un)n⩾1 with parameter
ζ ∈ (0,1). For every t ∈R, the Poisson point processes

+∞
∑
n=1

δ(un exp(t(gn−tvζ/2)),gn−tvζ) and
+∞
∑
n=1

δ(un,gn)

have the same law.

In the context of mean-field spin glasses, we think of each term un as rep-
resenting the asymptotic value of the exponential of the energy of a particular
configuration; and since this energy is a Gaussian random variable, it is relatively
natural to perturb un by multiplying it with the exponential of a Gaussian random
variable as done in Lemma 5.21.

Proof of Lemma 5.21. Consider the sequence of random variables (Xn,Yn)n⩾1 with
values in R>0×R defined by

(Xn,Yn) ∶= (exp(t(gn− tvζ /2)),gn− tvζ).

Using the formula for the moment generating function of a standard Gaussian
random variable reveals that

EXζ

1 = exp(−t2
ζ

2v/2)Eexp(tζ g1) = 1.

It follows by a change of variables that the measure νζ defined by (5.52) is given by

νζ (B) =
1√
2πv

ˆ
R

etζ(x−tvζ/2)1{x−tvζ∈B}e
− x2

2v dx

= 1√
2πv

ˆ
R

1{x−tvζ∈B}e
− (x−tζv)2

2v dx

= P{g1 ∈ B}.

This means that νζ is the Gaussian distribution on R with variance v. Invoking
Theorem 5.19 completes the proof. ∎

The Bolthausen-Sznitman invariance for the ordered Poisson-Dirichlet point
process can be used to establish the Ghirlanda-Guerra identities for the Gibbs
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measure (5.51). These identities were introduced in [127] (see also [11, 129]) in
the context of mean-field spin glasses. It turns out that these identities characterize
the law of the weights of this Gibbs measure, as shown in Exercise 5.10. To state
them, it will be convenient to introduce the “overlap”

R`,`′ ∶= 1{α`=α`′} (5.56)

between two independent samples α` ∈N and α`′ ∈N from the Gibbs measure (5.51).
At this stage it might sound a bit strange to call the indicator function in (5.56) an
overlap, but the choice of terminology will become gradually clear. For now, we
note that one can represent α` and α`′ as elements of a Hilbert space and interpret
the overlap R`,`′ as a scalar product between these elements. To do so, we can
choose the Hilbert space to be the space of square-integrable sequences, denote by
(en)n∈N the canonical basis in this space, and identify each integer n with the vector
en, so that R`,`′ = eα` ⋅e

α`′ . The Ghirlanda-Guerra identities specify the law of the
overlap R1,n+1 given the overlap array Rn ∶= (R`,`′)`,`′⩽n.

Theorem 5.22 (Ghirlanda-Guerra identities for PDP). Let ⟨⋅⟩ denote the Gibbs mea-
sure (5.51) associated with the Poisson-Dirichlet process (vn)n⩾1 with parameter
ζ ∈ (0,1). For every n ⩾ 1 and every bounded and measurable function f of the
overlaps Rn ∶= (R`,`′)`,`′⩽n as defined in (5.56), we have

E⟨ f (Rn)R1,n+1⟩ =
1
n
E⟨ f (Rn)⟩E⟨R1,2⟩+

1
n

n
∑
`=2

E⟨ f (Rn)R1,`⟩, (5.57)

and moreover,
E⟨R1,2⟩ =E⟨1{α1=α2}⟩ = 1−ζ . (5.58)

Proof. Let (gn)n⩾1 be a sequence of independent standard Gaussian random vari-
ables, and for each t ∈R, define the random weights

vt
n ∶=

un expt(gn− ζ t
2 )

∑+∞k=1 uk expt(gk− ζ t
2 )
= un exp(tgn)
∑+∞k=1 uk exp(tgk)

.

We denote by ⟨⋅⟩t the average with respect to the random measure on N with weights
(vt

n)n⩾1. By the Bolthausen-Sznitman invariance (Lemma 5.21), the Poisson point
processes

+∞
∑
n=1

δ(vt
n,gn−tζ) and

+∞
∑
n=1

δ(vn,gn) (5.59)

have the same law. This implies that for any bounded measurable function f of the
overlaps Rn,

0 =E⟨ f (Rn)gα1⟩ =E⟨ f (Rn)(gα1 − tζ)⟩t .
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The first equality is obtained by averaging with respect to the Gaussian randomness
first. Invoking the Gibbs Gaussian integration by parts formula (Theorem 4.6)
reveals that

tE⟨ f (Rn)(
n
∑
`=1

1{α1=α`}−n1{α1=αn+1}−ζ)⟩
t
= 0.

Using once again that the point processes in (5.59) have the same law, recall-
ing (5.56) and rearranging yields

E⟨ f (Rn)R1,n+1⟩ =
1
n
E⟨ f (Rn)(

n
∑
`=1

R1,`−ζ)⟩ = 1
n

n
∑
`=2

E⟨ f (Rn)R1,`⟩+
1−ζ

n
E⟨ f (Rn)⟩.

Taking f = n = 1 shows that 1−ζ =E⟨R1,2⟩, and completes the proof. ∎

Denoting by ν the law of a Bernoulli random variable with probability of suc-
cess 1−ζ , we deduce from Theorem 5.22 that conditionally on Rn, the distribution
of the overlap R1,n+1 is given by the mixture

1
n

ν + 1
n

n
∑
`=2

δR1,`. (5.60)

This means that with probability 1
n , the overlap between αn+1 and α1 is sampled

independently according to ν , and with probability n−1
n it takes one of the existing

values from R1,2, . . . ,R1,n uniformly at random. It turns out that one can in fact infer
the entire law of the weights of the Gibbs measure (5.51) from the Ghirlanda-Guerra
identities, not just this conditional marginal distribution. This point is the subject
of Exercise 5.10.

Exercise 5.9. Under the setting of Proposition 5.20, let (Zn)n⩾1 be i.i.d. random
variables on R>0, independent of (Xn)n⩾1 and of the ordered Poisson-Dirichlet point
process (un)n⩾1 with parameter ζ ∈ (0,1). Assume that EXζ

1 < +∞ and EZζ

1 < +∞.
Show that

E log
+∞
∑
n=1

unXnZn =E log
+∞
∑
n=1

unZn+
1
ζ

logEXζ

1 . (5.61)

Exercise 5.10. Let (v j) j⩾1 denote the decreasing enumeration of the weights of
a random probability measure ⟨⋅⟩ on the natural numbers. We define the overlaps
as in (5.56), suppose that the Ghirlanda-Guerra identities (5.57) hold, and define
ζ ∈ (0,1) so that (5.58) holds. The main purpose of this exercise is to show that the
law of (v j) j⩾1 must be the law of the Poisson-Dirichlet process with parameter ζ .

(i) Consider the closed set

V ∶= {x = (x j) j⩾1 ∣
+∞
∑
j=1

x j ⩽ 1 and (x j) j⩾1 is non-increasing} (5.62)
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of the product space [0,1]N equipped with the product topology, and for each
integer n ⩾ 1, define the function pn ∶V →R by pn(x) ∶= ∑ j⩾1 xn

j . Prove that pn
is continuous for n > 1. Is p1 continuous?

(ii) Prove that the set P of finite linear combinations of constants and products
pn1⋯ pnk for n1, . . . ,nk ⩾ 2 is dense in the space C(V ;R) of continuous func-
tions from V to R endowed with the uniform norm.

(iii) For each k ⩾ 1, n1, . . . ,nk ⩾ 2, and x ∈V , define f (x;n1, . . . ,nk) ∶= ∏k
`=1 pn`(x),

let n ∶= n1+⋯+nk, and set S(n1, . . . ,nk) ∶= E f ((v j) j⩾1,n1, . . . ,nk). Establish
Talagrand’s identities,

S(n1+1,n2, . . . ,nk) =
n1−ζ

n
S(n1, . . . ,nk)+

k
∑
j=2

n j

n
S(n2, . . . ,n j +n1, . . . ,nk).

(iv) Deduce that the law of (v j) j⩾1 is entirely determined by the parameter ζ ,
and conclude that the random probability measure ⟨⋅⟩ must be the Gibbs
measure (5.51) associated with the Poisson-Dirichlet process with parameter ζ .

5.6 Poisson-Dirichlet cascades

Using Poisson-Dirichlet point processes, we now iteratively construct Poisson-
Dirichlet cascades (also called Ruelle probability cascades [233]). As was discussed
at the opening of the previous section, these richer objects will serve as “canonical
models” for describing the geometry of the Gibbs measure of mean-field spin
glasses, in the limit of large system size.

For each fixed choice of integer K ⩾ 1, we build Poisson-Dirichlet cascades as
random probability measures on the index set NK . The case K = 1 will correspond
to the Poisson-Dirichlet process. We think of NK as the set of leaves of a rooted tree
with vertex set

A ∶=N0∪N∪N2∪ . . .∪NK, (5.63)

where N0 ∶= {∅}. In this identification, the root of the tree is the element ∅, and
each vertex α = (n1, . . . ,nk) ∈Nk for k ⩽K −1 has children

αn ∶= (n1, . . . ,nk,n) ∈Nk+1 (5.64)

for all n ∈N. For each vertex α = (n1, . . . ,nk) ∈ A, we write ∣α ∣ = k for its distance
from the root ∅, or equivalently for the number of coordinates in α , and for each
0 ⩽ ` ⩽ k we denote by

α∣` ∶= (n1, . . . ,n`) (5.65)
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the vertex on the path from the root∅ to α at distance ` from the root. We understand
that α∣0 = ∅. For any two leaves α,β ∈NK we write

α ∧β ∶=max{` ⩽K ∣ α∣` = β∣`} (5.66)

for the number of common vertices in the paths from the root ∅ to the leaves α

and β .

∅

1

1,1 1,2 1,3

2

2,1 2,2 2,3

3

3,1 3,2 3,3

N

N2

NK−1

NK

α β
K

K − 1

2

α ∧ β1

0

Figure 5.1 The ancestry lines of the leaves α and β meet at the first level of this regular
tree of infinite degree and depth K.

Although the Poisson-Dirichlet cascade will be indexed by α ∈NK , its construc-
tion will involve random variables indexed by vertices of the entire tree A. Given a
sequence of parameters

0 = ζ0 < ζ1 < . . . < ζK < ζK+1 = 1, (5.67)

for each non-leaf vertex α ∈ A∖NK , let Λα be the Poisson-Dirichlet point process
with parameter ζ∣α ∣+1; we construct these point processes independently from one
another as α varies. We denote by (uαn)n⩾1 the ordered Poisson-Dirichlet point
process corresponding to Λα . In this way, parent vertices α ∈ A∖NK enumerate
independent Poisson point processes Λα , while child vertices αn ∈A∖N0 enumerate
individual points uαn. To each node α ∈ A, we associate the quantity

wα ∶= ∏
1⩽`⩽K

uα∣`. (5.68)

We would now like to define the Poisson-Dirichlet cascade as the random measure
on NK with weights

vα ∶=
wα

∑β∈NK wβ

. (5.69)

This is possible due to an analogue of Proposition 5.18.
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Lemma 5.23. The sum ∑α∈NK wα is finite with probability one.

Proof. The proof proceeds by induction on K. The case K = 1 is the content of
Proposition 5.18, so let us assume that the result holds when we sum over K −1 ⩾ 1
levels, and prove it for sums over K levels. Notice that for every α ∈NK−1 and n ∈N,
we have wαn =wαuαn, and therefore

∑
α∈NK

wα = ∑
α∈NK−1

∑
n∈N

wαn = ∑
α∈NK−1

wα ∑
n∈N

uαn.

For each α ∈ A∖NK , let Uα ∶= ∑n∈Nuαn, so that

∑
α∈NK

wα = ∑
α∈NK−1

wαUα = ∑
α∈NK−2

∑
n∈N

wαnUαn = ∑
α∈NK−2

wα ∑
n∈N

uαnUαn.

Observe that for each α ∈NK−2, the random variables (Uαn)n⩾1 are i.i.d. since the
Poisson point processes (Λαn)n⩾1 are. Moreover, as ζK−2 < ζK−1, Proposition 5.18
implies that

E(Uαn)ζK−2 =E(
ˆ +∞

0
xdΛαn(x))

ζK−2
< +∞.

It follows by Theorem 5.19 that (uαnUαn)n⩾1 and (cuαn)n⩾1 for c ∶= (EUζK−2
α1 )1/ζK−2

are Poisson point processes with the same intensity measure. In particular,

∑
n∈N

uαnUαn
d= c∑

n∈N
uαn = cUα , (5.70)

where d= denotes equality in distribution. Since the quantities on the right side
of (5.70) are i.i.d. over α ∈NK−2 and independent of (wα)α∈NK−2 , it follows that
∑α∈NK wα is finite with probability one if and only if

∑
α∈NK−2

wαUα = ∑
α∈NK−2

∑
n∈N

wαuαn = ∑
α∈NK−1

wα

is. Invoking the induction hypothesis completes the proof. ∎

Definition 5.24 (Poisson-Dirichlet cascade). The Poisson-Dirichlet cascade with
parameters (5.67) is the family (vα)α∈NK obtained by normalizing the (wα)α∈NK ,
that is, for every α ∈NK ,

vα ∶=
wα

∑β∈NK wβ

. (5.71)

We stress that the Poisson-Dirichlet cascade is defined as the family of weights
(vα)α∈NK , as opposed to the set of these weights. While the precise labelling of
the weights will not be important, we do care to keep track of the underlying tree
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structure. In other words, we are interested in the knowledge of (vα)α∈NK up to the
action of the bijections of NK that preserve the tree structure.

We think of this cascade as giving the weights of a Gibbs measure supported on
the set NK , and we write ⟨⋅⟩ for its associated average, with α denoting the canonical
random variable. We write (α`)`⩾1 to denote independent copies, or replicas, of
the random variable α under this measure. This means that for any k ⩾ 1 and any
bounded function f ∶ (NK)k →R,

⟨ f (α1, . . . ,αk)⟩ ∶= ∑
α1,...,αk∈NK

f (α1, . . . ,αk)vα1⋯vαk . (5.72)

We now generalize the explicit formula obtained in Proposition 5.20 and the
Ghirlanda-Guerra identities in Theorem 5.22 from the setting of the Poisson-
Dirichlet processes to that of Poisson-Dirichlet cascades. It will be convenient
to introduce a sequence (ωk)0⩽k⩽K of i.i.d. uniform random variables on [0,1].
These uniform random variables can be used to generate any random variable tak-
ing values in a complete separable metric space, as explained in Exercise 5.11 in
the simple case of real-valued random variables. We give ourselves a measurable
function

XK ∶= XK(ω0, . . . ,ωK) (5.73)

from [0,1]K to R. Assuming that EexpζKXK < +∞, we now show that certain
functionals associated with the Gibbs measure (5.72) can be computed recursively
by considering the sequence

Xk ∶= Xk(ω0, . . . ,ωk) ∶=
1

ζk+1
logEωk+1 expζk+1Xk+1 (5.74)

defined for 0 ⩽ k ⩽ K −1. By continuity, see Exercise 5.12, we take X−1 ∶= Eω0X0.
These functionals will come up in the definition of enriched free energies in the
next chapter.

Theorem 5.25. Let (ωβ )β∈A be a family of independent uniform random variables
on [0,1], independent of the Poisson-Dirichlet cascade (vα)α∈NK , and let X−1 be
defined recursively via (5.74). We have

E log⟨expXK(ω∅,ωα∣1, . . . ,ωα∣K−1,ωα)⟩ = X−1. (5.75)

In order to avoid ambiguities, we emphasize that on the left side of (5.75), the
random variable α takes values in NK , is sampled according to the Gibbs measure
defined in (5.72), and that ∅,α∣1, . . . ,α∣K−1,α denote the sequence of ancestors of
α , starting from the root, as defined in (5.65). The expectation ⟨⋅⟩ only averages
over the random variable α , while the expectation E averages the weights (5.71) of
the Gibbs measure as well as the random variables (ωβ )β∈A. On the other hand, the
recursive calculation defining X−1 only involves much simpler recursive averages
over the random variables ωK, . . . ,ω0.
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Proof of Theorem 5.25. First, we observe that by Jensen’s inequality and a simple
induction, for −1 ⩽ k ⩽K,

EexpζKXk =E(Eωk+1 expζk+1Xk+1)ζK/ζk+1 ⩽EexpζKXk+1 ⩽EexpζKXK < +∞,

so the sequence (Xk)−1⩽k⩽K is well-defined. To simplify notation, for each leaf
α ∈ NK , write Ωα ∶= (ω∅,ωα∣1, . . . ,ωα∣K−1,ωα) for the sequence of uniform ran-
dom variables along the path joining α to the root of the tree. In this notation,
equality (5.75) may be written as

E log ∑
α∈NK

wα expXK(Ωα) =E log ∑
α∈NK

wα +X−1.

It turns out to be more convenient to establish a slightly more general equality. Let
Z > 0 be a random variable with EZζK < +∞ and let (Zα)α∈NK be a sequence of i.i.d.
copies of Z independent of all other random variables. We will prove that

E log ∑
α∈NK

wαZα expXK(Ωα) =E log ∑
α∈NK

wαZα +X−1, (5.76)

and that both sides are well-defined by induction on K. The case K = 1 is a conse-
quence of Proposition 5.20 in the form (5.55), or more directly, of the rephrasing
given in Exercise 5.9. Indeed, conditionally on the randomness of ω∅,

E log∑
n∈N

unZn expX1(ω∅,ωn) =E log∑
n∈N

unZn+
1
ζ1

logEexpX1(ω∅,ω1)

=E log∑
α∈N

wαZα +X0.

Averaging with respect to the randomness of ω∅ establishes (5.76) for K = 1. Let
us therefore suppose that the result holds for K−1 ⩾ 1 and prove it for K. For each
α ∈NK−1 we write Ωαn ∶= (Ωα ,ωαn), so that

∑
α∈NK

wαZα expXK(Ωα) = ∑
α∈NK−1

∑
n∈N

wαnZαn expXK(Ωαn)

= ∑
α∈NK−1

wα ∑
n∈N

uαnZαn expXK(Ωα ,ωαn). (5.77)

Denote by FK−1 the σ -algebra generated by (wα)α∈NK−1 and (Ωα)α∈NK−1 , and ob-
serve that for each α ∈NK−1, the random variables (uαn)n⩾1, (Zαn)n⩾1 and (ωαn)n⩾1
are independent of FK−1. It follows that

E[(Zαn expXK(Ωα ,ωαn))ζK ∣ FK−1]1/ζK = c(Eωαn expζKXK(Ωα ,ωαn))1/ζK

= cexpXK−1(Ωα)
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for c ∶= (EZζK)1/ζK . Theorem 5.19 now implies that conditionally on FK−1,

∑
n∈N

uαnZαn expXK(Ωα ,ωαn)
d= cUα expXK−1(Ωα)

for Uα ∶= ∑n∈Nuαn, and where we recall that d= denotes equality in distribution.
Conditionally on FK−1, both sides of this distributional equality are independent
over α ∈NK−1, so substituting into (5.77) reveals that conditionally on FK−1,

∑
α∈NK

wαZα expXK(Ωα)
d= c ∑

α∈NK−1
wαUα expXK−1(Ωα).

Averaging over the randomness of FK−1 gives this equality in distribution uncondi-
tionally. The particular choice of XK = 0 yields the distributional equality

∑
α∈NK

wαZα
d= c ∑

α∈NK−1
wαUα ,

so proving (5.76) is reduced to establishing the equality

E log ∑
α∈NK−1

wαUα expXK−1(Ωα) =E log ∑
α∈NK−1

wαUα +X−1. (5.78)

By Proposition 5.18, the random variables (Uα)α∈NK−1 satisfy

EUζK−1
α =E(

ˆ
xdΛα(x))

ζK−1
< +∞

and are i.i.d. and independent of all other random variables in (5.78). Since the
equation (5.78) is of the same type as (5.76) with K replaced by K−1 and (Zα)α∈NK

replaced by (Uα)α∈NK−1 , invoking the induction hypothesis completes the proof. ∎

In Chapter 6, we will use this result to compute the initial condition for the
Hamilton-Jacobi equation associated with spin-glass models. For this purpose, it
will be convenient to establish a slightly more general version. Instead of just con-
sidering K+1 sources of randomness (ωk)0⩽k⩽K , we generate N(K+1) independent
random variables (ωk,i)0⩽k⩽K,1⩽i⩽N sampled from the uniform distribution on [0,1],
and instead of just considering one function XK , we give ourselves N measurable
functions

XK,i ∶= XK,i(ω0,i, . . . ,ωK,i) (5.79)

for i ∈ {1, . . . ,N}. Assuming that EexpζKXK,i <+∞, we recursively define, for every
k ∈ {−1, . . . ,K−1} and i ∈ {1, . . . ,N},

Xk,i ∶= Xk,i(ω0,i, . . . ,ωk,i) ∶=
1

ζk+1
logEωk+1,i expζk+1Xk+1,i. (5.80)

Once again, by continuity, we understand that X−1,i ∶= Eω0,iX0,i. The next result
states that this more general iterative procedure can be used to calculate more
complicated averages with respect to the Poisson-Dirichlet cascade ⟨⋅⟩.
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Corollary 5.26. Let N ⩾ 1 be an integer, let (ωβ ,i)β∈A,1⩽i⩽N be a family of inde-
pendent uniform random variables on [0,1] independent of the Poisson-Dirichlet
cascade (vα)α∈NK , and for each i ∈ {1, . . . ,N}, let X−1,i be defined recursively
via (5.80). We have

1
N
E log⟨exp

N
∑
i=1

XK,i(ω∅,i,ωα∣1,i, . . . ,ωα∣K−1,i,ωα,i)⟩ =
1
N

N
∑
i=1

X−1,i. (5.81)

Proof. The main point is to realize that we can apply Theorem 5.25 to compute
the term on the left side of (5.81). Indeed, we can find a measurable mapping
f = ( f1, . . . , fN) ∶ [0,1]→ [0,1]N that sends Lebesgue measure on [0,1] to Lebesgue
measure on [0,1]N (a simple splitting of the binary expansion of a real number
will do). Letting (ωk)0⩽k⩽K be independent uniform random variables on [0,1], the
random variables ( fi(ωk))0⩽k⩽K,1⩽i⩽N have the same law as the (ωk,i)0⩽k⩽K,1⩽i⩽N in
the definition of the variables Xk,i; and integrating each ωk from k =K downwards
to k = 0 corresponds to integrating (ωi,k)1⩽i⩽N in the exact same way.

Let YK ∶= ∑N
i=1 XK,i. By independence,

EexpζKYK =
N
∏
i=1

EexpζKXK,i < +∞.

Using again independence and an induction from k =K−1 to k = 0, we verify that

Yk ∶=
1

ζk+1
logEωk+1 expζk+1Yk+1 =

N
∑
i=1

Xk,i,

and similarly for k = −1. The result is therefore a consequence of Theorem 5.25. ∎

We now turn our attention to extending the Ghirlanda-Guerra identities (Theo-
rem 5.22) to the setting of Poisson-Dirichlet cascades. To define the analogue of the
overlap (5.56), we fix a sequence

0 = q−1 ⩽ q0 < q1 < . . . < qK < qK+1 = +∞, (5.82)

and define the overlap between two independent samples α` and α`′ from the
Poisson-Dirichlet cascade ⟨⋅⟩ by

R`,`′ ∶= q
α`∧α`′ . (5.83)

In the context of mean-field spin glasses, we will think of this overlap R`,`′ as
representing the scalar product between the configurations whose Gibbs weights
are represented by vα`

and vα`′ .
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In order to interpret the overlap (5.83) as a scalar product, we fix a separable
Hilbert space H and let (eα)α∈A be an orthonormal family in H. For each α ∈NK ,
we define hα ∈H by

hα ∶=
K
∑
k=0
(qk−qk−1)

1/2
eα∣k , (5.84)

and observe that for every α1,α2 ∈NK ,

hα1 ⋅hα2 =
α

1∧α
2

∑
k=0
(qk−qk−1) = qα1∧α2 = R1,2. (5.85)

In other words, if we identify each leaf α ∈NK with the element hα ∈H, then the
overlap (5.83) between two leaves α1 and α2 becomes the scalar product between
their representatives hα1 and hα2 in H.

To prove the Ghirlanda-Guerra identities (5.57) for the Poisson-Dirichlet cas-
cades, we will rely on a generalization of the Bolthausen-Sznitman invariance
property (Lemma 5.21). For technical reasons, to extend the Bolthausen-Sznitman
invariance property to the setting of the Poisson-Dirichlet cascade, it will be useful
to first assume that q0 = 0 in the sequence (5.82). This assumption will be lifted with
ease when we prove the Ghirlanda-Guerra identities, since these identities possess a
natural invariance property as we vary the sequence (qk)0⩽k⩽K .

Given a family (zα)α∈A∖N0 of independent standard Gaussian random variables,
we introduce the family (Zq(α))α∈NK of Gaussian random variables defined by

Zq(α) ∶=
K
∑
k=0
(qk−qk−1)

1/2
zα∣k =

K
∑
k=1
(qk−qk−1)

1/2
zα∣k . (5.86)

Notice that the covariance structure

EZq(α1)Zq(α2) = qα1∧α2 = R1,2 (5.87)

of these random variables matches the definition of the overlaps of the Poisson-
Dirichlet cascade introduced in (5.83). As a side remark, we also point out that if
we view the Zq(α)’s as elements of the Hilbert space of square-integrable random
variables on the underlying probability space, then the mapping α↦Zq(α) provides
us with a second way to realize the overlap (5.83) as a scalar product.

As was mentioned below Definition 5.24, we want to keep track of the infor-
mation on the weights (vα)α∈NK up to relabellings of NK that preserve the tree
structure. It would therefore not suffice for our purposes to obtain a version of the
Bolthausen-Sznitman invariance that only concerns the set of weights (wα)α∈NK , or
equivalently the point process ∑α∈NK δwα

(whether or not each wα is paired with
some Gaussian random variable is not the point we want to stress here). To make
this precise, we say that a bijection π ∶NK →NK preserves the tree structure if for
every α,β ∈NK , we have that π(α)∧π(β) = α ∧β .
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Lemma 5.27 (Bolthausen-Sznitman invariance for PDC [57]). Suppose that q0 = 0
in the sequence (5.82), let (Zq(α))α∈NK denote the family of Gaussian random vari-
ables defined by (5.86) and taken independently of the random weights (wα)α∈NK

defined in (5.68), and let b ∶= ∑K
k=1(qk − qk−1)ζk. For each t ∈ R, there exists a

random permutation π ∶NK →NK that preserves the tree structure such that

(wπ(α) exp(t(Zq(π(α))−
tb
2
)),Zq(π(α))− tb)

α∈NK
(5.88)

has the same law as (wα , Zq(α))α∈NK .

Proof. Given a family (zα)α∈A∖N0 of independent standard Gaussian random vari-
ables, we define the family (gα)α∈A∖N0 of independent Gaussian random variables
with variances v∣α ∣ ∶= q∣α ∣−q∣α ∣−1 by

gα ∶= (q∣α ∣−q∣α ∣−1)1/2zα .

For each α ∈ A∖NK , we recall that Λα = (uαn)n⩾1 is a Poisson-Dirichlet point
process with parameter ζ∣α ∣+1 ∈ (0,1), and that these processes are independent as α

varies in A∖NK . It follows by the Bolthausen-Sznitman invariance in Lemma 5.21
that the Poisson point processes

Λ
+
α ∶=

+∞
∑
n=1

δ(uαn,gαn) and Λ
′
α ∶=

+∞
∑
n=1

δ(uαn exp(t(gαn−tv∣α ∣+1ζ∣α ∣+1/2)),gαn−tv∣α ∣+1ζ∣α ∣+1)

have the same law. We also observe that the random variables (Λ+α)α∈A∖NK are
independent, and this also holds for (Λ′α)α∈A∖NK . We denote by πα ∶N→N the
permutation that sorts the random variables (uαn exp(t(gαn− tv∣α ∣+1ζ∣α ∣+1/2)))n⩾1
decreasingly, and set

U+α ∶= (uαn,gαn)n⩾1,

U ′α ∶= (uαπα(n) exp(t(gαπα(n)−
tv∣α ∣+1ζ∣α ∣+1

2
)),gαπα(n)− tv∣α ∣+1ζ∣α ∣+1)

n⩾1
.

Since (Λ+α)α∈A∖NK and (Λ′α)α∈A∖NK have the same law, we have that (U+α )α∈A∖NK

and (U ′α)α∈A∖NK have the same law as well. We next define recursively the permu-
tation π ∶ A→A such that π(∅) = ∅ and, for every α ∈ A∖NK and n ∈N,

π(αn) ∶= π(α)ππ(α)(n). (5.89)

The fact that π is indeed a permutation can be shown by induction on the depth of the
tree. Notice also that π preserves the parent-child relationship: by (5.89), for every
α ∈ A∖NK and n ∈N, the permutation π sends αn to a child of π(α). In particular,
for each k ∈ {0, . . . ,K}, the restriction of π to Nk is a permutation that preserves the
tree structure. We now show by induction that, for every k ∈ {0, . . . ,K−1},

(U+α )∣α ∣⩽k
d= (U ′

π(α))∣α ∣⩽k, (5.90)
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where we recall that d= denotes equality in distribution. We have already observed
that the identity (5.90) is valid when k = 0. Proceeding inductively, suppose that
the identity is valid with k ∈ {0, . . . ,K −2}. Recall that the two families (U+α )∣α ∣⩽k
and (U+α )∣α ∣=k+1 are independent, and that the random variables (U+α )∣α ∣=k+1 are
independent as α varies. We denote by Fk the σ -algebra generated by (U+α )∣α ∣⩽k.
The family (U ′

π(α))∣α ∣⩽k is Fk-measurable, and so is (π(α))∣α ∣⩽k+1. Conditionally
on Fk, the random variables (U ′α)∣α ∣=k+1 are independent, and the family has the
same law as (U+α )∣α ∣=k+1. Since (π(α))∣α ∣=k+1 is Fk-measurable, this remains valid
for the family (U ′

π(α))∣α ∣=k+1. Combining these observations yields (5.90) with k
replaced by k+1. We can now deduce from (5.90) that

(
K
∏
k=1

uα∣k ,
K
∑
k=1

gα∣k)
α∈NK

has the same law as

(
K
∏
k=1

uπ(α)∣k exp(t(gπ(α)∣k −
tvkζk

2
)),

K
∑
k=1
(gπ(α)∣k − tvkζk))

α∈NK
.

Recalling the definition of the family of Gaussian random variables (Zq(α))α∈NK ,
of the weights (wα)α∈NK and of the constant b =∑K

k=1 vkζk completes the proof. ∎

Theorem 5.28 (Ghirlanda-Guerra identities for PDC [62]). For every n ⩾ 1, every
bounded and measurable function f of the overlaps Rn = (R`,`′)`,`′⩽n, and every
bounded and measurable function ψ ∶R→R, we have

E⟨ f (Rn)ψ(R1,n+1)⟩ =
1
n
E⟨ f (Rn)⟩E⟨ψ(R1,2)⟩+

1
n

n
∑
`=2

E⟨ f ψ(R1,`)⟩ (5.91)

and

E⟨ψ(R1,2)⟩ =
K
∑
k=0

ψ(qk)(ζk+1−ζk). (5.92)

In particular, for every k ∈ {0, . . . ,K},

E⟨1{α1∧α2=k}⟩ = ζk+1−ζk. (5.93)

Proof. We first explain why we can assume that q0 = 0 without loss of generality.
Notice that the overlap R`,`′ is obtained by first computing α` ∧α`′ , and then
mapping the result through the function

{ {0, . . . ,K} → R
k ↦ qk.
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Defining R̂`,`′ ∶= α`∧α`′ , it therefore follows that (5.91)-(5.92) can be rephrased as
the statement that, for every f ∶Rn×n→R and ψ ∶R→R,

E⟨ f (R̂n)ψ(R̂1,n+1)⟩ =
1
n
E⟨ f (R̂n)⟩E⟨ψ(R̂1,2)⟩+

1
n

n
∑
`=2

E⟨ f ψ(R̂1,`)⟩,

and

E⟨ψ(R̂1,2)⟩ =
K
∑
k=0

ψ(k)(ζk+1−ζk).

Notice that these two statements do not depend on the choice of the values of
(q0, . . . ,qK). In other words, as soon as we can prove Theorem 5.28 for some choice
of (q0, . . . ,qK) satisfying (5.82), we can deduce its validity for all such choices. In
particular, there is no loss of generality in imposing that q0 = 0. (This invariance is
not valid for Lemma 5.27, since the law of Zq depends on the choice of (q0, . . . ,qK).)

So we assume from now on that q0 = 0. Moreover, as the overlap takes only
finitely many values q0, . . . ,qK , by polynomial interpolation we may assume with-
out loss of generality that ψ is a polynomial. By linearity it therefore suffices
to prove (5.91) and (5.92) when ψ(x) = xm for some integer m ∈ N. Since (5.91)
and (5.92) are clear for m = 0, let us assume that m ⩾ 1. Given a family (zα)α∈A∖N0

of independent standard Gaussian random variables, we introduce the family
(Zqm(α))α∈NK of Gaussian random variables defined by

Zqm(α) ∶=
K
∑
k=1
(qm

k −qm
k−1)

1/2
zα∣k .

We write (wα)α∈NK for the random weights in (5.68), and let

bm ∶=
K
∑
k=1
(qm

k −qm
k−1)ζk.

For each t ∈R and α ∈NK , we define the random weight

vt,m
α ∶=

wα expt(Zqm(α)− tbm
2 )

∑α∈NK wα expt(Zqm(α)− tbm
2 )
=

wα exp(tZqm(α))
∑α∈NK wα exp(tZqm(α))

,

and denote by ⟨⋅⟩t,m the Gibbs measure (5.72) with the weights (vα)α∈NK replaced
by the weights (vt,m

α )α∈NK . By the Bolthausen-Sznitman invariance (Lemma 5.27),
there exists a random permutation π ∶NK →NK that preserves the tree structure such
that the families

(vt,m
π(α),Zqm(π(α))− tbm)α∈NK and (v0,m

α ,Zqm(α))
α∈NK (5.94)
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have the same law. This implies that for any f ∶Rn×n→R,

0 =E⟨ f (Rn)Zqm(α1)⟩
=E ∑

α1,...,αn∈NK

f (Rn)Zqm(α1)v0,m
α1 ⋯v0,m

αn

=E ∑
α1,...,αn∈NK

f (Rn)(Zqm(π(α1))− tbm)vt,m
π(α1)⋯vt,m

π(αn)

=E ∑
α1,...,αn∈NK

f (Rn)(Zqm(α1)− tbm)vt,m
α1⋯vt,m

αn

=E⟨ f (Rn)(Zqm(α1)− tbm)⟩t,m,

where in the fourth equality, we used that π is a permutation that preserves the tree
structure to ensure that the action of π on Rn is trivial. Invoking the Gibbs Gaussian
integration by parts formula (Theorem 4.6) yields that

tE⟨ f (Rn)(
n
∑
`=1

Rm
1,`−nRm

1,n+1−bm)⟩
t,m
= 0.

Using again that the families in (5.94) have the same law with π preserving the tree
structure, recalling that R1,1 = qK by (5.83), and rearranging, we obtain that

E⟨ f (Rn)Rm
1,n+1⟩ =

1
n

n
∑
`=2

E⟨ f (Rn)Rm
1,`⟩+

qm
K −bm

n
E⟨ f (Rn)⟩. (5.95)

Taking f = n = 1 reveals that

E⟨Rm
1,2⟩ = qm

K −bm =
K
∑
k=0

qm
k (ζk+1−ζk),

where we have used that ζ0 = 0 and ζK+1 = 1. This establishes (5.92) and, together
with (5.95), also gives (5.91). Taking ψ(x) ∶= 1{x=qk} for 0 ⩽ k ⩽ K completes the
proof. ∎

As was already mentioned several times, in the notion of Poisson-Dirichlet
cascade, we pay attention to keeping track of the tree structure of NK , as opposed to
simply studying the set of weights {wα ∣ α ∈NK}, or equivalently the point process
∑α∈NK δwα

. In fact, this point process has the same law as the point process∑+∞n=1 δvn ,
if (vn)n⩾1 is a Poisson-Dirichlet process of parameter ζK . This can be shown by
induction on the number of layers of the cascade. Alternatively, one can use
Theorem 5.28 to observe that the overlap defined by R̃`,`′ ∶= 1{α`=α`′} satisfies the
Ghirlanda-Guerra identities with E⟨1{α1=α2}⟩ = 1−ζK , and then use Exercise 5.10
to conclude. But the cascade (wα)α∈NK itself is richer as it keeps track of how the
indices are organized in the tree structure, an aspect which cannot be recovered
from ∑α∈NK δwα

.



202 Chapter 5 Poisson point processes and extreme values

Exercise 5.11. Given a right-continuous and non-decreasing function F ∶R→[0,1],
let F−1 ∶ (0,1) →R denote its quantile transform,

F−1(x) ∶= inf{s ∈R ∣ F(s) ⩾ x}. (5.96)

(i) Show that for all t ∈R and x ∈ (0,1), we have F(t) < x if and only if t <F−1(x).

(ii) Let X be a real-valued random variable, and denote by F its distribution
function, F(x) ∶= P{X ⩽ x}. Letting U be a uniform random variable on the
interval [0,1], show that F−1(U) and X have the same law.

Exercise 5.12. Fix ε > 0 and a random variable X such that Eexpε ∣X ∣ < +∞. Prove
that

lim
ζ↘0

1
ζ

logEexpζ X =EX . (5.97)

5.7 Ultrametricity as a universal property

We have already discussed informally that Poisson-Dirichlet cascades provide us
with “canonical models” for the asymptotic behaviour of Gibbs measures of mean-
field spin glasses. The goal of this section is to give some substance to this claim.
We start by discussing background motivation in more detail.

In the context of mean-field spin glasses, as in statistical inference, we will be
concerned with the study of a random Gibbs measure on RN , and we would like to
find ways to capture its asymptotic behaviour. To fix notation, we denote by ⟨⋅⟩N
the expectation with respect to this random Gibbs measure over RN , with canonical
random variable σ , and by (σ `)`⩾1 independent copies of the random variable σ

under ⟨⋅⟩N . Recalling that ⟨⋅⟩N is itself random, we denote by E the expectation with
respect to this additional source of randomness.

It is not at all clear how to capture asymptotic properties of a sequence of
probability measures defined on spaces of increasingly large dimension. Besides,
the spin-glass models we aim to consider have a very high degree of symmetry, and
there is no axis or other subspace of small dimension that we would particularly
want to concentrate upon. A very fruitful approach is to keep track of the array of
overlaps R ∶= (R`,`′)`,`′⩾1 between the different replicas. For one thing, it is shown
in Lemma 1.7 of [210] that the law of this overlap array characterizes the underlying
Gibbs measure up to a random orthogonal transformation. Since the models we
will study have a very large group of symmetries, due to their mean-field character,
there is hopefully not much loss of information if one only understands the Gibbs
measure up to an orthogonal transformation. Moreover, under modest assumptions
on the model, we know a priori that each coordinate of R takes values in a bounded
set, say [−1,1] if the support of the Gibbs measure on RN is contained in B√N(0).
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So we can at least extract convergent subsequences, and wonder about properties of
the limit overlap array. From now on we denote by R any such limit overlap array.

The array R must be symmetric positive semi-definite. Notice also that if π

is a permutation of finitely many indices in N, then the array (Rπ(`),π(`′))`,`′⩾1
has the same law as the array R. Under these assumptions, the Dovbysh-Sudakov
theorem (Theorem 1.7 in [210]) asserts that the off-diagonal part of the array R can
still be represented as an array of overlaps. More precisely, there exists a random
probability measure G on some Hilbert space, with associated expectation ⟨⋅⟩, such
that, using again the notation (σ `)`⩾1 for the replicas under this new probability
measure, the off-diagonal elements (R`,`′)`≠`′ of the limit array have the same joint
distribution as (σ ` ⋅σ `′)`≠`′ . This result can be thought of as a variant of the de
Finetti representation theorem for exchangeable sequences.

Notice that in the statement of the Dovbysh-Sudakov theorem, we excluded
the diagonal elements of the array R from the representation. The result does not
extend to on-diagonal elements as stated, as their might be some “loss of norm”
as we pass to the limit. We illustrate that this phenomenon of loss of norm can
indeed happen on a simple example. We take the uniform measure on the sphere of
radius

√
N in RN as the sequence of Gibbs measures (so these are non-random in

this example). In this case, the limit overlap array is R`,`′ = 1{`=`′}. The only choice
then to represent the off-diagonal elements of this array is to take the limit Gibbs
measure to be concentrated at the origin, so σ ` ⋅σ ` = 0, and this does not match the
on-diagonal elements of the limit overlap array that are equal to 1.

For convenience, until the end of this section, we redefine R to be (R`,`′)`≠`′ , i.e.
we leave aside the on-diagonal elements.

A crucial observation for mean-field spin-glass models is that, up to the addition
of a small perturbation to the Hamiltonian, we can ensure that any possible limit
overlap array R must satisfy the Ghirlanda-Guerra identities. The perturbation
added to the Hamiltonian is small in the sense that it does not alter the value of the
limit free energy. We have seen in Exercise 5.10 that when the overlap can only
takes values in {0,1}, an overlap array that satisfies the Ghirlanda-Guerra identities
must have the same law as that of a Poisson-Dirichlet process. It turns out that
this observation admits a powerful generalization: if an overlap array satisfies the
Ghirlanda-Guerra identities, then it must have the same law as that of a Poisson-
Dirichlet cascade. This is the operationalization of the idea that Poisson-Dirichlet
cascades provide us with “canonical models” for what the Gibbs measure of a
mean-field spin glass asymptotically looks like.

To state this characterization of Poisson-Dirichlet cascades precisely, let us start
by recapitulating its context. We study a random probability measure G supported
on the unit ball of a Hilbert space H, whose expectation we denote by ⟨⋅⟩, and
we denote by E the expectation with respect to the randomness of the random
measure G itself; we write (σ `)`⩾1 for the replicas under G, and R = (σ ` ⋅σ `′)`≠`′
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stands for their overlap array. We denote by ζ the law of one overlap under E⟨⋅⟩, so
that for every measurable set A ⊆R,

ζ(A) =E⟨1{R1,2∈A}⟩. (5.98)

We say that the measure G satisfies the Ghirlanda-Guerra identities if for every n ⩾ 1,
every bounded measurable function f of the overlaps Rn = (R`,`′)`≠`′⩽n, and every
bounded measurable function ψ ∶R→R, we have

E⟨ f (Rn)ψ(R1,n+1)⟩ =
1
n
E⟨ f (Rn)⟩E⟨ψ(R1,2)⟩+

1
n

n
∑
`=2

E⟨ f (Rn)ψ(R1,`)⟩. (5.99)

Equivalently, the measure G satisfies the Ghirlanda-Guerra identities if, for every
n ⩾ 1, the law of R1,n+1 under E⟨⋅⟩ conditionally on Rn is given by

1
n

ζ + 1
n

n
∑
`=2

δR1,`. (5.100)

Theorem 5.29 (Characterization of PDC [209]). If the random probability mea-
sure G satisfies the Ghirlanda-Guerra identities (5.99), then the law of the infinite
overlap array R = (R`,`′)`≠`′ under E⟨⋅⟩ is uniquely determined by the probability
measure ζ in (5.98). Moreover, the measure ζ is supported on R⩾0.

Concerning the on-diagonal elements (σ ` ⋅σ `)`⩾1, one can show that the Ghir-
landa-Guerra identities impose that G be supported on the sphere in H whose radius
is the square root of the top of the support of ζ . In other words, denoting by q∗ the
top of the support of ζ , we have, with probability one under E⟨⋅⟩, that

∥σ `∥2 = q∗. (5.101)

We refer to Theorem 2.15 of [210] for a (relatively simple) proof of this fact.
When the support of ζ is finite, we already know from Theorem 5.28 that the

overlap array associated with a Poisson-Dirichlet cascade satisfies the Ghirlanda-
Guerra identities, with ζ being the measure given by

ζ =
K
∑
k=0
(ζk+1−ζk)δqk . (5.102)

Recall also from the discussion around (5.84)-(5.85) that the overlap array asso-
ciated with a Poisson-Dirichlet cascade can indeed be interpreted as a matrix of
scalar products for a suitable choice of random probability measure. Theorem 5.29
thus tells us that, when the support of ζ is finite, the law of the overlap array
coming from G is the same as that coming from the Poisson-Dirichlet cascade with
parameters (ζk)1⩽k⩽K and (qk)0⩽k⩽K chosen so that (5.102) holds.
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For more general ζ , we have not yet built a canonical example of an overlap
array satisfying (5.98) and the Ghirlanda-Guerra identities. This can be achieved by
approximation, as will be explained in Corollary 5.32.

In short, up to extending the notion of Poisson-Dirichlet cascade and its asso-
ciated overlap array by continuity, we see that if a random probability measure G
satisfies the Ghirlanda-Guerra identities, then the law of its overlap array must be
that of a Poisson-Dirichlet cascade.

The fundamental step in the proof of Theorem 5.29 involves the concept of
ultrametricity. We say that the support of the measure G is ultrametric if, with
probability one over E⟨⋅⟩, we have

R1,3 ⩾min(R1,2,R2,3). (5.103)

In such a circumstance, we may also say that the overlap array R is ultrametric.
Recalling from (5.101) that G is supported on a sphere, we can rephrase the ul-
trametricity property as the statement that, with probability one over E⟨⋅⟩, we
have

∥σ1−σ
3∥ ⩽max(∥σ1−σ

2∥,∥σ2−σ
3∥). (5.104)

Equivalently, this says that with probability one over E, every choice of three points
σ1, σ2, and σ3 in the support of G must be such that (5.104) holds. In words, this
stronger form of the triangle inequality means that every triangle has its two longest
sides of equal length. Indeed, for any three points σ1, σ2, and σ3 in the support
of G, if the segment joining σ1 to σ2 happens to be the shortest of the three sides
of the triangle, then (5.104) ensures that the segment joining σ1 to σ3 is at most
as long as that joining σ2 to σ3; and by symmetry, we conclude that these two
segments have the same length. In terms of overlaps, this means that among R1,2,
R1,3, and R2,3, the two smallest overlaps must be equal.

The notion of ultrametricity is intimately tied with tree structures. For conve-
nience we will assume that the support of the overlap distribution ζ is finite, and
argue that the ultrametricity property allows us to organize the support of G into the
leaves of a tree, so that the distance (or equivalently for us: the overlap) between
any two leaves α and β is only a function of α ∧β , the depth of their most recent
common ancestor. Indeed, the ultrametricity property implies that, for every p in
the support of ζ , the relation

σ
1 ∼p σ

2 ⇐⇒ R1,2 ⩾ p (5.105)

defines an equivalence relation. We then draw the tree as in Figure 5.1, so that the
nodes at depth k represent the equivalence classes of the relation ∼p for p the kth

atom in the support of ζ , i.e. for p = qk if ζ is as in (5.102). We refer to Lemma 4.2
of [70] for a more precise construction.
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In particular, one can easily see that Poisson-Dirichlet cascades satisfy the
ultrametricity property (5.103), using that for any three leaves α , β , γ we have

α ∧γ ⩾min(α ∧β ,β ∧γ). (5.106)

The crucial step towards establishing Theorem 5.29 is to show that the Ghirlanda-
Guerra identities imply ultrametricity. The setting for this result is as discussed in
the paragraph above (5.98) and we do not restate it here.

