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ABSTRACT

Rayleigh-Bénard (RB) convection is a challenging topic for both academic research and for several applica-
tions in the field of atmospheric physics, industrial applications, and building insulation. The actual applica-
tions involve high Rayleigh or Grashoff numbers but the Direct Numerical Simulations (DNS) remain limited
to relatively small values of these numbers. Approximate models are required for the prediction of flow fields
and heat transfer at higher numbers. The aim of this study is to assess the ability of a Large Eddy Simulation
(LES) model to predict accurate mean values and second order moments of temperature and velocity fields.
The reference fields are provided by DNS simulations under the Boussinesq approximation in a RB cell filled
with air at a Rayleigh number (Ra) up to 109. The employed numerical DNS method is based on a Tchebychev
pseudo-spectral method and the most appropriate LES model in this case appears to be the Spectral Vanishing
Viscosity (SVV) model where high order modes are exponentially damped to stabilize the numerical scheme.
The predicted mean velocity and temperature fields from this LES model, as well as their second order mo-
ments, are compared to DNS values. A sensitivity study to the SVV parameters, i.e. the Tchebychev mode
cutoff and the damping amplitude, is carried out. The model appears to be a promising approach for accurate
predictions at much higher Rayleigh numbers.

KEY WORDS: Rayleigh-Bénard convection, Spectral Vanishing Viscosity, heat transfer, unsteady flow regimes, 3D
cubical cavity.

1. INTRODUCTION

Large Eddy Simulation (LES) consists in resolving the large scales of a fluid flow and modelling the effects of
the small scales, mainly the dissipation of the energy. Many models have been proposed since the pioneering
study of Smagorinsky [9]. However, these models are not well suited for spectral numerical methods and
a different approach has been proposed by Tadmor in 1989, the Spectral Vanishing Viscosity (SVV) model
[5, 10]. Spectral methods have the particularity of bringing very few numerical dissipation to the solution, wich
gives them a very high-order accuracy. However, if not enough modes are used in the spectral representation
of the solution, the energy that is transferred to the high modes is not dissipated along the way. The lack of
dissipation due to the coarse representation is not compensated by the numerical dissipation and the numerical
scheme is unstable.

To avoid that, Tadmor introduced a new term in the equation designed to add a dissipative component, in order
to stabilize the spectral methods. It appears as an operator acting like an hyperviscosity affecting only the high
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modes of the spectral representation, dealing with the energy transfer to these modes. The ideal form of the
operator was discussed in [1] and took its exponential form with the work of [4] and [7], which has been widely
used since then [6, 8].

The SVV operator depends on two main parameters : a cut-off mode M and a weight ε. The influence of these
two parameters and their ideal values were the subject of many studies, both theoretical and numerical, since
the beginning of the SVV approach [1, 4–7, 10]. We propose here a parametric study in which we analyse the
results obtained with several configurations, in order to evaluate the influence of these parameters on both the
stability of the simulation and the accuracy of the results. Results with the SVV model are compared to results
obtained via Direct Numerical Simulation (DNS) obtained in a previous study [2].

2. STUDIED CONFIGURATION

We consider a cubical cavity, heated from the bottom and cooled from the top walls, both being considered
isothermal ; the lateral walls are assumed adiabatic (figure 1). The cavity is filled with transparent air at a
mean temperature of T0 = 300K and at atmospheric pressure (Pr = 0.707). This system is governed by the
Navier-Stokes equations under the Boussinesq approximation. The solutions of the system only depend on two
parameters the Rayleigh (Ra) and Prandtl (Pr) numbers, defined by:

Ra =
gβ∆TL3

νa
; Pr =

ν

a
(1)

with g is the gravitational acceleration, β = 1/T0 is the thermal expansion coefficient, ∆T = Thot − Tcold

is the temperature difference between the isothermal walls, ν is the kinematic viscosity and a is the thermal
diffusivity.

The system of equations is solved using a Chebychev spectral method for the Navier-Stokes equations and
parallelisation of the code is ensured via domain decomposition along the vertical axis. More details on the
method can be found in [2, 11, 12].

The reference velocity and time are chosen according to the work of Patterson and Imberger [3], and the
dimensionless temperature θ is defined as follows :

uref =
a
√

Ra

L
; tref =

L2

a
√

Ra
; θ =

T − T0

∆T
(2)

These settings allow the dimensionless velocity u to remain at the same order of magnitude from Ra = 106

and higher [2].
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Fig. 1 The cubical Rayleigh-Bénard cavity with isothermal top and bottom walls and adiabatic lateral walls.
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3. GOVERNING EQUATIONS AND THE SPECTRAL VANISHING VISCOSITY MODEL

The nondimensional mass, momentum and energy balance equations, with the SVV model, are given by equa-
tions (3,4,5).