Theorem 5.30 (Panchenko ultrametricity [209]). If the random probability mea-
sure G satisfies the Ghirlanda-Guerra identities (5.99), then its support is ultramet-
ric.

We refer the interested reader to Theorem 2.14 in [210] for a proof of this result,
and to [207] for a simpler argument in the special case when the support of ζ is
finite.

Once Theorem 5.30 is established, the proof of Theorem 5.29 is comparatively
less demanding. We first illustrate its core mechanics by deriving the joint law of
the three overlaps (R1,2,R1,3,R2,3), assuming the validity of the Ghirlanda-Guerra
identities and the ultrametricity property. We will then generalize this argument and
thereby deduce Theorem 5.29 from Theorem 5.30.

x

y

z

Figure 5.2 When ultrametricity holds, the law of the triple of overlaps (R1,2,R1,3,R2,3) is
supported on the set of points (x,y,z) ∈ [0,1]3 with two equal coordinates smaller than the
third.

Theorem 5.30 states that the joint law of the triple of overlaps (R1,2,R1,3,R2,3)
is supported on the set of points with two equal coordinates smaller than the third.
This set is displayed in Figure 5.2. We first write down the law of this triple away
from the diagonal {x = y = z}. Starting with the off-diagonal part of the red isosceles
triangle in Figure 5.2, which corresponds to the set {(x,y,z) ∈ [0,1]3 ∣ z = y < x}, we
have that for every bounded measurable function ψ ∶R3→R,

E⟨ψ(R1,2,R1,3,R2,3)1{R1,2>R1,3=R2,3}⟩ =
1
2

ˆ
{x>y}

ψ(x,y,y)dζ(x)dζ(y). (5.107)
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Indeed, recall that ultrametricity forces the two smallest overlaps among (R1,2, R1,3,
R2,3) to always be equal, so

E⟨ψ(R1,2,R1,3,R2,3)1{R1,2>R1,3=R2,3}⟩ =E⟨ψ(R1,2,R1,3,R1,3)1{R1,2>R1,3}⟩, (5.108)

and then the Ghirlanda-Guerra identities and (5.98) yield (5.107). By symmetry,
we can also write down the joint law of the three overlaps on the off-diagonal parts
of the blue and green triangles in Figure 5.2.

To determine the joint law on the diagonal {(x,y,z) ∈ [0,1]3 ∣ x = y = z}, we can
use ultrametricity to write

E⟨ψ(R1,2,R1,3,R2,3)1{R1,2=R1,3=R2,3}⟩
=E⟨ψ(R1,2,R1,2,R1,2)1{R1,2=R1,3}⟩−E⟨ψ(R1,2,R1,2,R1,2)1{R1,2=R1,3<R2,3}⟩.

Using ultrametricity once again, we can drop the condition R1,2 = R1,3 in the second
term since R1,2 < R2,3, and then use the Ghirlanda-Guerra identities to find that

E⟨ψ(R1,2,R1,3,R2,3)1{R1,2=R1,3=R2,3}⟩

= 1
2

ˆ
ψ(x,x,x)dζ(x)+ 1

2

ˆ
{x=y}

ψ(x,x,x)dζ(x)dζ(y)

− 1
2

ˆ
{x<z}

ψ(x,x,x)dζ(x)dζ(z)

= 1
2

ˆ
{x>y}

ψ(x,x,x)dζ(x)dζ(y)+
ˆ
{x=y}

ψ(x,x,x)dζ(x)dζ(y).

Bringing all terms together, we conclude that for any bounded measurable function
ψ ∶R3→R, we have

E⟨ψ(R1,2,R1,3,R2,3)⟩

= 1
2

ˆ
{x>y}
(ψ(x,y,y)+ψ(y,x,y)+ψ(y,y,x)+ψ(x,x,x))dζ(x)dζ(y)

+
ˆ
{x=y}

ψ(x,x,x)dζ(x)dζ(y). (5.109)

This shows in particular that the law of the triple (R1,2,R1,3,R2,3) is uniquely
determined by the probability measure ζ , as stated in Theorem 5.29. We now
generalize this argument and show that, under the assumptions of ultrametricity and
of the validity of the Ghirlanda-Guerra identities, the law of the full overlap array is
completely determined in terms of the law of R1,2. We recall that the setting is as
explained in the paragraph above (5.98).
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Proposition 5.31. If the random probability measure G satisfies the Ghirlanda-
Guerra identities and its support is ultrametric, then the law of the infinite overlap
array R = (R`,`′)`≠`′ under E⟨⋅⟩ is uniquely determined by the probability measure ζ

in (5.98).

Proof. Let n ⩾ 1 be an integer. We show the following statement by induction
on n. Letting (`1,`

′
1), . . . ,(`n,`′n) be n distinct pairs of integers such that `k < `′k for

every k ⩽ n, letting ≼1, . . . ,≼n−1∈ {=,<}, and letting ψ ∶Rn →R be a bounded and
measurable function, the quantity

E⟨ψ(R`1,`
′
1
, . . . ,R`n,`′n)1{R`1,`

′
1
≼1⋯≼n−1R`n,`′n}

⟩

is uniquely determined from the knowledge of the law ζ of the overlap R1,2.
The claim is immediate for n = 1. We now assume that the claim is valid

for some integer n ⩾ 1, and give ourselves (`1,`
′
1), . . . ,(`n+1,`

′
n+1) as above, order

relations ≼1, . . . ,≼n∈ {=,<}, and a bounded and measurable function ψ ∶Rn+1→R.
By symmetry between the replicas, we may assume that `n+1 = 1 and `′n+1 = L,
where L is the largest element of {`′1, . . . ,`′n+1}. We distinguish two cases.

Case 1. Suppose that the order relation ≼n is <. If

L ∉ {`′1, . . . ,`′n}, (5.110)

then we can readily apply the Ghirlanda-Guerra identities to simplify the expectation
we aim to compute, since we recall that conditionally on RL−1, the law of R1,L
under E⟨⋅⟩ is given by (5.100) (substituting n by L−1 there). Otherwise, let k ⩽ n
be such that `′k = L. By ultrametricity, the events Rk,L < R1,L and R1,k < R1,L are
identical, and on this event, we have that R1,k = Rk,L. In the expression

E⟨ψ(R`1,`
′
1
, . . . ,R`n,`′n,R1,n+1)1{R`1,`

′
1
≼1⋯≼n−1R`n,`′n<R1,n+1}⟩,

we can therefore substitute every occurrence of Rk,L among R`1,`
′
1
, . . . ,R`n,`′n by R1,k.

We can do so for every k such that `′k = L, until we arrive at an expression that
involves no term of the form Rk,L for any k among the overlaps R`1,`

′
1
, . . . ,R`n,`′n .

Once this is done, we can simplify the expression by applying the Ghirlanda-Guerra
identities, as already observed.

Case 2. We now assume that the order relation ≼n is the equality =. There might
be several consecutive occurrences of the equality sign suffixing the sequence
≼1, . . . ,≼n, and our goal is to reduce this number of suffixing equality signs by
at least one, so that by induction, we can ultimately reduce all computations to
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occurrences of Case 1. We write

E⟨ψ(R`1,`
′
1
, . . . ,R`n,`′n,R1,L)1{R`1,`

′
1
≼1⋯≼n−1R`n,`′n=R1,L}⟩

=E⟨ψ(R`1,`
′
1
, . . . ,R`n,`′n,R`n,`′n)1{R`1,`

′
1
≼1⋯≼n−1R`n,`′n}

⟩

−E⟨ψ(R`1,`
′
1
, . . . ,R`n,`′n,R`n,`′n)1{R`1,`

′
1
≼1⋯≼n−1R`n,`′n<R1,L}⟩

−E⟨ψ(R`1,`
′
1
, . . . ,R`n,`′n,R`n,`′n)1{R`1,`

′
1
≼1⋯≼n−1R`n,`′n}

1{R`n,`′n>R1,L}⟩.

The first term on the right side of this equality can be computed by the induction
hypothesis, while the second one is an instance of Case 1. The last term can be
decomposed into a sum, by partitioning the event according to the position of R1,L
relatively to the overlaps R`1,`

′
1
, . . . ,R`n,`′n . That is, we rewrite the last term of the

previous display as a sum of terms of the form

E⟨ψ(R`1,`
′
1
, . . . ,R`n,`′n,R`n,`′n)1{R`1,`

′
1
≼1⋯≼k−1R`k ,`

′
k
≼′kR1,L≼′′k R`k+1,`

′
k+1
≼k+1⋯≼n−1R`n,`′n}

⟩,

for various choices of k and of the order relations ≼′k,≼
′′
k ∈ {=,<}. Since this decom-

position comes from a partitioning of the event R1,L < R`n,`′n , the number of equality
signs suffixing the sequence

≼1, . . . ,≼k−1,≼′k,≼
′′
k ,≼k+1, . . . ,≼n−1

is the same as the number of equality signs suffixing the sequence ≼1, . . . ,≼n−1,
which is indeed one less than in the sequence ≼1, . . . ,≼n we started with. This
shows that we can progressively bring this number to zero, while otherwise only
summing other terms that we can already compute. This completes the induction
argument. ∎

The fact that when G satisfies the Ghirlanda-Guerra identities, the law of R1,2
must be supported on R⩾0 is shown in Exercise 5.13. Theorem 5.29 is now an
immediate consequence of Theorem 5.30 and Proposition 5.31.

As was discussed below the statement of Theorem 5.29, when the measure ζ

in (5.98) has finite support, the overlap arrays associated with Poisson-Dirichlet
cascades are the canonical representatives of random overlap arrays that satisfy
the Ghirlanda-Guerra identities. It is desirable to extend this construction and be
able to also discuss such canonical representatives for more general choices of the
measure ζ . This can easily be achieved by approximation, up to the extraction
of a subsequence. In fact, it follows from Proposition 5.31 that no subsequence
extraction is necessary. In particular, the law of the overlap array associated with a
Poisson-Dirichlet cascade is a continuous function of ζ .

Corollary 5.32. Let M > 0, let (ζn)n⩾1 be a sequence of probability measures with
finite support in [0,M] that converge weakly to a probability measure ζ . For each
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n ⩾ 1, let R(n) = (R(n)`,`′)`≠`′⩾1 denote the overlap array associated with a Poisson-
Dirichlet cascade such that the law of of R(n)1,2 is ζn. Then (R(n))n⩾1 converges in
law in the sense of finite-dimensional distributions.

Proof. Since each entry of R(n) takes values in [0,M], it is clear that we can
extract subsequentially convergent limits. Let R denote one such limit array. By
construction, the overlap R satisfies the Ghirlanda-Guerra identities (5.99) for
continuous functions f and ψ . Using for instance Exercise A.8, we see that this
property guarantees that the conditional law of R1,n+1 given (R`,`′)`≠`′⩽n is the law
displayed in (5.100), and so R satisfies the Ghirlanda-Guerra identities (5.99) for
arbitrary bounded measurable functions f and ψ . By the Portmanteau theorem
(Theorem A.17), we also see that R is ultrametric, and that the law of R1,2 is ζ . By
Proposition 5.31, the law of R is uniquely determined by these properties, so the
proof is complete. ∎

If desired, we can apply the Dovbysh-Sudakov theorem (Theorem 1.7 in [210])
to obtain that the limit overlap array in Corollary 5.32 can be represented in the form
of (σ ` ⋅σ `′)`≠`′ , where (σ `)`⩾1 are independent samples from a random probability
measure G on some Hilbert space.

Exercise 5.13 (Talagrand’s positivity principle). Under the setting explained in the
paragraph above (5.98), we assume that the random probability measure G satisfies
the Ghirlanda-Guerra identities. Our goal is to show that the law ζ of one overlap,
see (5.98), must be supported in R⩾0.

(i) Let A be a measurable subset of R, let n ⩾ 1 be an integer, and let An denote
the event that for every ` ≠ `′ ⩽ n, we have R`,`′ ∈ A. Show that

1An+1 ⩾ 1An(1−
n
∑
`=1

1{R`,n+1∉A}). (5.111)

(ii) Show that for every n ⩾ 1, we have

E⟨1An⟩ ⩾ (ζ(A))n−1. (5.112)

(iii) Conclude that the support of ζ must be a subset of R⩾0.



Chapter 6
Mean-field spin glasses

In this chapter, we enter more firmly into the realm of mean-field spin glasses.
One of the most basic models in this class is the Sherrington-Kirkpatrick (SK)
model. Like the Curie-Weiss model and the models of statistical inference studied
in previous chapters, but unlike the Ising model on Zd , it is a mean-field model, in
the sense that the variables that compose it are mutually exchangeable. And like
the models of statistical inference, but unlike the Ising and Curie-Weiss models,
the Hamiltonian defining the Gibbs measure of the SK model is random; in other
words, the interactions between the variables are disordered. In the late 1970’s,
Giorgio Parisi proposed a self-contained description for the limit free energy of
the SK model, now known as the Parisi formula, using sophisticated non-rigorous
arguments [216, 217, 218]. This progressively led to important progress on the
theoretical understanding of these models [176, 177, 178, 219], at the physics level
of rigour. A mathematical proof of the Parisi formula was then given in the early
2000’s in [131, 249]. A more robust proof was later found in [209, 211] using
the idea of ultrametricity discussed in the previous section, and also inspired by
[11, 13, 21, 57, 127, 206, 207, 208].

As was already touched upon briefly in the overview to this book, there are many
seemingly modest generalizations of the SK model, such as the bipartite model
described in (0.4) and represented in Figure 0.2, that remain poorly understood
mathematically. An important motivation for writing this book is to lay some
groundwork for making progress on this problem.

We will not provide a proof of the Parisi formula in this book. Rather, our goal
is to explain how the Parisi formula relates to the Hamilton-Jacobi approach, and
more specifically, how it can be interpreted as the solution to an infinite-dimensional
Hamilton-Jacobi equation evaluated at a point. In Section 6.1, we describe the
SK model and state the Parisi formula. In Section 6.2, we explore a naive attempt
at enriching the free energy in the SK model by mimicking what we did in the
context of statistical inference. This enriched free energy satisfies an approximate

211
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Hamilton-Jacobi equation, with an error term that is the variance of the overlap
between two replicas. We encountered a similar situation in statistical inference,
and in this context, we could leverage the Nishimori identity to ensure that the error
term vanishes in the limit of large system size. Unfortunately, this is not the case at
low temperature in spin-glass models such as the SK model, and we will need to
refine our approach. In Section 6.3, we briefly discuss a simplification of the SK
model known as the random energy model, in the hope of gaining some insight into
the appropriate way of enriching the free energy. This will hint at a potential role
for the Poisson-Dirichlet cascades already discussed in Section 5.6. In Section 6.4,
we use this object to define a more sophisticated enriched free energy, and argue
informally that this object should satisfy an infinite-dimensional Hamilton-Jacobi
equation, up to an error term that is expected to vanish in the limit of large system
size. Moreover, the non-linearity in the equation associated with the SK model
is convex, so the Hopf-Lax formula suggests a variational representation for the
limit free energy. In Section 6.5, we connect this Hopf-Lax formula with the Parisi
formula. Taking the validity of the Parisi formula for granted, this gives some
substance to the heuristic derivations performed earlier. One of the advantages
of the Hamilton-Jacobi approach is that it leads to the formulation of a natural
conjecture for the limit free energy of more difficult models such as the bipartite
model, for which variational formulas break down. In Section 6.6, we conclude this
chapter by discussing the state of current research on this point.

6.1 The Sherrington-Kirkpatrick model and the Parisi formula

The SK model is often motivated as a pure optimization problem known as the
Dean’s problem. We imagine that the Dean of a university is tasked with dividing
a group of N students indexed by the elements of {1, . . . ,N} into two dormitories
indexed by −1 and +1. An allocation of the N students into the two dormitories can
be identified with a configuration vector

σ = (σ1, . . . ,σN) ∈ ΣN ∶= {−1,+1}N . (6.1)

To decide on dormitory allocations, the Dean is provided with a collection of param-
eters (gi j)i, j⩽N called interaction parameters which describe how much student i
likes or dislikes student j. A positive parameter means that student i likes student j,
while a negative parameter means that student i dislikes student j. The Dean strives
to maximize the “comfort function”

cN(σ) ∶=
N
∑

i, j=1
gi jσiσ j. (6.2)

We define the comfort function in this way so that it most resembles an Ising-type
model; the possibly more natural choice of ∑i, j gi j1{σi=σ j} =

1
2cN(σ)+ 1

2∑i, j gi j
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would not change the analysis much. The story of the Dean is a simple illustration
that “complex” optimization problems of this form arise quite naturally. For arbi-
trary choices of the coefficients (gi j)i, j⩽N , finding near-optimizers to the function
cN is known to be NP-hard [22]. Instead of this worst-case analysis, we would
like to consider the problem of optimizing the function cN for a “typical” instan-
tiation. We encode this by positing that the interaction parameters (gi j)i, j⩽N are
independent standard Gaussian random variables. The key assumption here is that
the random variables are independent and identically distributed; arguing as in the
proof of Theorem 4.24 allows us to extend many results to a much broader class
of distributions, see for instance Exercise 6.4. The Hamiltonian of the SK model
is defined as the comfort function cN(σ), suitably normalized, and for this choice
of independent standard Gaussian interaction parameters (gi j)i, j⩽N . Precisely, for
every σ ∈ ΣN , we set

HN(σ) ∶=
1√
N

N
∑

i, j=1
gi jσiσ j. (6.3)

We may as well think of HN as a function defined on RN . The family (HN(σ))σ∈RN

is a centred Gaussian process with covariance structure

EHN(σ1)HN(σ2) = 1
N

N
∑

i, j=1
σ

1
i σ

1
j σ

2
i σ

2
j =N( 1

N

N
∑
i=1

σ
1
i σ

2
i )

2
=NR2

1,2 (6.4)

that depends on the spin configurations σ1 and σ2 only through their normalized
scalar product, or overlap,

R1,2 ∶=
1
N

σ
1 ⋅σ2 = 1

N

N
∑
i=1

σ
1
i σ

2
i . (6.5)

Notice that we could also have directly defined (HN(σ))σ∈RN by specifying that it
is a centred Gaussian process whose covariance is given by (6.4); the main utility
of the explicit formula (6.3), besides its possibly more intuitive appeal, is that it
guarantees the existence of such a process. The law of (HN(σ))σ∈RN is invariant
under permutations of the coordinates of σ . This is why the SK model is said to be
mean-field. Instead of focusing on analyzing the maximum

1
N

max
σ∈ΣN

HN(σ), (6.6)

and consistently with the rest of the book, we prefer to analyze the free energy

FN(β) ∶=
1
N
E log ∑

σ∈ΣN

exp(βHN(σ)) (6.7)

at each inverse temperature β > 0. The reason for the normalization by
√

N in (6.3)
is that the configurations σ that contribute meaningfully to the sum in (6.7) are such
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that HN(σ) is of order N (see for instance Exercise 6.1), so that the exponential can
be in balance with the cardinality of ΣN . As we vary the parameter β , the sum will
therefore interpolate between a small-β situation in which the main contribution
consists of the very numerous terms that have HN(σ) not very large, and a large-β
situation where the sum is dominated by the few terms for which HN(σ) is very
close to the maximum. For large β , this is made more precise in Exercise 6.3.

A first formula for the limit of the free energy FN(β) was proposed by Sher-
rington and Kirkpatrick in [236]. However, in this same work, they observed that
their formula predicted that the entropy of the limit Gibbs measure would become
negative for large β , but we recall from (1.7) that the entropy is always non-negative,
so their proposed solution could not be valid for large β . A few years later, Giorgio
Parisi [216, 217, 218] proposed a more sophisticated formula now known as the
Parisi formula, which was then established rigorously in [131, 249] (see also [210]).
It states that

lim
N→+∞

FN(β) = inf
ζ∈D[0,1]

(Φζ (0,0)−β
2
ˆ 1

0
tζ(t)dt + log(2)), (6.8)

where Φζ ∶ [0,1]×R→R is the solution to the parabolic equation

⎧⎪⎪⎨⎪⎪⎩

−∂tΦζ (t,x) = β 2(∂ 2
x Φζ (t,x)+ζ(t)(∂xΦζ (t,x))

2) on [0,1]×Rd

Φζ (1,x) = logcosh(x) for x ∈R
(6.9)

solved backwards in time from t = 1 to t = 0, and where the infimum in (6.8) is taken
over the space

D[0,1] ∶= {ζ ∶ [0,1] → [0,1] ∣ ζ is right-continuous and

non-decreasing with ζ(1) = 1} (6.10)

of probability distribution functions on [0,1]. The equation (6.9) is sometimes called
the Parisi PDE. One of the main goals of this chapter is to recast this statement
using the point of view provided by the Hamilton-Jacobi approach. Before doing
this, we mention two directions in which the SK model can be generalized.

On the one hand, the covariance structure (6.4) can be generalized in the fol-
lowing way. Given a sequence (βp)p⩾1 of non-negative numbers that decrease
sufficiently rapidly, the Hamiltonian

HN(σ) ∶= ∑
p⩾1

β
1/2
p HN,p(σ) (6.11)

of the mixed p-spin model on ΣN is given by a linear combination of pure p-spin
Hamiltonians on ΣN ,

HN,p(σ) ∶=
1

N(p−1)/2

N
∑

i1,...,ip=1
gi1...ipσi1⋯σip , (6.12)
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where (gi1...ip)i1,...,ip⩽N are independent standard Gaussian random variables, inde-
pendent of each other as we vary p. The Hamiltonian (6.11) is a centred Gaussian
process with covariance structure

EHN(σ1)HN(σ2) =Nξ(R1,2) (6.13)

that depends on the spin configurations σ1 and σ2 only through their overlap R1,2,
and where we have set

ξ(x) ∶= ∑
p⩾1

βpxp. (6.14)

The SK model corresponds to the choice βp =1{p=2}, and so ξ(x) = x2. More than the
explicit form of HN(σ) given in (6.11) and (6.12), it is the function ξ characterizing
the covariance structure of the Hamiltonian that will play a central role. In particular,
this function is essentially the non-linearity in the Hamilton-Jacobi equation we will
need to consider. We refer to the function ξ as the covariance function. The limit
of the free energy

FN(β) ∶=
1
N
E log ∑

σ∈ΣN

exp(βHN(σ)) (6.15)

in the mixed p-spin models admits a variational representation analogous to (6.8).
The connection between the SK model and the Hamilton-Jacobi approach that will
be presented in this chapter extends to this more general setting [195].

Another possible way to generalize the SK model consists in considering that
each coordinate of the configuration vector (6.1) can itself be a vector; the bipartite
model is an example of such a setup. For illustration, we briefly motivate the
bipartite model through a slightly modified version of the Dean’s problem.

Suppose the Dean of a university actually needs to split students and tutors into
two groups. We assume that there is an equal number N of students and tutors for
convenience, but this is inessential. An allocation of the 2N students and tutors into
the two groups +1 and −1 can be identified with a vector

σ = (σ1,σ2) = ((σ1,1,σ1,2, . . . ,σ1,N),(σ2,1,σ2,2, . . . ,σ2,N)) ∈ Σ
2
N , (6.16)

where σ1 ∈ ΣN encodes the group allocations for the students and σ2 ∈ ΣN the group
allocations for the tutors. We postulate that the Dean now only has access to a
collection of parameters (gi j)i, j⩽N , where gi j encodes the quality of the interaction
between student i and tutor j. The Dean aims to maximize the comfort function

cN(σ) ∶=
N
∑

i, j=1
gi jσ1,iσ2, j (6.17)

over all σ ∈ Σ2
N . Choosing the interaction parameters (gi j)i, j⩽N to be independent

standard Gaussian random variables and re-scaling cN , we define the bipartite model



216 Chapter 6 Mean-field spin glasses

[119, 120, 151, 155] whose Hamiltonian on Σ2
N is given by

HN(σ) ∶=
1√
N

N
∑

i, j=1
gi jσ1,iσ2, j. (6.18)

The Hamiltonian (6.18) is a centred Gaussian process with covariance structure

EHN(σ1)HN(σ2) =N(
σ1

1 ⋅σ2
1

N
)(

σ1
2 ⋅σ2

2
N
). (6.19)

So in this model, the relevant covariance function takes the two “intra-community”
overlaps as arguments, and is defined on R2 by

ξ(x,y) ∶= xy. (6.20)

The fundamental difference between the bipartite model and the mixed p-spin
models is that the covariance function ξ is always convex for the latter, but not
for the former. To be precise, for scalar (as opposed to vector) models, for which
the function ξ is defined on R, the relevant question is whether the function is
convex on R⩾0, and the function in (6.14) satisfies this convexity property for every
choice of the non-negative parameters (βp)p⩾1. Due to the absence of a comparable
convexity property for the bipartite model, the limit of the free energy

1
N
E log ∑

σ∈Σ2
N

exp(βHN(σ)) (6.21)

with HN as in (6.18) has not yet been identified. As will be explained below, the
Hamilton-Jacobi approach suggests a natural conjecture for what this limit could
be. Similar considerations apply to essentially arbitrary vector spin-glass models,
provided that the covariance of the Hamiltonian can be expressed as a function of
the matrix of overlaps between the different types of coordinates. The dividing line
between the models for which the limit free energy has or has not been identified
is exactly whether or not the underlying covariance function ξ is convex. In the
most general models in which each spin configuration σ can be decomposed into a
fixed number D of different components σ = (σ1, . . . ,σD), the covariance function
takes the matrix of all possible overlaps N−1(σ1

d ⋅σ
2
d′)d,d′⩽D as input, and the precise

question is whether the function ξ is convex over the space of D-by-D positive
semi-definite matrices.

Exercise 6.1. For the Hamiltonian HN defined in (6.3), show that there exists a
constant C < +∞ such that

C−1N ⩽Emax
σ∈ΣN

HN(σ) ⩽CN. (6.22)
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Exercise 6.2. For the Hamiltonian HN defined in (6.3), prove that almost surely,

lim
N→+∞

∣ 1
N

max
σ∈ΣN

HN(σ)−
1
N
Emax

σ∈ΣN
HN(σ)∣ = 0. (6.23)

Exercise 6.3. For the Hamiltonian HN defined in (6.3) and the free energy FN(β)
defined in (6.7), show that

1
N
Emax

σ∈ΣN
HN(σ) ⩽ FN(β) ⩽

1
N
Emax

σ∈ΣN
HN(σ)+

log(2)
β

. (6.24)

Exercise 6.4. Fix a collection (xi j)i, j⩽N of i.i.d. centred random variables with
variance one, and write

Hx
N(σ) ∶=

1√
N
∑

i, j⩽N
xi jσiσ j and F

x
N(β) ∶=

1
N
E log ∑

σ∈ΣN

exp(βHx
N(σ)) (6.25)

for their associated SK Hamiltonian and free energy. Denote by FN(β) the Gaussian
SK free energy (6.7). Assuming that E∣x11∣3 < +∞, show that for every inverse
temperature parameter β > 0,

limsup
N→+∞

∣Fx
N(β)−FN(β)∣ = 0. (6.26)

6.2 A first attempt at a Hamilton-Jacobi approach to the SK
model

We now return to the setting of the SK model. We prefer to slightly change notation
and thereby slightly generalize the model in the following way. We fix a probability
measure P1 on Σ1, and for each integer N ⩾ 1, let

PN ∶= (P1)⊗N (6.27)

denote its N-fold tensor product. Given a “time” parameter t ⩾ 0, we introduce the
free energy

F
○
N(t) ∶= −

1
N
E log

ˆ
ΣN

exp(
√

2tHN(σ)−Nt)dPN(σ), (6.28)

where the Hamiltonian HN is that of the SK model, see (6.3). When P1 is the
uniform measure on Σ1, the free energy (6.7) we had defined earlier is related to
this new quantity according to

FN(β) = −F
○
N(

β 2

2
)+ log(2)+ β 2

2
. (6.29)
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So we may as well focus on trying to compute F
○
N(t) for each value of t ⩾ 0. By (6.4),

for every σ ∈ ΣN , the random variable HN(σ) is a centred Gaussian with variance N,
so

Eexp(
√

2tHN(σ)−Nt) = 1. (6.30)

In the language of statistical physics, one could say that we have normalized the
Hamiltonian so that the annealed free energy is always zero. Combining (6.30)
with Jensen’s inequality shows that F

○
N(t) ⩾ 0; this is why we chose to include a

negative sign in front of the free energy (6.28). Choosing to parameterize the inverse
temperature by

√
2t in place of β is convenient because then the variance of the

Gaussian field
√

2tHN(σ) scales linearly, as a Brownian motion would. As was the
case in Chapter 4, see in particular the discussion around (4.93), this parametrization
then satisfies a certain semigroup property. While we will not dwell much on this
point, this choice of parametrization will allow us in particular to obtain expressions
for the derivatives of the free energy that do not explicitly depend on t.

In the expression (6.28) for the free energy, we chose to use an integral symbol
for what turns out to be just a sum over ΣN , possibly with some suitable weights if the
measure P1 is not centred. The main reason we chose to denote it in this way is that
the results we will discuss concerning F

○
N(t) can be generalized straightforwardly

to the case where the measure P1 is arbitrary with compact support, provided that we
replace the term −Nt in (6.28) by −t ∣σ ∣4/N, or more generally by −Ntξ(N−1∣σ ∣2)
for the mixed p-spin models in (6.13). In other words, this term should be half the
variance of

√
2tHN(σ), so that the identity in (6.30) generalizes nicely. If the limit

of F
○
N(t) can be identified, then the possibly unwelcome extra term −Ntξ(N−1∣σ ∣2)

can later be removed by essentially quoting Proposition 3.20 on the generalized
Curie-Weiss model. This is explained using a slightly different argument in Section 5
of [197]. Here we will stick to the case in which P1 is supported on Σ1, in which
case this additional term is constant and therefore does not cause any difficulty.

As in Section 4.3 on statistical inference, there is no hope of finding a partial
differential equation solved by the function F

○
N(t) in (6.28) on its own. Rather, we

need to enrich the Hamiltonian to contain more terms, so that the free energy then
depends on additional parameters. The goal then is to find additional terms that
are sufficiently simple that we can analyze them when setting t = 0; but that are
sufficiently expressive that we can compensate any small variation in t by small
variations in the other parameters, thereby obtaining a Hamilton-Jacobi equation.
To get a first rough intuition for what one could do, we start by rewriting the
Hamiltonian HN(σ) for the SK model as

N
∑
i=1
( 1√

N

N
∑
j=1

gi, jσ j)σi. (6.31)

Inspired by the analysis of the previous chapters, we would like to try to only add
terms to the Hamiltonian that do not encode any interaction between the variables;
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in other words, linear functions of σ would be best. We would like to add a term that
would at least somewhat resemble (6.31); since the term 1√

N ∑
N
j=1 gi, jσ j is random,

we may try adding a new term in the Hamiltonian proportional to ∑N
i=1 ziσi, where

z = (z1, . . . ,zN) ∈RN is a standard Gaussian vector.
The brief informal argument we just gave is at best a first hint for what one

could try to do. We will not attempt to make it more precise here, and instead just
proceed with the suggested idea and see how well it fares. So we fix a standard
Gaussian vector z = (z1, . . . ,zN) ∈RN independent of (HN(σ))σ∈RN , and for each
h ⩾ 0, we consider the enriched free energy

FN(t,h) ∶= −
1
N
E log

ˆ
ΣN

exp(
√

2tHN(σ)−Nt +
√

2hz ⋅σ −Nh)dPN(σ). (6.32)

We have kept the practice of adding the compensating term −Nh, i.e. half the vari-
ance of

√
2hz ⋅σ , in the exponential. For measures PN that are not necessarily

supported on ΣN , replacing this term by −h∣σ ∣2 (and −Nt by −Ntξ(N−1∣σ ∣2)) en-
sures that all the calculations below remain valid. As usual, we write ⟨⋅⟩ for the
Gibbs average associated with the Hamiltonian

HN(t,h,σ) ∶=
√

2tHN(σ)−Nt +
√

2hz ⋅σ −Nh, (6.33)

we denote by σ the canonical random variable under ⟨⋅⟩, and by (σ `)`⩾1 independent
copies of σ under ⟨⋅⟩. We stress that the probability measure ⟨⋅⟩ is random, since it
depends on the realization of (HN(σ))σ∈RN (or equivalently, of (gi, j)1⩽i, j⩽N) and z.
Leveraging the Gibbs Gaussian integration by parts formula (Theorem 4.6), it is
readily verified that

∂hFN(t,h) = −
1
N
E⟨ 1√

2h
z ⋅σ −N⟩ =E⟨R1,2⟩, (6.34)

while

∂tFN(t,h) = −
1
N
E⟨ 1√

2t
HN(σ)−N⟩ =E⟨R2

1,2⟩. (6.35)

This implies that

∂tFN(t,h)−(∂hFN(t,h))
2 =Var(R1,2), (6.36)

where we write Var to denote the variance over all sources of randomness, i.e. with
respect to the measure E⟨⋅⟩. The formula (6.36) looks very similar to what we found
in (3.5) for the Curie-Weiss model and in (4.83) for symmetric rank-one matrix
estimation, and suggests that the limit f of the enriched free energy FN should
satisfy the Hamilton-Jacobi equation

∂t f −(∂h f )2 = 0 on R>0×R>0. (6.37)



220 Chapter 6 Mean-field spin glasses

Unfortunately, unlike previous models, in the spin-glass setting this guess is too
naive. More precisely, this guess can be shown to be correct for small values of t ⩾ 0,
where it can be used to recover the original formula of Sherrington and Kirkpatrick;
but it fails for large values of t ⩾ 0, where the variance of the overlap R1,2 no longer
vanishes in the large N limit. In the language of statistical physics, the SK model
exhibits “replica symmetry breaking” at low temperature. Physicists use the phrase
“replica symmetry breaking” because if we sample four replicas σ1, . . . ,σ4 from the
Gibbs measure, one could expect by symmetry to witness the same overlap value
between σ1 and σ2 and between σ3 and σ4. The symmetry between the replicas
is not literally broken, but indeed these overlap values will in general be different
because the overlap between two replicas is random, and remains so even in the
limit of large system size.

To sum up, the consideration of the enriched free energy in (6.32) seems to be
pointing in the right direction, but is insufficient, and we therefore need a more
refined way of enriching the free energy.

6.3 Some insight from the random energy model

To gain a deeper understanding of the structure of the Gibbs measure and determine
how to appropriately enrich the free energy (6.28), we take a small detour and
analyze a simplified model called the random energy model, or REM [94]. The
Hamiltonian

√
2tHN(σ) appearing in the free energy (6.28) is a family of Gaussian

random variables indexed by σ ∈ ΣN with variance 2tN. The main difficulty in
understanding the behaviour of this Hamiltonian is that these Gaussian random
variables are correlated, by (6.4). If we consider pure p-spin models instead, then
the covariance between HN(σ1) and HN(σ2) becomes NRp

1,2. For σ1,σ2 ∈ ΣN and
in the limit of large p, this would simplify to N1{R1,2=1}. That is to say, in this limit,
the random variables (HN(σ))σ∈ΣN have become independent. The random energy
model corresponds to setting exactly this as the definition: for a family (Eσ)σ∈ΣN

of independent standard Gaussian random variables, t ⩾ 0 and σ ∈ ΣN , we set

HREM
N (t,σ) ∶=

√
2tNEσ . (6.38)

Our goal in this section is to inquire about the structure of the associated Gibbs
measure,

GREM
N (t,σ) =

expHREM
N (t,σ)

∑τ∈ΣN expHREM
N (t,τ)

, (6.39)

especially for large values of t. The hope is that the Gibbs measure of “true” spin
glasses behaves similarly, possibly after clumping together neighbouring configura-
tions in some way so as to tame the effect of correlations.

Since we are dealing with a family of independent standard Gaussian random
variables, a natural starting point is to appeal to Proposition 5.16. Substituting n
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by 2N there, we introduce the constant

aN ∶= (2N log(2)− log(N)− loglog(2)− log(4π))
1
2 , (6.40)

so that Proposition 5.16 ensures that the point process

∑
σ∈ΣN

δaN(Eσ−aN) = ∑
σ∈ΣN

δ aN√
2tN
(HREM

N (t,σ)−
√

2tNaN) (6.41)

converges in law on R to a Poisson point process with intensity dν(x) ∶= e−x dx. If
we introduce the parameter

ζ ∶=
√

log(2)
t

(6.42)

and observe that aN√
2tN
= ζ +o(1), this suggests that the point process

ΛN ∶= ∑
σ∈ΣN

δ
ζ HREM

N (t,σ)−a2
N

(6.43)

should also converge in law on R to a Poisson point process with intensity ν . Indeed,
the lower-order terms should not impact the convergence. Perhaps the simplest way
to justify this is to essentially repeat the proof of Proposition 5.16.

Proposition 6.1. The point process ΛN in (6.43) converges in law on R to a Poisson
point process with intensity dν(x) ∶= e−x dx.

Proof. Fix a function f ∈Cc(R;R⩾0) of compact support, and observe that

Eexp(−
ˆ
R

f dΛN)

= exp[2N log(1− 1√
4πtNζ 2

ˆ
R
(1−e− f (x))exp(−

(x+a2
N)2

4tNζ 2 )dx)].

Using the definition of the constant aN in (6.40), the asymptotic expansion

a2
N

2tNζ 2 = 1+o(1),

and the fact that f is of compact support reveals that uniformly over x in the support
of f ,

2N
√

4πtNζ 2
exp(−

(x+a2
N)2

4tNζ 2 ) =
2N

√
4πtNζ 2

exp(−x− 1
2

a2
N)+o(1) = e−x+o(1).

It follows by a Taylor expansion of the logarithm that

Eexp(−
ˆ
R

f dΛN) = exp(−
ˆ
R
(1−e− f (x))e−x dx)+o(1).

Invoking Propositions 5.4 and 5.9 completes the proof. ∎
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Together with the mapping theorem (Proposition 5.10) applied to the function
f (x) ∶= ex/ζ , this result implies that the point process

∑
σ∈ΣN

δexp(HREM
N (t,σ)−a2

N/ζ)
(6.44)

converges in law on R>0 to the Poisson point process with intensity measure

dµ(x) ∶= ζ

xζ+1
dx. (6.45)

Notice that the Gibbs measure (6.39) is invariant under translations of the Hamilto-
nian (6.38) by a constant, since

GREM
N (t,σ) =

expHREM
N (t,σ)

∑τ∈ΣN expHREM
N (t,τ)

=
exp(HREM

N (t,σ)−a2
N/ζ)

∑τ∈ΣN exp(HREM
N (t,τ)−a2

N/ζ)
. (6.46)

In view also of Exercise 5.8, this suggests that the point process supported on the
Gibbs weights of the REM should converge in law to the re-normalization of the
Poisson point process with intensity measure (6.45). More precisely, if we assume
that ζ ∈ (0,1) so that the Poisson-Dirichlet process (vn)n⩾1 is well-defined, then
as N tends to infinity we should expect that

∑
σ∈ΣN

δGREM
N (t,σ) converges in law to

+∞
∑
n=1

δvn. (6.47)

Observe that ζ ∈ (0,1) if and only if t > log(2). It is possible to show that in this
regime, the convergence in law (6.47) does indeed take place. We therefore expect
the Poisson-Dirichlet process to play an important role in the enrichment of the free
energy (6.28).

6.4 A Hamilton-Jacobi approach to the SK model

In the previous section, we suggested that the weights of the Gibbs measure at
low temperature, perhaps after some suitable grouping-together of neighbouring
sites, might resemble the weights of the Poisson-Dirichlet process introduced in
Section 5.5. Although we will not aim to justify this precisely, this intuition turns
out to be valid. Recall that our ultimate goal is to find a more refined random
magnetic field to replace

√
2hz in (6.32) so that we can find relationships between

derivatives with respect to the various parameters. Recall also from (6.35) that the
t-derivative of the free energy is the second moment of the overlap R1,2, and that
using the naive random magnetic field

√
2hz, we could create the relation (6.36)

which replaces the second moment of R1,2 by its variance. In other words, in this
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case we would be done if R1,2 was constant. Now, if we were to enrich the free
energy with a random magnetic field that has the overlap of a Poisson-Dirichlet
process, then this would still not suffice in general. Indeed, we see from (5.56)
that the overlap of a Poisson-Dirichlet process can only take two values, so armed
with this, all we could possibly hope for would be to compensate for circumstances
in which R1,2 itself is known to take only two values. Compared with the naive
attempt in (6.32), this seems to mark some further progress, but it is still insufficient
in general. Aspects of the geometry of the Gibbs measure are important, beyond
the simple recording of the statistics of the Gibbs weights.

Our work in Sections 5.6 and 5.7 suggests a clear way forward: Poisson-
Dirichlet cascades will provide us with the richest possible class of overlap structures
we can expect to encounter.

This is admittedly still only a relatively vague intuition. We will not push much
towards giving it more substance, and mostly stick again to the attitude of just trying
it out and seeing that things now actually work well. For the curious and motivated
reader, we point out however the following possibly interesting route to explore.
Below (6.31), we gestured at the idea that, since the term 1√

N ∑
N
j=1 gi, jσ j is random,

it might make sense to add a new term in the Hamiltonian proportional to ∑N
i=1 ziσi,

where z = (z1, . . . ,zN) ∈ RN is a standard Gaussian vector. To be more precise,
what we are really concerned about is the law of 1√

N ∑
N
j=1 gi, jσ j under the Gibbs

measure for a “typical” but fixed realization of the random coefficients (gi, j)i, j⩽N .
Exercise 6.5 explores this point in a simple setting, and suggests that aspects of the
structure of the Gibbs measure such as whether the overlap is concentrated must be
taken into consideration here.

We now proceed to construct the refined magnetic field that will be used as a
replacement for the simple field

√
2hz appearing in (6.32). Given an integer K ⩾ 1

and parameters

0 = ζ0 < ζ1 <⋯ < ζK < ζK+1 = 1, (6.48)
0 = q−1 ⩽ q0 < q1 <⋯ < qK < qK+1 = +∞, (6.49)

as in (5.67) and (5.82), we define the right-continuous non-decreasing path q ∶
[0,1) →R⩾0 by

q ∶=
K
∑
k=0

qk1[ζk,ζk+1). (6.50)

The reason for storing the families of parameters (ζk)1⩽k⩽K and (qk)0⩽k⩽K in the
form of this path will become clear as we proceed. We recall that we denote by A
the tree in (5.63), whose set of leaves is NK , that α∣` denotes the ancestor of α

at depth ` as in (5.65), and that α ∧β denotes the depth of the most common
ancestor of the leaves α and β as in (5.66). We give ourselves a family (zα)α∈A
of independent standard Gaussian random vectors in RN independent of all other
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sources of randomness, and set, for every α ∈NK ,

Zq(α) ∶=
K
∑
k=0
(2qk−2qk−1)1/2zα∣k . (6.51)

The family of random variables (Zq(α))α∈NK is Gaussian, and its covariance struc-
ture is given, for every α1,α2 ∈NK , by

EZq(α1)Zq(α2) = qα1∧α2. (6.52)

This will be our new random external field. We let (vα)α∈NK be a Poisson-Dirichlet
cascade with parameters (ζk)1⩽k⩽K , independent of all other sources of randomness,
and we pair these two objects in our definition of the enriched free energy as

FN(t,q) ∶= −
1
N
E log

ˆ
ΣN

∑
α∈NK

exp(HN(t,q,σ ,α))vα dPN(σ), (6.53)

for the enriched Hamiltonian

HN(t,q,σ ,α) ∶=
√

2tHN(σ)−Nt +Zq(α) ⋅σ −NqK. (6.54)

We denote by ⟨⋅⟩ the associated Gibbs measure, with canonical random variable
(σ ,α). Explicitly, this means that for every bounded measurable function f ∶
RN ×NK →R, we have

⟨ f (σ ,α)⟩ ∶=
´

ΣN
∑α∈NK f (σ ,α)exp(HN(t,q,σ ,α))vα dPN(σ)´

ΣN
∑α∈NK exp(HN(t,q,σ ,α))vα dPN(σ)

. (6.55)

We denote by (σ `,α`)`⩾1 independent copies of (σ ,α) under ⟨⋅⟩, also called repli-
cas. We may now discuss two types of overlaps: those that involve the σ variables,
which we may call the σ -overlaps and keep writing as

R1,2 ∶=
1
N
∑
i⩽N

σ
1
i σ

2
i ; (6.56)

and those that involve the α variables, which we may call the α-overlaps and will
simply denote by α1∧α2.

Choosing P1 to be the uniform measure on Σ1, the free energy (6.7) in the SK
model is related to this enriched free energy (6.53) by

FN(β) = −FN(
β 2

2
,0)+ log(2)+ β 2

2
. (6.57)

Using the Gaussian integration by parts formula, we now compute the deriva-
tives of the enriched free energy with respect to t and (qk)0⩽k⩽K . We will find a
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relationship between these quantities, up to an error expressed in terms of the vari-
ance of the σ -overlap given the α-overlap. The conditional expectation at play here
is with respect to the measure E⟨⋅⟩. For instance, we may write, for any function
f ∶ Σ2

N →R,

E⟨ f (σ1,σ2) ∣ α1∧α
2⟩ ∶=

K
∑
k=0

1{α1∧α2=k}
E⟨1{α1∧α2=k} f (σ1,σ2)⟩

E⟨1{α1∧α2=k}⟩
. (6.58)

Before we proceed, we recall that in Theorem 5.28, specifically in (5.93), we
managed to identify the law of the α-overlap when the underlying Gibbs measure
is simply the measure with weights (vα)α∈NK on the leaves of the tree. One key
observation is that the proof of this result carries verbatim to the present setting
with a more complicated Gibbs measure. The point is that the Bolthausen-Sznitman
invariance property of Poisson-Dirichlet cascades stated in Lemma 5.27 remains
valid even if we multiply each wα by some fixed function of Zq(α), since the family
(Zq(α))α∈NK is independent of (wα) and its law is invariant under permutations
that preserve the tree structure. The other random field denoted by (Zq(α))α∈NK

there should be taken as independent from the random field (Zq(α))α∈NK we have
defined here. In particular, we may replace each wα by

wα

ˆ
ΣN

expHN(t,q,σ ,α)dPN(σ), (6.59)

and then proceed through the proof of Theorem 5.28 to obtain that, with the Gibbs
measure as in (6.55), we still have for every k ∈ {0, . . . ,K} that

E⟨1{α1∧α2=k}⟩ = ζk+1−ζk. (6.60)

Lemma 6.2. For every t ⩾ 0 and every path q ∶ [0,1] →R of the form (6.50), we
have

∂tFN(t,q) =E⟨R2
1,2⟩, (6.61)

and for every k ∈ {0, . . . ,K},

∂qkFN(t,q) =E⟨1{α1∧α2=k}R1,2⟩. (6.62)

In particular,

∂tFN(t,q)−
K
∑
k=0
(ζk+1−ζk)(

∂qkFN(t,q)
ζk+1−ζk

)
2

=E⟨(R1,2−E⟨R1,2 ∣ α1∧α
2⟩)2⟩. (6.63)
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Proof. The same calculation as for (6.35) still gives

∂tFN(t,q) = −
1
N
E⟨ 1√

2t
HN(σ)−N⟩ =E⟨R2

1,2⟩.

Concerning the derivative with respect to qk, the Gibbs Gaussian integration by
parts formula (Theorem 4.6) implies that for every k ∈ {0, . . . ,K−1},

∂qkFN(t,q) = −
1
N
E⟨(2qk−2qk−1)−1/2zα∣k ⋅σ −(2qk+1−2qk)−1/2zα∣k+1 ⋅σ⟩

= 1
N
E⟨(1{α1

∣k=α
2
∣k}
−1{α1

∣k+1=α
2
∣k+1}
)σ1 ⋅σ2⟩

=E⟨1{α1∧α2=k}R1,2⟩.

For k =K, the last term on the first two lines above disappears, and we have

∂qK FN(t,q) =
1
N
E⟨1{α1

∣K=α
2
∣K}

σ
1 ⋅σ2⟩ =E⟨1{α1∧α2=K}R1,2⟩.

So the relation (6.62) is indeed valid for every k ∈ {0, . . . ,K}. Combining this
with (6.60) shows that

∂qkFN(t,q)
ζk+1−ζk

=
E⟨1{α1∧α2=k}R1,2⟩
E⟨1{α1∧α2=k}⟩

=E⟨R1,2 ∣ α1∧α
2 = k⟩. (6.64)

We next observe that the right side of (6.63) can be rewritten as

E⟨R2
1,2⟩−E⟨(E⟨R1,2 ∣ α1∧α

2⟩)2⟩

= ∂tFN(t,q)−
K
∑
k=0

E⟨1{α1∧α2=k}(E⟨R1,2 ∣ α1∧α
2 = k⟩)2⟩

= ∂tFN(t,q)−
K
∑
k=0
(ζk+1−ζk)(

∂qkFN(t,q)
ζk+1−ζk

)
2

.

This completes the proof. ∎

By Jensen’s inequality, we have

E⟨(E⟨R1,2 ∣ α1∧α
2⟩)2⟩ ⩾E⟨R2

1,2⟩, (6.65)

and thus
E⟨(R1,2−E⟨R1,2 ∣ α1∧α

2⟩)2⟩ ⩽E⟨(R1,2−E⟨R2
1,2⟩)

2⟩. (6.66)

So the right side of (6.63), which we think of as an error term, is smaller than or
equal to the error term we found in (6.36) in our naive attempt at enriching the free
energy.
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The right side of (6.63) measures the size of the conditional variance of the
σ -overlap given the α-overlap. Can we ensure that this is small? In other words,
can we assert that we can essentially infer the σ -overlap from the observation of
the α-overlap? Recall also that, as for the Curie-Weiss model and the models of
statistical inference, we do not aim for the error term to be small for absolutely all
choices of the parameters, but only for “most” such choices.

As was discovered in [212, 213, 214], the Panchenko ultrametricity theorem
(Theorem 5.30) implies the following synchronization phenomenon: up to a small
perturbation of the Hamiltonian (to ensure a family of Ghirlanda-Guerra identities),
the σ - and the α-overlaps must be asymptotically monotonically coupled. A pair
of real random variables (X ,Y) is said to be monotonically coupled if, denoting by
(X ′,Y ′) an independent copy of (X ,Y), we have

P{X < X ′ and Y ′ <Y} = 0. (6.67)

Denoting by F−1
X and F−1

Y the inverse cumulative distribution functions of X and Y
respectively, one can show (see Proposition 2.1 in [196]) that the pair (X ,Y) is
monotonically coupled if and only if its law is that of (F−1

X (U),F−1
Y (U)), where U

is a uniform random variable on the interval [0,1].
In the monotonically coupled pair (X ,Y), we think of X as the σ -overlap and

of Y as the α-overlap, and wonder whether we can recover X from the observation
of Y . Naturally, if Y is deterministic, then the observation of Y cannot help much in
predicting X . On the other hand, if the law of Y is nicely spread out, for instance
if it is a uniform random variable on [0,1], then the observation of Y allows us to
recover the “secret” random variable U in the representation above, and thus to
perfectly infer the value of X .

Coming back to the analysis of the overlaps, we thus see that with the synchro-
nization phenomenon in place, the error term on the right side of (6.63) will be
small provided that the law of the α-overlap is sufficiently spread out. Recall also
from (6.60) that we know the law of the α-overlap exactly. Combining all this, it
was shown in Proposition 5.5 of [194] that when a family of Ghirlanda-Guerra iden-
tities all hold asymptotically as N tends to infinity, and when ζk+1−ζk = 1/(K+1)
for every k ∈ {0, . . . ,K}, we have that

limsup
N→+∞

E⟨(R1,2−E⟨R1,2 ∣ α1∧α
2⟩)2⟩ ⩽ 12

K
. (6.68)

This informal discussion motivates us to give more substance to the idea that
the free energy FN(t,q) should really be thought of as a function of the path q, as
was already suggested by the notation, and to seek to make sense of it for more
general paths than the piecewise-constant paths we have so far considered. To
start with, we give an informal justification of the fact that we decided to bundle
together the parameters (ζk)1⩽k⩽K and (qk)0⩽k⩽K into the path q in (6.50). We have
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already discussed extensively, in particular in Section 5.7, that it makes sense to
focus on understanding the behaviour of overlap arrays. While we have chosen to
define the α-overlap simply as α1∧α2, in view of (6.52), it would have been more
faithful to the definition of our random field Zq to have defined this same quantity as
seen through the sequence of parameters (qk)0⩽k⩽K , namely qα1∧α2 . And we recall
from (6.60) that for every k ∈ {0, . . . ,K}, we have

E⟨1{q
α1∧α2=qk}⟩ = ζk+1−ζk. (6.69)

Recalling the definition of the path q in (6.50), we thus see that the law of qα1∧α2 ,
which one might argue is the “true” α-overlap, is the law of q(U), where U is a
uniform random variable over [0,1]. With this in mind, it is perhaps not surprising
that the function FN(t,q) satisfies a natural continuity property as a function of the
path q. We write

Q(R⩾0) ∶= {q ∶ [0,1) →R⩾0 ∣ q is right-continuous and non-decreasing}, (6.70)

and for every p ∈ [1,+∞], we let Qp(R⩾0) ∶=Q(R⩾0)∩Lp([0,1];R). We also note
that when we say that a path q is piecewise-constant, we mean that we can partition
the interval [0,1) into a finite number of intervals in the interior of which q is
constant. In other words, a piecewise-constant path q ∈Q(R⩾0) is any path that can
be represented in the form of (6.50) for a suitable choice of the parameters.

Proposition 6.3. For any pair of piecewise-constant paths q,q′ ∈Q(R⩾0),

∣FN(t,q)−FN(t,q′)∣ ⩽
ˆ 1

0
∣q(u)−q′(u)∣du. (6.71)

In particular, the enriched free energy (6.53) admits a unique extension to the space
R⩾0×Q1(R⩾0) satisfying (6.71) for all times t ⩾ 0 and paths q,q′ ∈Q1(R⩾0).

Proof. The key step of the proof is to realize that we can allow for repetitions in
the parameters (qk)0⩽k⩽K without encountering contradictions. The bound (6.71)
then follows by simple estimates on the derivatives obtained in Lemma 6.2. We
decompose the proof into three steps.

Step 1: integrating the Poisson-Dirichlet cascade. We use Theorem 5.25 to describe
an explicit procedure for integrating out the Poisson-Dirichlet cascade. We fix
parameters (ζk)1⩽k⩽K and (qk)0⩽k⩽K as in (6.48)-(6.49), and let q be as in (6.50).
For every y0, . . . ,yK ∈RN , we define

XK(y0, . . . ,yK) ∶=

log
ˆ

ΣN

exp(
√

2tHN(σ)−Nt +
K
∑
k=0
(2qk−2qk−1)1/2yk ⋅σ −NqK)dPN(σ), (6.72)
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and then recursively, for every k ∈ {0, . . . ,K−1},

Xk = Xk(y0, . . . ,yk) ∶=
1

ζk+1
logEyk+1 exp(ζk+1Xk+1),

where we denote by Eyk+1 the integration of the variable yk+1 according to the
N-dimensional standard Gaussian probability measure. We also define X−1 ∶=Ey0X0,
with the same interpretation. Using a measurable mapping from [0,1] to RN that
sends the Lebesgue measure on [0,1] to the standard Gaussian probability measure
on RN (which can be constructed by first mapping the Lebesgue measure on [0,1] to
the Lebesgue measure on [0,1]N by splitting the binary expansion of the argument,
and then using Exercise 5.11 coordinate by coordinate), we see that we can apply
Theorem 5.25 and obtain that

−NE[FN(t,q) ∣ (HN(σ))σ∈RN ] = X−1, (6.73)

where we write

FN(t,q) ∶= −
1
N

log
ˆ

ΣN

∑
α∈NK

exp(HN(t,q,σ ,α))vα dPN(σ).

In other words, FN(t,q) is the quantity on the right side of (6.53) before taking the
expectation, and we have

FN(t,q) =EFN(t,q).

In the derivation of (6.73), we used that that the conditional expectation appearing
there consists in averaging over the randomness coming from the Poisson-Dirichlet
cascade and the random field Zq, since these are the only other sources of random-
ness and they have been chosen independently of (HN(σ))σ∈RN .

Step 2: allowing for possible repetitions of parameters. We fix an integer K ⩾ 1 as
well as sequences of parameters

0 = ζ0 < ζ1 <⋯ < ζK < ζK+1 = 1,
0 = q−1 ⩽ q0 ⩽ q1 ⩽⋯ ⩽ qK < qK+1 = +∞,

and consider the piecewise-constant path

q ∶=
K
∑
k=0

qk1[ζk,ζk+1).

Since q is piecewise-constant, we have already given a definition of FN(t,q), but
this definition would require that we rewrite q into a form that suppresses possible
repetitions in the parameters. We claim that if we instead naively follow the
procedure with the repeated parameters, we obtain the same value for FN(t,q).
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If there is a repetition in the parameters (qk)0⩽k⩽K , say qk−1 = qk for some
k ∈ {0, . . . ,K}, then the term indexed by k in the sum on the right side of (6.72)
vanishes, and thus for every y0, . . . ,yk ∈RN , we have that

Xk−1(y0, . . . ,yk−1) = Xk(y0, . . . ,yk).

It is therefore clear that removing this repetition in the sequence (qk)0⩽k⩽K does not
change the value of the result.

Step 3: extending Lemma 6.2 to the case of repeated indices. We now justify
that the identity (6.62) from Lemma 6.2 remains valid even if we allow for repeti-
tions in the parameters (qk)0⩽k⩽K . We know that (6.62) holds when the (qk)0⩽k⩽K
satisfy (6.49). Moreover, the free energy is clearly a continuous function of the
parameters (qk)0⩽k⩽K , and the right side of (6.62) is also continuous with respect to
these parameters. A classical analysis argument thus suffices to conclude that the
free energy FN is differentiable also at the boundary of the set of non-decreasing
sequences (qk)0⩽k⩽K , and that the relation (6.62) still holds there.

Step 4: extending to Q1(R⩾0). Now that we can allow for repetitions in the
parameters, for any two piecewise-constant paths q and q′, we can always find
an integer K ⩾ 1 and sequences of parameters 0 = ζ0 < ζ1 < ⋯ < ζK < ζK+1 = 1,
0 = q−1 ⩽ q0 ⩽⋯ ⩽ qK and 0 = p−1 ⩽ p0 ⩽⋯ ⩽ pK with

q =
K
∑
k=0

qk1[ζk,ζk+1) and q′ =
K
∑
k=0

pk1[ζk,ζk+1).

For each s ∈ [0,1], we introduce the piecewise-constant path

qs ∶=
K
∑
k=0
(sqk+(1− s)pk)1[ζk,ζk+1),

and define the interpolating free energy ϕ(s) ∶=FN(t,qs). The fundamental theorem
of calculus and the chain rule imply that

∣FN(t,q)−FN(t,q′)∣ ⩽ sup
s∈[0,1]

∣ϕ ′(s)∣ ⩽
K
∑
k=0

sup
s∈[0,1]

∣∂qkFN(t,qs)∣∣qk− pk∣.

It follows from the previous step and (6.60) that

∣FN(t,q)−FN(t,q′)∣ ⩽
K
∑
k=0
(ζk+1−ζk)∣qk− pk∣ =

ˆ 1

0
∣q(u)−q′(u)∣du.

A density argument then allows us to uniquely extend the enriched free energy to the
space Q1(R⩾0) while preserving the bound (6.71). This completes the proof. ∎
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To write equation (6.63) in Lemma 6.2 in a way that depends directly on the path
q ∈Q(R⩾0) as opposed to the parameters (ζk)1⩽k⩽K and (qk)0⩽k⩽K , we introduce
additional notation. Given a function h ∶R⩾0×Q2(R⩾0) →R, a time t ⩾ 0 and a path
q ∈Q2(R⩾0), we say that h admits a Gateaux derivative at (t,q) ∈R⩾0×Q2(R⩾0) if
there exists a function ∂qh(t,q, ⋅) ∈L2([0,1];R) such that for every q′ ∈L2([0,1];R)
with q+εq′ ∈Q2(R⩾0) for ε > 0 sufficiently small, we have as ε > 0 tends to zero
that

h(t,q+εq′)−h(t,q) = ε

ˆ 1

0
∂qh(t,q,u)q′(u)du+o(ε). (6.74)

Let q be as in (6.50), and assume that the enriched free energy FN admits a Gateaux
derivative at the pair (t,q). For every other path q′ = ∑K

k=0 pk1[ζk,ζk+1) associated
with a non-decreasing sequence 0 = p−1 ⩽ p0 ⩽⋯ ⩽ pK , we have

FN(t,q+εq′)−FN(t,q) = ε

K
∑
k=0

pk

ˆ ζk+1

ζk

∂qFN(t,q,u)du+o(ε). (6.75)

On the other hand, a Taylor expansion reveals that

FN(t,q+εq′)−FN(t,q) = ε

K
∑
k=0

pk∂qkFN(t,q)1[ζk,ζk+1)+o(ε). (6.76)

Since these equalities must hold for all piecewise-constant paths q′, we must have

∂qkFN(t,q) =
ˆ ζk+1

ζk

∂qFN(t,q,u)du. (6.77)

Assuming that maxk(ζk+1−ζk) is small, we have the approximate equality

ˆ 1

0
∂qFN(t,q,u)2 du ≃

K
∑
k=0
(ζk+1−ζk)(

1
ζk+1−ζk

ˆ ζk+1

ζk

∂qFN(t,q,u)du)
2

, (6.78)

see also Exercise 6.6 for a more precise argument. Up to an error that tends to zero
as maxk(ζk+1−ζk) tends to zero, we can therefore rewrite the identity (6.63) from
Lemma 6.2 as

∂tFN(t,q)−
ˆ 1

0
∂qFN(t,q,u)2 du ≃Var(R1,2 ∣ α1∧α

2), (6.79)

where we used the notation

Var(R1,2 ∣ α1∧α
2) ∶=E⟨(R1,2−E⟨R1,2 ∣ α1∧α

2⟩)2⟩. (6.80)
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Combined with the synchronization mechanism discussed earlier, see in particu-
lar (6.68), this suggests that the limit free energy f ∶ R⩾0 ×Q2(R⩾0) → R should
satisfy the infinite-dimensional Hamilton-Jacobi equation

∂t f (t,q)−
ˆ 1

0
∂q f (t,q,u)2 du = 0 on R>0×Q2(R⩾0). (6.81)

Our next goal will be to explain that this guess allows us to correctly predict the
Parisi formula presented in (6.8).

Exercise 6.5. We consider the SK model on ΣN with PN ∶= (P1)⊗N for a possibly
non-centred probability measure P1 on Σ1, and we assume that there exists q ∈R
with

lim
N→+∞

E⟨(R1,2−q)2⟩ = 0.

Let g = (g1, . . . ,gN) be a standard Gaussian vector and Z be a standard Gaussian
random variable independent of all other sources of randomness and of each other.
We understand that the probability P and associated expectation E also takes the
average over g, and we denote by EZ the average over the randomness of Z. Show
that for every F ∈Cc(R;R) and ε > 0, we have

lim
N→+∞

P{∣⟨F(g ⋅σ√
N
)⟩−EZF(g ⋅ ⟨σ⟩√

N
+
√

1−qZ)∣ > ε} = 0. (6.82)

In words, for most realizations of g, the law of the random variable N−1/2g ⋅σ
under ⟨⋅⟩ is essentially Gaussian, with mean N−1/2g ⋅ ⟨σ⟩ and variance 1−q.

Exercise 6.6. Let f ∈ L2([0,1];R). Show that for every ε > 0, there exists δ > 0
such that for every 0 = ζ0 < ζ1 <⋯ < ζK < ζK+1 = 1, if maxk(ζk+1−ζk) ⩽ δ , then

∣
ˆ 1

0
f 2−

K
∑
k=0
(ζk+1−ζk)(

1
ζk+1−ζk

ˆ ζk+1

ζk

f)
2

∣ ⩽ ε. (6.83)

6.5 Connecting the Hamilton-Jacobi approach with the Parisi
formula

The goal of this section is to demonstrate that the Hamilton-Jacobi equation (6.81)
that we derived heuristically allows us to correctly predict the Parisi formula (6.8).

Our first task will be to identify the initial condition to this Hamilton-Jacobi
equation. Just as in the Curie-Weiss model and in the models of statistical inference
we considered in Chapter 4, we will be able to leverage the product structure of the
reference measure PN to show that the quantity FN(0,q) in fact does not depend
on N. In order to connect to the Parisi formula as presented in (6.8), we will
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also relate this quantity to the second-order partial differential equation appearing
in (6.9).

Once this is done, we need to make sense of the infinite-dimensional Hamilton-
Jacobi equation (6.81). There are at least three possible ways to approach this
problem. A first possibility would be to seek to adapt the notion of viscosity solution
to infinite-dimensional spaces. Alternatively, we could devise finite-dimensional
approximations of the equation, and then try to show the convergence of these
approximations as the dimension is sent to infinity. Finally, we could decide that
since the non-linearity in (6.104) is convex, whichever notion of solution we come
up with will admit a variational representation analogous to the Hopf-Lax formula
from Theorem 3.8, and so we may as well define the solution according to this
variational formula directly. We will start by exploring the last of these options,
since it is the easiest. As will be stressed in Section 6.6, this approach is no longer
applicable for non-convex models such as the bipartite model, and we will therefore
also outline the workings of the second of these three options there. That all these
approaches yield the same function when they are applicable is shown in [73].

We start by studying the initial condition associated with the Hamilton-Jacobi
equation (6.81). In the next lemma, we will show in particular that

ψ(q) ∶= lim
N→+∞

FN(0,q) = F1(0,q). (6.84)

For each piecewise-constant path q, Theorem 5.25 describes an explicit procedure
for computing this quantity in terms of recursive averages over the Gaussian measure
of quantities of the form

1
ζk

logEexpζkXk.

In order to encode this recursive procedure even for general paths, one can view this
calculation in terms of a second-order partial differential equation. To illustrate the
idea, let us observe that if (Bt)t⩾0 is a standard Brownian motion and f ∈Cc(R;R⩾0),
then the function

u(t,x) ∶=E f (x+B2t) (6.85)

solves the heat equation ∂tu = ∂ 2
x u, and a simple calculation yields that the function

ũ ∶= ζ−1
k logu is then a solution to ∂t ũ = ∂ 2

x ũ+ζk(∂xũ)2. The representation of the
initial condition in the next lemma will be an iteration of this observation.

To state this precisely, we start by recalling that we denote by Q∞(R⩾0) the
space of paths in Q(R⩾0) that remain bounded. For every such path q ∈Q∞(R⩾0),
we define

q(1) ∶= lim
u↗1

q(u). (6.86)

In particular, for q as in (6.50), we have q(1) = qK . For every q ∈Q∞(R⩾0), we also
define its right-continuous inverse q−1 ∶R→ [0,1] according to

q−1(t) ∶= sup{u ∈ [0,1] ∣ q(u) ⩽ t}. (6.87)
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We understand the supremum above to be zero in case the set is empty. Finally, for
every t ⩾ 0 and x ∈R, we write

φ(t,x) ∶= log
ˆ

Σ1

exp(xσ − t)dP1(σ). (6.88)

In case P1 were not supported on Σ1, we would replace the term t in the exponential
by tσ2.

Lemma 6.4 (Parisi PDE). For every piecewise-constant path q ∈Q(R⩾0) and integer
N ⩾ 1, we have

FN(0,q) = F1(0,q) = −Φ
q(0,0), (6.89)

where the function Φq ∶ [0,q(1)]×R→R satisfies

⎧⎪⎪⎨⎪⎪⎩

−∂tΦ
q(t,x) = ∂ 2

x Φq(t,x)+q−1(t)(∂xΦq(t,x))2 on [0,q(1)]×R,
Φq(q(1),x) = φ(q(1),x) for x ∈R.

(6.90)

Before proceeding to the proof, we discuss the nature of the partial differential
equation (6.90) and the associated notion of solution. At small scales, the first-order
term (∂xΦq)2 becomes less and less important compared with the second-order
term ∂ 2

x Φq, which is regularizing. As a consequence, this equation is much easier
to study than the first-order Hamilton-Jacobi equations that have accompanied
us throughout the book, and the only slight difficulty is that the function q−1 has
some jump discontinuities. For each q ∈Q∞(R⩾0), we can choose among several
equivalent definitions of the notion of being a solution to (6.90).

Perhaps the most intuitive notion of solution, which we could call the notion of
classical solution, would be to ask that Φq be a continuous function such that, at
every (t,x) ∈ [0,q(1)]×R except those t’s that are points of discontinuity of q−1, the
function Φq is continuously differentiable in t and twice continuously differentiable
in x, and the first line of (6.90) holds for each such (t,x). To guarantee uniqueness,
this must be supplemented with a mild growth condition, in our case we can simply
require Φq to have at most linear growth in x at infinity, uniformly over t.

An alternative and analytically very convenient notion of solution is that of mild
solution. We could for instance look for a function in C([0,q(1)];C2(R;R)) with
at most linear growth and such that, for every t ∈ (0,q(1)), we have

Φ
q(t,x) = e(q(1)−t)∆

φ(q(1), ⋅)(x)

+
ˆ q(1)

t
q−1(t)e(s−t)∆(∂xΦ

q(s, ⋅))2(x)ds, (6.91)

where we denote by (et∆)t⩾0 the heat semigroup; explicitly, the heat semigroup
is such that for every measurable function f ∶ R → R for which the integral is
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well-defined,

et∆ f (x) ∶=
ˆ
R

1√
4πt

exp(− (x−y)2
4t

) f (y)dy.

This formulation allows one to show the well-posedness of equation (6.90) over a
short time interval using a fixed-point argument, and this can then be iterated using
estimates from the maximum principle; see also [146]. If desired, one can then
show the equivalence between the notions of classical and mild solutions.

We will not go into details on these points. At least, the arguments we now
present yield in particular that a solution to (6.90) indeed exists, starting with the
proof below covering the case of piecewise-constant q.

Proof of Lemma 6.4. We fix a piecewise-constant path q ∈Q(R⩾0) of the form (6.50).
Applying Corollary 5.26 to the random variables

XK,i ∶= log
ˆ

Σ1

exp(Zi
q(α)σ −qK)dP1(σ)

shows that FN(0,q) = F1(0,q), so the initial condition (6.84) is well-defined and is
given by

ψ(q) = F1(0,q) = − logE
ˆ

Σ1

∑
α∈NK

exp(Zq(α)σ −qK)vα dP1(σ). (6.92)

To express ψ(q) as the value at (0,0) of the solution to (6.90), we denote by (Bt)t⩾0
a standard Brownian motion, and recursively define the function Φq ∶ [0,q(1)]×R→
R by Φq(q(1),x) ∶= φ(qK,x) and

Φ
q(t,x) ∶= ζ

−1
k+1 logEexpζk+1Φ

q(qk+1,x+B2qk+1−2t) (6.93)

for t ∈ [qk,qk+1) and −1 ⩽ k ⩽K−1. It then follows from Theorem 5.25 that

ψ(q) = −Φ
q(0,0).

We now show that Φq satisfies the equation (6.90). It will be important to observe
that

q−1 =
K+1
∑
k=0

ζk1[qk−1,qk). (6.94)

For each k ∈ {−1, . . . ,K−1}, we consider the function defined for t ∈ [qk,qk+1) by

Φ̃
q(t,x) ∶= expζk+1Φ

q(t,x).

As for (6.85), we see that the function Φ̃q satisfies

−∂tΦ̃
q = ∂

2
x Φ̃

q on [qk,qk+1)×R.
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Taking the logarithm, we obtain that

−∂tΦ
q = ∂

2
x Φ

q+ζk+1(∂xΦ
q)2 on [qk,qk+1)×R.

Remembering from (6.94) that q−1 = ζk+1 on [qk,qk+1) completes the proof. ∎

In order to extend Lemma 6.4 to arbitrary paths q ∈ Q∞(R⩾0), one possible
route would be to show the continuity of Φq(0,0) as a function of q, since we
already know the continuity of F1(0, ⋅) from Proposition 6.3. Since we have not
been very precise in our discussion on the well-posedness of (6.90), we prefer to
proceed in a slightly different way: by leveraging Lemma 6.4 and slightly upgrading
Proposition 6.3, we will justify that taking solutions to (6.90) for a sequence of
piecewise-constant paths that converge to some arbitrary q ∈Q∞(R⩾0), we can pass
to the limit and obtain a solution to (6.90) for this limit path. In particular, this
shows that a solution to (6.90) exists for arbitrary q ∈Q∞(R⩾0), and the only point
of interest that we did not justify with full precision is that this solution is unique;
this uniqueness property can be obtained by a classical Picard fixed-point argument.

Before starting the proof, we make a simple observation that is convenient when
wanting to compare Φq for different choices of q. The observation is that, if we
were to define Φq over a larger time interval than [0,q(1)], then we would end
up with a function that coincides with Φq on [0,q(1)]. In other words, for each
T ⩾ q(1) and for u the solution to

⎧⎪⎪⎨⎪⎪⎩

−∂tu(t,x) = ∂ 2
x u(t,x)+q−1(t)(∂xu(t,x))2 on [0,T ]×R,

u(T,x) = φ(T,x) for x ∈R,
(6.95)

we have that u and Φq coincide on [0,q(1)]×R. This comes from the fact that the
function φ in (6.88) is such that

−∂tφ = ∂
2
x φ +(∂xφ)2.

Indeed, for the natural Gibbs measure associated with (6.88), the derivative −∂tφ

computes the second moment of σ , while ∂ 2
x φ computes its variance and ∂xφ its

first moment. With this observation in mind, we can without loss of generality think
of the function Φq as defined on R⩾0 ×R, by simply extending it to be equal to
φ outside of [0,q(1)]×R. For every T ⩾ q(1), this extension satisfies the partial
differential equation in (6.95).

Lemma 6.5. (i) For every piecewise-constant path q ∈Q(R⩾0), and for Φq the
solution to (6.90), we have for every t ⩾ 0 and x ∈R that

∣∂xΦ
q(t,x)∣ ⩽ 1 and 0 ⩽ ∂

2
x Φ

q(t,x) ⩽ 1. (6.96)
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(ii) For every piecewise-constant q,q′ ∈Q(R⩾0), t ⩾ 0 and x ∈R,

∣Φq(t,x)−Φ
q′(t,x)∣ ⩽

ˆ 1

0
∣q(u)−q′(u)∣du. (6.97)

(iii) For every piecewise-constant q,q′ ∈Q(R⩾0), t ⩾ 0 and x ∈R,

∣∂xΦ
q(t,x)−∂xΦ

q′(t,x)∣ ⩽ 4
ˆ 1

0
∣q(u)−q′(u)∣du. (6.98)

Proof. We decompose the proof into four steps.

Step 1: reduction to t = 0. We first show that it suffices to prove the estimates in the
statement of Lemma 6.5 for t = 0. Recall from (6.94) that for q as in (6.50), we have

q−1 =
K+1
∑
k=0

ζk1[qk−1,qk).

We claim that for each fixed t0 ∈ [0,q(1)], say with t0 ∈ [qk0−1,qk0) for some k0 ∈
{0, . . . ,K}, there is a simple relationship between Φq(t0+ t,x) and Φq̃(t,x), where
q̃ ∈Q(R⩾0) is such that

q̃−1 = ζk01[0,qk0−t0)+
K+1
∑

k=k0+1
ζk1[qk−1−t0,qk−t0).

Since when a constant is added to the initial condition in (6.90), this only changes
the solution by this same constant, we see indeed that for every t ∈ [0,q(1)− t0] and
x ∈R, we have

Φ
q(t0+ t,x)+ t0 =Φ

q̃(t,x).
This justifies that we may as well focus on the case t = 0. If P1 were not supported
on Σ1, we would need to argue slightly differently, seeking instead to interpret Φq̃

as a version of Φq for a modified reference measure P1.

Step 2: proof of (i). The representation (6.93) of the function Φq for a piecewise-
constant path q ∈Q(R⩾0) together with Theorem 5.25 imply that

Φ
q(0,x) =E log

ˆ
Σ1

∑
α∈NK

exp(σ(x+Zq(α))−qK)vα dP1(σ). (6.99)

Denoting by ⟨⋅⟩ the Gibbs average for N = 1 associated with the Hamiltonian
(σ ,α) ↦ σ(x+Zq(α)), we have

∂xΦ
q(0,x) =E⟨σ⟩ and ∂

2
x Φ

q(0,x) =E⟨1−σ
1
σ

2⟩ = 1−E⟨σ⟩2.

From these equalities, it is immediate that ∣∂xΦq(0,x)∣ ⩽ 1 and 0 ⩽ ∂ 2
x Φq(0,x) ⩽ 1.
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Step 3: proof of (ii). The result follows from the observation that using (6.99), the
proof of Proposition 6.3 applies verbatim.

Step 4: proof of (iii). We fix two piecewise-constant paths q,q′ ∈Q(R⩾0). We can
assume without loss of generality that there exist an integer K ⩾ 1 and sequences of
parameters 0 = ζ0 < ζ1 <⋯ < ζK < ζK+1 = 1, 0 = q−1 ⩽ q0 ⩽⋯ ⩽ qK and 0 = p−1 ⩽ p0 ⩽
⋯ ⩽ pK such that

q =
K
∑
k=0

qk1[ζk,ζk+1) and q′ =
K
∑
k=0

pk1[ζk,ζk+1).

For each s ∈ [0,1] and k ∈ {0, . . . ,K}, we define qs
k ∶= sqk+(1− s)pk, and the associ-

ated piecewise-constant path

qs ∶=
K
∑
k=0

qs
k1[ζk,ζk+1).

Notice that we can choose the parameters (qk)0⩽k⩽K and (pk)0⩽k⩽K in such a way
that for every k ∈ {0, . . . ,K}, we have qk−1 ≠ qk or pk−1 ≠ pk. This ensures that for
every s ∈ (0,1), the sequence (qs

k)0⩽k⩽K is strictly increasing. We set

ϕ(s) ∶= ∂xΦ
qs
(0,x) =E⟨σ⟩s,

where ⟨⋅⟩s denotes the Gibbs average associated with the Hamiltonian (σ ,α) ↦
σ(x+Zqs(α)). A direct computation and the chain rule give

ϕ
′(s) =E⟨∂sZqs(α1)−σ

1
σ

2
∂sZqs(α2)⟩s

=
K
∑
k=0
(2qs

k−2qs
k−1)

−1/2((qk− pk)−(qk−1− pk−1))E⟨zα1
∣k
−σ

1
σ

2z
α2
∣k
⟩s.

The Gibbs Gaussian integration by parts formula (Theorem 4.6) and the symmetry
between replicas reveal that

E⟨z
α1
∣k
⟩s = (2qs

k−2qs
k−1)

1/2E⟨σ1−σ
21{α1

∣k=α
2
∣k}
⟩s

E⟨σ1
σ

2z
α2
∣k
⟩s = (2qs

k−2qs
k−1)

1/2E⟨σ1+σ
21{α1

∣k=α
2
∣k}
−2σ

1
σ

2
σ

31{α1
∣k=α

2
∣k}
⟩s.

It follows that

ϕ
′(s) = 2

K
∑
k=0
((qk− pk)−(qk−1− pk−1))E⟨(σ1

σ
2
σ

3−σ
1)1{α1

∣k=α
2
∣k}
⟩s

= 2
K−1
∑
k=0
(qk− pk)E⟨(σ1

σ
2
σ

3−σ
1)(1{α1

∣k=α
2
∣k}
−1{α1

∣k+1=α
2
∣k+1}
)⟩s

+2(qK − pK)E⟨(σ1
σ

2
σ

3−σ
1)1{α1

∣K=α
2
∣K}
⟩s

= 2
K
∑
k=0
(qk− pk)E⟨(σ1

σ
2
σ

3−σ
1)1{α1∧α2=k}⟩s,
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where we used that q−1 = p−1 = 0 in the second equality. Remembering that the
property (6.60) is valid under very general conditions including our present one, we
can rewrite this as

ϕ
′(s) = 2

K
∑
k=0
(qk− pk)(ζk+1−ζk)E⟨σ1

σ
2
σ

3−σ
1 ∣ α1∧α

2 = k⟩s.

We can finally use the fundamental theorem of calculus to conclude that

∣∂xΦ
q(0,x)−∂xΦ

q′(0,x)∣ ⩽ 4
K
∑
k=0
∣qk− pk∣(ζk+1−ζk) = 4

ˆ 1

0
∣q(u)−q′(u)∣du.

This completes the proof of (iii). ∎

Although we will not make use of this fact, we note in passing that Lemma 6.5
can be generalized, with essentially no change to the proof, to yield that for every
integer k ⩾ 1, the derivative ∂ k

x Φq(t,x) is bounded uniformly over the choice of
piecewise-constant q ∈Q(R⩾0), t ⩾ 0 and x ∈R, and the mapping of q↦ ∂ k

x Φq(t,x)
is Lipschitz continuous with respect to the L1 norm, uniformly over t ⩾ 0 and x ∈R.

We can now extend the identity (6.89) from Lemma 6.4 to arbitrary bounded
paths.

Proposition 6.6. For every path q ∈Q∞(R⩾0), the initial condition (6.84) is given
by

ψ(q) = F1(0,q) = −Φ
q(0,0), (6.100)

where the function Φq ∶ [0,q(1)]×R→R satisfies the equation (6.90).

Proof. We recall that, as explained around (6.95), for any q ∈Q∞(R⩾0), we may as
well think of Φq as being defined on R⩾0×R. We fix an arbitrary path q ∈Q∞(R⩾0),
and take a sequence of piecewise-constant paths (qn)n⩾1 that converge to q in the
L1 norm. For convenience we may also assume that for every n ⩾ 1, we have
qn(1) = q(1). By (ii) in Lemma 6.5, the functions Φqn converge pointwise to some
limit; we define Φq to be this limit, and proceed to show that this limit solves (6.90)
in the sense of satisfying (6.91). Since qn(1) = q(1), we have for every n ⩾ 1 and
t ∈ [0,q(1)] that

Φ
qn(t,x) = e(q(1)−t)∆

φ(q(1), ⋅)(x)

+
ˆ q(1)

t
q−1

n (s)e(s−t)∆(∂xΦ
qn(s, ⋅))2(x)ds. (6.101)

By (iii) in Lemma 6.5, the sequence (∂xΦqn)n⩾1 converges to some limit, uniformly
over R⩾0×R. Using the uniform bound on ∂ 2

x Φqn from (i) of Lemma 6.5, we see
that the functions ∂xΦqn are also Lipschitz continuous in x, uniformly over R⩾0×R



240 Chapter 6 Mean-field spin glasses

and over n ⩾ 1. It is therefore clear that Φq is differentiable in x, that the limit of
∂xΦqn as n tends to infinity is ∂xΦq, and since qn converges to q in the L1 norm, that

lim
n→+∞

∥∂xΦ
qn −∂xΦ

q∥L∞(R⩾0×R;R) = 0. (6.102)

Observing also that, by Fubini’s theorem (see e.g. Proposition 2.17 of [234] for a
detailed argument),

ˆ 1

0
∣qn(u)−q(u)∣du =

ˆ +∞
0
∣q−1

n (s)−q−1(s)∣ds, (6.103)

we also have that the right side of (6.103) converges to 0 as n tends to infinity.
Combining this with (6.102), we conclude from (6.101) that Φq is indeed a mild
solution to (6.90). Recalling from Lemma 6.4 that for each n ⩾ 1, we have

F1(0,qn) = −Φ
qn(0,0),

and that F1(0, ⋅) is Lipschitz continuous by Proposition 6.3, this completes the
proof. ∎

We recall from (6.81) that, through informal arguments, we suggested that the
limit f of the free energy FN might satisfy the Hamilton-Jacobi equation

∂t f (t,q)−
ˆ 1

0
∂q f (t,q,u)2 du = 0 on R>0×Q2(R⩾0), (6.104)

with an initial condition which we have now firmly identified as

f (0,q) =ψ(q) = −Φ
q(0,0). (6.105)

While we have only really made sense of Φq(0,0) for q ∈Q∞(R⩾0), via the partial
differential equation in (6.90), we recall that −Φq(0,0) = F1(0,q) and that F1(0, ⋅)
is Lipschitz continuous with respect to the L1 norm, by Proposition 6.3, so we can
extend Φq(0,0) to every q ∈Q1(R⩾0) by continuity. The main reason we prefer to
think of (6.104) as being posed on R>0×Q2(R⩾0) as opposed to, for instance, being
posed on R>0×Q∞(R⩾0), is that the space Q2(R⩾0) is naturally embedded in the
Hilbert space L2([0,1];R), and that the Hilbert-space geometry of L2([0,1];R) is
directly tied with our notion of derivative in (6.74), and is also closely related to
the Euclidean-space geometry of our finite-dimensional approximations to (6.104).
This is not fundamental however, and we could as well decide to try to make sense
of (6.104) as being posed on R>0 ×Q∞(R⩾0), which we might still think of as a
subset of L2([0,1];R) if we want to.

As was discussed at the opening of this section, there are several different
options for us to try to make sense of the equation (6.104). Since the non-linearity
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in the equation is convex, we may expect that whichever notion of solution we
come up with will also admit a variational representation analogous to the Hopf-Lax
formula. There are however two potential sources of problem for the validity of
such a variational representation. The first one is the infinite-dimensional nature of
the equation. The second one is that the space Q2(R⩾0) of non-decreasing paths
from [0,1) to R⩾0 has a boundary: if we restrict to piecewise-constant paths of the
form (6.50), we see that we must impose that the sequence (qk)0⩽k⩽K be a sequence
of non-negative numbers, and be non-decreasing.

If we simplify this further and only consider the space of constant paths, which
corresponds to the function introduced in (6.32), then this reduces to the constraint
that the constant path must be non-negative, that is, h ⩾ 0 in the notation from (6.32).
In this simplest case of a domain with a boundary, we have seen in Chapter 4 that,
under some assumptions on the initial condition ψ1 ∶R→R, we can make sense of
the solution to

∂t f1−(∂h f1)2 = 0 on R>0×R⩾0 (6.106)

subject to the initial condition f1(0, ⋅) =ψ1, and that the solution is given, for every
t,h ⩾ 0, by

f1(t,h) = sup
h′⩾0
(ψ1(h+h′)− (h

′)2
4t
); (6.107)

see in particular (4.84) and (4.90). While we exploited the convexity of ψ1 to
make use of the convex selection principle there, the fact that we could essentially
disregard the contribution of the boundary was only really using that the function ψ1
was non-decreasing. Using the language of characteristics discussed in Section 3.5,
the point is to ensure that the characteristic lines always go from the inside of the
domain towards the boundary, never the other way around.

In our present setting, a similar monotonicity property also holds. If we only
consider constant paths, with the free energy as in (6.32), then we found in (6.34)
that the derivative with respect to the value h of the constant path is given by

N−1E⟨σ1 ⋅σ2⟩ =N−1E⟨σ⟩2 ⩾ 0. (6.108)

We fix an integer K ⩾ 1, denote

UK ∶= {q = (q0, . . . ,qK) ∈RK+1
⩾0 ∣ 0 ⩽ q0 ⩽ q1 ⩽⋯ ⩽ qK}, (6.109)

and for each sequence q = (qk)0⩽k⩽K ∈UK , we consider the piecewise-constant path

qq ∶=
K
∑
k=0

qk1[ k
K+1 ,

k+1
K+1)

. (6.110)

While so far we had kept the dependence of q on its parameters implicit, it will be
useful to make this dependence explicit for a short while, as we do in the notation qq



242 Chapter 6 Mean-field spin glasses

instead of just q. One can show that

0 ⩽ ∂q0FN(t,qq) ⩽ ⋯ ⩽ ∂qK FN(t,qq). (6.111)

The proof of this result combines the Gaussian integration by parts used for the
proof of Lemma 6.2 with the explicit procedure for integrating the Poisson-Dirichlet
cascade presented in Theorem 5.25 and Corollary 5.26. We will not give a detailed
proof of (6.111), and only refer to Lemma 2.4 of [195] or Proposition 14.3.2 of [253].
(An alternative proof can be devised by analyzing the properties of the equation
in (6.90).) In analogy with (4.84) and (4.90), we can therefore hope that there is a
nice variational formula for equations posed on UK , even though this space has a
non-trivial boundary.

Recall from Lemma 6.2 and the discussion that followed that if K is chosen
sufficiently large, then we expect that

∂tFN(t,qq)−(K +1)
K
∑
k=0
(∂qkFN(t,qq))2 ≃ 0. (6.112)

Since the convex dual of the mapping (pk)0⩽k⩽K ↦ (K+1)∑K
k=0 p2

k is the mapping
(qk)0⩽k⩽K ↦ 1

4(K+1)∑q2
k , and since we argued that boundary aspects should hope-

fully behave as nicely as they have in the context of (4.90), we are led to expect
that, for K sufficiently large and qq as in (6.110),

f (t,qq) ≃ sup
q′∈UK

(ψ(qq+q′)−
1

4t(K+1)

K
∑
k=0
(q′k)

2). (6.113)

Using also that qq+q′ = qq+qq′ , this can be rewritten as

f (t,qq) ≃ sup
q′∈UK

(ψ(qq+qq′)−
1
4t

ˆ 1

0
(qq′(u))

2
du). (6.114)

Sending K to infinity, we see that the natural candidate for a Hopf-Lax variational
representation of the solution to (6.104)-(6.105) is, for every t ⩾ 0 and q ∈Q2(R⩾0),

f (t,q) = sup
q′∈Q2(R⩾0)

(ψ(q+q′)− 1
4t

ˆ 1

0
(q′(u))2 du). (6.115)

We note that for the more general mixed p-spin models defined in (6.13)-(6.14), the
relation (6.61) would be replaced by

∂tFN(t,q) =E⟨ξ(R1,2)⟩, (6.116)



6.5 Connecting the Hamilton-Jacobi approach with the Parisi formula 243

while the derivatives with respect to each qk are still as in (6.62). In this context, we
would therefore be led to suspect that the limit free energy f might satisfy1

∂t f (t,q)−
ˆ 1

0
ξ(∂q f (t,q,u))du = 0 on R>0×Q2(R⩾0), (6.117)

with the same initial condition (6.105). The inequality (6.111) remains valid in
this case, and in particular, the argument of the function ξ in (6.117) is always
non-negative. This is why the convexity of ξ on R⩾0 is sufficient for the validity of
a Hopf-Lax variational representation for f . Following along the heuristic argument
above would thus suggest that

f (t,q) = sup
q′∈Q2(R⩾0)

(ψ(q+q′)− t
ˆ 1

0
ξ
∗(q′(u))du), (6.118)

where ξ∗ ∶R→R is the convex dual of ξ ∶R⩾0→R, so that for every s ∈R,

ξ
∗(s) ∶= sup

r⩾0
(rs−ξ(r)). (6.119)

In this section we take the (rather convenient!) point of view of simply defining
the solution to (6.104)-(6.105) as being the function given in (6.115). The main
goal of this section is to show that our guessed formula (6.115) is indeed consistent
with the Parisi formula for the free energy of the SK model that was presented in
(6.8)-(6.9). We recall from (6.57) that the free energy (6.7) is equal to

−FN(
β 2

2
,0)+ log(2)+ β 2

2
, (6.120)

with FN(t,q) being the enriched free energy defined in (6.53) with the choice of
PN = (1

2δ−1 + 1
2δ1)⊗N . If we believe that FN(t,q) converges to f (t,q) as defined

in (6.115) for arbitrary choices of t ⩾ 0 and q ∈Q2(R⩾0), then in particular, it should
be that the limit of the free energy in (6.7) is

− f(β 2

2
,0)+ log(2)+ β 2

2
. (6.121)

We now show that this guess indeed coincides with the Parisi formula (6.8).

Theorem 6.7 ([195]). Let f ∶R⩾0×Q2(R⩾0)→R be the function defined by (6.115),
which we interpret as the solution to the Hamilton-Jacobi equation (6.104)-(6.105).
For every β ⩾ 0, we have

− f(β 2

2
,0)+ log(2)+ β 2

2
= inf

ζ∈D[0,1]
(Φζ (0,0)−β

2
ˆ 1

0
tζ(t)dt + log(2)), (6.122)

1The reader who wonders whether the integral in (6.117) is finite can derive from (6.62) that,
assuming ∂q f (t,q, ⋅) is well-defined, it must be uniformly bounded.
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where the space D[0,1] is defined in (6.10) and the function Φζ ∶ [0,1]×R→ R
denotes the solution to the Parisi PDE (6.9). In particular, the limit of the free
energy (6.7) in the SK model is given by

lim
N→+∞

FN(β) = − f(β 2

2
,0)+ log(2)+ β 2

2
. (6.123)

Proof. The Hopf-Lax representation (6.115) implies that

− f(β 2

2
,0)+ β 2

2
= inf
q∈Q2(R⩾0)

(Φq(0,0)+ 1
2β 2

ˆ 1

0
∣q(u)∣2 du+ β 2

2
). (6.124)

To establish (6.122), for each a > 0 it will be convenient to write

Q⩽a ∶= {q ∈Q∞(R⩾0) ∣ q(1) ⩽ a} (6.125)

for the paths in Q∞(R⩾0) that are bounded by a. The proof now proceeds in three
steps. First we show that the infimum on the right side of (6.124) can be restricted
to paths in Q⩽β 2 , then we use a change of variables to normalize to paths in Q⩽1,
and finally we perform another change of variables to replace a path q ∈Q⩽1 by its
right-continuous inverse q−1 ∈ D[0,1].