∇ · u = 0 (3)

∂u

∂t
+ u ·∇u = −∇p + Prθez +

Pr√
Ra

∇2u + ∇ ·
(
ε∇̃u

)
(4)

∂θ

∂t
+ u ·∇θ =

1√
Ra

∇2θ + ∇ ·
(
ε∇̃θ

)
(5)

In the momentum and energy equations, the SVV term is added, ∇ ·
(
ε∇̃
)

, with ∇̃ = Q∇ being the gradient
operator ∇ modified by the SVV operator Q acting on its high-order modes, and ε the weight of the SVV
model. The operator Q can be represented on a truncated Chebychev basis (Tk)0≤k≤N as :

Q =
N∑
k=0

Q̂kTk, (6)

and the spectral components of the decomposition are defined as

Q̂k =

{
0 if k ≤M

exp
(
− (k−N)2

(k−M)2

)
if k > M

. (7)

M is the cut-off mode, from which the operator Q starts to act, with an exponential evolution. The SVV model
acts therefore as an additionnal dissipation but only for the high modes of the spectral representation, that
contain the excess of energy that has to be taken care of.

4. SENSITIVITY STUDY OF THE SVV MODEL TO THE PARAMETERS

4.1 Methodology

This parametric study consists in testing several values for the cut-off mode and the weight, for multiple
coarsening of the mesh, and at two Rayleigh numbers. For each Rayleigh number, the reference for the number
of modes is the one used in the DNS simulation : NDNS = 160 at Ra = 108 and NDNS = 320 at Ra = 109,
along each direction of space. The number of modes used for the SVV simulations, N , is characterised by a
Mesh Reduction Factor (MRF) according to N = NDNS/MRF. Three MRF’s are studied at Ra = 109 and two
at Ra = 108. These are summarized in Table 1.

MRF 1 (DNS) 2 2.67 4

Ra = 108 160 (8) [1200] 80 (4) [1200] 60 (3) [1200] -
Ra = 109 320 (16) [400] 160 (8) [400] 120 (6) [400] 80 (4) [400]

Table 1 Number of collocation points N in each direction, for each Rayleigh number and each MRF studied.
In parenthesis, the number of domains in the vertical decomposition of the cavity (20 collocation points per
domain, in the vertical direction). In brackets, the integration time interval for each simulation.

The weight ε is usually taken inversely proportional to the number of modes used in the spectral decomposition
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M
ε

1/N 1/2N 1/3N 1/4N

N/2 N/2 + + N/2+ N/2− N/2−−
2N/3 2N/3 + + 2N/3+ 2N/3− 2N/3−−
3N/4 3N/4 + + 3N/4+ 3N/4− 3N/4−−
4N/5 4N/5 + + 4N/5+ 4N/5− 4N/5−−

Table 2 Parameters considered for the sensitivity study of the SVV model. In light gray, the configurations
investigated in the study and their designations.

[1, 4, 6, 7, 10]. The following weights have been considered :

ε ∈
{

1

N
,

1

2N
,

1

3N
,

1

4N

}
. (8)

As for the cut-off mode, the stability of the SVV models in onedimensional simulations requires M ' Nβ,
with β ≤ 1/2 [1] or even β < 1/4 [5, 10]. But in multidimensional simulations, the condition is not as strict
and M is often taken as a fraction of N [1, 4, 7]. The following cut-off modes have thus been considered :

M ∈
{
N

2
,
2N

3
,
3N

4
,
4N

5

}
. (9)

Table 2 summarizes all the 16 combinations of weight and cut-off mode that have to be studied, for the 3 MRF’s
at Ra = 109 and two at Ra = 108. To reduce the number of simulations, only half of these combinations were
studied : the ones from the diagonal and the anti-diagonal of the table. The spectral representation of the
corresponding operator εQ̂k is shown in figure 2 (a).

4.2 Sensitivity of SVV model to the parameters

The combinations of weight and cut-off mode were compared along two criteria: the ability to stabilize the
simulation and the ability to accurately predict the basic fluxes in the cavity. Deeper investigations on the
accuracy of SVV modelisation will concentrate on one model and are found in section 5.

4.2.1 Stability of the simulations Figure 2 presents, at Ra = 109, the stability of the models for different
MRF’s. As the mesh gets coarser, it appears that the key element of the stability is the cut-off mode M , and the
weight ε plays almost no role in it. The cut-off mode M = 4N/5 seems to be nearly ineffective for stabilizing
the simulation: even for MRF = 2, the simulation is not stable for ε = 1/N . As the MRF increases, more
and more models are unstable and, for MRF = 4, only the models with M = N/2 are able to stabilize the
simulation. The cut-off mode must therefore be the lowest possible to ensure the stability.