Step 1: restricting to Q⩽β 2 . We fix a path q ∈Q2(R⩾0), and define the path q̃ ∈Q⩽β 2

by q̃ ∶=min(q,β 2). We denote by u∗ ∶= inf{u ∈ [0,1] ∣ q(u) ⩾ β 2} the first point at
which q exceeds β 2, and observe that by the Lipschitz property of Φq in Proposi-
tion 6.3,

(Φq̃(0,0)+ 1
2β 2

ˆ 1

0
∣̃q(u)∣2 du)−(Φq(0,0)+ 1

2β 2

ˆ 1

0
∣q(u)∣2 du)

⩽
ˆ 1

0
∣q(u)− q̃(u)∣du− 1

2β 2

ˆ 1

0
(∣q(u)∣2− ∣̃q(u)∣2)du

=
ˆ 1

u∗
(q(u)−β

2)du−
ˆ 1

u∗
(q(u)−β

2)q(u)+β 2

2β 2 du

⩽ 0,

where we used that q(u) ⩾β 2 for u⩾ u∗ in the final inequality. Together with (6.124),
this implies that

− f(β 2

2
,0)+ β 2

2
= inf
q∈Q⩽β2

(Φq(0,0)+ 1
2β 2

ˆ 1

0
∣q(u)∣2 du+ β 2

2
). (6.126)

Step 2: re-normalizing to Q⩽1. Substituting q with β 2q in the previous display, we
obtain that

− f(β 2

2
,0)+ β 2

2
= inf
q∈Q⩽1

(Φβ
2q(0,0)+ β 2

2

ˆ 1

0
∣q(u)∣2 du+ β 2

2
). (6.127)
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Our goal now is to relate, for each fixed q ∈ Q⩽1, the function Φβ
2q from (6.90)

with the function Φζ solution to (6.9) for a suitable choice of ζ ∈ D[0,1]. We
choose ζ ∶= q−1, the right-continuous inverse of q. By definition, the function
Φq−1 ∶ [0,1]×R→R solves

⎧⎪⎪⎨⎪⎪⎩

−∂tΦq−1(t,x) = β 2(∂ 2
x Φq−1(t,x)+q−1(t)(∂xΦq−1(t,x))

2) on [0,1]×Rd

Φq−1(1,x) = logcosh(x) for x ∈R.

We write q̃ ∶= β 2q, and let Φ̃ ∶ [0,β 2]×R→R be defined by Φ̃(t,x) ∶=Φq−1(t/β 2,x).
Using that q̃−1(t) = q−1(t/β 2), we obtain that Φ̃ satisfies

⎧⎪⎪⎨⎪⎪⎩

−∂tΦ̃(t,x) = ∂ 2
x Φ̃(t,x)+ q̃−1(t)(∂xΦ̃(t,x))2 on [0,β 2]×Rd

Φ̃(β 2,x) = logcosh(x) for x ∈R.

We recall from the discussion around (6.95) that we may as well think of the
function Φβ

2q =Φq̃ as being defined on [0,β 2]×R, since β 2 ⩾ β 2q(1). We also
recall that the addition of a constant to the initial condition in (6.90) simply changes
the solution by the addition of this constant. Using also (6.88), we therefore obtain
that, for every t ∈ [0,β 2] and x ∈R,

Φ
β

2q(t,x) = Φ̃(t,x)−β
2.

Combining this with (6.127) yields that

− f(β 2

2
,0)+ β 2

2
= inf
q∈Q⩽1

(Φq−1(0,0)+
β 2

2

ˆ 1

0
∣q(u)∣2 du− β 2

2
). (6.128)

Step 3: re-parametrizing by D[0,1]. Our next step consists in replacing the op-
timization variable q ∈ Q⩽1 in (6.128) by its right-continuous inverse. So we fix
q ∈ Q⩽1 and denote by ζ ∶ [0,1] → [0,1] its right-continuous inverse, that is, for
every t ∈ [0,1],

ζ(t) ∶= sup{u ∈ [0,1] ∣ q(u) ⩽ t}. (6.129)

Since q is non-decreasing, we have that for every u,t ∈ [0,1],

u < ζ(t) Ô⇒ q(u) ⩽ t and u > ζ(t) Ô⇒ q(u) > t.

Since ζ ∈ D[0,1], we can write this function as t ↦ µ[0,t] for some probability
measure µ on [0,1]. We infer from the previous display that, for every t ∈ [0,1],

µ[0,t] =
ˆ 1

0
1{q(u)⩽t}du. (6.130)
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The mapping A↦
´ 1

0 1{q(u)∈A}du, where A is any measurable subset of [0,1], de-
fines a probability measure on [0,1]; it is the image of the Lebesgue measure
on [0,1] through the mapping q. By (6.130), this probability measure has the same
cumulative distribution function as µ . By Dynkin’s π-λ theorem (see Theorem A.5
and Exercise A.3), we deduce that this measure is equal to the measure µ . That is,
for every bounded measurable function g ∶ [0,1] →R,

ˆ 1

0
g(q(u))du =

ˆ 1

0
g(t)dµ(t). (6.131)

This corresponds to the fact that if we sample a uniform random variable U on [0,1],
then the law of q(U) is µ . We use (6.131) with the function g replaced by the square
function to obtain that

ˆ 1

0
∣q(u)∣2 du =

ˆ 1

0
t2 dµ(t).

We then re-express the latter integral in terms of ζ by integrating by parts, that is,

ˆ 1

0
∣q(u)∣2 du = 1−2

ˆ 1

0

ˆ 1

0
s1{t⩽s}dsdµ(t)

= 1−2
ˆ 1

0
s
ˆ 1

0
1{t⩽s}dµ(t)ds

= 1−2
ˆ 1

0
sζ(s)ds.

Since the correspondence between q ∈ Q⩽1 and ζ ∈ D[0,1] is bijective, we can
perform the change of variables q→ ζ in (6.128). Using also the identity in the
previous display, we obtain that

− f(β 2

2
,0)+ β 2

2
= inf

ζ∈D[0,1]
(Φζ (0,0)−β

2
ˆ 1

0
tζ(t)dt), (6.132)

as announced. ∎

6.6 Towards non-convex models

Let us start by summarizing what we have done so far. For the SK model, we
argued for the introduction of an enriched free energy FN(t,q) which depends on
a variable t ⩾ 0 and a path q ∈ Q1(R⩾0). This free energy is defined precisely in
(6.53) for piecewise-constant paths, and then extended by continuity. The quantity
we primarily want to compute is the large-N limit of FN(t,0), but the introduction
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of the additional variable is likely to help us to discover this limit. Indeed, we
argued informally that if f = f (t,q) ∶R⩾0×Q2(R⩾0) →R denotes the limit of the
free energy, we expect f to be a solution to

∂t f (t,q)−
ˆ 1

0
∂q f (t,q,u)2 du = 0 on R>0×Q2(R⩾0). (6.133)

Moreover, thanks to the fact that the reference measure PN is a product measure, we
have that FN(0,q) = F1(0,q) for every N, so the initial condition for f is

f (0,q) =ψ(q) ∶= F1(0,q). (6.134)

This object is computable relatively explicitly, since it only involves averages with
respect to a single spin variable. For piecewise-constant paths q, we can compute
this quantity recursively using Theorem 5.25, and then use the continuity of ψ for
more general paths. Alternatively, we can also express this calculation in the form
of the parabolic equation in (6.90).

Since the non-linearity in (6.133) is convex, we expect that the solution to this
equation admits a Hopf-Lax variational representation, which should take the form

f (t,q) = sup
q′∈Q2(R⩾0)

(ψ(q+q′)− 1
4t

ˆ 1

0
(q′(u))2 du). (6.135)

And indeed, when setting q = 0 in this formula, we verified that this guess yields the
answer predicted by Parisi in [216, 217, 218] and proved rigorously in [131, 249].
In fact, the convergence of the enriched free energy FN(t,q) to the function f (t,q)
defined in (6.133) can be shown rigorously for arbitrary choices of q ∈Q2(R⩾0).

Theorem 6.8 ([197]). Let FN(t,q) be the enriched free energy defined in (6.53)
and extended by continuity in Proposition 6.3, and let f (t,q) be as in (6.135). For
every t ⩾ 0 and q ∈Q2(R⩾0), we have

lim
N→+∞

FN(t,q) = f (t,q). (6.136)

In fact, this result was shown to be valid for arbitrary choices of the measure P1
of compact support and for general mixed p-spin models, provided that we replace
the definition of the Hamiltonian in (6.54) by

HN(t,q,σ ,α) ∶=
√

2tHN(σ)−Ntξ(∣σ ∣
2

N
)+Zq(α) ⋅σ −qK ∣σ ∣2, (6.137)

and with f as in (6.118).
The main motivation for exploring this chain of ideas is to make progress towards

the understanding of non-convex models. A typical representative in this class is the
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bipartite model defined in (6.18). We recall that for this model, the configuration
vector σ is split into two parts, σ = (σ1,σ2) ∈ Σ2

N . While we keep the length of each
of these two components the same for convenience of notation, we point out that we
do not plan to exploit any symmetry between these two components; to make this
clearest, one can think that under the reference measure PN , the vectors (σ1,i)1⩽i⩽N
and (σ2,i)1⩽i⩽N are independent with i.i.d. coordinates, but that the mean of σ1,i
may be different from the mean of σ2,i.

For this model, the naive extension of the free energy we explored in Section 6.2
would already involve the choice of two additional parameters instead of one, so that
we can act on each of the two coordinates of σ separately. Explicitly, the analogue
of the free energy in (6.32) would be, for every t ⩾ 0 and h = (h1,h2) ∈R2

⩾0,

FN(t,h) ∶= −
1
N
E log

ˆ
Σ2

N

exp(
√

2tHN(σ)−Nt

+
√

2h1z1 ⋅σ1−Nh1+
√

2h2z2 ⋅σ2−Nh2)dPN(σ), (6.138)

where z1 and z2 are independent standard N-dimensional Gaussian vectors, inde-
pendent from (HN(σ))σ∈Σ2

N
. The same Gaussian integration by parts calculations

as those in (6.34) and (6.35) yield that, for each a ∈ {1,2},

∂haFN(t,h) =N−1E⟨σ1
a ⋅σ2

a ⟩, (6.139)

while
∂tFN(t,h) =N−2E⟨(σ1

1 ⋅σ2
1 )(σ1

2 ⋅σ2
2 )⟩. (6.140)

This suggests that we should consider the relation

(∂tFN −∂h1FN ∂h2FN)(t,h)
=N−2E⟨(σ1

1 ⋅σ2
1 −E⟨σ1

1 ⋅σ2
1 ⟩)(σ1

2 ⋅σ2
2 −E⟨σ1

2 ⋅σ2
2 ⟩)⟩. (6.141)

This term would be small if the overlaps were concentrated. Indeed, using that
∣xy∣ ⩽ (x2+y2)/2, we see that

∣(∂tFN −∂h1FN ∂h2FN)(t,h)∣ ⩽
1

2N2

2
∑
a=1

E⟨(σ1
a ⋅σ2

a −E⟨σ1
a ⋅σ2

a ⟩)
2
. (6.142)

However, as for the SK model, these overlaps will typically not have a small variance
when t is large. As in Section 6.4, we therefore need to define a more sophisticated
enriched free energy. To do so, we give ourselves an integer K ⩾ 1 and parameters

0 = ζ0 < ζ1 <⋯ < ζK < ζK+1 = 1, (6.143)
0 = q−1,a ⩽ q0,a ⩽ q1,a ⩽⋯ ⩽ qK,a, (6.144)
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for a ∈ {1,2}. For each k ∈ {−1, . . . ,K}, we write qk ∶= (qk,1,qk,2) ∈ R2
⩾0, and we

also impose that qk ≠ qk+1. Notice that the sequence (qk)0⩽k⩽K is increasing for
the partial order induced by R2

⩾0. We encode all these parameters into the path
q ∶ [0,1) →R2

⩾0 defined by

q ∶=
K
∑
k=0

qk1[ζk,ζk+1). (6.145)

We write

Q(R2
⩾0) ∶= {q ∶ [0,1) →R2

⩾0 ∣ q is right-continuous and non-decreasing}, (6.146)

where we understand that the notion of non-decreasingness is for the partial order
induced by R2

⩾0, that is, a path q ∶ [0,1) → R2
⩾0 is non-decreasing if for every

u ⩽ v ∈ [0,1), we have q(v)−q(u) ∈R2
⩾0.

We give ourselves a Poisson-Dirichlet cascade (vα)α∈NK built over the tree A
with the parameters in (6.143), and two families (zα,a)α∈A,a∈{1,2} of independent
standard N-dimensional random variables, independent of each other and of every
other source of randomness. We then set, for each a ∈ {1,2},

Zq,a(α) ∶=
K
∑
k=0
(2qk,a−2qk−1,a)1/2zα∣k,a. (6.147)

Finally, we define the enriched free energy

FN(t,q) ∶= −
1
N
E log

ˆ
Σ2

N

∑
α∈NK

exp(HN(t,q,σ ,α))vα dPN(σ) (6.148)

associated with the Hamiltonian

HN(t,q,σ ,α) ∶=
√

2tHN(σ)−Nt +
2
∑
a=1
(Zq,a(α) ⋅σa−NqK,a). (6.149)

The proof of Proposition 6.3 applies to this setting as well and allows us to ex-
tend FN to R⩾0 ×Q1(R2

⩾0), where we write Qp(R2
⩾0) ∶= Q(R2

⩾0) ∩Lp([0,1];R2)
for p ∈ [1,+∞]. The derivative calculations from Lemma 6.2 can be performed
similarly here: the relation (6.140) is still valid, while for every k ∈ {0, . . . ,K} and
a ∈ {1,2},

∂qk,aFN(t,q) =N−1E⟨1{α1∧α2=k}σ
1
a ⋅σ2

a ⟩. (6.150)

In particular,

∂tFN(t,q)−
K
∑
k=0
(ζk+1−ζk)(

∂qk,1FN(t,q)
ζk+1−ζk

)(
∂qk,2FN(t,q)

ζk+1−ζk
)

=N−2E⟨(σ1
1 ⋅σ2

1 −E⟨σ1
1 ⋅σ2

1 ∣ α1∧α
2⟩)(σ1

2 ⋅σ2
2 −E⟨σ1

2 ⋅σ2
2 ∣ α1∧α

2⟩)⟩. (6.151)
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As for (6.142), this quantity can be bounded in absolute value by

1
2N2

2
∑
a=1

E⟨(σ1
a ⋅σ2

a −E⟨σ1
a ⋅σ2

a ∣ α1∧α
2⟩)2⟩. (6.152)

Up to the addition of a small perturbation to the Hamiltonian, one can enforce the
asymptotic validity of a family of Ghirlanda-Guerra identities involving different
linear combinations of all the overlaps at play. This implies the ultrametricity of
these overlaps, which in turn implies that they must be synchronized. In short, we
can make sure that the quantity in (6.152) is small “most of the time”, provided that
the integer K is sufficiently large. This suggests that the limit f ∶R⩾0×Q2(R2

⩾0)→R
of the free energy should satisfy the infinite-dimensional Hamilton-Jacobi equation

∂t f (t,q)−
ˆ 1

0
∂q1 f (t,q,u)∂q2 f (t,q,u)du = 0 on R>0×Q2(R2

⩾0), (6.153)

where we write q = (q1,q2) to denote the two components of the path q, or equiv-
alently, we write ∂q f (t,q,u) = (∂q1 f (t,q,u),∂q2 f (t,q,u)). The initial condition,
which we still denote by ψ ∶Q1(R2

⩾0) →R, is such that ψ(q) = F1(0,q), and it can
be determined more explicitly using the same procedure as for the SK model.

It is at this stage that a new problem occurs. Indeed, we can no longer expect
a Hopf-Lax variational representation to be valid for the solution to (6.153), since
the non-linearity, which in essence is the mapping ξ(x,y) ∶= xy featuring in the
covariance calculation (6.19), is neither convex nor concave. If we were to ignore
this and blindly try to write down a Hopf-Lax variational formula anyway, we
would need to consider the convex dual of ξ , which would be defined, for a,b ∈R,
analogously to (6.119), as

ξ
∗(a,b) ∶= sup

x,y⩾0
(ax+by−xy). (6.154)

Since this function takes the value +∞ on R2
⩾0∖{0}, pursuing this direction does

not look promising. A more refined attempt in the same direction is also shown to
be invalid in Subsection 6.2 of [194].

In the context of the models of statistical inference explored in Chapter 4, we
could alternatively leverage the fact that the initial condition is always convex. This
convexity property is valid even for the very general models discussed at the end
of Section 4.3, and some of those models would be associated with a non-convex
non-linearity in the equation. Also in view of the convex selection principle, the
next question we need to ask is therefore whether the initial condition ψ in our
present context is convex or concave, or whether it is neither of those. Unfortunately,
the answer is negative in general. In Exercise 6.7, a simple example with only one
type of spin taking values in Σ1 is given for which the initial condition is neither
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convex nor concave, even if we restrict it to the space of constant paths2. We also
recall that, in order for a Hopf variational representation to be valid, the convexity
or concavity of the initial condition is not only sufficient, but also necessary, as is
clear from the formula (3.68) with t = 0.

In short, our usual candidate variational representations for the solution to (6.153),
namely the Hopf-Lax and the Hopf formulas, are invalid in general. This motivates
to try to make sense of the solution to the Hamilton-Jacobi equation (6.153) directly.
Perhaps the easiest way to proceed is to construct solutions to finite-dimensional
approximations to (6.153), and then pass to the limit. That is, in the context of the
SK model and inspired by (6.112), we would take a large integer K, define UK as
in (6.109), and seek a function f (K) ∶R⩾0×UK→R that solves the finite-dimensional
Hamilton-Jacobi equation

∂t f (K)−(K+1)
K
∑
k=0
(∂qk f (K))2 = 0 on R>0×UK (6.155)

subject to the initial condition f (K)(0,q) = ψ(qq), with qq as in (6.50). For the
bipartite model, we would set

U2
K ∶= {q = (q0, . . . ,qK) ∈ (R2

⩾0)K+1 ∣ 0 ⩽ q0 ⩽ q1 ⩽⋯ ⩽ qK}, (6.156)

where we understand that qk ⩽ qk+1 stands for qk+1−qk ∈R2
⩾0, and we would aim

to find a function f (K) ∶R⩾0×U2
K →R that solves the finite-dimensional Hamilton-

Jacobi equation

∂t f (K)−(K+1)
K
∑
k=0

∂qk,1 f (K)∂qk,2 f (K) = 0 on R⩾0×U2
K, (6.157)

subject to the appropriate initial condition. Continuing with the bipartite model, for
each q ∈Q2(R2

⩾0), we would then want to use piecewise-constant approximations
to q such as

q ≃
K
∑
k=0

1[ k
K+1 ,

k+1
K+1)

1
K+1

ˆ k+1
K+1

k
K+1

q(u)du. (6.158)

Together with (6.110), this motivates the introduction of the sequence q(K)(q) =
(q(K)k (q))0⩽k⩽K defined, for each k ∈ {0, . . . ,K}, by

q(K)k (q) ∶=
1

K +1

ˆ k+1
K+1

k
K+1

q(u)du. (6.159)

2For the expert reader who may think that this contradicts the main result of [25], we point
out that the convexity shown there is with respect to the inverse function to our paths q. It is the
convexity or concavity with respect to q that is relevant in the study of the variational representations
to (6.153).
We also add that Exercise 6.7 shows the invalidity of a Hopf variational representation to (6.153) for
some choices of the reference measure, but we do not exclude the possibility that it is valid for other
choices.
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It is shown in [194] that the functions f (K) are well-defined, and that for each
q ∈Q2(R2

⩾0), the limit

f (t,q) ∶= lim
K→+∞

f (K)(t,q(K)(q)) (6.160)

exists and is finite. One may then decide that this limit object f is what we
understand to be the solution to (6.153) with initial condition ψ . A more intrinsic
notion, directly making sense of what it means to be a viscosity solution to (6.153)
in infinite dimensions, was introduced in [73] and shown to be equivalent to this
definition by successive approximations. In the context of the SK model, one can
write Hopf-Lax formulas for each of the finite-dimensional approximations and
then pass to the limit in the resulting expressions, thereby verifying that the notion
of solution just introduced here coincides with the variational definition in (6.135)
(see also [73, 74]). From now on, whenever we refer to the solution to (6.153), we
refer to the function defined through the procedure ending with (6.160).

We are thus led to the following question.

Question 6.9. Let FN(t,q) be the enriched free energy for the bipartite model, as
defined in (6.148), and let f (t,q) be the solution to (6.153) with initial condition ψ .
Is it true that for every t ⩾ 0 and q ∈Q2(R2

⩾0), we have

lim
N→+∞

FN(t,q) = f (t,q) ? (6.161)

We do not know the answer to this question. The following result gives an
inequality between the two terms in (6.161).

Theorem 6.10 ([194]). With the same notation as in Question 6.9, we have for
every t ⩾ 0 and q ∈Q2(R2

⩾0) that

liminf
N→+∞

FN(t,q) ⩾ f (t,q). (6.162)

One can also show that any subsequential limit of FN must satisfy the equa-
tion (6.153) “almost everywhere”. This is shown in a sense involving finite-
dimensional approximations in [194], and also directly in infinite dimensions in [70]
for a precise infinite-dimensional generalization of the notion of “almost every-
where”. As was explained in Example 3.1, the verification of such a property does
not suffice to identify the solution uniquely, even in finite dimensions.

We now describe how Question 6.9 would be phrased for more general mean-
field spin glasses with a finite number of types. For a fixed integer D ⩾ 1, we take our
configuration vector to be of the form σ = (σ1, . . . ,σD) ∈ (RN)D. We take PN to be
a probability measure on (RN)D ≃RD×N such that if σ is sampled according to PN ,
and if we think of σ as a D-by-N matrix, then the N columns of σ are independent
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and identically distributed with a fixed distribution P1 of bounded support in RD.
We give ourselves a centred Gaussian field (HN(σ))σ∈RD×N such that, for some
smooth function ξ ∶RD×D→R and for every σ1,σ2 ∈ (RN)D,

EHN(σ1)HN(σ2) =Nξ((
σ1

d ⋅σ
2
d′

N
)

d,d′⩽D
). (6.163)

The mean-field character of the model is encoded by the fact that this covariance
depends only on the D-by-D matrix of scalar products between the different “types”
of spins. The set of functions ξ for which such a Gaussian random field exists is
described precisely in Proposition 6.6 of [196]. Writing SD

⩾0 to denote the set of D-
by-D positive semi-definite matrices, we give ourselves a family of real parameters
(ζk)1⩽k⩽K as in (6.143) and

0 = q−1 ⩽ q0 < q1 <⋯ < qK ∈ SD
⩾0, (6.164)

where we understand that qk ⩽ qk+1 means that qk+1−qk ∈ SD
⩾0, and qk < qk+1 means

that qk ⩽ qk+1 and qk ≠ qk+1. We encode this into a path q as in (6.145), an element
of the space of paths Q(SD

⩾0) defined analogously to (6.146). We take (vα)α∈NK to
be the Poisson-Dirichlet cascade associated with the parameters (ζk)1⩽k⩽K , and let
(zα)α∈A be independent D-by-N random matrices whose entries are independent
standard Gaussians. We then define

Zq(α) ∶=
K
∑
k=0
(2qk−2qk−1)1/2zα∣k , (6.165)

which is a random D-by-N matrix. Recall that for any two matrices a and b of the
same size, we denote by a ⋅b their entry-wise scalar product, that is, a ⋅b ∶= tr(ab∗).
We define the enriched free energy as

FN(t,q) ∶= −
1
N
E log

ˆ
Σ2

N

∑
α∈NK

exp(HN(t,q,σ ,α))vα dPN(σ) (6.166)

for the Hamiltonian

HN(t,q,σ ,α)

∶=
√

2tHN(σ)−Ntξ((σd ⋅σd′

N
)

d,d′⩽D
)+Zq(α) ⋅σ −σ ⋅qKσ . (6.167)

Similar arguments as for the bipartite model lead us to expect that, as N tends to in-
finity, the free energy FN in (6.148) converges to the function f ∶R⩾0×Q2(SD

⩾0) →R
that solves the infinite-dimensional Hamilton-Jacobi equation

∂t f (t,q)−
ˆ 1

0
ξ(∂q f (t,q,u))du = 0 on R>0×Q2(SD

⩾0) (6.168)
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subject to the initial condition f (0,q) = ψ(q) ∶= F1(0,q). One can construct a
solution to this equation exactly as in the procedure leading to (6.160).

Question 6.11. Let FN(t,q) be the enriched free energy (6.166), and let f (t,q) be
the solution to (6.168) with initial condition ψ . Is it true that for every t ⩾ 0 and
q ∈Q2(SD

⩾0), we have
lim

N→+∞
FN(t,q) = f (t,q) ? (6.169)

The results presented in Theorem 6.10 and in the paragraph below have been
extended to this setting [70, 196]. We also mention that, for certain problems of
community detection which, unlike the situation explored in Section 4.5, involve
random graphs whose average degree remains bounded, very similar difficulties
emerge [105, 152]. When the covariance function ξ is convex over SD

⩾0, the func-
tion f in Question 6.11 admits a Hopf-Lax variational representation [73], and the
identity (6.169) is indeed valid [70].

In Theorem 3.19, we observed that whenever the non-linearity or the initial
condition of the finite-dimensional Hamilton-Jacobi equation (3.20) is convex or
concave, the solution to this equation must be a critical value of the function Jt,x de-
fined in (3.53). Remarkably, the limit of the free energy FN(t,q) defined in (6.166),
assuming it exists, must also satisfy this property for the natural analogue of Jt,x
associated with the infinite-dimensional Hamilton-Jacobi equation (6.168). What
is truly remarkable is that this property is valid even in situations in which neither
the non-linearity nor the initial condition possess any global convexity or concavity
property. To state this precisely, we define, for every t ⩾ 0 and p,q,q′ ∈Q2(SD

⩾0),

Jt,q(q′,p) ∶=ψ(q′)+
ˆ 1

0
p(u) ⋅ (q−q′)(u)du+ t

ˆ 1

0
ξ(p(u))du. (6.170)

Theorem 6.12 ([70]). Suppose that the free energy FN defined in (6.166) converges
pointwise to a function f ∶ R⩾0 ×Q2(SD

⩾0) → R. For every t ⩾ 0 and q ∈ Q2(SD
⩾0),

there exists q′,p ∈Q2(SD
⩾0) such that

q = q′− t∇ξ(p), p = ∂qψ(q′), (6.171)

and
f (t,q) = Jt,q(q′,p). (6.172)

The conditions in (6.171) correspond to the requirement that the pair (q′,p) be
a critical point of the functional Jt,q. They can be written more explicitly as

q(u) = q′(u)− t∇ξ(p(u)), p(u) = ∂qψ(q′,u) du-a.e. in [0,1). (6.173)

As was observed in Section 3.5, these conditions can be interpreted as saying that the
characteristic line starting at q′ passes through the point (t,q). Roughly speaking,
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it is also shown in [70] that, up to a small perturbation of the parameters, one can
choose the critical point (q′,p) in Theorem 6.12 in such a way that the overlap
matrix N−1(σd ⋅σ ′d′)d,d′⩽D converges in law to p(U), where U is a uniform random
variable on [0,1].

Exercise 6.7. Let P1 be a probability measure on R with compact support, let z be a
standard Gaussian random variable, and consider the free energy

f (t) ∶= −E log
ˆ
R

exp(
√

2tzσ − tσ2)dP1(σ)

associated with the Hamiltonian H(t,σ) ∶=
√

2tzσ − tσ2. Denoting by ⟨⋅⟩ its associ-
ated Gibbs measure, show that

∂
2
t f = 2E(⟨σ2⟩−⟨σ⟩2)(⟨σ2⟩−3⟨σ⟩2).

Deduce that for a suitable choice of measure P1, the free energy f is neither convex
nor concave.



Appendix A
Basic results in analysis and probability

In this appendix, we give detailed proofs of the basic results in analysis and probabil-
ity theory that are used in the main text. The topics covered are classical, so readers
already familiar with the material can safely skip it; we have merely included it to
keep the book as self-contained as possible. The key results that we prove are the
Caratheodory extension theorem, the Dynkin π-λ theorem, the Riesz representation
theorem, the Stone-Weierstrass theorem, the Lebesgue differentiation theorem, the
Portmanteau theorem, the Prokhorov theorem, and the injectivity of the Fourier
and Laplace transforms. Although some of these results can be proved in greater
generality, we will focus on the setting in which we give ourselves a metric space S,
whose metric we denote by d.

A.1 Constructing measures

One of the most classical problems in geometry is to determine the length, area, or
volume of a curve, surface or solid. This problem can be generalized to the setting
of a metric space S as the task of assigning an adequate notion of size or measure
to a subset of S. Intuitively, any reasonable notion of measure should be countably
additive, monotone, and assign no mass to the empty set. Unfortunately, examples
such as that due to Vitali [259] show that it is not in general possible to assign such
a notion of measure to all sets in S. To overcome this issue, we will only define the
measure of a collection S of subsets of S which make the pair (S,S) a measurable
space.

A pair (S,S) is a measurable space if S is a σ -algebra of subsets of S. A
collection A of subsets of S is called an algebra if it contains S, it is closed under
finite unions and it is closed under complements,

(i) S ∈ A,

(ii) for every A,B ∈ A, we have A∪B ∈ A,

256
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(iii) if A ∈ A, then Ac ∈ A.

A collection S of subsets of S is called a σ -algebra if it is an algebra which is closed
under countable unions,

(iv) if (An)n⩾1 is a sequence of sets in S , then ⋃n⩾1 An ∈ S .

To verify that an algebra A is a σ -algebra, it suffices to verify that it is countably
additive on disjoint sets,

(iv’) if (An)n⩾1 is a sequence of disjoint sets in S , then ⋃n⩾1 An ∈ S .

Indeed, if (An)n⩾1 is a sequence of sets in S , then the sequence

Fn ∶= An∖
n−1
⋃
i=1

Ai (A.1)

of disjoint sets is also in S and has the same union as (An)n⩾1. The simplest example
of a σ -algebra is the σ -algebra generated by a collection E of subsets of S,

σ(E) ∶=⋂{M ∣M is a σ -algebra containing E}. (A.2)

This is the smallest σ -algebra containing E and it is well-defined as the intersection
of a collection of σ -algebras is again a σ -algebra. We will typically endow a metric
space S with its Borel σ -algebra. The Borel σ -algebra on a metric space S is the
σ -algebra generated by all open sets,

B(S) ∶= σ({U ∣U is open in S}). (A.3)

A measure µ on a measurable space (S,S) is a non-negative set function µ ∶ S →
[0,+∞] which assigns no mass to the empty set and is countably additive,

(i) µ(∅) = 0,

(ii) for every sequence (An)n⩾1 of disjoint sets in S ,

µ(
∞
⋃
n=1

An) =
+∞
∑
n=1

µ(An). (A.4)

A measure µ is said to be a finite measure if µ(S) < +∞, and a finite measure P is
said to be a probability measure if P(S) = 1. The simplest example of a measure is
the Dirac measure at a point x ∈ S defined on the measurable space (S,2S) by

δx(A) ∶= 1A(x). (A.5)
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Thinking back to the geometric problem of determining length, we would like our
first non-trivial example of a measure to be the measure m on the real line which
gives the length of a set. Although there are many sets whose length we do not
know a priori, we know the value of the measure m on the algebra

A ∶= {
n
⋃
i=1
(ai,bi] ∣ n ⩾ 1 and (ai,bi] are disjoint intervals} (A.6)

of finite unions of disjoint half-open intervals,

m(
n
⋃
i=1
(ai,bi]) ∶=

n
∑
i=1
(bi−ai). (A.7)

We will first construct a measure on the Borel σ -algebra B(R) which satisfies (A.7)
using the Caratheodory extension theorem, and then we will prove that such a mea-
sure must be unique using the Dynkin π-λ theorem. This strategy of constructing
a measure by first specifying its value on a large enough but simple collection of
sets such as an algebra, then establishing its existence on the σ -algebra generated
by this collection of sets using the Caratheodory extension theorem, and finally
obtaining its uniqueness using the Dynkin π-λ theorem is very general.

The idea behind the Caratheodory extension theorem is to first define an outer
measure on the collection 2S of all subsets of S, and then restrict this outer measure
to the σ -algebra of Caratheodory measurable sets where it becomes a measure.
An outer measure µ∗ on S is a non-negative set function µ∗ ∶ 2S→ [0,+∞] which
assigns no mass to the empty set, is monotone and countably sub-additive,

(i) µ∗(∅) = 0,

(ii) for all subsets A,B of S with A ⊆ B,

µ
∗(A) ⩽ µ

∗(B), (A.8)

(iii) for every sequence (An)n⩾1 of subsets of S,

µ
∗(
∞
⋃
n=1

An) ⩽
+∞
∑
n=1

µ
∗(An). (A.9)

The most common way to define an outer measure is to start with a collection E ⊆ 2S

of elementary sets and a non-negative set function ρ ∶ E → [0,+∞], and define the
set function µ∗ ∶ 2S→ [0,+∞] by

µ
∗(A) ∶= inf{

+∞
∑
n=1

ρ(En) ∣ En ∈ E and A ⊆
∞
⋃
n=1

En}. (A.10)

Provided that ∅,S ∈ E and ρ(∅) = 0, this set function µ∗ is an outer measure. The
assumption S ∈ E ensures that the infimum in (A.10) is never taken over the empty
set, so µ∗ is well-defined.
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Proposition A.1. If E ⊆ 2S is a collection of sets with ∅,S ∈ E and ρ ∶ E → [0,+∞]
is a non-negative set function with ρ(∅) = 0, then (A.10) is an outer measure.

Proof. Taking En = ∅ ∈ E for all n ⩾ 1 shows that µ∗(∅) = ρ(∅) = 0. If A,B are
subsets of S with A ⊆ B, then the infimum defining µ∗(A) is taken over a larger set
than that defining µ∗(B) which means that µ∗(A) ⩽ µ∗(B). To establish countable
sub-additivity, we fix a sequence (An)n⩾1 of subsets of S as well as ε > 0. For each
n ⩾ 1, let (En,i)i⩾1 ⊆ E be such that for every n ⩾ 1,

An ⊆
∞
⋃
j=1

En,i and
+∞
∑
i=1

ρ(En,i) ⩽ µ
∗(An)+

ε

2n .

Since (En,i)n,i⩾1 forms a cover of ⋃∞n=1 An, the definition of µ∗ implies that

µ
∗(
∞
⋃
n=1

An) ⩽
+∞
∑

n,i=1
ρ(En,i) ⩽

+∞
∑
n=1

µ
∗(An)+ε.

Letting ε tend to zero completes the proof. ∎

The key insight behind the Caratheodory extension theorem is that an outer
measure restricted to the σ -algebra of Caratheodory measurable sets becomes a
measure. A subset A of S is Caratheodory measurable with respect to an outer
measure µ∗ if, for every other subset E of S,

µ
∗(E) = µ

∗(E ∩A)+µ
∗(E ∩Ac). (A.11)

In other words, A is Caratheodory measurable if it can be used to partition any other
set E in an additive fashion. We will write

S∗ ∶= {A ⊆ S ∣ A is Caratheodory measurable} (A.12)

for the collection of Caratheodory measurable sets.

Theorem A.2 (Caratheodory extension). If µ∗ is an outer measure on S, then the
collection S∗ of Caratheodory measurable sets is a σ -algebra, and the restriction
of µ∗ to S∗ is a measure.

Proof. Since µ∗(∅) = 0 and the definition of Caratheodory measurable is symmetric
in A and Ac, the set S∗ contains S and is closed under complements. To show that it
is an algebra, fix two Caratheodory measurable sets A,B ∈ S∗ as well as an arbitrary
subset E of S. By Caratheodory measurability of A and B,

µ
∗(E) = µ

∗(E ∩A∩B)+µ
∗(E ∩A∩Bc)+µ

∗(E ∩Ac∩B)+µ
∗(E ∩Ac∩Bc).
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Combining the fact that A∪B = (A∩B)∪(A∩Bc)∪(Ac∩B) with the sub-additivity
of µ∗ reveals that

µ
∗(E ∩(A∪B)) ⩽ µ

∗(E ∩A∩B)+µ
∗(E ∩A∩Bc)+µ

∗(E ∩Ac∩B).

It follows that

µ
∗(E ∩(A∪B))+µ

∗(E ∩(A∪B)c) ⩽ µ
∗(E),

where we have used the fact that (A∪B)c = Ac∩Bc. By sub-additivity of µ∗ this
inequality is in fact an equality so A∪B ∈ S∗ and S∗ is an algebra. To prove that S∗
is a σ -algebra, it suffices to fix a sequence (An)n⩾1 of disjoint sets in S∗ and show
that their union also lies in S∗. Fix an integer n ⩾ 1, and to simplify notation,
let Bn ∶= ⋃n

i=1 Ai ∈ S∗ and B ∶= ⋃∞n=1 An. For any subset E of S, the Caratheodory
measurability of An and the assumption that the sets Ai are disjoint imply that

µ
∗(E ∩Bn) = µ

∗(E ∩Bn∩An)+µ
∗(E ∩Bn∩Ac

n)
= µ
∗(E ∩An)+µ

∗(E ∩Bn−1).

It follows by Caratheodory measurability of Bn and an induction that

µ
∗(E) = µ

∗(E ∩Bn)+µ
∗(E ∩Bc

n) =
n
∑
i=1

µ
∗(E ∩Ai)+µ

∗(E ∩Bc
n).

Noticing that Bc ⊆ Bc
n, leveraging the monotonicity of µ∗, and letting n tend to

infinity shows that

µ
∗(E) ⩾

+∞
∑
n=1

µ
∗(E ∩An)+µ

∗(E ∩Bc). (A.13)

Invoking the sub-additivity of µ∗ reveals that

µ
∗(E) ⩾ µ

∗(
∞
⋃
n=1
(E ∩An))+µ

∗(E ∩Bc) = µ
∗(E ∩B)+µ

∗(E ∩Bc) ⩾ µ
∗(E),

so in fact these inequalities are equalities and B ∈ S∗ as required for S∗ to be a
σ -algebra. That µ∗ restricts to a measure on S∗ is immediate from (A.13) with
E = B and the sub-additivity of outer measure. This completes the proof. ∎

The Caratheodory extension theorem is often stated as the possibility to extend
a pre-measure from an algebra to the σ -algebra it generates. A pre-measure µ0 on
an algebra A is a non-negative set function µ0 ∶ A→ [0,+∞] which assigns no mass
to the empty set and is countably additive whenever this makes sense,

(i) µ(∅) = 0,
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(ii) if (An)n⩾1 is a sequence of disjoint sets in A with ⋃∞n=1 An ∈ A, then

µ0(
∞
⋃
n=1

An) =
+∞
∑
n=1

µ0(An). (A.14)

We have opted for the more general version of the Caratheodory extension theo-
rem as we will prove the Riesz representation theorem by extending a set func-
tion from the collection of open sets, which does not form an algebra, to the
Borel σ -algebra B(S). Nonetheless, let us establish this simplified version of the
Caratheodory extension theorem and use it to extend the pre-measure m defined
by (A.7) to a measure on the Borel σ -algebra B(R). The fact that (A.7) is a
well-defined pre-measure on the algebra (A.6) is the content of Exercise A.2.

Corollary A.3 (Simplified Caratheodory extension). If µ0 ∶ A→R is a pre-measure
on an algebra A, then µ0 can be extended to a measure µ on the σ -algebra σ(A).

Proof. Denote by µ∗ ∶ 2S → [0,+∞] the set function defined by (A.10) with ρ =
µ0, and recall that it is an outer measure by Proposition A.1. It follows by the
Caratheodory extension theorem that the restriction µ of µ∗ to the σ -algebra S∗ of
Caratheodory measurable sets is a measure. To see the µ is an extension of µ0, fix
A ∈ A, and let (En)n⩾1 ⊆A be a covering of A. Introduce the disjoint sets

Fn ∶= A∩(En∖
n−1
⋃
i=1

Ei) ∈ A

whose union is A. The definition of a pre-measure implies that

µ0(A) =
+∞
∑
n=1

µ0(Fn) ⩽
+∞
∑
n=1

µ0(En),

and taking the infimum over all coverings (En)n⩾1 shows that µ0(A) ⩽ µ∗(A).
Taking the covering E1 = A and En = ∅ for n ⩾ 2 shows that this is in fact an equality,
so µ0 = µ∗ = µ on A. To show that the extension µ is defined on σ(A), it suffices
to verify that A⊆ S∗. Fix a set A ∈ A as well as an arbitrary subset E of S and ε > 0.
Let (En)n⩾1 ⊆A be a sequence of elementary sets with

E ⊆
∞
⋃
n=1

En and µ
∗(E) ⩽

+∞
∑
n=1

µ0(En)+ε.

Since µ0 is additive on A,

µ
∗(E)+ε ⩾

+∞
∑
n=1

µ0(En∩A)+
+∞
∑
n=1

µ0(En∩Ac) ⩾ µ
∗(E ∩A)+µ

∗(E ∩Ac).

Since ε is arbitrary, together with the sub-additivity of outer measure, this shows
that A ∈ S∗ and completes the proof. ∎
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A direct application of this result gives a measure m on the Borel σ -algebra B(R)
which satisfies (A.7) on the algebra (A.6). We would like to say that this is the
measure on the Borel σ -algebra B(R) which gives the length of a set. We therefore
need to establish the uniqueness of such a measure. This will be done using the
Dynkin π-λ theorem. A π-system is a collection P of sets that is closed under
intersections,

(i) if A,B ∈ P , then A∩B ∈ P .

A λ -system is a collection L of sets that contains the set S, is closed under comple-
ments and is closed under increasing unions,

(i) S ∈ L,

(ii) if A,B ∈ L are such that A ⊆ B, then B∖A ∈ L,

(iii) if (An)n⩾1 is an increasing sequence of sets in L with A1 ⊆ A2 ⊆ ⋯, then
⋃∞n=1 An ∈ L.

Lemma A.4. If L is both a π-system and a λ -system, then it is a σ -algebra.

Proof. Since a λ -system is closed under complements, it suffices to show that L is
closed under countable unions. Fix a sequence (An)n⩾1 of sets in L, and consider
the increasing sequence

Bn ∶=
n
⋃
i=1

Ai.

An induction relying on the fact that B1∪B2 = (Bc
1∩Bc

2)c and the assumption that L
is a π-system shows that (Bn)n⩾1 ⊆ L. Observing that (Bn)n⩾1 increases to ⋃∞n=1 An
and remembering that L is a λ -system completes the proof. ∎

Theorem A.5 (Dynkin π-λ ). If P is a π-system and L is a λ -system with P ⊆ L,
then

σ(P) ⊆ L. (A.15)

Proof. Denote by `(P) the smallest λ -system containing P . By minimality of `(P)
and σ(P), it suffices to prove that `(P) is a σ -algebra. Indeed, if this is the case,
then

σ(P) ⊆ `(P) ⊆ L.
By Lemma A.4 it is in fact sufficient to show that `(P) is a π-system. For each
A ∈ `(P) define the λ -system

GA ∶= {B ∣ A∩B ∈ `(P)}.

Since P is a π-system, for every A ∈ P , we have P ⊆ GA. It follows by minimality
of `(P) that `(P) ⊆ GA. This means that for every A ∈ P and B ∈ `(P), we have
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A∩B ∈ `(P). In other words, for every B ∈ `(P), we have P ⊆ GB. It follows by
minimality of `(P) that for every B ∈ `(P), we have `(P) ⊆ GB. This shows that
`(P) is a π-system and completes the proof. ∎

As a direct application of the Dynkin π-λ theorem, we can now show that there
is a unique σ -finite measure on the Borel σ -algebra B(R) which corresponds to
our intuition about the length of a set. A measure µ on a measurable space (S,S) is
σ -finite if there exists a sequence of sets (An)n⩾1 ⊆ S which cover S and have finite
measure,

S =
∞
⋃
n=1

An and µ(An) < +∞ for all n ⩾ 1. (A.16)

Corollary A.6. There is a unique measure m on the Borel σ -algebra B(R) with

m(
n
⋃
i=1
(ai,bi]) ∶=

n
∑
i=1
(bi−ai) (A.17)

on the algebra (A.6) of finite unions of disjoint intervals. This measure is the
Lebesgue measure.

Proof. Notice that any measure satisfying (A.17) must be σ -finite. The existence of
a measure m satisfying (A.17) on the algebra (A.6) has already been established by
combining the Caratheodory extension theorem in Corollary A.3 with Exercise A.2.
To obtain uniqueness, fix two σ -finite measures µ and ν on B(R) which coincide
on the algebra (A.6). Fix an increasing sequence (In)n⩾1 ⊆A of intervals I1 ⊆ I2 ⊆⋯
which cover R and have finite µ and ν measures. By Exercise A.3, for each integer
n ⩾ 1, the collection of sets

Ln ∶= {B ∈ σ(A) ∣ µ(B∩ In) = ν(B∩ In)} (A.18)

forms a λ -system. Since this λ -system contains the π-system (A.6) and this π-
system generates the Borel σ -algebra, the Dynkin π-λ theorem implies that Ln =
B(R). It follows that for every n ⩾ 1 and Borel set B ∈ B(R),

µ(B∩ In) = ν(B∩ In). (A.19)

Using the continuity from below of measure established in Exercise A.1 shows that
µ = ν on B(R) and completes the proof. ∎

The Caratheodory extension theorem and the Dynkin π-λ theorem can be
combined to uniquely define many measures by first defining them on a simpler
class of sets. For instance, product measures can be constructed by defining them
on the algebra of finite disjoint unions of rectangles. In the next section, we will
combine these two results to establish the Riesz representation theorem by extending
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a set function from the collection of open sets to the Borel σ -algebra. Another
important consequence of the Dynkin π-λ theorem is that every finite measure on
the Borel σ -algebra of a metric space is closed regular. A measure µ is closed
regular if for every measurable set A ⊆ S,

µ(A) = sup{µ(F) ∣ F ⊆ A and F is closed}. (A.20)

For a finite measure, taking complements shows that being closed regular is equiva-
lent to being open regular. A measure µ is open regular if for every measurable set
A ⊆ S,

µ(A) = inf{µ(U) ∣ A ⊆U and U is open}. (A.21)

The fact that every finite measure on the Borel σ -algebra of a metric space is closed
regular is the content of Exercise A.4.

Exercise A.1. Fix a measure µ on a measurable space (S,S).

(i) Show that µ is monotone in the sense that for all measurable sets A,B ∈ S with
A ⊆ B, we have

µ(A) ⩽ µ(B). (A.22)

(ii) Show that µ is continuous from below in the sense that for any increasing
sequence of measurable sets (An)n⩾1 ⊆ S with A1 ⊆ A2 ⊆⋯, we have

µ(
∞
⋃
n=1

An) = lim
n→+∞

µ(An). (A.23)

Exercise A.2. Let F ∶R→R be an increasing and right-continuous function, and
write A for the algebra (A.6) of finite unions of disjoint intervals on R. Show that
the non-negative set function mF ∶ A→ [0,+∞] defined by

mF(
n
⋃
i=1
(ai,bi]) ∶=

n
∑
i=1
(F(bi)−F(ai)) (A.24)

is a well-defined pre-measure.

Exercise A.3. Let P be a π-system of sets in S and let µ and ν be measures on the
measurable space (S,σ(P)) which coincide on P . Show that for any A ∈ P with
µ(A) < +∞, the collection of sets

L ∶= {B ∈ σ(P) ∣ µ(A∩B) = ν(A∩B)} (A.25)

forms a λ -system. Deduce that a finite measure on (S,σ(P)) is determined by its
values on P .
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Exercise A.4. Fix a finite measure µ on the Borel σ -algebra a metric space S. The
purpose of this exercise is to show that µ is closed regular in the sense that (A.20)
holds for any measurable set A ⊆ S.

(i) Show that the set

L ∶= {A ∈ S ∣ µ(A) = sup
F⊆A

F closed

µ(F) and µ(Ac) = sup
F⊆Ac

F closed

µ(F)} (A.26)

is a λ -system.

(ii) Prove that L contains all open sets.

(iii) Conclude that µ is closed regular.

A.2 The Riesz representation theorem

The Riesz representation theorem allows us to identify a positive linear functional
on the space of continuous functions on a compact metric space S with a unique
measure on the Borel σ -algebra B(S). A positive linear functional on the space of
continuous functions on S is a linear functional T ∶C(S;R)→R that is non-negative
on non-negative functions,

(i) for all a,b ∈R and f ,g ∈C(S;R), we have T(a f +bg) = aT( f )+bT(g),

(ii) for all f ∈C(S;R) with f ⩾ 0, we have T( f ) ⩾ 0.

Notice that we do not require the continuity of the linear functional T ; however, as
shown in Exercise A.5, this continuity is implied by the positivity of T . To prove
the Riesz representation theorem, we will rely on two classical topological results
whose proofs are particularly simple in the metric setting.

Lemma A.7 (Urysohn). If F is a closed subset of a metric space S that is contained
in some open set U ⊇ F, then there exists a continuous function f ∶ S→ [0,1] which
is equal to one on F and vanishes outside U,

1F ⩽ f ⩽ 1U . (A.27)

Proof. Denote by d the metric on S, and define the function f ∶ S→ [0,1] by

f (x) ∶= d(x,Uc)
d(x,F)+d(x,Uc)

.

Since the distance to a closed set is continuous and F ∩Uc = ∅, the function f is
continuous. Moreover, we have f (x) = 0 if and only if x ∈Uc and f (x) = 1 if and
only if x ∈ F . This completes the proof. ∎
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Lemma A.8 (Partition of unity). If K is a compact subset of a metric space S and
(Ui)i⩽n is an open cover of K, then there exist continuous functions (hi)i⩽n with

n
∑
i=1

hi = 1 on K and 0 ⩽ hi ⩽ 1Ui for 1 ⩽ i ⩽ n. (A.28)

The collection of functions (hi)i⩽n is called a partition of unity on K subordinate to
the open cover (Ui)i⩽n.

Proof. Fix x ∈K and let 1 ⩽ i ⩽ n be such that x ∈Ui. Denote by Br(x)(x) an open ball
centred at x of small enough radius r(x) > 0 so that x ∈ Br(x)(x) ⊆Ui. The collection
of sets (Br(x)(x))x∈K forms an open cover of the compact set K from which it is
possible to extract a finite sub-cover (Br(x j)(x j)) j⩽m. Let Vi be the union of the
closed balls Br(x j)(x j) which lie in the open set Ui, and invoke Urysohn’s lemma to
find a collection of continuous functions (gi)i⩽n with 1Vi ⩽ gi ⩽ 1Ui for 1 ⩽ i ⩽ n. Since
(Vi)i⩽n covers K, we have ∑n

i=1 gi ⩾ 1 on K. To modify the functions (gi)i⩽n so their
sum becomes one on K, apply Urysohn’s lemma once again to find a continuous
functions g with

1K ⩽ g ⩽ 1{∑n
i=1 gi>0}.

Define gn+1 ∶= 1− g so that ∑n+1
i=1 gi > 0 on S, and define the family of functions

(hi)i⩽n by
hi ∶=

gi

∑n+1
i=1 gi

.

Since the support of hi coincides with that of gi, we have that 0 ⩽ hi ⩽ 1Ui . Moreover,
as gn+1 = 0 on K, we have that ∑n

i=1 hi = 1 on K. This completes the proof. ∎

Theorem A.9 (Riesz representation). If S is a compact metric space and T ∶
C(S;R) →R is a positive linear functional on the space of continuous functions
on S, then there exists a unique measure µ on the Borel σ -algebra B(S) such that
for all continuous functions f ∈C(S;R),

T( f ) =
ˆ

S
f dµ. (A.29)

Proof. We proceed in four steps. First, we will establish the uniqueness of µ by
showing that it is entirely determined by T on open sets. We will then define an
outer measure µ∗ on 2S by leveraging the value that µ should attribute to open sets.
The Caratheodory extension theorem will then guarantee that the restriction µ of
this outer measure µ∗ to the Borel σ -algebra is a measure. Finally we will show
that T can be identified with µ through equation (A.29).

Step 1: uniqueness of µ . Fix a measure µ on B(S) for which (A.29) holds, and fix
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an open set U ⊆ S. For each integer n ⩾ 1, define the closed and therefore compact
set

Kn ∶= {x ∈ S ∣ d(x,Uc) ⩾ 1
n
}

in such a way that U = ⋃∞n=1 Kn. Given an integer n ⩾ 1, invoke Urysohn’s lemma to
find a continuous function fn with 1Kn ⩽ fn ⩽ 1U . Since µ satisfies (A.29), we have
that µ(Kn) ⩽ T( fn). It follows by the continuity of measure in Exercise A.1 that

µ(U) = lim
n→+∞

µ(Kn) ⩽ limsup
n→+∞

T( fn) ⩽ sup{T( f ) ∣ f ∈C(S;R) and 0 ⩽ f ⩽ 1U}.

On the other hand, if f is a continuous function with 0 ⩽ f ⩽ 1U , then (A.29) implies
that T( f ) ⩽ µ(U). Taking the supremum over all such functions f shows that

µ(U) = sup{T( f ) ∣ f ∈C(S;R) and 0 ⩽ f ⩽ 1U}. (A.30)

This determines the measure µ on the π-system of open sets. Since µ is a finite
measure, this in fact determines µ on the Borel σ -algebra by Exercise A.3.

Step 2: defining the outer measure µ∗. Inspired by the value (A.30) that µ must
take on open sets, given an open set U ⊆ S, let

ρ(U) ∶= sup{T( f ) ∣ f ∈C(S;R) and 0 ⩽ f ⩽ 1U},

and define the function µ∗ ∶ 2S→ [0,+∞] by

µ
∗(A) ∶= inf{ρ(U) ∣ A ⊆U and U is open}. (A.31)

To prove that this defines an outer measure, it suffices to show that ρ is sub-additive
on the collection of open sets. Indeed, if this is the case, then

µ
∗(A) = inf{

+∞
∑
n=1

ρ(Un) ∣ A ⊆
∞
⋃
n=1

Un and Un is open for every n ⩾ 1}

which is an outer measure by Proposition A.1. Given a sequence (Un)n⩾1 of open
sets, let U ∶= ⋃∞n=1Un, and fix a continuous function f with 0 ⩽ f ⩽ 1U . Denote by
K the closed support of f . Since K is compact as a closed subset of the compact
space S and it is contained in U , it is possible to extract a finite sub-cover (Ui)i⩽n of
K. By Lemma A.8 there exists a partition of unity (hi)i⩽n on K subordinate to the
open cover (Ui)i⩽n. Since ∑n

i=1 hi = 1 on the support of K, we have that f =∑n
i=1 ghi.

It follows by linearity of T that

T( f ) =
n
∑
i=1

T( f hi) ⩽
n
∑
i=1

ρ(Ui) ⩽
+∞
∑
n=1

µ(Un),

where we have used that 0 ⩽ f hi ⩽ 1Ui . Taking the supremum over all continuous
functions f with 0 ⩽ f ⩽ 1U shows that ρ is sub-additive on the collection of open
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sets and that µ∗ is therefore an outer measure. The monotonicity of ρ ensures that
this outer measures agrees with ρ on the collection of open sets.

Step 3: µ∗ restricts to a measure µ on B(S). Since open sets generate the Borel
σ -algebra, by the Caratheodory extension theorem, to show that the restriction µ

of the outer measure µ∗ to the Borel σ -algebra is a measure, it suffices to prove
that every open set is Caratheodory measurable. By sub-additivity of outer measure
this comes down to showing that for every open set U and every subset E of S with
µ∗(E) < +∞, we have

µ
∗(E) ⩾ µ

∗(E ∩U)+µ
∗(E ∩Uc). (A.32)

Given ε > 0, let V be an open set with E ⊆V and ρ(V) ⩽ µ∗(E)+ε . By monotonicity
of outer measure and the fact that µ∗ coincides with ρ on the collection of open
sets,

µ
∗(E ∩U)+µ

∗(E ∩Uc) ⩽ µ
∗(V ∩U)+µ

∗(V ∩Uc) = ρ(V ∩U)+µ
∗(V ∩Uc).

To bound this further, find f ∈C(S;R) with f ⩽ 1V∩U and ρ(V ∩U) ⩽ T( f )+ ε .
Denote by K ⊆U the compact support of f , and observe that by monotonicity of
outer measure,

µ
∗(E ∩U)+µ

∗(E ∩Uc) ⩽ T( f )+ρ(V ∩Kc)+ε,

where we have used that V ∩Kc is an open set. At this point, let g ∈C(S;R) be such
that g ⩽ 1V∩Kc and ρ(V ∩Kc) ⩽ T(g)+ε so that

µ
∗(E ∩U)+µ

∗(E ∩Uc) ⩽ T( f +g)+2ε.

As the supports of f and g are disjoint and both contained in V , we have that
f +g ⩽ 1V . It follows by definition of ρ that

µ
∗(E ∩U)+µ

∗(E ∩Uc) ⩽ ρ(V)+2ε ⩽ µ
∗(E)+3ε.

Letting ε tend to zero establishes (A.32) and shows that µ ∶= µ∗∣B(S) defines a
measure on the Borel σ -algebra B(S).

Step 4: T can be identified with µ . To show that T can be identified with the
measure µ through equation (A.29), up to replacing f by − f , it suffices to prove
that for every f ∈C(S;R),

T( f ) ⩽
ˆ

S
f dµ. (A.33)

Moreover, up to replacing f by f +∥ f ∥∞, it suffices to establish (A.33) for non-
negative functions f ∈C(S;R). Fix a non-negative f ∈C(S;R), and write K for its
compact support. Since f is bounded, its range belongs to some bounded interval



A.3 The Stone-Weierstrass theorem 269

[a,b] ⊆R. Given ε > 0, let a = y0 < y1 < . . . < yn−1 < yn = b be a partition of the interval
[a,b] with yi+1−yi < ε for 0 ⩽ i ⩽ n−1. Introduce the collection of disjoint Borel sets
Ei ∶= f −1((yi−1,yi])∩K which partition K = ⋃n

i=1 Ei. For each 1 ⩽ i ⩽ n, leveraging
the continuity of f and the definition (A.31) of the outer measure µ∗, find an open
set Ui containing Ei with

ρ(Ui) ⩽ µ(Ei)+
ε

n
and f (x) < yi+ε on Ui. (A.34)

Invoke Lemma A.8 to find a partition of unity (hi)i⩽n on K subordinate to the open
cover (Ui)i⩽n. Since f =∑n

i=1 f hi and f hi ⩽ (yi+ε)hi, the linearity of T implies that

T( f ) =
n
∑
i=1

T( f hi) ⩽
n
∑
i=1
(yi+ε)T(hi) ⩽

n
∑
i=1
(yi+ε)ρ(Ui).

It follows by the properties (A.34) of the open sets (Ui)i⩽n that

T( f ) ⩽
n
∑
i=1
(yi+ε)(µ(Ei)+

ε

n
) ⩽

n
∑
i=1
(yi−ε)µ(Ei)+ε(2µ(K)+∥ f ∥∞+ε).

Combining this with the fact that f (x) > yi−1 > yi−ε on Ei and letting ε tend to zero
establishes (A.33) and completes the proof. ∎

Exercise A.5. Show that any positive linear functional T ∶C(S;R)→R on the space
of continuous functions on a compact metric space S is continuous with respect to
the uniform norm.

A.3 The Stone-Weierstrass theorem

In this section, we prove a generalization of the well-known theorem of Weierstrass
[261] which states that any continuous function on a compact interval [a,b] is
the uniform limit of polynomials on [a,b]. A probabilistic proof of this classical
result leveraging Bernstein polynomials is outlined in Exercise A.6. Following
the work of Stone [239], we will generalize this result in two main directions. We
will consider continuous functions on a compact metric space S as opposed to
compact sub-intervals of the real line, and we will be concerned with the density of
collections of functions which form an algebra in the space of continuous functions
on S as opposed to focusing on polynomials. We will prove a version of the Stone-
Weierstrass theorem for real-valued functions and another for complex-valued
functions. The Stone-Weierstrass theorem is a very helpful tool as it often allows
us to deduce an identity for all continuous functions once it has been proved for
a smaller family of functions such as monomials. In Section A.6, we will use the
real version of the Stone-Weierstrass theorem to show that a non-negative random
variable is entirely determined by its Laplace transform, and we will leverage the
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complex version of the Stone-Weierstrass theorem to prove that a random variable
is entirely determined by its characteristic function.

The real version of the Stone-Weierstrass theorem states that a collection of
functions F which forms an algebra in the space of continuous real-valued functions
on a compact metric space S is dense in C(S;R) endowed with the uniform norm,

∥ f −g∥∞ = sup
x∈S
∣ f (x)−g(x)∣, (A.35)

provided it contains constants and separates points. An algebra in C(S;R) is a real
vector subspace F of C(S;R) which is closed under multiplication,

(i) for all λ ,µ ∈R and f ,g ∈ F , we have λ f +µg ∈ F ,

(ii) for all f ,g ∈ F , we have f g ∈ F .

A collection F of real-valued continuous functions on S separates points if, for all
distinct x ≠ y ∈ S, there exists a function f ∈ F with f (x) ≠ f (y).

Theorem A.10 (Stone-Weierstrass real version). If (S,d) is a compact metric space
and F is an algebra in C(S;R) which separates points and contains constants, then
F is dense in (C(S;R),∥⋅∥∞).

Proof. The proof proceeds in two steps. First, we will show that F is a lattice, in the
sense that for all f ,g ∈ F , we have min( f ,g) ∈ F and max( f ,g) ∈ F . We will then
fix f ∈C(S;R) as well as ε > 0, and we will use the lattice property of F to construct
an explicit function g ∈ F with ∥ f −g∥∞ ⩽ ε . This will establish the density of F in
C(S;R). The density of F in C(S;R) is then immediate from its density in F .

Step 1: F is a lattice. To show that F is a lattice, it suffices to show that for any
f ∈ F , we have ∣ f ∣ ∈ F . Indeed, this implies that for any f ,g ∈ F , we have

min( f ,g) = f +g− ∣ f −g∣
2

∈ F and max( f ,g) = f +g+ ∣ f −g∣
2

∈ F .

Fix f ∈ F , and let M > 0 be large enough so the range of f is contained in the interval
[−M,M]. By the Weierstrass approximation theorem in Exercise A.6, the absolute
value function x↦ ∣x∣ defined on the compact interval [−M,M] can be approximated
by polynomials of x. This means that ∣ f (x)∣ can be approximated by polynomials
of f (x). Since F is an algebra which contains constants, any polynomial of f (x)
belongs to F , so ∣ f ∣ ∈ F .

Step 2: constructing an approximating function. Observe that for any pair of distinct
points s ≠ t ∈ S and all values c,d ∈R, there exists g ∈ F with g(s) = c and g(t) = d.
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Indeed, as F separates points, there exists h ∈ F with h(s) ≠ h(t), and the function
g ∈ F defined by

g(x) ∶= c+(d−c)h(x)−h(s)
h(t)−h(s)

satisfies the desired properties. We now fix a continuous function f ∈C(S;R) as
well as ε > 0. For all pairs of distinct points s ≠ t ∈ S, we write gs,t ∈ F for a function
with gs,t(s) = f (s) and gs,t(t) = f (t). By continuity, the function gs,t approximates
f in small enough neighbourhoods of both s and t. To construct a function g ∈ F
which approximates f everywhere, fix s ∈ S, and consider the open neighbourhood
of t,

Ut ∶= {x ∈ S ∣ gs,t(x) < f (x)+ε}.

Since (Ut)t∈S defines an open cover of the compact set S, there exists a finite
sub-cover (Uti)i⩽n. The function gs ∶ S→R defined by

gs(x) ∶= min
1⩽i⩽n

gs,t(x)

is such that gs(s) = f (s) and gs(x) < f (x)+ε for all x ∈ S. Moreover, we have that
gs ∈ F as F is a lattice. Similarly, fix t ∈ S and consider the open neighbourhood of
s,

Vs ∶= {x ∈ S ∣ gs(x) > f (x)−ε}.

Since (Vs)s∈S defines an open cover of the compact set S, there exists a finite
sub-cover (Us j) j⩽m. The function g ∶ S→R defined by

g(x) ∶= max
1⩽ j⩽m

gs(x)

belongs to the lattice F and is such that ∥ f −g∥∞ ⩽ ε . This completes the proof. ∎

As shown in Exercise A.7, the real version of the Stone-Weierstrass theorem
does not generalize to the setting of complex-valued continuous functions on S.
It turns out that in addition to containing constants and separating points, for an
algebra F in C(S;C) to be dense with respect to the uniform norm,

∥ f −g∥∞ = ∥Re( f )−Re(g)∥∞+∥Im( f )− Im(g)∥∞, (A.36)

it must also be closed under conjugation. This means that for all f ∈ F , we need to
have f ∈ F . It is worth emphasizing that an algebra in C(S;C) is a complex vector
subspace of C(S;C) which is closed under multiplication. In particular, the first
condition (i) in the definition of an algebra must hold for all λ ,µ ∈C.

Theorem A.11 (Stone-Weierstrass complex version). If (S,d) is a compact metric
space and F is an algebra in C(S;C) which separates points, contains constants
and is closed under complex conjugation, then F is dense in (C(S;C),∥⋅∥∞).
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Proof. For each f ∈ F , we have

Re( f ) = f + f
2
∈ F and Im( f ) = f − f

2i
∈ F ,

so the set FR of real and imaginary parts of functions in F is contained in F ,
and it is an algebra of real-valued functions which separates points and contains
constants. It follows by the real version of the Stone-Weierstrass theorem that
FR is dense in (C(S;R),∥⋅∥∞). Since every function f ∈C(S;C) may be written
as Re( f ) + iIm( f ) for the real-valued functions Re( f ),Im( f ) ∈ C(S;R), and a
sequence of complex-valued functions converges with respect to ∥⋅∥∞ if and only if
its associated sequences of real and imaginary parts converge with respect to ∥⋅∥∞,
we have that F is dense in (C(S;C),∥⋅∥∞). This completes the proof. ∎

Exercise A.6 (Weierstrass approximation). The purpose of this exercise is to give a
probabilistic proof of the Stone-Weierstrass theorem on a compact interval [a,b] ⊆R.
That is, we will show that for every ε > 0 and continuous function f ∈ ([a,b];R),
there exists a polynomial P on [a,b] with ∥ f −P∥∞ ⩽ ε .

(i) Argue that there is no loss in generality in considering the interval [0,1].

(ii) Fix ε > 0 and f ∈C([0,1];R). Given x ∈ [0,1], let (Xn)n⩾1 be a sequence of
independent and identically distributed random variables with X1 ∼ Ber(x).
For each n ⩾ 1, consider the sample average Sn ∶= 1

n∑
n
i=1 Xi, and define the

function Pn(x) ∶= E f (Sn). Prove that Pn is a polynomial and that for n large
enough, we have ∥ f −P∥∞ ⩽ ε .

Exercise A.7. Denote by C ∶= {eit ∣ t ∈ [0,2π]} ⊆C the unit circle, and consider the
complex-valued function f ∶ C → C defined by f (z) ∶= z. Prove that f cannot be
approximated in (C(C,C),∥⋅∥∞) by polynomials (of the z variable).

A.4 The Lebesgue differentiation theorem

Before moving from the realm of analysis to that of probability theory, we prove the
Lebesgue differentiation theorem on Euclidean space S =Rd . In the one-dimensional
setting, d = 1, this result generalizes the fundamental theorem of calculus.

Proposition A.12 (Fundamental theorem of calculus). If f ∶R→R is continuous
and a ∈R, then the integral function F ∶R→R defined by

F(x) ∶=
ˆ x

a
f (t)dt (A.37)

is differentiable and F ′ = f .
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Proof. Fix x ∈R as well as ε > 0. The continuity of f gives δ > 0 with ∣ f (t)− f (x)∣ <
ε whenever ∣x− t ∣ < δ . If h ∈R is such that ∣h∣ < δ , then

∣F(x+h)−F(x)
h

− f (x)∣ ⩽ 1
h

ˆ x+h

x
∣ f (t)− f (x)∣dt ⩽ ε.

This completes the proof. ∎

The Lebesgue differentiation theorem will replace the continuity assumption
of the integrand by local integrability and will weaken the conclusion to almost
everywhere differentiability of the integral function. In higher dimensions, we will
show in Theorem A.16 that if f ∈ L1

loc(Rd;R), then for almost every x ∈Rd ,

lim
r↘0

1
m(Br(x))

ˆ
Br(x)
∣ f (y)− f (x)∣dy = 0, (A.38)

where we denote by Br(x) the open Euclidean ball of radius r > 0 centred at x ∈Rd ,
and by m(Br(x)) its Lebesgue measure. When d = 1, this readily implies that, for
almost every x ∈R,

lim
r→0

1
r

ˆ x+r

x
f (t)dt = f (x). (A.39)

To prove (A.38), we will apply the theory of maximal operators to the Hardy-
Littlewood maximal operator defined on the space L1

loc(Rd;R) of locally integrable
functions on Rd by

H∗ f (x) ∶= sup
r>0

1
m(Br(x))

∣
ˆ

Br(x)
f (y)dy∣, (A.40)

Although the basic result that we will use from the theory of maximal operators
holds in far greater generality, we will only state it on Euclidean space Rd endowed
with d-dimensional Lebesgue measure m in the context of operators on L1(Rd;R).

The maximal operator associated with a family (Tt)t>0 of linear operators from
L1(Rd;R) to the space of measurable functions on Rd is the operator T∗ from
L1(Rd;R) to the space of measurable functions on Rd defined by

T∗ f (x) = sup
t>0
∣Tt f (x)∣ (A.41)

The Hardy-Littlewood maximal operator (A.40) is the maximal operator associated
with the family (Hr)r>0 of linear operators defined on L1(Rd;R) by

Hr f (x) ∶= 1
m(Br(x))

ˆ
Br(x)

f (y)dy. (A.42)
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To use the Hardy-Littlewood maximal operator to establish the almost everywhere
convergence (A.38), we will leverage the fact that it is weak-(1,1). An operator T∗

from L1(Rd;R) to the space of measurable functions on Rd is weak-(1,1) if there
exists a constant C > 0 such that for all f ∈ L1(Rd;R),

m{∣T∗ f (x)∣ > λ} ⩽ C
λ

ˆ
Rd
∣ f (x)∣dx. (A.43)

It turns out that whenever the maximal operator of a family of linear operators
is weak-(1,1), the space of functions where the sequence of operators converges
pointwise to the identity is closed in L1(Rd;R). In particular, if it contains a dense
subspace such as the space of continuous functions, it must be all of L1(Rd;R).

Proposition A.13. If (Tt)t>0 is a family of linear operators from L1(Rd;R) to the
space of measurable functions on Rd whose maximal operator T∗ is weak-(1,1),
then

{ f ∈ L1(Rd;R) ∣ lim
t→0

Tt f (x) = f (x) for almost every x ∈Rd} (A.44)

is closed in L1(Rd;R).

Proof. Let ( fn)n⩾1 be a sequence of functions converging to some f ∈ L1(Rd;R)
with the property that limt→0 Tt fn(x) = fn(x) almost everywhere. The triangle
inequality and Chebyshev’s inequality imply that for any λ > 0,

m{ limsup
t→0

∣Tt f (x)− f (x)∣ > λ} ⩽m{ limsup
t→0

∣Tt f (x)−Tt fn(x)∣ > λ /2}

+m{ limsup
t→0

∣ f (x)− fn(x)∣ > λ /2}

⩽m{T∗( f − fn)(x) > λ /2}+ 2
λ

ˆ
Rd
∣ f − fn∣dx

⩽ 2(C+1)
λ

ˆ
Rd
∣ f − fn∣dx.

Letting n tend to infinity and leveraging the sub-additivity of measure shows that
the measure of the set where limsupt→0∣Tt f (x)− f (x)∣ > 0 is equal to zero. This is
equivalent to the statement that limt→0 Tt f (x) = f (x) for almost every x ∈Rd , which
means that the set (A.44) is closed as required. ∎

Proving the Lebesgue differentiation theorem therefore comes down to showing
that the Hardy-Littlewood maximal operator (A.40) is weak-(1,1). This will follow
from the Vitali covering lemma, which essentially says that the measure of an
arbitrary union of balls is concentrated on a finite disjoint sub-collection of these
balls.
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Lemma A.14 (Vitali covering). If C is a collection of open balls in Rd and U
denotes their union, then for any c <m(U), there exist disjoint balls (Bi)i⩽n ⊆ C with

c < 3d
n
∑
i=1

m(Bi). (A.45)

Proof. Invoking Exercise A.4 allows us to find a compact set K ⊆U with m(K) > c.
Since C is an open cover of the compact set K, it is possible to extract a finite
sub-cover (C j) j⩽m ⊆ C. We now define the sequence (Bi)i⩽n iteratively by taking B1
to be the ball C j of largest radius, and by taking Bi to be the ball C j of largest radius
disjoint from ⋃i−1

k=1 Bk. This construction ensures that if a ball C j is not selected,
then it must intersect one of the selected balls Bi, and if i is the smallest index such
that this intersection takes place, then the radius of C j is at most the radius of Bi.
This means that K ⊆ ⋃n

i=1 3Bi, where 3Bi denotes the ball with the same centre as Bi
but with three times the radius. It follows by sub-additivity of measure that

c <m(K) ⩽
n
∑
i=1

m(3Bi) = 3d
n
∑
i=1

m(Bi).

The last equality uses the homogeneity of d-dimensional Lebesgue measure which
is immediate from the Dynkin π-λ theorem and the fact that for every a > 0, we
have m(aR) = adm(R) for any finite union of disjoint rectangles R. This completes
the proof. ∎

Lemma A.15 (Hardy-Littlewood). The Hardy-Littlewood maximal operator (A.40)
is weak-(1,1).

Proof. Fix λ > 0, and let Eλ ∶= {H∗ f (x) > λ}. Given x ∈ Eλ , let rx > 0 be such that

1
m(Brx(x))

ˆ
Brx(x)

∣ f (y)∣dy ⩾ 1
m(Br(x))

∣
ˆ

Br(x)
f (y)dy∣ > λ .

The collection (Brx(x))x∈Eλ
covers Eλ , so, given any c <m(Eλ ), the Vitali covering

theorem gives a finite sub-collection (Brxi
(xi))i⩽n of disjoint balls with

c ⩽ 3d
n
∑
i=1

m(Brxi
(xi)) ⩽

3d

λ

n
∑
i=1

ˆ
Brxi (xi)

∣ f (y)∣dy ⩽ 3d

λ

ˆ
Rd
∣ f (y)∣dy.

Letting c increase to m(Eλ ) completes the proof. ∎

Theorem A.16 (Lebesgue differentiation). If f ∈ L1
loc(Rd;R), then for almost every

x ∈Rd ,

lim
r→0

1
m(Br(x))

ˆ
Br(x)
∣ f (y)− f (x)∣dy = 0. (A.46)
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Proof. The proof proceeds in two steps. First we show that for almost every x ∈Rd ,

lim
r→0

1
m(Br(x))

ˆ
Br(x)

f (y)dy = f (x), (A.47)

and then we leverage this to prove (A.46).

Step 1: proving (A.47). Combining Lemma A.15 with Proposition A.13 shows
that the set of functions where (A.47) holds is closed in L1(Rd;R). Since it con-
tains the dense set of continuous functions by the higher-dimensional version of
Proposition A.12, it must be all of L1(Rd;R). Noticing that any locally integrable
function on Rd can be extended to an integrable function on Rd that agrees with
it on a small enough ball around a given point x ∈Rd establishes (A.47) for every
locally integrable function.

Step 2: proving (A.46). Fix c ∈R, and observe that (A.47) applied to the function
fc(x) ∶= ∣ f (x)−c∣ implies that, for almost every x ∈Rd ,

lim
r→0

1
m(Br(x))

ˆ
Br(x)
∣ f (y)−c∣dy = ∣ f (x)−c∣. (A.48)

By additivity of measure and countability of the rationals, we can in fact make
this convergence uniform for c ∈Q. More precisely, it is possible to find a null set
N ⊆Rd such that for every x ∈Rd ∖N and c ∈Q the convergence in (A.48) holds. If
we now fix x ∈Rd ∖N as well as ε > 0, then, by density of the rationals, it is possible
to find c ∈Q with ∣ f (x)−c∣ ⩽ ε . It follows that

1
m(Br(x))

ˆ
Br(x)
∣ f (y)− f (x)∣dy ⩽ 1

m(Br(x))

ˆ
Br(x)
∣ f (y)−c∣dy+ ∣ f (x)−c∣.

Taking the limsup as r tends to zero and then letting ε tend to zero completes the
proof. ∎

A.5 A topological characterization of weak convergence

For the remainder of this chapter we will focus on the weak convergence of proba-
bility measures on a metric space S endowed with its Borel σ -algebra B(S). We
write Cb(S;R) for the space of bounded and continuous functions on S. A sequence
(Pn)n⩾1 of probability measures on S converges weakly to a probability measure P
on S if, for every bounded and continuous function f ∈Cb(S;R),

lim
n→+∞

ˆ
S

f dPn =
ˆ

S
f dP. (A.49)

A sequence (Xn)n⩾1 of random elements on S converges in law to a random ele-
ment X on S if the sequence of laws of the Xn converges weakly to the law of X .
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The law of the random element X on S is the probability measure PX on S defined
by

PX(A) ∶= P{X ∈ A}. (A.50)

This notion of convergence is motivated by the fact that, as shown in Exercise A.8, a
probability measure is determined by its action on the space Cb(S;R) of continuous
and bounded functions. In the setting of the real line, S =R, Exercise A.9 outlines a
proof of the fact that convergence in law coincides with the familiar convergence in
distribution seen in some introductory probability courses. In the setting of general
metric spaces, the weak convergence of probability measures can be characterized
topologically through the Portmanteau theorem.

Theorem A.17 (Portmanteau). For a sequence (Pn)n⩾1 of probability measures
on S, the following statements are equivalent.

(i) (Pn)n⩾1 converges weakly to the probability measure P.

(ii) (A.49) holds for all bounded Lipschitz functions f ∶ S→R.

(iii) For any open set U ⊆ S, we have liminfn→+∞Pn(U) ⩾ P(U).

(iv) For any closed set F ⊆ S, we have limsupn→+∞Pn(F) ⩽ P(F).

(v) For any set A ∈ B(S) with P(∂A) = 0, we have limn→+∞Pn(A) = P(A).

Proof. (i) ⇒ (ii): This is immediate from the fact that any bounded Lipschitz
function on S is continuous.
(ii) ⇒ (iii): Let U be an open set and define the sequence of bounded Lipschitz
functions ( fm)m⩾1 on S by fm(s) ∶= min(1,md(s,Uc)). Since Uc is closed, the
sequence ( fm)m⩾1 increases to 1U . It follows that

ˆ
S

fm dPn ⩽ Pn(U).

Using (ii) to let n tend to infinity and the monotone convergence theorem to let m
tend to infinity establishes (iii).
(iii)⇔ (iv): This is immediate by taking complements.
(iv)⇒ (v): Let A ⊆ S be a measurable set with P(∂A) = 0. Since int(A) is open, A is
closed and int(A) ⊆ A, assumption (iv) and its equivalence to (iii) imply that

P(int(A)) ⩽ liminf
n→+∞

Pn(intA) ⩽ limsup
n→+∞

Pn(A) ⩽ P(A).

Combining this with the fact that P(A) = P(intA) = P(A) by the assumption that
P(∂A) = 0 establishes (v).
(v)⇒ (i): Fix f ∈Cb(S;R), and for y ∈R let Fy ∶= {s ∈ S ∶ f (s) = y} be the level set
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of f . Since the sets (Fy)y∈R are disjoint, there exist at most countably many values
of y for which P(Fy) > 0. Given ε > 0 it is therefore possible to find an integer N ⩾ 1
and a sequence a0 ⩽ ⋯ ⩽ aN with maxk(ak −ak−1) ⩽ ε and P(Fak) = 0 such that f
maps into the interval (a0,aN). Introduce the function fε ∶ S→R defined by

fε ∶=
N−1
∑
k=0

ak1Bk ,

where Bk ∶= {s ∈ S ∶ ak ⩽ f (s) < ak+1}. Since f is continuous, for 0 ⩽ k ⩽ N −1, we
have ∂Bk ⊆ Fak ∪Fak+1 , and therefore P(∂Bk) = 0. It follows by (v) that

lim
n→+∞

ˆ
S

fε dPn =
N−1
∑
k=0

akP(Bk) =
ˆ

S
fε dP.

Using that ∥ fε − f ∥∞ ⩽ ε to let ε tend to zero completes the proof. ∎

Remark A.18. A similar argument as that used to show that (ii)⇒ (iii) can be used
to prove that (ii)⇒ (iv). For future reference, let us present this argument in the
more general setting where we have a sequence of finite measures (µn)n⩾1 and a
finite measure µ with the property that for every f ∈Cb(S;R),

lim
n→+∞

ˆ
S

f dµn =
ˆ

S
f dµ. (A.51)

Given a closed set F ⊆ S, define the sequence of bounded and Lipschitz functions
(gm)m⩾1 on S by gm(s) ∶=max(0,1−md(x,F)). Since F is closed, the sequence
(gm)m⩾1 decreases to 1F . It follows that

ˆ
S

gm dµn ⩾ µn(F). (A.52)

Using (A.51) to let n tend to infinity and then the dominated convergence theorem
to let m tend to infinity shows that limsupn→+∞µn(F) ⩽ µ(F) as required.

Exercise A.8. Consider two probability measures P and Q on S such that, for every
f ∈Cb(S;R), we have ˆ

S
f dP =

ˆ
S

f dQ. (A.53)

Show that P =Q.

Exercise A.9. Let (Pn)n⩾1 be a sequence of probability measures on R, and let
P be a probability measure on R. Denote by Fn ∶R→ [0,1] and F ∶R→ [0,1] the
distribution functions associated with Pn and P,

Fn(t) ∶= P((−∞,t]) and F(t) ∶= P((−∞,t]). (A.54)
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(i) Prove that (Pn)n⩾1 converges weakly to P if and only if at every point t of
continuity of F , the numerical sequence (Fn(t))n⩾1 converges to F(t).

(ii) Is restricting to points of continuity of F necessary?

Exercise A.10. The goal of this exercise is to show the continuous mapping theorem.
Let S, S′ be two metric spaces, let f ∶ S→ S′ be a measurable function, and let

C f ∶= {x ∈ S ∣ f is continuous at x}. (A.55)

Let (Xn)n⩾1 and X∞ be random variables taking values in S with (Xn)n⩾1 converging
in law to X∞ as n tends to infinity.

(i) Show that the set C f is measurable.

(ii) Assuming that P{X∞ ∈C f } = 1, show that f (Xn) converges in law to f (X∞)
as n tends to infinity.

Exercise A.11. Let (Yk,n)k,n⩾1 and (Yn)n⩾1 be random elements with values in S
such that for every ε > 0,

lim
k→+∞

limsup
n→+∞

P{d(Yk,n,Yn) ⩾ ε} = 0. (A.56)

Suppose that there exist a sequence of random elements (Zk)k⩾1 and a random
element Y such that, for every k ⩾ 1, the sequence (Yk,n)n⩾1 converges in law to Zk
as n tends to infinity, and such that the sequence (Zk)k⩾1 converges in law to Y as k
tends to infinity. Show that (Yn)n⩾1 converges in law to Y .

A.6 Weak convergence through tightness and uniqueness

The topological characterization of weak convergence in the Portmanteau theorem
is very useful to prove abstract results; however, it is difficult to use to establish
the weak convergence of a specific sequence of probability measures. Typically,
showing that a sequence (Pn)n⩾1 of probability measures converges weakly is a
two-step process. First, we show that the sequence (Pn)n⩾1 is relatively compact, in
the sense that any subsequence of (Pn)n⩾1 admits a weakly convergent subsequence,
and then we show that there is only one possible subsequential limit.

Lemma A.19. Fix a sequence of probability measures (Pn)n⩾1. If there exists
a probability measure P with the property that any sequence (n(k))k⩾1 admits a
further subsequence (n(k(r)))r⩾1 such that (Pn(k(r)))r⩾1 converges weakly to P,
then (Pn)n⩾1 itself converges weakly to P.
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Proof. Suppose for the sake of contradiction that the sequence (Pn)n⩾1 does not
converge weakly to P. This means that there exist a continuous and bounded
function f ∈Cb(S;R), some ε > 0 and a sequence (n(k))k⩾1 such that for all k ⩾ 1,

∣
ˆ

S
f dPn(k)−

ˆ
S

f dP∣ > ε.

The sequence (Pn(k))k⩾1 cannot have a subsequence that converges weakly to P.
This contradiction completes the proof. ∎

In general, relative compactness of the sequence (Pn)n⩾1 is obtained through the
Prokhorov theorem, while uniqueness of the limiting measure is obtained through
case-by-case considerations using tools such as characteristic functions or Laplace
transforms. The Prokhorov theorem states that the relative compactness of the
sequence (Pn)n⩾1 is implied by its uniform tightness. A sequence (Pn)n⩾1 of
probability measures on S is uniformly tight if, for any ε > 0, there exists a compact
set K ⊆ S such that, for every n ⩾ 1,

Pn(K) ⩾ 1−ε. (A.57)

There are many different proofs of the Prokhorov theorem, some of which require
heavy machinery from measure theory. We will present a relatively simple proof
based on the Riesz representation theorem and the upshot of Exercise A.4 that every
finite measure on a metric space is closed regular.

Theorem A.20 (Prokhorov). If the sequence (Pn)n⩾1 of probability measures is
uniformly tight, then it admits a weakly convergent subsequence.

Proof. The proof proceeds in four steps. We start by extracting a subsequence
(n(k))k⩾1 along which the integral

´
S f dPn(k) converges for every f ∈Cb(S;R), we

then use the Riesz representation theorem to identify a candidate limit measure P
for the sequence (Pn(k))k⩾1. Finally, we prove that P is a probability measure and
that (Pn(k))k⩾1 converges weakly to P.

Step 1: extracting the subsequence. Since (Pn)n⩾1 is uniformly tight, for every r ⩾ 1
there exists a compact set Kr ⊆ S such that, for every n ⩾ 1,

Pn(Kr) ⩾ 1− 1
r
.

Observe that each of the spaces C(Kr;R) is separable with respect to the uniform
topology. Indeed, for each r ⩾ 1, the compactness of Kr implies its separability,
so, denoting by (xn)n⩾1 a dense subset of Kr, and applying the Stone-Weierstrass
theorem to the algebra of rational linear combinations of products of the continuous
functions 1 and dn(x) ∶= d(x,xn) establishes the separability of C(Kr,R). It is there-
fore possible to find a countable set Cr that is dense in C(Kr;R). A diagonalization
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argument yields a subsequence (n(k))k⩾1 such that the functional T ∶ ⋃r⩾1Cr →R
defined by

T( f ) ∶= lim
k→+∞

ˆ
S

f dPn(k) (A.58)

is well-defined. By density of Cr in C(Kr;R), this functional is actually well-
defined on ⋃r⩾1C(Kr;R). In fact, it is also well-defined on Cb(S;R). Indeed, for
any f ∈Cb(S;R) and r ⩾ 1, we have f ∣Kr ∈Cb(Kr;S) and

∣
ˆ

S
f dPn(k)−

ˆ
Kr

f ∣Kr dPn(k)∣ ⩽ ∥ f ∥∞Pn(k)(Kc
r ) ⩽
∥ f ∥∞

r
.

Step 2: identifying the candidate limit. For each r ⩾ 1 introduce the compact
set K̃r ∶= ⋃r

i=1 Ki. Since T is a positive linear functional on C(K̃r;R), the Riesz
representation theorem gives a finite measure µr on K̃r such that

T( f ) =
ˆ

K̃r

f dµr (A.59)

for all f ∈C(K̃r;R). The measure µr on K̃r induces the measure µr(⋅) ∶= µr(⋅∩ K̃r)
on S. We would now like to define the candidate measure P ∶ B(S) →R⩾0 by

P(A) ∶= lim
r→+∞

µr(A). (A.60)

To show that this limit is well-defined, fix r1 < r2 as well as A ∈ B(S). Given ε > 0
use the closed regularity (A.20) of finite measures established in Exercise A.4 to
find a closed set F ⊆ A∩ K̃r1 with

µr1
(A) ⩽ µr1

(F)+ε.

Similarly, use the open regularity (A.21) of finite measures to find an open set
U ⊆ K̃r2 with A∩ K̃r2 ⊆U and

µr2
(U)−ε ⩽ µr2

(A).

Using Urysohn’s lemma find a function f ∈C(K̃r2;R) with 1F ⩽ f ⩽ 1U . Since
F ⊆ K̃r1 ⊆ K̃r2 and T is given by the limit (A.58),

µr1
(A) ⩽ µr1

(F)+ε ⩽
ˆ

K̃r1

f dµr1 +ε = T( f ∣K̃r1
) ⩽ T( f ∣K̃r2

) =
ˆ

K̃r2

f dµr2 +ε.

Together with the fact that f ⩽ 1U , this implies that

µr1
(A) ⩽ µr2

(U)+ε ⩽ µr2
(A)+2ε.
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Letting ε tend to zero shows that µr1
(A) ⩽ µr2

(A), and proves that the set function
P ∶ B(S) →R⩾0 in (A.60) is well-defined as a monotone limit.

Step 3: showing P is a probability measure. To show that P is a measure, fix a
collection (Ai)i⩾1 of pairwise disjoint sets in B(S), and let A = ⋃i⩾1 Ai. On the one
hand, for any n ⩾ 1,

P(A) ⩾ lim
r→+∞

µr(
n
⋃
i=1

Ai) = lim
r→+∞

n
∑
i=1

µr(Ai) =
n
∑
i=1

P(Ai),

so letting n tend to infinity gives the lower bound P(A) ⩾ ∑+∞i=1 P(Ai). On the other
hand, given ε > 0 there is r large enough so

P(A) ⩽ µr(A)+ε =
+∞
∑
i=1

µr(Ai)+ε ⩽
+∞
∑
i=1

P(Ai)+ε,

where the final inequality uses that P(Ai) is the monotonically increasing limit of
µr(Ai). Letting ε tend to zero establishes the matching upper bound and shows that
P is a measure. To see that it is a probability measure, observe that for every r ⩾ 1,

1 = T(1) ⩾ lim
r→+∞

µr(S) = P(S) ⩾ µr(K̃r) = lim
k→+∞

Pn(k)(K̃r) ⩾ 1− 1
r
.

Letting r tend to infinity shows that P(S) = 1 as required.

Step 4: establishing weak convergence. To conclude that the sequence (Pn(k))k⩾1 of
probability measures converges weakly to P, fix a closed set F ⊆ S as well as r ⩾ 1.
Letting k tend to infinity in the bound

Pn(k)(F) ⩽ Pn(k)(F ∩ K̃r)+
1
r

reveals that

limsup
k→+∞

Pn(k)(F) ⩽ limsup
k→+∞

Pn(k)(F ∩ K̃r)+
1
r
⩽ µr(F)+

1
r
⩽ P(F)+ 1

r
.

The second inequality combines the fact that (Pn(k))k⩾1 converges weakly to µr on
K̃r by (A.58) and (A.59) with Remark A.18. Letting r tend to infinity and invoking
the Portmanteau theorem completes the proof. ∎

It turns out that the converse of the Prokhorov theorem is also true for any
complete and separable metric space.

Theorem A.21. Suppose S is a complete and separable metric space. If the sequence
(Pn)n⩾1 of probability measures on S converges weakly, then it is uniformly tight.
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Proof. Suppose for the sake of contradiction that (Pn)n⩾1 converges weakly to some
probability measure P but that it is not uniformly tight. This means that there exist
ε > 0 and r > 0 such that for any finite family of open balls B1, . . . ,Bm of radius
r > 0 there is some n ⩾ 1 with Pn(⋃m

i=1 Bi) < 1−ε . Indeed, if this were not the case,
then given ε > 0 and k > 0 it would be possible to find a finite family of open balls
B(k)1 , . . . ,B(k)n(k) of radius k−1 with

Pn(
n(k)
⋃
i=1

B(k)i ) ⩾ 1−ε2−k

for every n ⩾ 1. The set

K ∶=
∞
⋂
k=1

n(k)
⋃
i=1

B
(k)
i

would then satisfy Pn(K) ⩾ 1− ε for every n ⩾ 1. Since S is complete, the closed
and totally bounded set K is compact. This would contradict the assumption that
(Pn)n⩾1 is not uniformly tight. With this r > 0 at hand, use the separability of S to
find a collection (Bi)i⩾1 of open balls of radius r > 0 with S =⋃∞i=1 Bi. For each k ⩾ 1,
let Ak ∶= ⋃k

i=1 Bi, and find n(k) ⩾ 1 with Pn(k)(Ak) < 1−ε . Since Am is open for each
m ⩾ 1 and Am ⊆ Ak for every k large enough, the Portmanteau theorem implies that

P(Am) ⩽ liminf
k→+∞

Pn(k)(Am) ⩽ liminf
k→+∞

Pn(k)(Ak) < 1−ε.

By the continuity of measure established in Exercise A.1 this contradicts the fact
that S = ⋃∞m=1 Am and completes the proof. ∎

In the context of our two-step strategy to establish weak convergence, we
now turn our attention to the uniqueness of the limiting measure in the setting of
Euclidean space Rd . We will discuss two closely related transforms that entirely de-
termine a probability measure, the characteristic function and the Laplace transform.
The key difference between these two transforms is that the former is well-defined
for any probability measure while the latter is slightly simpler but only well-defined
for a smaller class of probability measures; here we will consider probability mea-
sures supported on the positive quadrant Rd

⩾0. The characteristic function of a
probability measure P on Rd is the complex-valued function ϕ ∶Rd →C defined by

ϕP(t) ∶=
ˆ
Rd

eit⋅x dP(x). (A.61)

In the case when P admits a density with respect to Lebesgue measure, the charac-
teristic function is the Fourier transform of the density. The Laplace transform of a
probability measure P on Rd

⩾0 is the real-valued function LP ∶Rd
⩾0→R defined by

LP(λ) ∶=
ˆ
Rd
⩾0

e−λ ⋅x dP(x). (A.62)
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Theorem A.22. If two probability measures P and Q on Rd have the same charac-
teristic function, ϕP = ϕQ, then they must be equal, P =Q.

Proof. By a straightforward approximation argument, it suffices to show that for
every continuous function of compact support f ∈Cc(Rd;R), we have

ˆ
Rd

f dP =
ˆ
Rd

f dQ. (A.63)

Fix a continuous function of compact support f ∈Cc(Rd;R) as well as ε > 0. Using
Exercise A.12 on the tightness of probability measures on complete and separable
metric spaces, find K large enough so that f vanishes outside the cube [−K/2,K/2]d ,
and so that P((−K,K)d) ⩾ 1−ε and Q((−K,K)d) ⩾ 1−ε . For each m ∈Zd denote
by gm ∶ [−K,K]d →C the function

gm(x) ∶= exp( iπ
2K

m ⋅x), (A.64)

and write A for the algebra of finite linear combinations of the (gm)m∈Zd . It is
readily verified that A is an algebra in C(S;C) that separates points in the compact
set [−K,K]d . Since A is closed under complex conjugation, the complex version of
the Stone-Weierstrass theorem gives g ∈ A such that, for all x ∈ [−K,K]d ,

∣ f (x)−g(x)∣ ⩽ ε

2
.

Remembering that f is supported on [−K/2,K/2]d , up to multiplying g by a non-
negative function which is equal to one on [−K/2,K/2]d , vanishes outside [−K,K]d
and is bounded by one, assume without loss of generality that g is supported on
[−K,K]d . This ensures that f (x) = g(x) for x ∈Rd ∖[−K,K]d . Combining this with
the fact that

´
Rd gdP =

´
Rd gdQ by the equality of characteristic functions reveals

that
∣
ˆ
Rd

f dP−
ˆ
Rd

f dQ∣ ⩽
ˆ
Rd
∣ f −g∣dP+

ˆ
Rd
∣ f −g∣dQ ⩽ ε.

Letting ε tend to zero establishes (A.63) and completes the proof. ∎

Theorem A.23. If two probability measures P and Q on Rd
⩾0 have the same Laplace

transform, LP = LQ, then they must be equal, P =Q.

Proof. Up to replacing the function (A.64) by the function gm ∶ [−K,K]d → R
defined by gm(x) = em⋅x, the proof is identical to that of Theorem A.22. ∎

We now provide an example that shows how the ideas developed in this section
can be used to establish the weak convergence of a sequence of probability measures
on the positive half-space by looking only at their Laplace transforms.
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Proposition A.24. A sequence (Pn)n⩾1 of probability measures on Rd
⩾0 converges

weakly to a probability measure P on Rd
⩾0 if and only if, for every λ ∈Rd

⩾0,

lim
n→+∞

ˆ
Rd
⩾0

e−λ ⋅x dPn(x) =
ˆ
Rd
⩾0

e−λ ⋅x dP(x). (A.65)

Proof. The direct implication is immediate. To show the converse implication,
we proceed in two steps. First we argue that (Pn)n⩾1 is uniformly tight using the
Prokhorov theorem, and then we prove that P is its only subsequential limit using
Theorem A.23. The result then follows from Lemma A.19.

Step 1: (Pn)n⩾1 is uniformly tight. Fix ε > 0 and M > 0. Denote by KM ∶= [0,M]d
the box of side-length M in Rd

⩾0, and for a choice of λ∗ > 0 to be decided shortly,
consider the constant vector

λ ∶= (λ∗, . . . ,λ∗) ∈Rd
⩾0.

Since LP is continuous and LP(0) = 1, we can fix λ∗ > 0 small enough such that for
every n sufficiently large,ˆ

Rd
⩾0

e−λ ⋅x dPn(x) = LPn(λ) ⩾ 1− ε

2
.

It follows that for every n sufficiently large,

1− ε

2
⩽ Pn(KM)+

ˆ
Rd
⩾0∖KM

e−λ ⋅x dPn(x) ⩽ Pn(KM)+e−Mλ
∗
Pn(Kc

M).

Rearranging reveals that

Pn(Kc
M) ⩽

ε

2(1−e−Mλ∗)
,

so choosing M = log(2)
λ∗ ensures that Pn(Kc

M) ⩽ ε . This shows that (Pn)n⩾1 is uni-
formly tight, so any subsequence of (Pn)n⩾1 admits a weakly convergent subse-
quence by the Prokhorov theorem.

Step 2: (Pn)n⩾1 admits a unique subsequential limit. Let (Pn(k))k⩾1 be a subse-
quence of (Pn)n⩾1 converging weakly to some probability measure Q on Rd

⩾0. On
the one hand, the definition of weak convergence implies that for every λ ∈Rd

⩾0,

lim
k→+∞

ˆ
S

e−λ ⋅x dPn(k) =
ˆ

S
e−λ ⋅x dQ.

On the other hand, by assumption, for every λ ∈Rd
⩾0,

lim
k→+∞

ˆ
S

e−λ ⋅x dPn(k) =
ˆ

S
e−λ ⋅x dP.
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Combining the uniqueness of weak limits with Theorem A.23 implies that P =Q.
This completes the proof. ∎

Exercise A.12. Suppose S is a complete and separable metric space. Show that any
probability measure P on S is tight in the sense that for every ε > 0 there exists a
compact set K ⊆ S with P(K) ⩾ 1−ε .



Appendix S
Solutions to exercises

S.1 Introduction to statistical mechanics

Exercise 1.1. We treat each question separately.

(i) Bounding the sum of the non-negative terms from below by a single term in the
sum, and bounding each term in the sum by its maximum shows that

log max
1⩽k⩽K

exp(Nak) ⩽ log
K
∑
k=1

exp(Nak) ⩽ log(K)+ log max
1⩽k⩽K

exp(Nak).

It follows that

1
N
∣ log

K
∑
k=1

exp(Nak)− log max
1⩽k⩽K

exp(Nak)∣ ⩽
log(K)

N
. (S.1)

Letting N →+∞ establishes (1.15).

(ii) If K = exp(o(N)), then (S.1) ensures that (1.15) remains valid. On the other hand,
if log(KN) grows faster than N, then there exists a constant c> 0 with log(KN) ⩾ cN
for all N large enough. The constant sequence with ak = 1 for every k ⩾ 1 is such
that

1
N
∣ log

KN

∑
k=1

exp(Nak)− log max
1⩽k⩽K

exp(Nak)∣ =
1
N
∣ log(KN)+N −N∣ = log(KN)

N
⩾ c

so (1.15) cannot hold. This means that (1.15) holds for arbitrary choices of the
sequence (ak)k⩾1 if and only if K = exp(o(N)).

Exercise 1.2. Consider the two-by-two matrix M = (Mi, j)i, j∈{±1} defined by

Mi j ∶= eβ i j+h j,

287
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and denote by λ1 ⩽ λ2 its eigenvalues,

λ1 = eβ cosh(h)−(e2β cosh2(h)−2sinh(2β))
1
2 ,

λ2 = eβ cosh(h)+(e2β cosh2(h)−2sinh(2β))
1
2 .

Notice that e2β cosh2(h) ⩾ e2β ⩾ 2sinh(2β), so the square root is well-defined.
Given a spin configuration σ ∈ {±1}N , let σN+1 = σ1 in such a way that

FN(β ,h) =
1
N

log ∑
σ∈{±1}N

N
∏
i=1

Mσiσi+1 =
1
N

log ∑
σ1∈Σ1

MN
σ1σ1
= 1

N
logtr(MN)

= 1
N

log(λ N
1 +λ

N
2 ).

Since λ2 > 0 and λ2 > λ1, the limit free energy is given by

f (β ,h) ∶= lim
N→+∞

FN(β ,h) = logλ2+ lim
N→+∞

1
N

log
⎛
⎝

1+(λ1

λ2
)

N⎞
⎠
= logλ2.

The quantity ∂hFN(β ,h) is the mean magnetization (1.23), and is therefore bounded
uniformly by one. It follows by smoothness of f in h, Propositions 2.11 and 2.15,
and Exercise 2.6 that for every h ∈R, the limit (1.25) of the mean magnetization is
given by

m(β ,h) ∶= lim
N→+∞

∂hFN(β ,h) = ∂h f (β ,h) = eβ sinh(h)
(e2β cosh2(h)−2sinh(2β))1/2

,

and is therefore a continuous function of h.

Exercise 1.3. We treat each question separately.

(i) The Hamiltonian (1.28) may be written as

HN(σ) = ∑
i, j∈BN+1

i∼ j

1{σiσ j=1}− ∑
i, j∈BN+1

i∼ j

1{σiσ j=−1}

= ∣{{i, j} ∈ B2
N+1 ∣ i ∼ j}∣−2 ∑

i, j∈BN+1
i∼ j

1{σiσ j=−1}.

The final sum counts the number of pairs of nearest neighbours (i, j) ∈ B2
N+1 with

σiσ j = −1. This corresponds to the number of edges ∣Γ(σ)∣ in Γ(σ). It follows
that HN(σ)+2∣Γ(σ)∣ gives the total number of nearest neighbour pairs in the
lattice B2

N+1, so it depends only on the geometry of the lattice and not the specific
configuration σ ∈ {±1}BN .
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(ii) Given a configuration σ ∈ {±1}BN with σ0 = −1, let

j(σ) ∶=min{ j ∈ {1, . . . ,N +1} ∣ σ(0, j) = 1}

be the coordinate of the first spin to right of σ0 that is unaligned with σ0. Notice
that such a spin must exist as all spins in BN+1∖BN are unaligned with σ0. Since
the contours in Γ(σ) delimit regions in which the sign of the spins is constant,
there must be a contour which separates the origin from the point (0, j(σ)) and
therefore surrounds the origin.

(iii) Given a spin configuration σ ∈ {±1}BN , consider a partition P(σ) of the set of
contours Γ(σ),

Γ(σ) = ⋃
η∈P(σ)

η .

Since HN(σ)+2∣Γ(σ)∣ does not depend on the configuration σ by (i), we have

⟨1{γ⊆Γ(σ)}⟩ =
∑σ∈{±1}BN 1{γ⊆Γ(σ)} exp(−2β ∣Γ(σ)∣)
∑σ∈{±1}BN exp(−2β ∣Γ(σ)∣)

= exp(−2β ∣γ ∣) ⋅
∑σ∈{±1}BN 1{γ⊆Γ(σ)}∏η∈P(σ)∖γ exp(−2β ∣η ∣)

∑σ∈{±1}BN ∏η∈P(σ) exp(−2β ∣η ∣)
.

It therefore suffices to prove that

∑
σ∈{±1}BN

1{γ⊆Γ(σ)} ∏
η∈P(σ)∖γ

exp(−2β ∣η ∣) ⩽ ∑
σ∈{±1}BN

∏
η∈P(σ)

exp(−2β ∣η ∣). (S.2)

Denote by Σγ the set of configurations σ ∈ {±1}BN with γ ⊆ Γ(σ), and define the
flipping map F ∶ Σγ →{±1}BN by

F(σ)i ∶=
⎧⎪⎪⎨⎪⎪⎩

−σi if i ∈ int(γ),
σi otherwise.

Observe that F is injective and satisfies Γ(F(σ)) = P(σ)∖γ . It follows that the
left side of (S.2) is given by

∑
σ∈{±1}BN

1{γ∈Γ(σ)} ∏
η∈P(F(σ))

exp(−2β ∣η ∣)

which is in turn equal to

∑
σ∈{±1}BN

1{σ⊆F(Σγ)} ∏
η∈P(σ)

exp(−2β ∣η ∣) ⩽ ∑
σ∈{±1}BN

∏
η∈P(σ)

exp(−2β ∣η ∣).

This establishes (S.2).
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(iv) To bound ⟨σ0⟩ from below away from zero we will use that

⟨σ0⟩ = ⟨1{σ0=1}⟩−⟨1{σ0=−1}⟩ = 1−2⟨1{σ0=−1}⟩, (S.3)

and instead bound ⟨1{σ0=−1}⟩ from above away from 1/2. Denote by Γ0 the set of
all contours surrounding the origin, and write Γk

0 for the set of contours in Γ0 of
length k. Combining (ii) with the union bound and (iii) reveals that

⟨1{σ0=−1}⟩ ⩽ ∑
γ∈Γ0

⟨1{γ⊆Γ(σ)}⟩ ⩽ ∑
γ∈Γ0

exp(−2β ∣γ ∣) =
+∞
∑
k=1
∣Γk

0∣exp(−2βk).

To bound the size of Γk
0, observe that any path enclosing the origin must have

length at least 4. Moreover, it must cross the point (0, j) for some j ∈ {1, . . . ,k/2},
and at each of its k nodes it can go in at most 4 directions. This means that k must
be larger than 4 for Γk

0 not to be empty, and that Γk
0 can contain at most k4k edges.

It follows that

⟨1{σ0=−1}⟩ ⩽
+∞
∑
k=4

k(4e−2β)k.

Taking β > 3
2 log2 and invoking the dominated convergence theorem shows that

the right side of this expression tends to zero as β →+∞. In particular, for any
δ > 0 there exists β large enough with limsupN→+∞⟨1{σ0=−1}⟩ ⩽ δ

2 . Taking δ < 1
and substituting this into (S.3) gives β large enough with liminfN→+∞⟨σ0⟩ > 0 as
required.

(v) The symmetry between spin sites when h = 0 implies that the mean magnetization
(1.23) simplifies to

mN(β ,0) = ⟨
1
∣B2∣
∑
i∈B2

σi⟩ = ⟨σ0⟩.

It follows by (iv) that for β large enough,

liminf
N→+∞

mN(β ,0) > 0

which means that the two-dimensional Ising model with no magnetic field and
with +1 boundary condition has a non-zero asymptotic mean magnetization. This
suggests that it has a “memory” of the slight tilt it has been exposed to via
the boundary condition, and therefore that it exhibits ferromagnetic behaviour.
Although we will not pursue this further, one can show by subadditivity arguments
that the limit free energy associated with this model is well-defined and does not
depend on the boundary condition we choose; and use Proposition 2.15 to assert
that any subsequential limit of mN(β ,0) must belong to the subdifferential (in h)
of this limit free energy. By symmetry, we conclude that for β > 0 large enough,
the limit free energy of the two-dimensional Ising model is not differentiable in h
at h = 0.
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S.2 Convex analysis and large deviation principles

Exercise 2.1. Fix α ∈ (0,1) and x,y ∈C2−C1. Let x1,y1 ∈C1 and x2,y2 ∈C2 be such
that x = x2−x1 and y = y2−y1. Observe that

αx+(1−α)y = (αx2+(1−α)y2)−(αx1+(1−α)y1) ∈C2−C1. (S.4)

This establishes the convexity of C2−C1.

Exercise 2.2. It is clear that int(C) ⊆ int(C). To prove the converse containment,
fix z ∈ int(C) and x ∈ int(C). Let γ > 0 be small enough so that y ∶= z+ γ(z−x) ∈C,
and observe that

z = (1−α)x+αy

for α = 1
γ+1 ∈ (0,1). If ε > 0 is small enough so Bε(x) ⊆C, then B(1−α)ε(z) ⊆C. This

shows that z ∈ int(C), and therefore int(C) = int(C). The equality of the boundaries
follows from the fact that ∂A = A∖ int(A) for every set A ⊆Rd .

Exercise 2.3. Since int(C) ⊆C and C is closed, we have int(C) ⊆C. To prove the
converse inclusion, fix x ∈C and x′ ∈ int(C). Let ε > 0 be small enough so Bε(x′) ⊆C.
By convexity of C, for all t ∈ [0,1] and y ∈ Bε(x′), we have (1− t)x+ ty ∈C. This
means that, for all t ∈ [0,1],

Btε((1− t)x+ tx′) ⊆C,

and thus (1− t)x+ tx′ ∈ int(C). It follows that

x = lim
t↘0
((1− t)x+ tx′) ∈ int(C).

This completes the proof.

Exercise 2.4. We say that points x1, . . . ,xk ∈Rd are affinely independent if

k
∑
i=1

αixi = 0 with αi ∈R and
k
∑
i=1

αi = 0

implies that α1 = ⋯ = αk = 0. This is equivalent to the linear independence of the
vectors x2−x1, . . . ,xk−x1. In particular, if x1, . . . ,xk are affinely independent in Rd ,
then k ⩽ d+1. It therefore suffices to prove that any point x ∈ conv(A) can be written
as a convex combination of affinely independent points in A. Since x ∈ conv(A), it
may be written as

x =
k
∑
i=1

λixi for some xi ∈ A, λi ⩾ 0 with
k
∑
i=1

λi = 1 and k ⩾ 1. (S.5)
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We take k minimal among all such representations. Suppose for the sake of con-
tradiction that x1, . . . ,xk are not affinely independent. This means that there exist
α1, . . . ,αk ∈R, not all zero, with

k
∑
i=1

αixi = 0 and
k
∑
i=1

αi = 0.

Denote by I the set of indices i ∈ {1, . . . ,k} such that αi > 0. Since the set I is not
empty, we can choose m ∈ I to be such that

λm

αm
= inf

i∈I
λi

αi
.

In the representation

x =
k
∑
i=1
(λi−

λm

αm
αi)xi,

the coefficients sum to one and are all non-negative by choice of m. Since the m’th
coefficient is zero, this contradicts the minimality of k among all representations of
the form (S.5). This shows that x1, . . . ,xk are affinely independent, and completes
the proof.

Exercise 2.5. Let (xk)k⩾1 ⊆ conv(A) be a sequence in the convex hull of A. By
Exercise 2.4, for each k ⩾ 1, there exist xk

1, . . . ,x
k
d+1 ∈A and αk

1 , . . . ,α
k
d+1 ∈ [0,1] with

xk =
d+1
∑
i=1

α
k
i xk

i and
d+1
∑
i=1

α
k
i = 1.

Since A and [0,1] are compact, there are subsequences of (xk
i )k∈K and (αk

i )k∈K
with the same index set K that converge to some xi and αi, respectively, for every
i ∈ {1, . . . ,d + 1}. Since A is compact, each xi belongs to A. It follows that the
subsequence (xk)k∈K converges to the point

x =
d+1
∑
i=1

αixi ∈ conv(A).

This completes the proof.

Exercise 2.6. Fix λ ,µ ∈Rd and α ∈ (0,1). By Hölder’s inequality with conjugate
exponents p = α−1 and q = (1−α)−1, we have

expψ(αλ +(1−α)µ) =Eexp(αλ ⋅X)exp((1−α)µ ⋅X)

⩽ (Eexp(λ ⋅X))α(Eexp(µ ⋅X))1−α

= (expψ(λ))α(expψ(µ))1−α
.

Taking logarithms completes the proof.
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Exercise 2.7. First suppose that fα is convex for each α ∈ I, and fix x,y ∈Rd as well
as λ ∈ (0,1). For every α ∈ I, we have

fα(λx+(1−λ)y) ⩽ λ fα(x)+(1−λ) fα(y).

Taking the supremum over α ∈ I gives

sup
α∈I

fα(λx+(1−λ)y) ⩽ λ sup
α∈I

fα(x)+(1−λ)sup
α∈I

fα(y)

which establishes the convexity of supα∈I fα . Now, suppose instead that fα is lower
semi-continuous for every α ∈ I. We observe that

{(x,λ) ∈Rd ×R ∣ sup
α∈I

fα(x) ⩽ λ} = ⋂
α∈I
{(x,λ) ∈Rd ×R ∣ fα(x) ⩽ λ}.

Since the intersection of closed sets is closed, this shows that the epigraph of
supα∈I fα is closed, and thus that supα∈I fα is lower semi-continuous. We note in
passing that the first part of the exercise can also be proved by reasoning about the
convexity of the epigraphs.

Exercise 2.8. Let x,x′ ∈Rd and α ∈ (0,1). We want to verify that

g(αx+(1−α)x′) ⩽ αg(x)+(1−α)g(x′). (S.6)

Without loss of generality, we may assume that g(x) and g(x′) are finite. For any
given ε > 0, one can find y,y′ ∈Rk such that f (x,y) ⩽ g(x)+ε and f (x′,y′) ⩽ g(x′)+ε .
By the definition of g as an infimum and the convexity of f , we have

g(αx+(1−α)x′) ⩽ f (αx+(1−α)x′,αy+(1−α)y′)
⩽ α f (x,y)+(1−α) f (x′,y′).

Letting ε tend to zero, we obtain the result.

Exercise 2.9. We treat each question separately.

(i) Since f is a supremum of lower semi-continuous functions, it is lower semi-
continuous, by Exercise 2.7.

(ii) Denote h(x) ∶= liminfy→x f (y), and let g be lower semi-continuous with g ⩾ f . By
the lower semi-continuity of g and the inequality g ⩽ f , we have

g(x) ⩽ liminf
y→x

g(y) ⩽ liminf
y→x

f (x) = h(x).

Taking the supremum over g, we obtain that f ⩽ h. To show the converse inequality,
it suffices to verify that h is lower semi-continuous, since we clearly have h ⩽ f .
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Let (xn)n⩾1 be a sequence converging to x ∈Rd , and ε > 0. For each n ⩾ 1, we can
find a point x′n with ∣x′n−xn∣ ⩽ 1/n and

f (x′n) ⩽ h(xn)+ε.

In particular, the sequence (x′n)n⩾1 converges to x, and

h(x) = liminf
y→x

f (y) ⩽ liminf
n→+∞

f (x′n) ⩽ liminf
n→+∞

h(xn)+ε.

Since ε > 0 is arbitrary, this shows that h is lower semi-continuous, and thus
completes the argument.

(iii) Let x,y ∈Rd and α ∈ (0,1). We aim to show that

f (αx+(1−α)x′) ⩽ α f (x)+(1−α) f (x′).

Without loss of generality, we may assume that f (x) and f (x′) are finite. We fix
ε > 0. For each r > 0, one can find xr,x′r ∈Rd with ∣xr −x∣ + ∣x′r −x′∣ ⩽ r such that

f (xr) ⩽ f (x)+ε and f (x′r) ⩽ f (x′)+ε.

In particular, we have

∣αxr +(1−α)x′r −αx−(1−α)x′r∣ ⩽ r

and
f (αxr +(1−α)x′r) ⩽ α f (x)+(1−α) f (x′)+ε.

Since this is valid for every r > 0, we deduce that

f (αx+(1−α)x′) ⩽ α f (x)+(1−α) f (x′)+ε.

Since ε > 0 was arbitrary, the proof is complete.

Exercise 2.10. We treat each question separately.

(i) Since f ∗ is the supremum of affine functions, this is immediate from Exercise 2.7.

(ii) The definition of the convex dual implies that f (x)+ f ∗(x) ⩾λ ⋅x for every x,λ ∈Rd .
It follows that for every x,λ ∈Rd ,

x ⋅λ − f ∗(λ) ⩽ f (x)+ f ∗(λ)− f ∗(λ) = f (x).

Taking the supremum over x ∈Rd shows that f ∗∗ ⩽ f .
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(iii) If f ⩽ g and x,λ ∈Rd , then

x ⋅λ −g(x) ⩽ x ⋅λ − f (x) ⩽ f ∗(λ).

Taking the supremum over x ∈Rd shows that g∗ ⩽ f ∗ and completes the proof.

Exercise 2.11. Fix λ ∈Rd , and observe that by the Cauchy-Schwarz inequality,

f ∗(λ) = 1
2

sup
x∈Rd
(2λ ⋅x− ∣x∣2) ⩽ 1

2
sup
x∈Rd
(2∣λ ∣∣x∣ − ∣x∣2).

The parabola y↦ 2∣λ ∣y−y2 has a unique maximum at y = ∣λ ∣, so f ∗(λ) ⩽ f (λ). The
matching lower bound is obtained by choosing x = λ .

Exercise 2.12. Fix x ∈Rd with ∣x∣ >L. By definition of the convex dual and Lipschitz
continuity of f ,

f ∗(x) ⩾ sup
p∈Rd
(p ⋅x−L∣p∣)− f (0) ⩾ limsup

α→+∞
α ∣x∣(∣x∣ −L)− f (0) = +∞.

This completes the proof.

Exercise 2.13. We use the notation f ∗ ∶= ( f )∗. Since f ⩽ f , part (iii) of Exercise 2.10
yields that f ∗ ⩾ f . To show the converse bound, we fix λ ∈Rd , ε > 0, and x ∈Rd

such that
f ∗(λ) ⩽ λ ⋅x− f (x)−ε.

By Exercise 2.9, we can find x′ ∈ Rd such that ∣x′ − x∣ ⩽ ε and f (x) ⩾ f (x) − ε .
Combining this with the previous display, we obtain that

f ∗(λ) ⩾ λ ⋅x′− f ′(x)
⩾ λ ⋅x− f (x)−(∣λ ∣ +1)ε
⩾ f ∗(λ)−(∣λ ∣ +2)ε.

Since ε > 0 is arbitrary, this completes the proof that f ∗ = f ∗. By Exercise 2.9, the
function f is convex and lower semi-continuous, so the Fenchel-Moreau theorem
ensures that f ∗∗ = f . Conjugating the relation f ∗ = f ∗ therefore yields that f ∗∗ = f ,
as announced.

Exercise 2.14. The definition of the polar K○ ensures that for each fixed x ∈ K
and all v ∈ K○, we have x ⋅v ⩽ 0. This means that K ⊆ K○○. To prove the converse
inclusion, suppose for the sake of contradiction that there exists x ∈K○○∖K. Since
K is a closed convex set, the supporting hyperplane theorem (Theorem 2.2) gives a
non-zero v ∈Rd with

sup{v ⋅y ∣ y ∈K} < v ⋅x.
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If there were y ∈K with v ⋅y > 0, then we would have v ⋅λy < v ⋅x for all λ > 0 which
would lead to a contradiction upon letting λ tend to infinity. This means that v ∈K○.
Observe also that 0 = limλ↘0 λy ∈ K, where y is any point in K, so v ⋅x > 0. Since
v ∈K○, this contradicts the fact the x ∈K○○ and completes the proof.

Exercise 2.15. We treat each question separately.

(i) Fix x ∈ int(C) and n ∈ nC(x). For every ε > 0 small enough, we have x+εn ∈C, and
therefore

ε ∣n∣2 = n ⋅ (x+εn−x) ⩽ 0.

This implies that nC(x) ⊆ {0}. The converse inclusion is trivial. To show that
TC(x) =Rd , fix v ∈Rd , and let ε > 0 be small enough so x+εv ∈C. Observe that

v = ε
−1(x+εv−x) ∈TC(x),

as required.

(ii) By Exercise 2.14, it suffices to show that nC(x) = TC(x)○. On the one hand, if
v ∈nC(x), then for all x′ ∈C and λ ⩾ 0, we have v ⋅λ(x′−x) ⩽ 0. Since this inequality
is preserved under limits, it follows that v ⋅y ⩽ 0 for all y ∈ TC(x), and therefore
that nC(x) ⊆TC(x)○. On the other hand, if v ∈TC(x)○, then for all x′ ∈C, we have
v ⋅ (x′−x) ⩽ 0 since x′−x ∈TC(x). This shows that TC(x)○ ⊆ nC(x).

(iii) If v ∈TC(x), there exist sequences (x′i)i⩾1 ⊆C and (λi)i⩾1 ⊆R⩾0 with λi(x′i −x)→ v.
Letting

ti ∶=min(2−i,λ−1
i ) and xi ∶= x+ tiλi(x′i −x)

gives a sequence (ti)i⩾1 ⊆ R>0 decreasing to 0 and a sequence (xi)i⩾1 ⊆ Rd con-
verging to x with t−1

i (xi−x) → v. Moreover, since tiλi ∈ [0,1], we have that xi ∈C
for every i ⩾ 1. This completes the proof of the direct implication. The converse
implication is immediate.

Exercise 2.16. It suffices to show that for every x ∈H ∖C the infimum

d(x,C) ∶= inf{∥x−y∥2 ∣ y ∈C}

is achieved. Indeed, all other arguments in the proof of Lemma 2.1 extend without
change to the Hilbert space setting. Fix x ∈H ∖C, and let (yn)n⩾1 be a minimizing
sequence with

lim
n→+∞

∥x−yn∥2 = d(x,C).

We would like to show that (yn)n⩾1 is Cauchy. Fix n,m ⩾ 1, and observe that

∥yn−ym∥2 = ∥yn−x∥2+∥ym−x∥2−2(yn−x) ⋅ (ym−x).
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Similarly,

∥yn+ym−2x∥2 = ∥yn−x∥2+∥ym−x∥2+2(yn−x) ⋅ (ym−x).

Combining these two equalities reveals that

∥yn−ym∥2 = 2(∥yn−x∥2+∥ym−x∥2−2∥yn+ym

2
−x∥

2
).

By convexity of C, we have yn+ym
2 ∈C, and therefore

∥yn−ym∥2 ⩽ 2(∥yn−x∥2+∥ym−x∥2−2d(x,C))

This shows that (yn)n⩾1 is Cauchy. Since C is a closed subspace of the Hilbert space
H, it is a complete metric space. The sequence (yn)n⩾1 therefore converges to some
y0 ∈C. By continuity of the norm, we have ∥y0−x∥2 = d(x,C) which completes the
proof.

Exercise 2.17. We treat each question separately.

(i) To show that H =C⊕C⊥ we need to show that every x ∈H may be written uniquely
as x = y+ z for some y ∈C and z ∈C⊥. Fix x ∈H, and invoke Exercise 2.16 to define
y ∶= PC(x) and z ∶= x−PC(x). It is clear that x = y+ z and that y ∈C. To see that
z ∈C⊥, fix w ∈C. Since C is a vector space, applying the characterization (2.29) of
the projection PC(x) to the vector w+PC(x) reveals that

z ⋅w = (x−PC(x)) ⋅ (w+PC(x)−PC(x)) ⩽ 0.

Since C is symmetric, this shows that z ∈C⊥, so x may be written as x = y+ z for
some y ∈C and z ∈C⊥. To show that this decomposition is unique, suppose that we
may also write x =w+v for some other w ∈C and v ∈C⊥. Since C and C⊥ are both
vector spaces, we have y−w ∈C and z−v ∈C⊥, so Pythagoras’ theorem implies
that

0 = ∥x−x∥2 = ∥y−w+ z−v∥2 = ∥y−w∥2+∥z−v∥2

which implies that y =w and z = v as required.

(ii) The uniqueness of y ∈H is clear. Indeed, if f (x) = x ⋅ y = x ⋅ y′ for some y,y′ ∈H,
then x ⋅ (y−y′) = 0 for all x ∈H, and choosing x = y−y′ shows that y = y′. We now
establish the existence of y. If f = 0, we can choose y = 0, so let us assume that
f ≠ 0. Consider the closed subspace C ∶= ker f of H. Since f ≠ 0, the space C is
not all of H, so Exercise 2.17 gives z ∈C⊥ with ∥z∥ = 1. For each x ∈H, we have
f (x)z− f (z)x ∈C by linearity of f . It follows that

0 = z ⋅ ( f (x)z− f (z)x) = f (x)− f (z)z ⋅x.

Setting y ∶= z f (z) completes the proof.
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Exercise 2.18. Fix a step function of the form φ ∶=∑n
i=1 φi1[ai−1,ai) for some (φi)i⩽n ⊆

R and non-decreasing (ai)0⩽i⩽n ⊆ [a,b]. If we denote by L the Lipschitz constant of
F , then

∣T(φ)∣ ⩽
n
∑
i=1
∣φi∣∣F(ai)−F(ai−1)∣ ⩽ L

n
∑
i=1
∣φi∣(ai−ai−1) = L

ˆ b

a
∣φ(x)∣dx

It follows by the Cauchy-Schwarz inequality that T defines a continuous linear
functional on the space of step functions on L2([a,b];R). By density, it extends to a
unique continuous linear functional on the Hilbert space L2([a,b];R). Invoking the
Riesz representation theorem on Hilbert spaces established in Exercise 2.17 gives a
unique function f ∈ L2([a,b];R) with

T(g) =
ˆ b

a
f (t)g(t)dt

for all g ∈ L2([a,b];R). If we now fix x ∈ [a,b], and apply this representation to the
step function g ∶= 1[a,x) we find that F(x)−F(a) = T(g) =

´ x
a f (t)dt. It follows that

for any h ∈R∖{0} with x+h ∈ [a,b],

∣F(x+h)−F(x)
h

− f (x)∣ ⩽ 1
∣h∣

ˆ x+∣h∣

x−∣h∣
∣ f (t)− f (x)∣dt.

Invoking the Lebesgue differentiation theorem established in Theorem A.16 com-
pletes the proof.

Exercise 2.19. We treat each question separately.

(i) The convex dual of x↦ I{x⩾0} is the mapping

z↦ sup
x∈Rd
(x ⋅ z− I{x⩾0}) = I{z⩽0}.

(ii) We start by observing that

I{x⩾0} = sup
z∈Rd
(x ⋅ z− I{z⩽0}), (S.7)

as can be checked directly or by appealing to the previous step and the Fenchel-
Moreau theorem. We can also write

I{Ax⩾c} = sup
y∈Rk
((Ax−c) ⋅y− I{y⩽0})

= sup
y∈Rk
(x ⋅A∗y−c ⋅y− I{y⩽0}).
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Summing the two previous displays yields that

φ(x) = sup
z∈Rd , y∈Rk

(x ⋅ z− I{z⩽0}+x ⋅A∗y−c ⋅y− I{y⩽0})

= sup
z∈Rd , y∈Rk

(x ⋅ z−c ⋅y− I{z⩽A∗y}− I{y⩽0})

= sup
z∈Rd
(x ⋅ z−ψ(z)).

To go from the first to the second line, we took the supremum over y first and then
replaced z by z−A∗y. We obtained the announced identity.

(iii) The infimum on the left side of (2.37) can be rewritten as

− sup
x∈Rd
(−b ⋅x−φ(x)) = −φ

∗(−b),

and by the previous step, this is −ψ∗∗(−b), provided that ψ∗∗ is well-defined. We
also observe that

−ψ(−b) = − inf
y∈Rk
(c ⋅y+ I{y⩽0}+ I{A∗y⩾−b})

= sup
y∈Rk
(−c ⋅y− I{−y⩾0}− I{−A∗y⩽b})

= sup
y∈Rk
(c ⋅y− I{y⩾0}− I{A∗y⩽b}),

using the change of variables y↦−y. This is the optimization problem on the right
side of (2.37), so our goal is to show that ψ∗∗(−b) =ψ(−b). Since

ψ(z) = inf
y∈Rk
(−c ⋅y+ I{−y∈Kz}),

the assumption on Kz ensures that ψ is finite in a neighbourhood of −b. Arguing
as in Exercise 2.8, we see that ψ must be convex, with the caveat that it might a
priori take the value −∞. But by Remark 2.7, the fact that ψ is finite on some open
set rules out this possibility, so ψ takes values in R∪{+∞}. Let ψ be the lower
semi-continuous envelope of ψ , as defined in Exercise 2.9. By Exercise 2.13, we
have that ψ∗∗ =ψ . By Proposition 2.9, the function ψ is continuous at −b, and
thus part (ii) of Exercise 2.9 ensures that ψ(−b) = ψ(−b). This completes the
proof.

Exercise 2.20. To alleviate notation, we introduce the set

C ∶= ndom f (x)+conv(S(x)).
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The proof proceeds in three steps. First, we show that C ⊆ ∂ f (x), then we prove
that C is closed and convex, and finally we show that ∂ f (x) ⊆C.

Step 1: C ⊆ ∂ f (x). By Theorem 2.13, Proposition 2.14 and the continuity of f on
dom f , we have S(x) ⊆ ∂ f (x). Together with the convexity of ∂ f (x), this shows that
conv(S(x)) ⊆ ∂ f (x). We now prove that ∂ f (x)+ndom f (x) ⊆ ∂ f (x). Fix p ∈ ∂ f (x)
and n ∈ ndom f (x). For every x′ ∈ dom f , we have

f (x′) ⩾ f (x)+ p ⋅ (x′−x) ⩾ f (x)+(p+n) ⋅ (x′−x),

where the first inequality uses that p ∈ ∂ f (x), and the second uses that n ∈ ndom f (x).
This shows that p+n ∈ ∂ f (x), and therefore that ∂ f (x)+ndom f (x) ⊆ ∂ f (x). In
particular, we have C ⊆ ∂ f (x).

Step 2: C is closed and convex. By Exercise 2.1, the set C is convex. To show
that it is also closed, fix a sequence (pi)i⩾1 ⊆C converging to some point p ∈Rd .
For each i ⩾ 1, let ni ∈ ndom f (x) and si ∈ conv(S(x)) be such that pi = ni + si. The
Lipschitz continuity of f on dom f ensures that the sequence (si)i⩾1 is bounded. Up
to passing to a subsequence, we may therefore suppose that it converges to some
point s ∈ conv(S(x)) = conv(S(x)). We have implicitly used Exercise 2.5 to say that
conv(S(x)) is compact, and therefore closed, as the convex hull of the compact set
S(x). The sequence (ni)i⩾1 also converges along this subsequence to some point
n ∈ ndom f (x). We have implicitly used that the normal cone is closed. Taking the
limit along this subsequence shows that p = n+ s ∈C, and therefore that C is closed.

Step 3: ∂ f (x) ⊆C. Suppose for the sake of contradiction that there exists p ∈
∂ f (x)∖C. The supporting hyperplane theorem (Theorem 2.2) then gives a non-zero
vector v ∈Rd with

sup{v ⋅ (n+ s) ∣ n ∈ ndom f (x) and s ∈ conv(S(x))} < v ⋅ p. (S.8)

Recall the definition of the polar in Exercise 2.14, and observe that v ∈ ndom f (x)○.
Indeed, if this were not the case, there would exist n ∈ ndom f (x) with v ⋅n > 0. Given
y0 ∈ conv(S(x)), which exists by Rademacher’s theorem (Theorem 2.10), we would
then have, for all λ > 0,

λv ⋅n+v ⋅y0 = (λn+y0) ⋅v < v ⋅ p.

Letting λ tend to infinity would give a contradiction. It follows by Exercise 2.15 that
v ∈ ndom f (x)○ =Tdom f (x), where Tdom f (x) denotes the tangent cone to dom f at x.
Combining Exercises 2.15 and 2.3 with Rademacher’s theorem gives a sequence
(xi)i⩾1 ⊆ int(dom f ) converging to x and a sequence (ti)i⩾1 ⊆R>0 decreasing to 0
such that ∇ f (xi) exists for all i ⩾ 1, and the sequence (vi)i⩾1 defined by vi ∶=
t−1
i (xi − x) converges to v. By Lipschitz continuity of f on dom f , the sequence
(∇ f (xi))i⩾1 is bounded, so, up to passing to a subsequence, assume without loss
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of generality that it converges to some c ∈C. Since ∇ f (x+ tivi) ∈ ∂ f (x+ tivi) by
Theorem 2.13 and p ∈ ∂ f (x) by assumption, for every i ⩾ 1, we have

−∇ f (x+ tivi) ⋅vi ⩽
f (x)− f (x+ tivi)

ti
⩽ −vi ⋅ p.

Letting i tend to infinity shows that −c ⋅ v ⩽ −v ⋅ p, and therefore c ⋅ v ⩾ v ⋅ p. This
contradicts (S.8) and completes the proof.

Exercise 2.21. A direct computation shows that the rate function I in (2.51) is
decreasing on (0, p) and increasing on (p,1). Using this, it is readily verified that
the string of inequalities (2.56) implies (2.54) and (2.55). Conversely, let us assume
(2.54) and (2.55), and deduce (2.56). Fix a Borel set A ⊆R, and observe that

P{SN ∈ A} ⩽ P{SN ∈ A∩(−∞, p]}+P{SN ∈ A∩[p,+∞)}.

Denote by x ∈ A the infimum of A∩[p,+∞). Since x ⩾ p, applying (2.54) reveals
that

limsup
N→+∞

1
N

logP{SN ∈ A∩[p,+∞)} ⩽ limsup
N→+∞

logP{SN ⩾ x} = −I(x) ⩽ − inf
x∈A

I(x).

A similar argument shows that

limsup
N→+∞

1
N
P{SN ∈ A∩(−∞, p]} ⩽ − inf

x∈A
I(x).

Combining these two bounds establishes the upper bound in (2.56). To prove the
lower bound, fix x ∈ int(A), and let ε > 0 be such that [x−ε,x+ε) ⊆ A. Observe that

P{SN ∈ A} ⩾ P{SN ∈ [x−ε,x+ε)} = P{SN ⩾ x−ε}−P{SN ⩾ x+ε}

If x > p and ε > 0 is small enough so x−ε > p, then (2.54) implies that

lim
N→+∞

1
N

logP{SN ⩾ x−ε}=−I(x−ε) and lim
N→+∞

1
N

logP{SN ⩾ x+ε}=−I(x+ε).

Since I is increasing on the interval (p,1), we have −I(x− ε) ⩾ −I(x+ ε), and
therefore

liminf
N→+∞

1
N

logP{SN ∈ A} ⩾ −I(x−ε).

Letting ε tend to zero and using the continuity of I gives the lower bound

liminf
N→+∞

1
N

logP{SN ∈ A} ⩾ −I(x).

An identical bound holds if x ⩽ p. Taking the supremum over all x ∈ int(A) es-
tablishes the lower bound in the string of inequalities (2.56) and completes the
proof.
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Exercise 2.22. The log-Laplace transform of a Bernoulli random variable X is

ψ(λ) = logEexp(λX) = log(peλ +(1− p)).

It follows by definition of the convex dual that

ψ
∗(x) = sup

λ∈R
(λx− log(peλ +(1− p))). (S.9)

Elementary calculus reveals that this supremum is achieved for λ ∈R with

x = peλ

peλ +(1− p)
.

Rearranging shows that

eλ = x
p
⋅ 1− p

1−x
.

Substituting this into (S.9) gives

ψ
∗(x) = x log( x

p
)−x log( 1−x

1− p
)− log(x ⋅ 1− p

1−x
+(1− p))

= x log( x
p
)−x log( 1−x

1− p
)− log(1− p

1−x
)

= x log( x
p
)+(1−x) log( 1−x

1− p
)

as required.

Exercise 2.23. We recall that by Proposition 2.9, the function f is continuous; we
also recall that

f ∗(λ) = sup
x∈Rd
(λ ⋅x− f (x)). (S.10)

We fix λ ∈Rd . The assumption of (2.119) and the continuity of f guarantee that for
some constant C < +∞, we have for every x ∈Rd that

f (x) ⩾ (∣λ ∣ +2)∣x∣ −C.

Plugging this estimate into (S.10) and using the Cauchy-Schwarz inequality yields
that, for every λ ′ ∈Rd ,

λ
′ ⋅x− f (x) ⩽C−(∣λ ∣ +2− ∣λ ′∣)∣x∣.

In particular, we have that f ∗(λ) is finite. The bound above also implies that
for every λ ′ ∈Rd with ∣λ ′∣ ⩽ ∣λ ∣ +1, we may as well restrict the supremum in the
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definition of f ∗(λ ′) in (S.10) to values of x that range in a fixed compact set K.
Since f is also continuous, the supremum in (S.10) is achieved for those values of λ ′.
Since the mapping (λ ,x)↦λ ⋅x− f (x) is continuous and continuously differentiable
with respect to its first variable, we are thus in position to appeal to the envelope
theorem (Theorem 2.21). The claim will follow once we show that the supremum
in (S.10) is achieved at a unique point x∗(λ), and that λ ↦ x∗(λ) is continuous.

Suppose that there are two distinct optimizers a ≠ b ∈Rd for (S.10). We have in
particular that

λ ⋅a− f (a) = λ ⋅b− f (b).

The strict convexity assumption then implies that

1
2
(λ ⋅a− f (a)+λ ⋅b− f (b)) < λ ⋅ a+b

2
− f (a+b

2
).

Since this contradicts the optimality assumption on a and b, this completes the proof
of uniqueness. Denoting by x∗(λ) the optimum, we now show that the mapping
λ ↦ x∗(λ) is continuous. Let (λn)n⩾1 be a sequence of points in Rd converging
to λ . Up to extraction of a subsequence, we may assume that x∗(λn) converges to
some a ∈Rd . Passing to the limit in the identity

f ∗(λn) = λn ⋅x∗(λn)− f (x∗(λn)),

we conclude that a must be an optimizer in (S.10). By uniqueness of the optimizer,
we have that a = x∗(λ), as desired.

Exercise 2.24. We treat each question separately.

(i) The envelope theorem (Theorem 2.21) implies that ∂t f (t,0) =m0(t)2. If (tn)n⩾1 ⊆
R⩾0 is a sequence converging to some t ∈ R⩾0, then for every n ⩾ 1 we have
∂t f (tn,0) =m0(tn)2. The sequence (m0(tn))n⩾1 is uniformly bounded by one, and
by (2.115) any of its subsequential limits must satisfy the fixed point equation
m = tanh(2tm). Together with (2.116) this means that it must be one of ±m0(t). It
follows that

lim
n→+∞

∂t f (tn,0) = lim
n→+∞

m0(tn)2 =m0(t)2 = ∂t f (t,0).

This establishes the continuity of t ↦ ∂t f (t,0).

(ii) Fix h > 0, and observe that by Proposition 2.22,

f (tc,h) = tcm+h(tc)
2+hm+h(tc)−

1+m+h(tc)
2

log(1+m+h(tc))

−
1−m+h(tc)

2
log(1−m+h(tc)).
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Remembering that tc = 1
2 and Taylor expanding the logarithm reveals that

f (tc,h) =
1
2

m+h(tc)
2+hm+h(tc)−

1
2

m+h(tc)
2+O(m+h(tc)

3)

= (1+o(1))hm+h(tc),

where the last equality uses the fact that mh(tc)→m0(tc) = 0 as h decreases to zero.
On the other hand, Taylor expanding the hyperbolic tangent and using the fixed
point equation (2.115) implies that

mh(tc) =mh(tc)+h− (mh(tc)+h)3
3

+O((mh(tc)+h)5)

=mh(tc)−
mh(tc)3

3
+h(1+o(1)).

Rearranging gives mh(tc) = h1/3(1+o(1)). It follows that f (tc,h) = h1+ 1
3 (1+o(1)),

and therefore

lim
h↘0

log f (tc,h)
logh

= 1+ 1
3
.

An identical argument for h < 0 allows us to conclude that δ = 3.

(iii) We can and do restrict our attention to the case of t > tc. Taylor expanding the
hyperbolic tangent and using the fixed point equation (2.115) implies that, as t
tends to tc,

m0(t) = 2tm0(t)−
8t3m0(t)3

3
+O((tm0(t))3)

= 2tm0(t)−(1+o(1))8t3m0(t)3
3

where the last equality uses the fact that m0(t) → m0(tc) = 0 as t tends to tc.
Rearranging shows that

2(t − tc)m0(t) = (1+o(1))8t3m0(t)3
3

,

and therefore

m0(t) = (1+o(1))(3(t − tc)
4t3 )

1/2
.

It follows that

lim
t→tc

logm0(t)
log(t − tc)

= 1
2
,

so β = 1
2 .
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S.3 Hamilton-Jacobi equations

Exercise 3.1. Fix r > 0 sufficiently small that x is a strict maximum of f in Br(x).
By continuity of fN and compactness of Br(x), let xN ∈ Br(x) be such that

fN(xN) ⩾ fN(y) (S.11)

for every y ∈ Br(x). Since (xN)N⩾1 stays in a compact set, it admits a subsequence
converging to some x∗ ∈Br(x). Letting N tend to infinity in (S.11) and leveraging the
local uniform convergence of fN to f reveals that f (x∗) ⩾ f (y) for every y ∈ Br(x).
Since x is a strict maximum we must have x∗ = x, so the only limit point of (xN)N⩾1
is x. This implies that (xN)N⩾1 converges to x as required. In particular, for N
sufficiently large xN is in the open ball Br(x), and is thus a local maximum of fN .

Exercise 3.2. It suffices to prove that the definition of subsolution with “strict
local maximum” implies the one with “local maximum”. Let f ∶ R⩾0 ×Rd → R
be a subsolution for the definition with “strict local maximum”, and fix a smooth
function φ ∈C∞(R>0×Rd;R) with the property that f −φ has a local maximum at
(t∗,x∗) ∈R>0×Rd . Consider the smooth function η ∶R>0×Rd →R defined by

η(t,x) ∶= φ(t,x)+ε((t − t∗)2+ ∣x−x∗∣2).

Observe that in a small enough neighbourhood of (t∗,x∗), we have

( f −η)(t,x) ⩽ ( f −φ)(t∗,x∗)−ε(∣t − t∗∣2+ ∣x−x∗∣2) < ( f −η)(t∗,x∗),

so (t∗,x∗) is a strict local maximum of f −η . It follows that

(∂tφ −H(∇φ))(t∗,x∗) = (∂tη −H(∇η))(t∗,x∗) ⩽ 0

which is the required subsolution criterion for the definition with “local maximum”.

Exercise 3.3. Arguing as in Exercise 3.2, it suffices to prove that the definition of
subsolution with “global maximum” implies the one with “local maximum”. Let
f ∶R⩾0×Rd →R be a subsolution for the definition with “global maximum”, and let
φ ∈C∞(R>0×Rd;R) be such that f −φ has a local maximum at (t∗,x∗) ∈R>0×Rd .
Denote by Br(t∗,x∗) an open ball centred at (t∗,x∗) on which f −φ attains its
maximum at (t∗,x∗). Let θ ∶R⩾0×Rd →R be a non-negative smooth function with
θ = 1 on Br/2(t∗,x∗) and θ = 0 outside B2r/3(t∗,x∗), and define the parabola

χ(t,x) ∶= (t − t∗)2+ ∣x−x∗∣2.

Introduce the constants

L ∶= sup
t>0
∥ f (t, ⋅)∥Lip, M ∶= sup

Br(t∗,x∗)
∣φ ∣, M′ ∶= sup

Br(t∗,x∗)
(∣∂tθ ∣ +∥∇θ∥2),



306 Appendix S Solutions to exercises

and define the smooth function η ∶R>0×Rd →R by

η(t,x) ∶= φ(t,x)θ(t,x)+(L
r
+M

r2 +
2MM′

r
)χ(t,x).

We will now verify that (t∗,x∗) is a global maximum of ( f −η). On the one hand,
for any (t,x) ∈ Br/2(t∗,x∗),

( f −η)(t,x) ⩽ ( f −φ)(t,x) ⩽ ( f −φ)(t∗,x∗) = ( f −η)(t∗,x∗).

On the other hand, for any (t,x) ∈ Br(t∗,x∗)∖Br/2(t∗,x∗),

( f −η)(t,x) ⩽ ( f −φ)(t,x)+ ∣φ(t,x)∣∣θ(t,x)−θ(t∗,x∗)∣− 2MM′

r
χ(t,x)

⩽ ( f −φ)(t∗,x∗)+MM′r
2
(∣t − t∗∣

r/2
+ ∣x−x∗∣

r/2
)− 2MM′

r
χ(t,x)

⩽ ( f −η)(t∗,x∗),

where we used the mean value theorem in the second inequality. Finally, for any
(t,x) ∈Rd ∖Br(t∗,x∗),

( f −η)(t,x) ⩽ ( f −φ)(t∗,x∗)+ ∣ f (t,x)− f (t∗,x∗)∣+ ∣φ(t∗,x∗)∣−(L
r
+M

r2)χ(t,x)

⩽ ( f −η)(t∗,x∗)+Lr(∣t − t∗∣
r
+ ∣x−x∗∣

r
)+M−(L

r
+M

r2)χ(t,x)

⩽ ( f −η)(t∗,x∗).

This shows that (t∗,x∗) is indeed a global maximum of f −η . Since f is a subsolu-
tion for the definition with “global maximum”, it follows that

(∂tφ −H(∇φ))(t∗,x∗) = (∂tη −H(∇η))(t∗,x∗) ⩽ 0

which is the required subsolution criterion for the definition with “local maximum”.

Exercise 3.4. Given a function φ ∈C1(R>0×Rd;R), denote by P(φ) the property
that for every (t∗,x∗) ∈R>0×Rd for which f −φ has a local maximum at (t∗,x∗),
we have

(∂tφ −H(∇φ))(t∗,x∗) ⩽ 0.

It is clear that whenever P(φ) holds for every φ ∈C1(R>0×Rd;R), it also holds for
every smooth function φ ∈C∞(R>0×Rd;R). Let us now suppose that P(φ) holds for
every φ ∈C∞(R>0×Rd;R), and fix φ ∈C1(R>0×Rd;R) and (t∗,x∗) ∈R>0×Rd with
the property that f −φ has a strict local maximum at (t∗,x∗). For each ε > 0, denote
by φε ∈C∞(R>0×Rd;R) the mollification of φ . Since (φε)ε>0 converges locally
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uniformly to φ , Exercise 3.1 gives a sequence (tε ,xε)ε>0 ⊆R>0×Rd converging to
(t∗,x∗) with the property that (tε ,xε) is a local maximum of f −φε for each ε > 0.
The property P(φε) implies that for every ε > 0,

(∂tφε −H(∇φε))(tε ,xε) ⩽ 0. (S.12)

Since (∂tφε)ε>0 and (∇φε)ε>0 converge to ∂tφ and ∇φ locally uniformly by the
properties of mollifiers, letting ε tend to zero in (S.12) and using the local Lipschitz
continuity of H shows that

(∂tφ −H(∇φ))(t∗,x∗) ⩽ 0.

Invoking Exercise 3.2 establishes P(φ) and completes the proof.

Exercise 3.5. Fix φ ∈C∞(R⩾0 ×Rd;R) with the property that f −φ has a local
maximum at the point (t∗,x∗) ∈R>0×Rd . Since f ∈C1(R⩾0×Rd;R) and t > 0, we
have

(∂t f −∂tφ)(t∗,x∗) = 0 and (∇ f −∇φ)(t∗,x∗) = 0.

Combining this with the assumption that f satisfies the equation at (t∗,x∗) shows
that f is a viscosity subsolution. An identical argument shows that it is also a
viscosity supersolution. This completes the proof.

Exercise 3.6. Let φ ∈C∞(R>0×Rd;R) be such that ( f −Φ)−φ = f −(φ +Φ) has
a local maximum at (t∗,x∗) ∈R>0×Rd . Since f is a subsolution to the Hamilton-
Jacobi equation (3.20) and φ +Φ ∈C∞(R>0×Rd;R), we have

∂t(φ +Φ)(t∗,x∗) ⩽H(∇φ +∇Φ)(t∗,x∗) ⩽H(∇φ(t∗,x∗))+V ∣∇Φ(t∗,x∗)∣.

Remembering that ∂tΦ ⩾V ∣∇Φ∣ shows that (∂tφ −H(∇φ))(t∗,x∗) ⩽ 0 as required.

Exercise 3.7. Fix x∗ ∈ Rd , and observe that g(t,x) ∶= f (t,x∗ + x) is a viscosity
solution to the Hamilton-Jacobi equation (3.20). It follows by the comparison
principle that

sup
R⩾0×Rd

( f −g) = sup
{0}×Rd

( f −g) ⩽ L∣x∗∣.

An identical argument can be used to control g− f and show that for every x ∈Rd ,

∣ f (t,x)− f (t,x∗+x)∣ ⩽ sup
R⩾0×Rd

∣ f −g∣ ⩽ L∣x∗∣

as desired.

Exercise 3.8. Replacing f (t, ⋅) and g(t, ⋅) by f (t, ⋅ +x) and g(t, ⋅ +x) respectively,
assume without loss of generality that x = 0. Up to renaming f and g if necessary,
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suppose also that f (T,0) ⩾ g(T,0). Given M > 2L, the comparison principle with
R =V T implies that

f (T,0)−g(T,0) ⩽ sup
y∈Rd
( f (0,y)−g(0,y)−M(∣y∣ −V T)+). (S.13)

If ∣y∣ >V T , and z ∈ ∂BV T (0) is such that dist(y,∂BV T ) = ∣y− z∣, then

f (0,y)−g(0,y)−M(∣y∣ −V T)+ ⩽ 2L∣y− z∣ −M∣y∣ +MV T,

where we used that f (0,z) = g(0,z). To bound this further, notice that by the case
of equality in the triangle inequality and the choice of z,

∣y∣ = ∣y−V T
∣y∣

y∣+ ∣V T
∣y∣

y∣ ⩾ ∣y− z∣ +V T.

It follows that for all y ∈Rd with ∣y∣ >V T ,

f (0,y)−g(0,y)−M(∣y∣ −V T)+ ⩽ (2L−M)(∣y∣ −V T) ⩽ 0.

Since f (0, ⋅) and g(0, ⋅) coincide on BV T , this inequality actually holds for every
y ∈Rd . Recalling (S.13) completes the proof.

Exercise 3.9. The strategy will be to show that g is a viscosity solution to the
Hamilton-Jacobi equation (3.20). Let φ ∈C∞(R>0×Rd;R) be such that g−φ admits
a local maximum at (t∗,x∗) ∈R>0×Rd . Since g is a subsolution to ∂tg−K(∇g) = 0,
we have

(∂tφ −K(∇φ))(t∗,x∗) ⩽ 0. (S.14)

Moreover, for any ε > 0 and z ∈Rd , we have

φ(t∗,x∗)−φ(t∗,x∗+εz) ⩽ g(t∗,x∗)−g(t∗,x∗+εz) ⩽ Lε ∣z∣.

Dividing by ε > 0, letting ε tend to zero and choosing z = −∇φ(t∗,x∗) shows that
∣∇φ(t∗,x∗)∣ ⩽ L. Since K and H coincide on the ball of radius L, it follows by (S.14)
that

(∂tφ −H(∇φ))(t∗,x∗) ⩽ 0.

This shows that g is a subsolution to the Hamilton-Jacobi equation (3.20). An
identical argument shows that it is also a supersolution to this Hamilton-Jacobi
equation. Invoking the uniqueness result in Corollary 3.7 completes the proof.

Exercise 3.10. We treat each question separately.
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(i) The fact that φt ∈C1(Rd;Rd) is clear. Since ∇ψ is Lipschitz continuous and takes
values in a bounded set, and ∇H is locally Lipschitz continuous, we also see that
the mapping

x↦∇H(∇ψ(x))
is Lipschitz continuous. We denote its Lipschitz constant by L, and set T ∶= L−1.
We first show that φt is bijective for every t < T . We fix t < T and y ∈Rd , and for
every x ∈Rd , we set ρ(x) ∶= y+ t∇H(∇ψ(x)). By the definition of T , we have for
every x,x′ ∈Rd that

∣ρ(x′)−ρ(x)∣ ⩽ t
T
∣x′−x∣.

The mapping ρ is therefore a contraction. By the Banach fixed-point theorem,
there exists a unique x ∈Rd such that x = ρ(x). Recalling the definition of ρ , we
see that the property x = ρ(x) is equivalent to y = φt(x). We have thus shown that
φt is bijective. One can then use the implicit function theorem to guarantee that
the inverse of φt also belongs to C1(Rd;Rd).

(ii) We denote the inverse mapping to φt by φ−1
t . Arguing as in the previous step, one

can show that the mapping (t,x) ↦ φ−1
t (x) is in C1([0,T)×Rd;R). Introducing

the function K ∶Rd →R defined by

K(p) ∶=H(p)−∇H(p) ⋅ p,

we can represent the function u as

u(t,x) =ψ(φ−1
t (x))+ tK(∇ψ(φ−1

t (x))).

This shows that u ∈C1([0,T)×Rd;R). To compute its derivatives, let us fix some
notation. We write Id ∈Rd×d for the identity matrix on Rd , and given a continuously
differentiable function v ∶Rd →Rk, we denote by ∇v ∶Rd →Rd×k its Jacobian,

∇v =
⎡⎢⎢⎢⎢⎢⎣

∂x1v1 ⋯ ∂x1vk
⋮ ⋱ ⋮

∂xd v1 ⋯ ∂xd vk

⎤⎥⎥⎥⎥⎥⎦
. (S.15)

In this notation, given another continuously differentiable function w ∶Rm→Rd ,
the chain rule reads

∇(v(w(x))) = ∇w(x)∇v(w(x)).

Taking the gradient on both sides of the identity

φt(φ−1
t (x)) = x (S.16)

reveals that

∇φ
−1
t (x)(Id − t∇2

ψ(φ−1
t (x))∇2H(∇ψ(φ−1

t (x)))) = Id. (S.17)
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Combining the fact that
∇K(p) = −∇2H(p)p (S.18)

with a direct computation shows that

∇u(t,x) = ∇φ
−1
t (x)(∇ψ(z)− t∇2

ψ(z)∇2H(∇ψ(z))∇ψ(z))
= ∇φ

−1
t (x)(Id − t∇2

ψ(z)∇2H(∇ψ(z)))∇ψ(z),

where we have written z ∶= φ−1
t (x) to simplify notation. Together with the identity

(S.17), this implies that

∇u(t,x) = ∇ψ(φ−1
t (x)).

and therefore that the gradient of u is constant along the characteristic line t ↦
(t,φt(x)), with ∇u(t,φt(x)) = ∇ψ(x).

(iii) To deduce that u satisfies the Hamilton-Jacobi equation (3.20) at every point in
[0,T)×Rd , it suffices to show that for every t < T and x ∈Rd , we have

∂tu(t,x) =H(∇ψ(φ−1
t (x))). (S.19)

Consistently with the notation in (S.15), we think of ∂tφt and ∂tφ
−1
t as “row

vectors”. In particular, we have that

∂tφt(x) = ∇∗H(∇ψ(x)),

where ∇∗H(p) is the row vector obtained as the transposition of the column vector
∇H(p). Taking the derivative on both sides of (S.16) and rearranging gives the
identity

∂tφ
−1
t (x)(Id − t∇2

ψ(φ−1
t (x))∇2H(∇ψ(φ−1

t (x)))) = ∇∗H(∇ψ(φ−1
t (x))).

(S.20)
To simplify notation, again let z ∶= φ−1

t (x). Recalling (S.18), we can write

∂tu(t,x) = ∂tφ
−1
t (x)∇ψ(z)+K(∇(ψ(z)))+ t∂tφ

−1
t (x)∇2

ψ(z)∇K(∇ψ(z))
= ∂tφ

−1
t (x)∇ψ(z)+H(∇ψ(z))−∇H(∇ψ(z)) ⋅∇ψ(z)

− t∂tφ
−1
t (x)∇2

ψ(z)∇H(∇ψ(z))∇ψ(z)

= ∂tφ
−1
t (x)(Id − t∇2

ψ(z)∇2H(∇ψ(z))))∇ψ(z)

+H(∇ψ(z))−∇H(∇ψ(z)) ⋅∇ψ(z).

Using also (S.20), we obtain the desired result (S.19).
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Exercise 4.1. Since the matrix A has rank one, its image is a one-dimensional
subspace of Rd . It is therefore generated by some non-zero vector u ∈ Rd . In
particular, for every w ∈Rd , there exists λ(w) ∈R with Aw = λ(w)u. Defining the
vector v ∈Rd by vi = λ(ei) for 1 ⩽ i ⩽ d, where ei denotes the canonical basis vector
in Rd , gives the decomposition A = uv∗. Normalizing u and v so that they become
unit vectors gives the decomposition A = λuv∗ for some scalar λ ∈R and some unit
vectors u,v ∈Rd . Notice that v is non-zero since A would otherwise map Rd onto
zero and therefore be of rank zero. The symmetry of A implies that uv∗ = vu∗. It
follows that

(u ⋅v)2 = u∗ vu∗ v = u∗uv∗ v = ∣u∣2∣v∣2.
This is the case of equality in the Cauchy-Schwarz inequality, so u and v are equal
up to a multiplicative constant. Since u and v are both unit vectors, they are in fact
equal up to a sign. This means that, up to changing the sign of λ , we have A = λuu∗.
The uniqueness of u comes from the fact that the image of A is spanned by the unit
vector u, and it is spanned by a unique unit vector up to a sign. To establish the
uniqueness of λ observe that λ = tr(A). This completes the proof.

Exercise 4.2. To show that the conditional law of x given Y is the Gibbs measure
(4.7), we need to prove that for all bounded and measurable functions f ∶RN →R
and g ∶RN×N →R,

E f (x)g(Y) =E
´
RN f (x)expH○N(t,x)dPN(x)´

RN expH○N(t,x)dPN(x)
g(Y). (S.21)

It will be convenient to define the function h ∶RN ×RN2
by

h(x,y) ∶=
√

2t
N

x ⋅yx− t
N
∣x∣4.

Conditionally on the randomness of x, the random variable Y is Gaussian with
density

1
(2π)N2/2 exp

⎛
⎝
− 1

2
∣y−
√

2t
N

xx∗∣
2⎞
⎠

= 1
(2π)N2/2 exp(h(x,y)− 1

2
∣y∣2). (S.22)

It follows that the right side of (S.21) is given by
ˆ
RN

ˆ
RN

ˆ
RN2

f (x′)g(y)exp(h(x′,y)+h(x,y))
(2π)N2/2´

RN exph(x′′,y)dPN(x′′)
e−

1
2 ∣y∣

2
dydPN(x′)dPN(x).
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The change of variables x = x′ reveals that this is equal to
ˆ
RN

ˆ
RN

ˆ
RN2

f (x)g(y)exp(h(x′,y))exp(h(x,y))
(2π)N2/2´

RN exph(x,y)dPN(x)
e−

1
2 ∣y∣

2
dydPN(x′)dPN(x)

= 1
(2π)N2/2

ˆ
RN

ˆ
RN2

f (x)g(y)exp(h(x,y)− 1
2
∣y∣2)dPN(x)dy.

Remembering (S.22) establishes (S.21) and completes the proof.

Exercise 4.3. A direct computation leveraging the equality (S.22) reveals that for
any two Borel sets A ⊆RN2

and B ⊆RN ,

P{Y ∈ A,x ∈ B} = 1
(2π)N2/2

ˆ
B

ˆ
A

exp(− 1
2
∣y−
√

2t
N

xx∗∣
2

)dydPx(x)

= 1
(2π)N2/2

ˆ
B

ˆ
A

exp(
√

2t
N

x ⋅yx− t
N
∣x∣4)e−

1
2 ∣y∣

2
dydPx(x)

=
ˆ

A

ˆ
B

exp(
√

2t
N

x ⋅yx− t
N
∣x∣4)dPx(x)dPW (y). (S.23)

We now treat each question separately.

(i) Given two Borel sets A ⊆RN2
and B ⊆RN , the definition of the conditional expec-

tation implies that

P{(x,Y) ∈ A×B} =
ˆ

B

ˆ
A

dPx∣Y dPY =
ˆ

B

ˆ
A

dPx∣Y
dPx

dPx dPY .

This means that
dPx,Y

dPx⊗PY
=

dPx∣Y
dPx

,

and therefore

I(x;Y) =
ˆ
RN×RN2

log(
dPx∣Y
dPx
)dPx,Y =

ˆ
RN2

ˆ
RN

log(
dPx∣Y
dPx
)dPx∣Y dPY .

Remembering the definition of the mutual information (4.4) shows that

I(x;Y) =
ˆ
RN2

H(Px∣Y ∣ Px)dPY =EH(Px∣Y ∣ Px) =NIN(t)

as desired.
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(ii) By independence of x and W ,

dPx,Y

dPx,W
= dPx⊗PY

dPx⊗PW

dPx,Y

dPx⊗PY
= dPY

dPW

dPx,Y

dPx⊗PY
.

It follows that

H(Px,Y ∣ Px,W ) =
ˆ

log( dPY

dPW
)dPx,Y +

ˆ
log(

dPx,Y

dPx⊗PY
)dPx,Y

=
ˆ

log( dPY

dPW
)dPx,Y +H(Px,Y ∣ Px⊗PY ).

Remembering the definition of the mutual information in terms of the relative
entropy and observing that the term dPY

dPW
in the first integral is independent of the

coordinate associated with the law of x simplifies this to

H(Px,Y ∣ Px,W ) =H(PY ∣ PW )+ I(x;Y)

as required.

(iii) Applying (S.23) with B =RN shows that

dPY

dPW
(y) =

ˆ
RN

exp(
√

2t
N

x ⋅yx− t
N
∣x∣4)dPx(x).

It follows that

F
○
N(t) =

1
N
E log

ˆ
RN

exp(
√

2t
N

x ⋅Y x− t
N
∣x∣4)dPx(x)

= 1
N

ˆ
RN2

log
ˆ
RN

exp(
√

2t
N

x ⋅yx− t
N
∣x∣4)dPx(x)dPY (y)

= 1
N

ˆ
RN2

log( dPY

dPW
(y))dPY (y)

= 1
N

H(PY ∣ PW ).

Similarly, (S.23) implies that

dPx,Y

dPx,W
= exp(

√
2t
N

x ⋅yx− t
N
∣x∣4),
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so we also have

H(Px,Y ∣ Px,W )

=
ˆ
RN2

ˆ
RN

exp(
√

2t
N

x ⋅yx− t
N
∣x∣4)(

√
2t
N

x ⋅yx− t
N
∣x∣4)dPx(x)dPW (y)

=
ˆ
RN

ˆ
RN2
(
√

2t
N

x ⋅yx− t
N
∣x∣4)dPY ∣x(y)dPx(x)

=ExEY ∣x(
√

2t
N

x ⋅Y x− t
N
∣x∣4),

where the second equality uses (S.22). Since the conditional law of Y given x is
Gaussian with mean

√
2t
N xx∗, conditionally on the randomness of x, we have

EY ∣x

√
2t
N

x ⋅Y x = 2t
N

x ⋅xx∗ x = 2t
N
∣x∣4,

and therefore
H(Px,Y ∣ Px,W ) =

t
N
E∣x∣4

as desired.

(iv) Combining the three previous parts shows that

IN(t) =
1
N
I(x;Y) = 1

N
H(Px,Y ∣ Px,W )−

1
N

H(PY ∣ PW ) =
t

N2E∣x∣
4−F

○
N(t)

which agrees with (4.18). This completes the proof.

Exercise 4.4. Let A ∈Rd×d be the positive semi-definite matrix such that

A2 = (Egig j)1⩽i, j⩽d.

We denote the rows of A by a1, . . . ,ad ∈Rd . Letting z be a standard Gaussian vector
on Rd , we have g d= Az, where d= denotes equality in distribution. In particular,

max
1⩽i⩽d

gi
d= max

1⩽i⩽d
(Az)i = max

1⩽i⩽d
ai ⋅ z = F(z)

for the function F ∶ Rd → R defined by F(z) ∶=max1⩽i⩽d ai ⋅ z. Observe that F is
Lipschitz continuous with ∥F∥Lip ⩽

√
a. Indeed, fix z1,z2 ∈Rd with F(z1) ⩾ F(z2)

and let 1 ⩽ j ⩽ d be such that a j ⋅ z1 = F(z1). The Cauchy-Schwarz inequality and
the fact that ∣a j∣2 =Eg2

j ⩽ a imply that

∣F(z1)−F(z2)∣ = a j ⋅ z1−max
1⩽i⩽d

ai ⋅ z2 ⩽ a j ⋅ (z1− z2) ⩽
√

a∣z1− z2∣.

Invoking the Gaussian concentration inequality (Theorem 4.7) completes the proof.
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Exercise 4.5. We treat each question separately.

(i) Fix λ > 0 and x ∈RN of unit norm. Chebyshev’s inequality reveals that

P{∣Wx∣2 ⩾ aN} ⩽ exp(−λaN)Eexp(λ ∣Wx∣2). (S.24)

To bound this further, observe that the random variables ((Wx)i)i⩽N are indepen-
dent centred Gaussian with variance

E(Wx)2i =E
N
∑

j,k=1
Wi jWikx jxk =

N
∑
j=1

x2
j = 1.

It follows by independence that

Eexp(λ ∣Wx∣2) =E
N
∏
i=1

exp(λ(Wx)2i ) = (Eexp(λZ2))N

for a standard Gaussian Z. A change of variables shows that for λ < 1/2,

Eexp(λZ2) = 1√
2π

ˆ
R

e−x2( 1
2−λ)dx = 1√

1−2λ

1√
2π

ˆ
R

e−
y2

2 dy = 1√
1−2λ

.

This means that Eexp(λ ∣Wx∣2) ⩽ exp(CN) for some C > 2. Substituting this
into (S.24) establishes (4.62).

(ii) Given x with ∣x∣ ⩽ 1, let y ∈ A be such that ∣x−y∣ ⩽ 1/2. By the triangle inequality,

∣Wx∣ ⩽ ∥W∥∗∣x−y∣ + ∣Wy∣ ⩽ 1
2
∥W∥∗+ sup

y∈A
∣Wy∣.

Taking the supremum in x and rearranging gives the required bound.

(iii) To define the set A we will leverage a standard upper bound (see [258, Corollary
4.2.13]) on the smallest number of balls of radius ε > 0 required to cover the unit
ball. In general, the smallest number of balls of radius ε > 0 required to cover a
compact set K is known as the covering number of the set K, and it is denoted by
N(K,ε). A related quantity is the packing number of a compact set K. A subset
N of K is ε-separated if ∣x− y∣ > ε for all distinct points x,y ∈ N . The packing
number of K is the size of the largest possible ε-separated subset of K, and it
is denoted by P(K,ε). By maximality, it is clear that the balls of radius ε > 0
centred at the points in an ε-separated subset of K cover the set K. In particular,
the covering number is bounded by the packing number,

N(K,ε) ⩽ P(K,ε).
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We now use this observation to find an upper bound on the covering number of the
unit ball B1(0) ⊆RN . Denote by m Lebesgue measure on RN , fix ε > 0 and let P
be a maximal ε-separated subset of B1(0). Since ∣x−y∣ > ε for all distinct points
x,y ∈ P, the balls (Bε/2(x))x∈P are disjoint and contained in the expanded unit ball
B1+ε/2(0). It follows by the additivity and scaling properties of Lebesgue measure
that

P(B1(0),ε)(
ε

2
)

N

m(B1(0)) = ∑
x∈P

m(Bε/2(x)) ⩽ (1+
ε

2
)

N

m(B0(1)).

Rearranging reveals that

N(B1(0),ε) ⩽ P(B1(0),ε) ⩽ (1+
2
ε
)

N

. (S.25)

Applying (S.25) with ε = 1/2 and invoking (ii) allows us to choose a set A of size
5N with the property that

∥W∥∗ ⩽ 2sup
y∈A
∣Wy∣

Together with (i) and the union bound this implies that

P{∥W∥2∗ ⩾ aN} ⩽ P{4sup
y∈A
∣Wy∣2 ⩾ aN} ⩽ 5N exp((C− a

C
)N).

Redefining the constant C establishes (4.61).

(iv) The layer-cake representation and the change of variables λ = λ ′Nq/2 give

E∥W∥q∗ =
ˆ +∞

0
P{∥W∥2∗ > λ

2/q}dλ =Nq/2
ˆ +∞

0
P{∥W∥2∗ ⩾ (λ ′)2/qN}dλ

′.

Applying (4.61) and redefining the constant C completes the proof.

Exercise 4.6. Taylor’s theorem, the assumption that EX = 0, and the mean value
theorem imply that

∣EXF(X)−EX2EF ′(X)∣ ⩽ ∣EX(F(0)+F ′(0)X)−EX2EF ′(X)∣+ 1
2
∥F ′′∥∞E∣X ∣3

⩽EX2∣F ′(X)−F ′(0)∣+ 1
2
∥F ′′∥∞E∣X ∣3

⩽E∣X ∣3∥F ′′∥∞+
1
2
∥F ′′∥∞E∣X ∣3.

This completes the proof.
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Exercise 4.7. Denote by Ei the average with respect to the randomness of Xi+1, . . . ,Xd
and by Ei the average with respect to the randomness of Xi. Let fi ∶= Ei f −Ei−1 f
with the convention that E0 f =E f and Ed f = f . Observe that for 1 ⩽ i < j ⩽ d,

E fi f j =E fiE j f j = 0.

Combining this with the fact that f −E f = ∑d
i=1 fi and Jensen’s inequality reveals

that

E( f −E f )2 =
d
∑
i=1

E f 2
i =

d
∑
i=1

E(Ei( f −Ei f ))2 ⩽
d
∑
i=1

E( f −Ei f )2. (S.26)

At this point, introduce the function

f ′i ∶= f (X1, . . . ,Xi−1,X ′i ,Xi+1, . . . ,Xd).

Since X ′i is an independent copy of Xi,

Ei( f −Ei f )2 =Ei f 2−(Ei f )2 =Ei f 2−Ei fEi f ′i =Ei f 2−Ei f f ′i =
1
2
Ei( f − f ′i )2.

Substituting this into (S.26) completes the proof.

Exercise 4.8. We first give a proof that leverages the Efron-Stein inequality obtained
in the previous exercise, and then sketch an alternative argument that is more direct.

For each integer N ⩾ 1, let ε1, . . . ,εN be i.i.d. Rademacher random variables.
Consider the normalized partial sum

SN ∶=
1√
N

N
∑
i=1

εi,

and recall that (SN)N⩾1 converges to Z in distribution by the central limit theo-
rem. Denote by ε ′1, . . . ,ε

′
N another set of i.i.d. Rademacher random variables, also

independent of ε1, . . . ,εN , and for each 1 ⩽ i ⩽N consider the normalized partial sum

Si
N ∶=

1√
N
(∑

j≠i
ε j +ε

′
i ) = SN +

ε ′i −εi√
N

.

If we denote by Ei the average with respect to the randomness of the vector (εi,ε ′i ),
then the Efron-Stein inequality implies that

Var f (SN) ⩽
1
2

N
∑
i=1

E( f (SN)− f (Si
N))2 =

1
2

N
∑
i=1

EEi( f (SN)− f (Si
N))2.
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Notice that f (SN)− f (Si
N) is non-zero if and only if εi ≠ ε ′i , so

Ei( f (SN)− f (Si
N))2 =

1
2
( f(SN +

1−εi√
N
)− f(SN +

−1−εi√
N
))

2

.

It follows by Taylor’s theorem that

Var f (SN) ⩽
1
4

N
∑
i=1

E( f(SN +
1−εi√

N
)− f(SN +

−1−εi√
N
))

2

= 1
4

N
∑
i=1

E( 2√
N

f ′(SN)+O(
∥ f ′′∥∞

N
))

2

= 1
4

N
∑
i=1
( 4

N
E f ′(SN)2+O(

∥ f ′′∥∞∥ f ′∥∞
N3/2 ))

=E f ′(SN)2+O(
∥ f ′′∥∞∥ f ′∥∞

N1/2 ).

Letting N tend to infinity and using the fact that (SN)N⩾1 converges to Z in distribu-
tion completes the proof.

We now briefly sketch an alternative proof of the Gaussian Poincaré inequality.
For every x ∈R and t > 0, we denote the heat kernel evaluated at (t,x) by

Φt(x) ∶=
1√
2πt

exp(− x2

2t
).

We recall that ∂tΦ = 1
2∂ 2

x Φ, and we write ⋆ for the convolution operator (acting only
on the space variable). A direct calculation and an application of Jensen’s inequality
give that, for every t ∈ (0,1],

∂t(Φt ⋆(Φ1−t ⋆ f )2) =Φt ⋆(Φ1−t ⋆ f ′)2 ⩽Φ1⋆( f ′)2.

Integrating this inequality over t ∈ (0,1] and evaluating the result at x = 0, we obtain
another proof of the Gaussian Poincaré inequality.

Exercise 4.9. Let f be the function defined in (4.110), and denote by

tc ∶= sup{t ⩾ 0 ∣ f (t) = 0} ∈R⩾0∪{+∞}

its largest zero. Notice that ψ(0) = 0, so f is non-negative and f (0) = 0. By
Proposition 4.10 and Theorem 4.9, the function f is convex, so we have f (t) > 0 for
every t > tc. By Proposition 4.15, and since f is differentiable almost everywhere, it
suffices to verify that tc ∈R>0. From the definition of ψ in (4.85) or (4.89), we see
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that ψ is a smooth function and satisfies ψ(0) = 0, while it follows from (4.82) and
the Nishimori identity that

∂hψ(0) =E⟨x ⋅x′⟩ = (Ex1)
2 = 0. (S.27)

The Gibbs measure above is with t = 0, h = 0, and N = 1; in this case, this Gibbs
measure is simply the measure P1, and x′ is an independent sample from P1. Re-
calling also from (4.82) that ψ is Lipschitz continuous, we deduce that there exists
C < +∞ such that for every h ∈R,

ψ(h) ⩽Ch2.

For every t <C/4, the supremum in (4.110) is therefore achieved at h = 0, and thus tc
is strictly positive. Since we assume that P1 is not the Dirac mass at 0, we see
from (4.95) that ∂ 2

h ψ(0) > 0, and in particular there exists h > 0 such that ψ(h) > 0.
It is therefore clear from (4.110) that f (t) > 0 if t is sufficiently large, and thus tc is
finite.

Exercise 4.10. A direct computation together with (4.73), the Nishimori identity
and the derivative computation (4.82) imply that

E∣x−E[x∣Y]∣2 =E∣x∣2−2Ex ⋅E[x∣Y]+E∣E[x∣Y]∣2

=NEx2
1−2E⟨x ⋅x⟩+E⟨x ⋅x′⟩

=NEx2
1−N∂hFN(t,h).

It follows by Propositions 4.10, 2.11 and 2.15 that at the interior point of differen-
tiability (t,h) ∈R>0×R>0,

lim
N→+∞

1
N
E∣x−E[x∣Y]∣2 =Ex2

1−∂h f (t,h).

Invoking the envelope theorem (Theorem 2.21) completes the proof.

Exercise 4.11. In this context, the prior P1 is the law of a Bernoulli random variable
with probability of success p ∈ (0,1), so it will be convenient to write σ ∈ ΣN and
σ ∈ ΣN in place of x and x respectively. In this notation, for any t ⩾ 0,

H○N(t,σ) =∑
i< j
(
√

2t
N
(Wi j +Wji)σiσ j +

4t
N

σiσ jσ iσ j)+
N
∑
i=1

√
2t
N

Wii+2t − tN.

Noticing that Wi j+W ji√
2

is again a standard Gaussian, we have the equality in distribu-
tion jointly over σ ,

H○N(t,σ)
d=∑

i< j
(
√

4t
N

Wi jσiσ j +
4t
N

σiσ jσ iσ j)+
N
∑
i=1

√
2t
N

Wii+2t − tN,
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where d= denotes equality in distribution. Applying this with t = λ

4 reveals that

F
○
N(

λ

4
) = F

gauss
N (λ)+ 1

N

N
∑
i=1

√
λ

2N
EWii+

λ

2N
− λ

4
.

Remembering that EWii = 0 and rearranging completes the proof.

Exercise 4.12. By Theorem 4.25,

lim
N→+∞

IN = inf
h⩾0
(λ

4
+ h2

λ
−ψ(λ)) (S.28)

for the initial condition ψ ∶R⩾0→R defined by

ψ(h) ∶=E log
ˆ

Σ1

exp(
√

2hσz1+2hσσ1−h)dP1(σ).

Since P1 is the law of a symmetric Bernoulli random variable, the initial condition
simplifies to

ψ(h) =E log
1
2
(exp(

√
2hz1+2hσ1)−exp(−(

√
2hz1+2hσ1)))−h

=E logcosh(
√

2hz1+2hσ1)−h.

Substituting this into (S.28) completes the proof.
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S.5 Poisson point processes and extreme values

Exercise 5.1. By Step 2 of the proof of Lemma 5.3, there exists a sequence (Kn)n⩾1
of compact subsets of S that covers S. The assumption that λ is locally finite implies
that for each n ⩾ 1, the set of indices {i ∈ I ∣ xi ∈Kn} is finite. The index set I is the
union of these sets as n ranges over the natural numbers, and is therefore countable.

Exercise 5.2. We start by showing that for every open set U ⊆ S, the mapping
λ ↦ λ(U) is measurable. Since U is open, the sequence ( fn)n⩾1 of continuous
functions defined by fn(s) ∶=min(1,ndist(s,Uc)) increases to 1U . It follows by the
monotone convergence theorem that

λ(U) =
ˆ

S
1U dλ = lim

n→+∞

ˆ
S

fn dλ .

Each of the mappings λ ↦
´

S fn dλ is continuous, and therefore measurable with
respect to the Borel σ -algebra B(Mδ (S)). As a limit of measurable functions,
the mapping λ ↦ λ(U) is itself measurable with respect to the Borel σ -algebra
B(Mδ (S)). This means that the λ -system of measurable sets A ⊆ S such that
λ ↦ λ(A) is measurable contains the π-system of open sets. It follows by the
Dynkin π-λ theorem that each of the mappings λ ↦ λ(A) is measurable with
respect to the Borel σ -algebra B(Mδ (S)). To see that this is the smallest σ -algebra
for which this property holds, it suffices to approximate any function f ∈Cc(S;R)
by a sequence of measurable functions that take a finite number of values.

Exercise 5.3. For a direct argument, we can reproduce the proof of the converse
implication in Lemma 5.3 — alternatively, we can also appeal to this lemma with
the set M = {λn ∣ n ∈N}.

Exercise 5.4. It is clear that ρ is non-negative and symmetric with ρ(λ ,λ) = 0 for
all λ ∈Mδ (S). It therefore suffices to verify that ρ satisfies the triangle inequality.
Fix λ ,λ ′,λ ′′ ∈Mδ (S), and define the function φ ∶R⩾0→R⩾0 by

φ(x) ∶= x
1+x

.

Observe that φ is non-decreasing and concave on R⩾0, and that it is such that

ρ(λ ,λ ′′) =
+∞
∑
n=0

2−n
φ(∣

ˆ
S

fn d(λ −λ
′′)∣).

Since φ is non-decreasing on R⩾0, we have

ρ(λ ,λ ′′) ⩽
+∞
∑
n=0

2−n
φ(∣

ˆ
S

fn d(λ −λ
′)∣+ ∣

ˆ
S

fn d(λ ′−λ
′′)∣).
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To bound this further, observe that by concavity of φ , for any a > 0 and b ⩾ 0, we
have

φ(a+b)−φ(b)
a

⩽ φ(a)−φ(0)
a

,

and therefore φ(a+b) ⩽ φ(a)+φ(b). This inequality holds trivially for a = 0. It
follows that

ρ(λ ,λ ′′) ⩽
+∞
∑
n=0

2−n
φ(∣

ˆ
S

fn d(λ −λ
′)∣)+

+∞
∑
n=0

2−n
φ(∣

ˆ
S

fn d(λ ′−λ
′′)∣)

= ρ(λ ,λ ′)+ρ(λ ′,λ ′′).

This completes the proof.

Exercise 5.5. Let (λn)n⩾1 be a Cauchy sequence inMδ (S). Given ε ∈ (0,1) and
k ⩾ 1, it is possible to find n,m ⩾ 1 large enough so that

∣
´

S fk d(λn−λm)∣
1+∣

´
S fk d(λn−λm)∣

⩽ ε.

Rearranging reveals that

∣
ˆ

S
fk d(λn−λm)∣ ⩽

ε

1−ε
.

This implies that for every f ∈ F , the sequence (
´

S f dλn)n⩾1 is Cauchy in R. We
now use a density argument to show that this in fact true for every f ∈Cc(S;R). Fix
f ∈Cc(S;R) as well as ε > 0, and denote by K the compact support of f . Invoke
Lemma 5.1 to find g ∈ F with ∣ f (x)−g(x)∣ ⩽ ε for all x ∈ S and suppg ⊆Kε . Since
the sequence (

´
S gdλn)n⩾1 is Cauchy, there exist n,m ⩾ 1 large enough with

∣
ˆ

S
f d(λn−λm)∣ = ∣

ˆ
S

gd(λn−λm)∣+ ∣
ˆ

S
( f −g)d(λn−λm)∣ ⩽ ε +2ε sup

k⩾1
λk(Kε).

Arguing as in the part of the proof of Theorem 5.2 leading to (5.8) reveals that for ε

small enough, we have supk⩾1 λk(Kε) < +∞. This shows that for each f ∈Cc(S;R),
the sequence (

´
S f dλn)n⩾1 is Cauchy in R, and therefore convergent and uniformly

bounded. Invoking Lemma 5.3 completes the proof.

Exercise 5.6. By Proposition A.24 it suffices to show that, given a measurable set
A ⊆ S with µ(∂A) = 0 and t ⩾ 0, we have

lim
n→+∞

Eexp(− tΛn(A)) =Eexp(− tΛ(A)). (S.29)

The proof very closely resembles that of the Portmanteau theorem. To alleviate
notation, let U ∶= int(A) and F ∶= A. Define the sequence ( fm)m⩾1 of bounded and
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continuous functions on S by fm(s) ∶=min(1,md(s,Uc)). Since Uc is closed, the
sequence ( fm)m⩾1 increases to 1U . It follows that for every n,m ⩾ 1,

Eexp(− tΛn(U)) ⩽Eexp(− t
ˆ

S
fm dΛn).

Letting n tend to infinity and then m tend to infinity shows that

limsup
n→+∞

Eexp(− tΛn(U)) ⩽ liminf
m→+∞

Eexp(− t
ˆ

S
fm dΛ) =Eexp(− tΛ(U)).

To obtain a matching lower bound, define the sequence (gm)m⩾1 of bounded and
continuous functions on S by gm(s) ∶=max(0,1−md(x,F)). Since F is closed, the
sequence (gm)m⩾1 decreases to 1F . It follows that for every n,m ⩾ 1,

Eexp(− tΛn(F)) ⩾Eexp(− t
ˆ

S
gm dΛn).

Letting n tend to infinity and then m tend to infinity shows that

liminf
n→+∞

Eexp(− tΛn(F)) ⩾ limsup
m→+∞

Eexp(− t
ˆ

S
gm dΛ) =Eexp(− tΛ(F)).

Combining these two asymptotic bounds reveals that

Eexp(− tΛ(F)) ⩽ liminf
n→+∞

Eexp(− tΛn(A)) ⩽ limsup
n→+∞

Eexp(− tΛn(A))

⩽Eexp(− tΛ(U)).

Recall that Λ(F) is a Poisson random variable with mean µ(F) while Λ(U) is a
Poisson random variable with mean µ(U). Since µ(∂A) = 0, we have that µ(F) =
µ(A) = µ(U), so these two random variables are in fact equal in distribution. The
above string of inequalities is therefore a string of equalities. This establishes (S.29)
and completes the proof.

Exercise 5.7. By Proposition 5.7, it suffices to investigate the convergence of
the Laplace transform of Λn, and by Remark 5.8 it suffices to verify (5.17) for
a given smooth and compactly supported function g ∈C∞c (R⩾0 ×R>0;R⩾0). The
independence of (Xk)1⩽k⩽n implies that

Eexp(−
ˆ
R⩾0×R>0

gdΛn) =Eexp(−
n
∑
k=1

g(k/n,n−
1
ζ Xk))

= exp(
n
∑
k=1

logEexp(−g(k/n,n−1/ζ X1))).
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Applying the argument leading to (5.31) in the proof of Proposition 5.13 to the
function f (x) ∶= g(k/n,x) shows that for any 1 ⩽ k ⩽ n,

Eexp(−g(k/n,n−1/ζ X1)) = 1− c
n

ˆ +∞
0
(1−e−g(k/n,x)) ζ

xζ+1
dx+o(1

n
).

Moreover, the o(1/n) error term can be controlled uniformly over k. We thus have

Eexp(−
ˆ
R⩾0×R>0

gdΛn)= exp(
n
∑
k=1

log(1− c
n

ˆ +∞
0
(1−e−g(k/n,x)) ζ

xζ+1
dx+o(1

n
))),

which together with a Taylor expansion of the logarithm reveals that

Eexp(−
ˆ
R⩾0×R>0

gdΛn) = exp(o(1)−
n
∑
k=1

c
n

ˆ +∞
0
(1−e−g(k/n,x)) ζ

xζ+1
dx).

Letting n tend to infinity, identifying a Riemann sum, and invoking Propositions 5.4
and 5.9 completes the proof.

Exercise 5.8. We treat each question separately.

(i) By Proposition 5.12, we have

E
ˆ
(0,1]

xdΛ(x) =
ˆ 1

0
ζ x−ζ dx,

which is finite since ζ < 1. In particular we have that
´
(0,1] xdΛ(x) is finite almost

surely. Since
´ +∞

1 ζ x−(ζ+1)dx < +∞, there are finitely many points in Λ that fall
in the interval [1,+∞). Combining these two observations leads to the claim.

(ii) Since X11{X1∈[a,2a]} ⩽ 2a,

EX11{X1∈[a,2a]} ⩽ 2aP{X1 ∈ [a,2a]} < 2aP{X1 ⩾ a}.

For a large enough we obtain the upper bound

EX11{X1∈[a,2a]} ⩽ 2aa−ζ = 2a1−ζ

as required.

(iii) Fix ε > 0, let a > 0 be large enough so the bound in (ii) holds, and fix n ⩾ 1 large
enough so εn1/ζ > a. The interval [0,εn1/ζ ] can be partitioned as

[0,εn1/ζ ] ⊆ [0,a]∪
i∗−1
⋃
i=0
(2ia,2i+1a]
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for i∗ = ⌈log2(εn1/ζ /a)⌉. It follows that

1
n1/ζ

n
∑
k=1

EXk1{Xk⩽εn1/ζ} ⩽ n1−1/ζ(EX11{X1⩽a}+
i∗−1
∑
i=0

EX11{X1∈[2ia,2i+1a]})

⩽ n1−1/ζ(a+2a1−ζ
i∗−1
∑
i=0

2i(1−ζ))

⩽ n1−1/ζ(a+ 2ε1−ζ n1/ζ−1

21−ζ −1
),

and therefore,

limsup
n→+∞

1
n1/ζ

n
∑
k=1

EXk1{Xk⩽εn1/ζ} ⩽
2ε1−ζ

21−ζ −1
.

Letting ε tend to zero gives the desired asymptotic.

(iv) Fix ε,δ > 0, and let K be large enough so

P{uK > δ} ⩽ δ

2
.

This is possible since

P{uK > δ} = P{Λ[δ ,+∞) >K} = P{Π >K}
for a Poisson random variable Π with mean µ[δ ,+∞) = δ−ζ . Using the conver-
gence in law established in Proposition 5.15, find n ⩾K such that

P{XK,n > δ} ⩽ δ .

To alleviate notation introduce the sets

A ∶= {
n
∑
k=K

Xk,n ⩾ εn1/ζ} and B ∶= {XK,n ⩽ δn1/ζ},

and observe that

P(A) = P(A∩B)+P(A∩Bc) ⩽ P(A∩B)+P(Bc) ⩽ P(A∩B)+δ .

To bound this further we use a generalized version of Chebyshev’s inequality,

εn1/ζP(A∩B) = εn1/ζE1A1B ⩽
n
∑
k=K

EXk,n1A1B ⩽
n
∑
k=K

EXk,n1B,

which implies that

P{
n
∑
k=K

Xk,n ⩾ εn1/ζ} ⩽ 1
εn1/ζ

n
∑
k=K

EXk,n1B+δ

⩽ 1
εn1/ζ

n
∑
k=K

EXk,n1{Xk,n⩽δn1/ζ}+δ .

Recalling that Xk,n ⩾ 0 for 1 ⩽ k ⩽ n, and using the previous part to let n tend to
infinity and then δ tend to zero establishes the claim.



326 Appendix S Solutions to exercises

(v) Introduce the sequences (Yk′,n)k′,n⩾k and (Yn)n⩾1 of random elements defined by

Yk′,n ∶= (
X1,n

∑k′
`=1 X`,n

, . . . ,
Xk,n

∑k′
`=1 X`,n

) and Yn ∶= (
X1,n

∑n
`=1 X`,n

, . . . ,
Xk,n

∑n
`=1 X`,n

)

respectively. Proposition 5.15 and the continuous mapping theorem (Exercise A.10)
imply that, for each fixed k′ ⩾ k, as n tends to infinity, the sequence (Yk′,n)n⩾1 con-
verges in law to the random element

Zk′ ∶= (
u1

∑k′
`=1 u`

, . . . ,
uk

∑k′
`=1 u`

).

In turn, as k′ tends to infinity, the sequence (Zk′)k′⩾k converges almost surely, and
therefore in law, to the random element

Y ∶= (v1, . . . ,vk).

By the union bound, for every ε > 0,

P{∣Yk′,n−Yn∣1 ⩾ ε} ⩽
k
∑
j=1

P{∣
X j,n

∑k′
`=1 X`,n

−
X j,n

∑n
`=1 X`,n

∣ ⩾ ε

k
}

⩽
k
∑
j=1

P{
n−1/ζ X j,n

n−1/ζ∑k′
`=1 X`,n ⋅n−1/ζ∑n

`=1 X`,n
⋅n−1/ζ

n
∑
`=k′

X`,n ⩾
ε

k
}

⩽
k
∑
j=1

P{n−1/ζ
n
∑
`=k′

X`,n ⩾
ε

k
⋅n−1/ζ X1,n},

where the second inequality uses that ∣1a −
1

a+b ∣ =
b

a(a+b) for every a,b > 0. To bound
this further, fix δ > 0, and let δ ′ > 0 be small enough so

P{u1 ⩾ δ
′} = P{Λ[δ ′,+∞) > 1} = P{Π > 1} ⩾ 1−δ /2,

where Π denotes a Poisson random variable with mean µ[δ ′,+∞)= (δ ′)−ζ . Using
the convergence in law established in Proposition 5.15, find n large enough such
that

P{n−1/ζ X1,n ⩾ δ
′} ⩾ 1−δ ,

and observe that

P{∣Yk′,n−Yn∣1 ⩾ ε} ⩽
k
∑
j=1

P{n−1/ζ
n
∑
`=k′

X`,n ⩾
εδ ′

k
}+δ .

It follows by (iv) that for every ε > 0,

lim
k′→+∞

limsup
n→+∞

P{∣Yk′,n−Yn∣1 ⩾ ε} ⩽ δ .

Letting δ tend to zero and invoking Exercise A.11 completes the proof.
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Exercise 5.9. Applying equality (5.55) with Xn replaced by XnZn reveals that

E log
+∞
∑
n=1

unXnZn =
1
ζ

logE(X1Z1)ζ +E log
+∞
∑
n=1

un

= 1
ζ

logEXζ

1 +
1
ζ

logEZζ

1 +E log
+∞
∑
n=1

un.

Applying this equality again with XnZn replaced by Zn completes the proof.

Exercise 5.10. We treat each question separately.

(i) Fix x = (x j) j⩾1 ∈V . Since ∑+∞j=1 x j ⩽ 1, there must exist m ⩾ 1 with xm ⩽ m−1. It
follows by non-decreasingness of the coordinates of x that

∣pn((x j))−
m−1
∑
j=1

xn
j ∣ =

+∞
∑
j=m

xn
j ⩽ xn−1

m

+∞
∑
j=m

x j ⩽ xn−1
m ⩽m1−n.

This shows that pn is continuous for n ⩾ 2 as the uniform limit of continuous
functions. To see that p1 is not continuous, consider the sequence (xn)n⩾1 ⊆V
defined by

xn
j ∶= (log(n))−1 j−11{2⩽ j⩽n}.

Notice that xn ∈V as

1
log(n)

n
∑
j=2

1
j
⩽ 1

log(n)

ˆ n

1

1
x

dx = 1.

Moreover, (xn)n⩾1 converges to the zero sequence but

p1(xn) = 1
log(n)

n
∑
j=2

1
j
⩾ 1

log(n)

ˆ n

2

1
x

dx = log(n)− log(2)
log(n)

is asymptotically lower bounded by 1 and can therefore not converge to 0. This
shows that p1 is not continuous.

(ii) The set P is closed under multiplication and linear combinations so it forms an
algebra of continuous functions on the compact set V . By the real version of the
Stone-Weierstrass theorem (Theorem A.10), it therefore suffices to show that P
separates points. Fix distinct elements x ≠ y ∈V , and introduce the measures

µx ∶= ∑
j⩾1

x2
jδx j and µy ∶= ∑

j⩾1
y2

jδy j

on [0,1]. Since the coordinates of x are decreasing and sum to less than one, each
non-zero x j has finite multiplicity in the sequence (x j) j⩾1, and this multiplicity is
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given by µx(x j)/x2
j . It follows that the measures µx and µy are different, so there

must exist a polynomial P ∶ [0,1] →R with

∑
j⩾1

x2
jP(x j) =

ˆ 1

0
Pdµx ≠

ˆ 1

0
Pdµy = ∑

j⩾1
y2

jP(y j).

Noticing that the function z↦∑ j⩾1 z2
jP(z j) belongs to the algebra P shows that P

separates points as desired.

(iii) Fix k ⩾ 1 as well as n1, . . . ,nk ⩾ 2, and, through a slight abuse of notation, consider
the function f ∶V →R defined by f (x) ∶= ∏k

`=1 pn`(x). Observe that

S(n1, . . . ,nk) =E f ((v j) j⩾1) = ∑
j1,..., jk⩾1

vn1
j1
⋯vnk

jk
.

To simplify this expression, we rewrite it as the average of some function g of
the overlaps Rn = (R`,`′)`,`′⩽n sampled from the average (5.51) associated with the
weights (v j) j⩾1. Let n ∶= n1+⋯+nk, and partition the set {1, . . . ,n} into k subsets
I = (I j) j⩽k with ∣I j∣ = n j and 1 ∈ I1. For `,`′ ⩽ n write ` ∼ `′ if and only if ` and `′

belong to the same set in I , and introduce the function

g(Rn) ∶= ∏
1⩽`∼`′⩽n

R`,`′ = ∏
1⩽`∼`′⩽n

1{σ `=σ `′}.

By construction,

E⟨g(Rn)⟩ =E ∑
j1,..., jk⩾1

vn1
j1
⋯vnk

jk
= S(n1, . . . ,nk),

so the Ghirlanda-Guerra identities (5.57) imply that

E⟨R1,n+1g(Rn)⟩ = 1
n

S(n1, . . . ,nk)E⟨R1,2⟩+
1
n

n
∑
`=2

E⟨g(Rn)R1,`⟩.

A direct computation shows that

E⟨g(Rn)R1,n+1⟩ =E⟨g(Rn)1{σ1=σn+1}⟩ = S(n1+1,n2, . . . ,nk).

Similarly, for any index 1 ⩽ ` ⩽ n with ` ∈ I1,

E⟨g(Rn)R1,`⟩ =E⟨g(Rn)1{σ1=σ `}⟩ =E⟨g(Rn)⟩ = S(n1, . . . ,nk),

while for any index in 1 ⩽ ` ⩽ n with ` ∉ I1

E⟨g(Rn)R1,`⟩ =E⟨g(Rn)1{σ1=σ `}⟩ = S(n2, . . . ,n j +n1, . . . ,nk).
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Indeed, multiplying g by 1{σ1=σ l} has the effect of merging the set I` with the
set I1 in the sense that g(Rn)1{σ1=σ l} is defined just as g with the only difference
that these two subsets are merged into one to form a new partition of {1, . . . ,n}
consisting of k−1 sets. Putting this all together reveals that

S(n1+1,n2, . . . ,nk) =
1
n

S(n1, . . . ,nk)E⟨R1,2⟩+
1
n
∑

`∈I1∖{1}
S(n1, . . . ,nk)

+ 1
n

k
∑
j=2
∑
`∈I j

S(n2, . . . ,n j +n1, . . . ,nk).

Combining like terms and remembering that R1,2 is a Bernoulli random variable
with probability of success 1−ζ by (5.58) yields

S(n1+1,n2, . . . ,nk) =
n1−ζ

n
S(n1, . . . ,nk)+

k
∑
j=2

n j

n
S(n2, . . . ,n j +n1, . . . ,nk)

as required.

(iv) The sum of the coordinates in each term on the right side of the Talagrand identities
has been reduced by one compared to the left side. A recursive application of the
Talagrand identities therefore allows us to express all the quantities S(n1, . . . ,nk) in
terms of S(2), which is equal to 1−ζ by (5.58). Together with the density of P in
the space of continuous functions on V , this means that for any continuous function
f ∶V →R, the expectation E f ((v j) j⩾1) is entirely determined by the Ghirlanda-
Guerra identities (5.57) and the parameter ζ ∈ (0,1) determining the law (5.58) of
the overlap R1,2. Since the Poisson-Dirichlet process satisfies the same properties,
the sequence (v j) j⩾1 must have the same law as a Poisson-Dirichlet process with
parameter ζ . This completes the proof.

Exercise 5.11. We treat each question separately.

(i) To begin with, observe that for any x ∈ (0,1),

F(F−1(x)) = lim
n→+∞

F(F−1(x)+ 1
n
) ⩾ x,

where we have used the right-continuity of F . Now, suppose for the sake of
contradiction that there exist t ∈R and x ∈ (0,1) with F(t) < x but t ⩾ F−1(x). By
non-decreasingness of F , we have

F(t) ⩾ F(F−1(x)) ⩾ x > F(t)

which is a contradiction. Conversely, suppose that t < F−1(x) but F(t) ⩾ x. By
definition of F−1 we have F−1(x) ⩽ t which is a contradiction.
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(ii) Given t ∈R and x ∈ (0,1), the conclusion of (i) may equivalently be expressed as
the fact that F−1(x) ⩽ t if and only if x ⩽ F(t). It follows that

P{F−1(U) ⩽ t} = P{U ⩽ F(t)} = F(t).

Since the distribution function characterizes the law of a random variable, this
completes the proof.

Exercise 5.12. By the dominated convergence theorem, the mapping

ζ ↦Eexpζ X

is differentiable on (−ε,ε), with derivative given by

ζ ↦E(X expζ X).

The mapping
ζ ↦ logEexpζ X

is therefore also differentiable on this interval, and its derivative at zero is EX , as
announced.

Exercise 5.13. We treat each question separately.

(i) We write

1An+1 = 1An

n
∏
`=1

1{R`,n+1∈A} = 1An

n
∏
`=1
(1−1{R`,n+1∉A}),

and we clearly have

n
∏
`=1
(1−1{R`,n+1∉A}) ⩾ 1−

n
∑
`=1

1{R`,n+1∉A},

yielding the announced inequality (5.111).

(ii) Using the result of the previous question, we can write

E⟨1An+1⟩ ⩾E⟨1An⟩−
n
∑
`=1

E⟨1An1{R`,n+1∉A}⟩.

The Ghirlanda-Guerra identities imply that the sum above is (1−ζ(A))E⟨1An⟩, so

E⟨1An+1⟩ ⩾ ζ(A)E⟨1An⟩.

An induction argument completes the proof of (5.112).
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(iii) Arguing by contradiction, let us assume that the support of ζ is not contained in
R⩾0. This means that we can find ε > 0 such that ζ(−∞,−ε] > 0. By the result of
the previous step applied to the set A ∶= (−∞,−ε], the event

An ∶= {R`,`′ ⩽ −ε for all ` ≠ `′ ⩽ n}

has positive probability. On this event, we have

∣
n
∑
`=1

σ`∣
2
=

n
∑

`,`′=1
R`,`′ ⩽ n−n(n−1)ε,

which can be made negative by taking n sufficiently large. Since this is absurd, the
proof is complete.
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S.6 Mean-field spin glasses

Exercise 6.1. Fix β > 0. Jensen’s inequality and the explicit formula for the moment
generating function of a Gaussian random variable imply that

Emax
σ∈ΣN

HN(σ) =
1
β

logexpEβ max
σ∈ΣN

HN(σ) ⩽
1
β

logEexpβ max
σ∈ΣN

HN(σ)

⩽ 1
β

log ∑
σ∈ΣN

EexpβHN(σ) ⩽
1
β

log2N exp(β 2N/2)

= N log2
β
+ βN

2
.

Optimizing over β > 0 to find β 2 = 2log2 yields

Emax
σ∈ΣN

HN(σ) ⩽
√

log4N.

This establishes the upper bound. To prove the lower bound, we optimize one
coordinate at a time (some would call it a “greedy algorithm”). For each integer
1 ⩽ i ⩽N and spins σ1, . . . ,σi−1 ∈ Σ1, define the random variable

Xi(σ1, . . . ,σi−1) ∶=
i−1
∑
j=1
(gi, j +g j,i)σ j

in such a way that

HN(σ) =
1√
N

N
∑
i=1

gi,i+
1√
N

N
∑
i=1

σiXi(σ1, . . . ,σi−1).

Fix σ1, . . . ,σN ∈ Σ1 inductively so that, for every i ∈ {1, . . . ,N}, the spin σi has
the same sign as Xi(σ1, . . . ,σi−1) (with some arbitrary decision rule in the case
that Xi(σ1, . . . ,σi−1) = 0). With this choice of σ = (σ1, . . . ,σN) ∈ ΣN , the random
variables (Xi(σ1, . . . ,σi−1))1⩽i⩽N are independent, and Xi(σ1, . . . ,σi−1) is a Gaussian
random variable with variance 2(i−1). These random variables are also independent
of the family (gi,i)1⩽i⩽N . Since

HN(σ) =
1√
N

N
∑
i=1

gi,i+
1√
N

N
∑
i=1
∣Xi(σ1, . . . ,σi−1)∣,

and the absolute value of a standard Gaussian has mean
√

2
π

, we obtain that

Emax
σ∈ΣN

HN(σ) ⩾
√

2
πN

N
∑
i=1

√
2(i−1) ⩾

√
2

πN

ˆ N−1

0

√
2xdx ⩾C−1N

for some constant C > 0. This completes the proof.
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Exercise 6.2. Combining the covariance structure (6.4) of the SK Hamiltonian with
Exercise 4.4 reveals that for any ε > 0,

P{∣ 1
N

max
σ∈ΣN

HN(σ)−
1
N
Emax

σ∈ΣN
HN(σ)∣ ⩾ ε} ⩽ 2exp(− Nε2

2
).

Since the right side of this equation is summable in N, the result follows by a simple
application of the Borel-Cantelli lemma.

Exercise 6.3. Bounding the maximum over all configurations by the sum over all
configurations reveals that

1
N
Emax

σ∈ΣN
HN(σ) =

1
Nβ

E logexpβ max
σ∈ΣN

HN(σ) ⩽
FN(β)

β
.

On the other hand, bounding the Hamiltonian at each configuration by the maximum
of the Hamiltonian over all configurations shows that

FN(β)
β

⩽ 1
Nβ

E log ∑
σ∈ΣN

expβ max
σ∈ΣN

HN(σ) ⩽
log(2)

β
+ 1

N
Emax

σ∈ΣN
HN(σ).

This completes the proof.

Exercise 6.4. For each t ∈ [0,1], define the interpolating Hamiltonian

HN,t(σ) ∶=
1√
N

N
∑

i, j=1
(
√

txi j +
√

1− tgi j)σiσ j

in such a way that HN,0(σ) = HN(σ) and HN,1(σ) = Hx
N(σ). As usual, denote

by FN(t) its corresponding interpolating free energy and by ⟨⋅⟩t the average with
respect to its associated Gibbs measure. Fix t ∈ (0,1), and observe that

F
′
N(t) =

β

N
E⟨∂tH′N,t(σ)⟩t

= β

2N3/2√t

N
∑

i, j=1
Exi j⟨σiσ j⟩t −

β

2N3/2√1− t

N
∑

i, j=1
Egi j⟨σiσ j⟩t

⩽
N
∑

i, j=1
∣ β

2N3/2√t
Exi j⟨σiσ j⟩t −

β

2N3/2√1− t
Egi j⟨σiσ j⟩t ∣. (S.30)

We will now bound the terms in this expression using the Gaussian integration by
parts formula (Theorem 4.5) and the approximate Gaussian integration by parts
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formula (Exercise 4.6). Fix indices 1 ⩽ i, j ⩽ N and consider F(g) ∶= ⟨σiσ j⟩t as a
function of the Gaussian vector g ∶= (gi j)i, j⩽N . A direct computation reveals that

∂gi jF = β ⟨σiσ j∂gi jHN,t(σ)⟩t −⟨σiσ j⟩t⟨β∂gi jHN,t(σ)⟩t

= β
√

1− t√
N
⟨σiσ jσiσ j⟩t −

β
√

1− t√
N
⟨σiσ j⟩t⟨σiσ j⟩t

= β
√

1− t√
N
(1−⟨σiσ j⟩2t ),

so the Gaussian integration by parts formula yields

β

2N3/2√1− t
Egi j⟨σiσ j⟩t =

β

2N3/2√1− t
E∂gi jF =

β 2

2N2 (1−E⟨σiσ j⟩2t ). (S.31)

If instead we consider F(x) ∶= ⟨σiσ j⟩t as a function of the random vector x ∶= (xi j),
then

∂xi jF = β ⟨σiσ j∂xi jHN,t(σ)⟩t −⟨σiσ j⟩t⟨β∂xi jHN,t(σ)⟩t =
β
√

t√
N
(1−⟨σiσ j⟩2t )

∂
2
xi j

F = −2
β
√

t√
N
⟨σiσ j⟩t∂xi jF =

2β 2t
N
(⟨σiσ j⟩3t −⟨σiσ j⟩t).

In particular,

∣∂ 2
xi j

F ∣ ⩽ 4β 2t
N

,

so the approximate Gaussian integration by parts formula and the assumption that
Ex2

i j = 1 imply that

∣ β

2N3/2√t
Exi j⟨σiσ j⟩t−

β 2

2N2 (1−E⟨σiσ j⟩2t )∣ ⩽
β

2N3/2√t
6β 2t

N
E∣x11∣3 =

3β 3
√

t
N5/2 E∣x11∣3.

Combining this with (S.30), (S.31), and the fundamental theorem of calculus reveals
that

∣Fx
N(β)−FN(β)∣ = ∣FN(1)−FN(0)∣ ⩽ sup

t∈[0,1]
∣F ′N(t)∣ ⩽

3β 3
√

N
E∣x11∣3.

Letting N tend to infinity completes the proof.

Exercise 6.5. By Chebyshev’s inequality, it suffices to show that

lim
N→+∞

E(⟨F(g ⋅σ√
N
)⟩−EZF(g ⋅ ⟨σ⟩√

N
+
√

1−qZ))
2

= 0. (S.32)
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This will follow from the fact that

lim
N→+∞

E⟨F(g ⋅σ√
N
)⟩

2
= lim

N→+∞
E(⟨F(g ⋅σ√

N
)⟩EZF(g ⋅ ⟨σ⟩√

N
+
√

1−qZ))

= lim
N→+∞

E(EZF(g ⋅ ⟨σ⟩√
N
+
√

1−qZ))
2

=EZ1,Z2,Z3F(√qZ1+
√

1−qZ2)F(
√

qZ1+
√

1−qZ3)

for some independent standard Gaussian random variables Z1,Z2,Z3 also indepen-
dent of all other sources of randomness. We first prove rigorously that

lim
N→+∞

E⟨F(g ⋅σ√
N
)⟩

2
=EZ1,Z2,Z3F(√qZ1+

√
1−qZ2)F(

√
qZ1+

√
1−qZ3), (S.33)

and then describe how to adapt the argument for the computation of the two other
limits. Since g is independent of all other sources of randomness,

E⟨F(g ⋅σ√
N
)⟩

2
=E⟨EgF(g ⋅σ1

√
N
)F(g ⋅σ2

√
N
)⟩.

To simplify this quantity, observe that conditionally on the replicas σ1,σ2 ∈ ΣN , the
average

EgF(g ⋅σ1
√

N
)F(g ⋅σ2

√
N
)

can be expressed as some continuous function of the covariance matrix

CN ∶= [
1 R1,2

R1,2 1 ]

of the random vector GN ∶= N−1/2(g ⋅σ1,g ⋅σ2). This means that there exists a
bounded continuous function Γ ∶R2×2→R with

E⟨F(g ⋅σ√
N
)⟩

2
=E⟨Γ(CN)⟩.

To determine the asymptotic behaviour of this quantity, denote by

C ∶= [1 q
q 1]

the covariance matrix of G ∶= (√qZ1+
√

1−qZ2,
√

qZ1+
√

1−qZ3), and fix ε > 0 as
well as δ > 0. Introduce the set

Aδ ,N ∶= {σ1,σ2 ∈ ΣN ∣ ∣R1,2−q∣ ⩽ δ},
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and observe that

E⟨1{∣Γ(CN)−Γ(C)∣>ε}⟩ ⩽E⟨1{∣Γ(CN)−Γ(C)∣>ε}1Aδ ,N
⟩+E⟨1Ac

δ ,N
⟩. (S.34)

Since ∣CN −C∣ ⩽
√

2δ on the set Aδ ,N , and Γ is continuous, by choosing δ small
enough relative to ε , the first term in (S.34) can be made to vanish. It follows by
Chebyshev’s inequality that

E⟨1{∣Γ(CN)−Γ(C)∣>ε}⟩ ⩽E⟨1Ac
δ ,N
⟩ ⩽

E⟨(R1,2−q)2⟩
δ 2 .

Letting N tend to infinity shows that (Γ(CN))N⩾1 converges in probability to Γ(C).
Since this sequence of random variables is bounded as F is, the limit (S.33) holds by
the dominated convergence theorem. We now briefly describe the main differences
in the computation of the limits of

E(⟨F(g ⋅σ√
N
)⟩EZF(g ⋅ ⟨σ⟩√

N
+
√

1−qZ)) and E(EZF(g ⋅ ⟨σ⟩√
N
+
√

1−qZ))
2

.

The first of these quantities can be expressed as

E⟨EgEZF(g ⋅σ√
N
)F(g ⋅ ⟨σ⟩√

N
+
√

1−qZ)⟩,

so its asymptotic behaviour is determined by that of the covariance matrix

CN ∶=
⎡⎢⎢⎢⎢⎣

1 σ ⋅⟨σ⟩
N

σ ⋅⟨σ⟩
N ⟨R1,2⟩+1−q

⎤⎥⎥⎥⎥⎦
which converges to C as the asymptotic overlap distribution concentrates on the
singleton q. Similarly, the second of these quantities can be expressed as

EEgEZ1,Z2F(g ⋅ ⟨σ⟩√
N
+
√

1−qZ1)F(
g ⋅ ⟨σ⟩√

N
+
√

1−qZ2),

so its asymptotic behaviour is determined by that of the covariance matrix

CN ∶= [
⟨R1,2⟩+1−q ⟨R1,2⟩
⟨R1,2⟩ ⟨R1,2⟩+1−q]

which again converges to C. This completes the proof.

Exercise 6.6. For every g ∈ L1([0,1];R), we use the notation
 ζk+1

ζk

g ∶= 1
ζk+1−ζk

ˆ ζk+1

ζk

g.
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We first observe that, by Jensen’s inequality, we have for every g ∈ L2([0,1];R) that

0 ⩽
K
∑
k=0

ˆ ζk+1

ζk

(g−
 ζk+1

ζk

g)
2

=
ˆ 1

0
g2−

K
∑
k=0
(ζk+1−ζk)(

 ζk+1

ζk

g)
2

⩽
ˆ 1

0
g2. (S.35)

We also recall that the set of continuous functions is dense in L2([0,1];R), see for
instance Theorem 2.19 of [6]. Let φ ∈C([0,1];R) be a continuous function such
that ∥ f −φ∥L2 ⩽ ε . Appealing to (S.35) with g = f −φ , we see that we make an error
of at most ε if we substitute f by φ in the expression on the left side of (6.83). Since
φ is uniformly continuous, there exists δ > 0 such that for every x,y ∈ [0,1] with
∣x−y∣ ⩽ δ , we have ∣φ(y)−φ(x)∣ ⩽ ε . If maxk(ζk+1−ζk) ⩽ δ , then

K
∑
k=0

ˆ ζk+1

ζk

(φ −
 ζk+1

ζk

φ)
2

⩽ ε
2.

Using also the identity in (S.35), we therefore obtain the desired result, up to a
reparametrization of ε > 0.

Exercise 6.7. A direct computation reveals that

−∂
2
t f =E⟨∂ 2

t H(t,σ)⟩+E⟨(∂tH(t,σ))2⟩−E⟨∂tH(t,σ)⟩2.

We now use Gaussian integration by parts to simplify each of these terms. On the
one hand, the Gibbs Gaussian integration by parts formula (Theorem 4.6) implies
that

E⟨∂ 2
t H(t,σ)⟩ = − 1

(2t)3/2
E⟨zσ⟩ = − 1

2t
(E⟨σ2⟩−E⟨σ⟩2).

On the other hand,

E⟨(∂tH(t,σ))2⟩−E⟨∂tH(t,σ)⟩2

= 1
2t
E⟨z2

σ(σ −σ
′)⟩+ 2

(2t)1/2
(E⟨zσ

′′
σ

2⟩−E⟨zσ
3⟩)+E⟨σ4⟩−E⟨σ2⟩2,

and the Gaussian integration by parts formula (Theorem 4.5) reveals that

E⟨z2
σ(σ −σ

′)⟩ =Ez ⋅ z
´

σ(σ −σ ′)exp(H(t,σ)+H(t,σ ′))dP(σ)dP(σ ′)´
exp(H(t,σ)+H(t,σ ′))dP(σ)dP(σ ′)

=E⟨σ(σ −σ
′)⟩+
√

2tE⟨zσ(σ −σ
′)(σ +σ

′)⟩
−2
√

2tE⟨zσ(σ −σ
′)σ ′′⟩

=E⟨σ(σ −σ
′)⟩+2tE⟨(σ −σ

′)(σ +σ
′)(σ2+σσ

′−2σσ
′′)⟩

−2tE⟨(σ −σ
′)(σ ′′+σ

′′′)(σ2+σσ
′+σσ

′′+σσ
′′′−4σσ

′′′′)⟩
=E⟨σ2⟩−E⟨σ⟩2+2h(E⟨σ4⟩−4E⟨σ3⟩⟨σ⟩−3E⟨σ2⟩2

+12E⟨σ2⟩⟨σ⟩2−6E⟨σ⟩4).
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Similarly, the Gibbs Gaussian integration by parts formula implies that

E⟨zσ
′′

σ
2⟩−E⟨zσ

3⟩ = (2t)1/2(E⟨σ2(σ ′′2+σ
′′

σ −2σ
′
σ
′′)⟩−E⟨σ2(σ2−σσ

′)⟩)
= (2t)1/2(E⟨σ2⟩2+2E⟨σ3⟩⟨σ⟩−2E⟨σ2⟩⟨σ⟩2−E⟨σ4⟩).

It follows that

∂
2
t f = 6E⟨σ⟩4−E⟨σ4⟩+4E⟨σ3⟩⟨σ⟩+3E⟨σ2⟩2−12E⟨σ2⟩⟨σ⟩2

−2(E⟨σ2⟩2+2E⟨σ3⟩⟨σ⟩−2E⟨σ2⟩⟨σ⟩2−E⟨σ4⟩)+E⟨σ2⟩2−E⟨σ4⟩
= 6E⟨σ⟩4+2E⟨σ2⟩2−8E⟨σ2⟩⟨σ⟩2

= 2E(⟨σ2⟩−⟨σ⟩2)(⟨σ2⟩−3⟨σ⟩2).

as required. We now consider the probability measure P1 ∶= pδ1+(1− p)δ−1 for a
choice of p to be determined. It will be important to observe that

⟨σ⟩ = pexp(
√

2tz)−(1− p)exp(−
√

2tz)
pexp(

√
2tz)+(1− p)exp(−

√
2tz)

.

The Gibbs Gaussian integration by parts formula implies that

∂t f (t) =E⟨σ2⟩− 1
(2t)1/2

E⟨zσ⟩ =E⟨σ⟩2

from which it is clear that ∂t f (0) = (2p− 1)2 < 1. The dominated convergence
theorem reveals that limt→+∞∂t f (t) = 1, so there exists t∗ ⩾ 0 with ∂ 2

t f (t∗) > 0.
However, by the formula we obtained earlier, and observing that the Gibbs measure
⟨⋅⟩ is simply the measure P1 when t = 0, we have

∂
2
t f (0) = 2⟨(σ −⟨σ⟩)2⟩(1−3⟨σ⟩2).

This quantity is strictly negative whenever p ∈ (0,1) is such that ⟨σ⟩2 > 1/3. Since
⟨σ⟩ = 2p−1, an explicit calculation yields that this occurs if and only if

p ∈ (0, 3−
√

3
6
)∪(3+

√
3

6
,1) ⊇ (0, 1

5
)∪(4

5
,1).

This shows that for this choice of measure P1, the free energy f is neither concave
nor convex.
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Exercise A.1. Fix measurable sets A,B ∈ S with A ⊆B, and observe that by additivity
of measure,

µ(B) = µ(A)+µ(B∖A) ⩾ µ(A).

This establishes monotonicity. To prove continuity from below, fix an increasing
sequence of measurable sets (An)n⩾1 ⊆ S , and observe that by countable additivity
of measure,

µ(
∞
⋃
n=1

An) =
+∞
∑
n=1

µ(An∖An−1) = lim
n→+∞

n
∑
i=1

µ(Ai∖Ai−1) = lim
n→+∞

µ(An).

This completes the proof.

Exercise A.2. To see that the function mF is well-defined, observe that mF is finitely
additive. Indeed, if ((ai,bi])1⩽i⩽n is a finite sequence of disjoint intervals and

(a,b] ∶=
n
⋃
i=1
(ai,bi],

then, up to relabelling, we may assume that a = a1 < b1 ⩽ a2 < . . . < bn−1 ⩽ an < bn = b,
and therefore

mF(
n
⋃
i=1
(ai,bi]) = F(b)−F(a) =

n
∑
i=1
(F(bi)−F(ai)) =

n
∑
i=1

mF((ai,bi]).

It follows that for any two finite sequences ((ai,bi])1⩽i⩽n and ((c j,d j])1⩽ j⩽m of
disjoint intervals with the same union,

mF(
n
⋃
i=1
(ai,bi]) =

n
∑
i=1

m
∑
j=1

mF((ai,bi]∩(c j,d j]) =mF(
m
⋃
j=1
(c j,d j]).

This shows that mF is well-defined. To prove that it is a pre-measure, fix a sequence
(In)n⩾1 of disjoint intervals with In = (an,bn] whose union I belongs to A. Since
the union of (In)n⩾1 is a finite union of intervals of the form (a,b], the sequence
(In)n⩾1 can be partitioned into finitely many subsequences such that the union of
the intervals in each subsequence is a single interval of the form (a,b]. Considering
each subsequence separately and using the finite additivity of mF , assume without
loss of generality that I = (a,b]. On the one hand, by finite additivity,

mF(I) =mF(
n
⋃
i=1

Ii)+mF(I∖
n
⋃
i=1

Ii) ⩾mF(
n
⋃
i=1

Ii) =
n
∑
i=1

mF(Ii),
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so letting n tend to infinity gives the lower bound,

mF(I) ⩾
+∞
∑
n=1

mF(In). (S.36)

To obtain the matching upper bound, we will only consider the case when a and b
are both finite; the general case can be deduced through a simple limiting argument.
Fix ε > 0 as well as n ⩾ 0, and use the continuity of F to find δ > 0 and δn >
0 with F(a+ δ) −F(a) ⩽ ε and F(bn + δn) −F(bn) ⩽ ε2−n. The open intervals
((an,bn+δn))n⩾1 cover the compact set [a+δ ,b], so it is possible to extract a finite
subcover. Up to relabelling, denote by ((ai,bi+δi))1⩽i⩽n this finite subcover and
assume that bi+δi ∈ (an+1,bn+1+δn+1) so that the subcover is ordered according to
the right endpoint of each interval. The choice of δ and the non-decreasingness of
F imply that

mF(I) ⩽ F(b)−F(a+δ)+ε ⩽ F(bn+δn)−F(an)+
n−1
∑
i=1
(F(ai+1)−F(ai))+ε.

The choice bi+δi ∈ (an+1,bn+1+δn+1), the non-decreasingness of F and the choice
of δi reveal that this is bounded further by

F(bn+δn)−F(an)+
n−1
∑
i=1
(F(bi+δi)−F(ai))+ε ⩽

n
∑
i=1
(F(bi)−F(ai)+ε2−i)+ε.

It follows by definition of mF that

mF(I) ⩽
n
∑
i=1
(mF(Ii)+ε2−i)+ε ⩽

+∞
∑
n=1

mF(In)+2ε.

Letting ε tend to zero and combining the resulting bound with (S.36) completes the
proof.

Exercise A.3. Since µ and ν agree on P and A ∈ P , it is clear that S ∈ L. To verify
the second property of a λ -system, fix B,C ∈ L with B ⊆C. By additivity of measure,

µ(A∩C∖B) = µ(A∩C)−µ(A∩B) = ν(A∩C)−ν(A∩B) = ν(A∩C∖B),

where the assumption that µ(A) = ν(A) < +∞ ensures that the subtraction is well-
defined. Finally, if (Bn)n⩾1 is an increasing sequence of sets in L and B ∶= ⋃∞n=1 Bn,
then the continuity of measure established in Exercise A.1 implies that

µ(A∩B) = lim
n→+∞

µ(A∩Bn) = lim
n→+∞

ν(A∩Bn) = ν(A∩B)

which means that B ∈ L. This shows that L is a λ -system. The final claim follows
from the Dynkin π-λ theorem by taking A = S. This completes the proof.
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Exercise A.4. We treat each question separately.

(i) Since S and ∅ are both closed sets, we have S ∈ L. Suppose A,B ∈ L with A ⊆ B.
Fix ε > 0 and let FA ⊆ A and FAc ⊆ Ac be closed sets with

µ(FA)+
ε

2
⩾ µ(A) and µ(FAc)+ ε

2
⩾ µ(Ac).

Similarly, let FB ⊆ B and FBc ⊆ Bc be closed sets with

µ(FB)+
ε

2
⩾ µ(B), µ(FBc)+ ε

2
⩾ µ(Bc).

By additivity of measure

µ(B∖A) = µ(B)+µ(Ac)−µ(S) ⩽ µ(FB)+µ(FAc)−µ(S)+ε = µ(FB∖Fc
Ac)+ε

and

µ((B∖A)c) = µ(A)+µ(Bc) ⩽ µ(FA)+µ(FBc)+ε = µ(FA∪FBc)+ε.

Since FB∖Fc
Ac ⊆ B∖A and FA∪FBc ⊆ (B∖A)c are closed sets, we have B∖A ∈ L.

Finally, suppose (An)n⩾1 ⊆L increases to A and fix ε > 0. For each n ⩾ 1, let Fn ⊆Ac
n

be a closed set with

µ(Ac
n∖Fn) = µ(Ac

n)−µ(Fn) ⩽
ε

2n .

Using the continuity of measure established in Exercise A.1, fix N large enough
so P(A∖AN) ⩽ ε/2, and let F ⊆ AN be a closed set with µ(AN) ⩽ µ(F)+ε/2. By
monotonicity and subadditivity of measure,

µ(A) = µ(A∖AN)+µ(AN) ⩽ µ(F)+ε

and

µ(Ac∖⋂
n⩾1

Fn) = µ(⋂
n⩾1

Ac
n∖⋂

n⩾1
Fn) ⩽ µ(⋃

n⩾1
Ac

n∖Fn) ⩽ ∑
n⩾1

µ(Ac
n∖Fn) ⩽ ε.

Since F ⊆ A and ⋂n⩾1 Fn ⊆ Ac are closed, we have A ∈ L. This shows that L is a
λ -system.

(ii) Fix an open set U ⊆ S, and define the increasing sequence (Fn)n⩾1 of closed sets by

Fn ∶= {s ∈ S ∣ d(s,Uc) ⩾ 1/n}.

Since U is open, we have U = ⋃n⩾1 Fn. It follows by the continuity of measure
established in Exercise A.1 that

µ(U) = lim
n→+∞

µ(Fn) = sup
n⩾1

µ(Fn) ⩽ sup
F⊆U

F closed

µ(F) ⩽ µ(U),

and therefore U ∈ L.
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(iii) Since L is a λ -system and the set of open sets forms a π-system that generates the
Borel σ -algebra, the result follows by the Dynkin π-λ theorem.

Exercise A.5. Fix a positive linear functional T ∶C(S;R)→R as well as a continuous
function f ∈C(S;R). Since ∥ f ∥∞ ⋅1± f ⩾ 0, the positivity of T implies that

T(∥ f ∥∞ ⋅1+ f ) ⩾ 0 and T(∥ f ∥∞ ⋅1− f ) ⩾ 0

It follows by linearity of T that

−∥ f ∥∞T(1) ⩽ T( f ) ⩽ ∥ f ∥∞T(1).

Rearranging reveals that ∣T( f )∣ ⩽ ∥ f ∥∞T(1) and completes the proof.

Exercise A.6. Suppose that we have established the result on the space of continuous
functions C([0,1];R), and fix f ∈C([a,b];R) as well as ε > 0. Define the function
g ∶ [0,1] →R by

g(x) ∶= f (a+x(b−a)),
and find a polynomial Q on [0,1] with ∥g−Q∥∞ ⩽ ε . Consider the polynomial P on
[0,1] defined by

P(x) ∶=Q(x−a
b−a
),

and observe that for any x ∈ [a,b], we have

∣ f (x)−P(x)∣ = ∣Q(x−a
b−a
)−g(x−a

b−a
)∣ ⩽ ε.

It therefore suffices to prove the result on C([0,1];R). Fix ε > 0 and f ∈C([0,1];R).
Given x ∈ [0,1], let (Xn)n⩾1 be a sequence of independent and identically distributed
random variables with X1 ∼ Ber(x). For each n ⩾ 1, consider the sample average
Sn ∶= 1

n∑
n
i=1 Xi, and define the polynomial

Pn(x) ∶=E f (Sn) = ∑
0⩽i⩽n

f( i
n
)(n

i
)xi(1−x)n−i.

To express Pn as a polynomial we have used the fact that ∑n
i=1 Xi is a Binomial

random variable with n trials and probability of success x. To show that for n
large enough Pn is within ε of f , use the uniform continuity of f on [0,1] to find
δ > 0 so that ∣ f (y)− f (x)∣ ⩽ ε

2 whenever ∣x−y∣ ⩽ δ , and observe that by Chebyshev’s
inequality and independence of the (Xn)n⩾1, for any x ∈ [0,1],

∣Pn(x)− f (x)∣ ⩽E∣ f (Sn)− f (x)∣1{∣Sn−x∣⩽δ}+2∥ f ∥∞P{∣Sn−x∣ > δ}

⩽ ε

2
+ 2∥ f ∥∞

δ 2 Var(Sn)

⩽ ε

2
+ 2∥ f ∥∞

nδ 2

Choosing n large enough ensures that ∥ f −P∥∞ ⩽ ε and completes the proof.
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Exercise A.7. Denote by ⟨⋅, ⋅⟩ ∶ L2(C;C)×L2(C;C)→C the canonical inner product
on L2(C;C),

⟨ f ,g⟩ ∶=
ˆ 2π

0
f (eit)g(eit)dt.

Fix a polynomial P ∶ C →C of the form P(z) ∶= ∑n
j=0 a jz j for some complex coeffi-

cients (a j) j⩽n ⊆C. Observe that the functions f and P are orthogonal,
ˆ 2π

0
f (eit)P(eit)dt =

n
∑
j=0

a j

ˆ 2π

0
ei( j+1)t dt = 0.

It follows that

2π = ⟨ f , f ⟩ = ⟨ f , f −P⟩ ⩽ 2π∥ f ∥∞∥ f −P∥∞ ⩽ 2π∥ f −P∥∞,

so ∥ f −P∥∞ ⩾ 1 for any polynomial P. This completes the proof.

Exercise A.8. Fix an open set U ⊆ S and let F =Uc. Since d(x,F) = 0 if and only if
x ∈F , the sequence ( fm)m⩾1 ⊆Cb(S) defined by fm(x) ∶=min(1,md(x,F)) increases
pointwise to 1U as m tends to infinity. It follows by the monotone convergence
theorem that P(U) =Q(U). Invoking the Dynkin π-λ theorem completes the proof.

Exercise A.9. We treat each question separately.

(i) To begin with, suppose that (Pn)n⩾1 converges weakly to P, and let t ∈R be a point
of continuity of F . Fix ε > 0 and let φ1 and φ2 be piecewise linear functions with

1{x⩽t−ε} ⩽ φ1(x) ⩽ 1{x⩽t} ⩽ φ2(x) ⩽ 1{x⩽t+ε}.

Integrating the outer inequalities with respect to P and the inner inequalities with
respect to Pn reveals that

F(t −ε) ⩽
ˆ
R

φ1 dP ⩽ liminf
n→+∞

Fn(t) ⩽ limsup
n→+∞

Fn(t) ⩽
ˆ
R

φ2 dP ⩽ F(t +ε).

We have used the fact that φ1,φ2 ∈Cb(R;R) to let n tend to infinity. Letting ε tend
to zero and remembering that t is a point of continuity of F shows that (Fn(t))n⩾1
converges to F(t). Conversely, suppose that for any point t of continuity of F ,
the sequence (Fn(t))n⩾1 converges to F(t). Fix f ∈Cb(R;R) as well as ε > 0 and
k ⩾ 1. Denote by CF the set of points of continuity of F . The set CF is countable by
monotonicity of F , so there exists M ∈ CF with P((−M,M]c) ⩽ ε . Let (xk

i )0⩽i⩽k ⊆ CF
be a partition of [−M,M] with max1⩽i⩽k−1∣xk

i − xk
i−1∣ ⩽ k−1. Using the fact that

(Fn)n⩾1 converges to F at M and −M, find n large enough so Pn((−M,M]c) ⩽ 2ε .
We introduce the approximating function

fk(x) ∶= ∑
1⩽i⩽k

f (xk
i )1(xk

i−1,x
k
i ]
(x),
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and we combine the uniform continuity of f on [−M,M] with the fact that
max1⩽i⩽k−1∣xk

i+1 − xk
i ∣ ⩽ k−1 to find k large enough so ∣ fk(x)− f (x)∣ ⩽ ε whenever

∣x∣ ⩽M. Since (xk
i )0⩽i⩽k ⊆ CF , we have

lim
n→+∞

ˆ
R

fk dPn = ∑
1⩽i⩽k

fk(xk
i )(F(xk

i )−F(xk
i−1)) =

ˆ
R

fk dP.

It follows that for n large enough,

∣
ˆ
R

f dP−
ˆ
R

f dPn∣ ⩽ 3ε∥ f ∥∞+3ε.

Letting n tend to infinity and then ε tend to zero completes the proof.

(ii) The assumption is necessary. Consider the sequence (Pn)n⩾1 of probability mea-
sures with Pn({n−1}) = 1. This sequence converges weakly to the probability
measure P defined by P({0}) = 1. However, the sequence of distribution functions
of Pn fails to converge to the distribution function of P at the point of discontinuity
t = 0.

Exercise A.10. We treat each question separately.

(i) For every ε > 0 and δ > 0, introduce the set

Uε,δ ∶= {x ∈ S ∣ there exist y,z ∈ S such that d(x,y) < δ , d(x,z) < δ ,

and d′( f (y), f (z)) ⩾ ε},

where d′ denotes the metric on S′. The space Uε,δ is open. Moreover, the comple-
ment of C f is given by

⋃
ε>0
⋂
δ>0

Uε,δ ,

where the ranges for ε and δ can be restricted to cover only rational values. This
shows that C f is measurable.

(ii) Let F be a closed subset of S′. We have that

P{ f (Xn) ∈ F} = P{Xn ∈ f −1(F)} ⩽ P{Xn ∈ f −1(F)}.

By the Portmanteau theorem, we deduce that

limsup
n→+∞

P{ f (Xn) ∈ F} ⩽ P{X∞ ∈ f −1(F)}.

Since X∞ takes values in C f with probability one, the last quantity can be rewritten
as

P{X∞ ∈C f ∩ f −1(F)}.
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To show that C f ∩ f −1(F) is a subset of F , fix x ∈ C f ∩ f −1(F), and let (xn)n⩾1
be a sequence of elements of f −1(F) that converges to x. Since f (xn) ∈ F , the
sequence (xn)n⩾1 converges to x ∈C f . Combined with the fact that F is a closed
set, this implies that f (x) ∈ F , and thus x ∈ f −1(F). It follows that

limsup
n→+∞

P{ f (Xn) ∈ F} ⩽ P{X∞ ∈C f ∩ f −1(F)} ⩽ P{ f (X∞) ∈ F}.

Invoking the Portmanteau theorem again completes the proof.

Exercise A.11. By the Portmanteau theorem, it suffices to show that for any closed
set F ⊆ S, we have limsupn→+∞P{Yn ∈F} ⩽P{Y ∈F}. Fix a closed set F ⊆ S as well
as ε > 0, and let Fε ∶= {x ∈ S ∣ d(x,F) ⩽ ε} be the ε-neighbourhood of F . Observe
that

P{Yn ∈ F} ⩽ P{Yk,n ∈ Fε}+P{d(Yk,n,Yn) ⩽ ε}.

Since (Yk,n)n⩾1 converges in law to Zk and Fε is closed, the Portmanteau theorem
implies that

limsup
n→+∞

P{Yn ∈ F} ⩽ P{Zk ∈ Fε}+ limsup
n→+∞

P{d(Yk,n,Yn) ⩽ ε}.

Another application of the Portmanteau theorem to the convergence in law of
(Zk)k⩾1 to Y reveals that limsupn→+∞P{Yn ∈ F} ⩽ P{Y ∈ Fε}. Leveraging the fact
that F is closed shows that Fε ↘ F , so letting ε tend to zero completes the proof.

Exercise A.12. This is immediate from Theorem A.21 upon realizing that the
sequence (P)n⩾1 converges weakly to P. It is also possible to give a direct proof.
Since S is separable there exists a countable set (xi)i⩾1 such that for every m ⩾ 1,
we have S = ⋃i⩾1 B1/m(xi). Given ε > 0, the continuity of measure established in
Exercise A.1 implies the existence of n(m) ⩾ 1 with

P(S∖
n(m)
⋃
i=1

B1/m(xi)) ⩽
ε

2m .

It follows that the set K ∶= ⋂∞m=1⋃
n(m)
i=1 B1/m(xi) is such that

P(S∖K) = P(
∞
⋃
m=1

S∖
n(m)
⋃
i=1

B1/m(xi)) ⩽
+∞
∑
m=1

ε

2m = ε.

Since S is complete and K is closed and totally bounded, K is compact. This
completes the proof.
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