The simulations at Ra = 108 were all stable, regardless of the parameters and MRF’s studied. This can be
explained by the lower level of turbulence than at Ra = 109, conducting to a smaller amount of kinetic energy
that needs to be dissipated at the high-order modes.

4.2.2 Prediction of the basic fluxes Tables 3 and 4 show, for all the models, Rayleigh numbers and studied
MRF’s, the conductive flux at the horizontal walls and the convective flux at the middle plane of the cavity,
averaged over time and horizontal plane. Both at Ra = 108 and Ra = 109, the accuracy of the results decreases
as the MRF increases, for every model. For MRF = 2, the SVV model is able to predict accurately both the
Nusselt number at the wall and the convective flux in the middle. The accuracy of the model decreases for
the lower values of the cut-off mode: this is specially true for M = N/2, which gives notably significant
differences with the values obtained via DNS.
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Fig. 2 Spectral representation of the studied SVV parameter configurations (a) and the numerical stability for
different Mesh Reduction Factors (MRF= NDNS/N ) (b), (c) (d). Ra = 109.

Here again, the weight seems to have a secondary role compared to the cut-off mode. A high enough cut-off
mode ensures good prediction of these basic fluxes, regardless of the weight. It is only when the cut-off mode
is too low to guarantee a good accuracy that the weight can play a minor role in correcting the error.

Ra 108 109

Case
MRF (Mesh)

2.67 (60) 2 (80) 4 (80) 2.67 (120) 2 (160)

N/2 + + 33.99 9.4 % 31.54 1.5 % 77.48 25.6 % 68.63 11.3 % 63.14 2.4 %
N/2−− 33.03 6.3 % 31.28 0.7% 73.85 19.8 % 66.57 7.9 % 62.19 0.8 %
2N/3+ 32.25 3.8 % 30.97 -0.3 % - - 65.1 5.6 % 61.68 0.0 %
2N/3− 32.12 3.4 % 30.93 -0.4 % - - 64.82 5.1 % 61.41 -0.4 %
3N/4+ 31.81 2.4 % 30.93 -0.4 % - - - - 61.34 -0.5 %
3N/4− 31.73 2.2 % 30.92 -0.5 % - - - - 61.33 -0.5 %

4N/5 + + 31.65 1.9 % 30.09 -0.5 % - - - - - -
4N/5−− 31.44 1.2 % 30.94 -0.4 % - - - - 61.44 -0.4 %

DNS 31.06 61.67

Table 3 Mean of Nusselt numbers at the top and bottom walls, depending on the Rayleigh number, the MRF
and the settings of the SVV model. For each column, the left number is the absolute value of the Nusselt
number and the right one is the relative difference with the DNS value. Unstable settings are marked with
symbol “-’.

4.2.3 Selection of a set of parameters Of the two parameters of the SVV model, the cut-off mode has the main
influence on both the stability and the accuracy. As the MRF increases, the cut-off mode has to be reduced to
ensure stability, but the accuracy of the results can be severly downgraded. Therefore, there is no configuration
that allows both stability and accuracy for a high MRF. SVV modelling cannot consequently be used with a
too coarse mesh and the MRF must be kept around 2.

As a compromise between stability and accuracy, the configuration 2N/3− was chosen in the following :
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Ra 108 109

Case
MRF (Mesh)

2.67 (60) 2 (80) 4 (80) 2.67 (120) 2 (160)

N/2 + + 34.02 9.6 % 32.22 3.8 % 71.37 15.4 % 67.69 9.4 % 64.44 4.2 %
N/2−− 32.44 4.5 % 31.62 1.9 % 68.03 10.0 % 66.5 7.5 % 63.08 2.0 %
2N/3+ 32.8 5.7 % 31.58 1.7 % - - 66.44 7.4 % 62.95 1.7 %
2N/3− 32.54 4.8 % 31.48 1.4 % - - 65.92 6.5 % 62.57 1.1 %
3N/4+ 31.6 1.8 % 31.26 0.7 % - - - - 61.95 0.1 %
3N/4− 31.74 2.3 % 31.24 0.6 % - - - - 62.07 0.3 %

4N/5 + + 33.32 7.3 % 31.15 0.4 % - - - - - -
4N/5−− 32.55 4.9 % 31.15 0.4 % - - - - 62.01 0.2 %

DNS 31.04 61.87

Table 4 Mean convective flux at the center plane of the cavity, depending of the Rayleigh number, the MRF
and the settings of the SVV model. For each column, the left number is the absolute value of the convective
flux and the right one is the relative gap with the DNS value. Unstable settings are marked with symbol “-’.

M = 2N/3, ε = 1/3N .

5. FURTHER ANALYSIS OF THE CHOSEN SVV MODEL

5.1 Statistical analysis of the flow

Figure 3 shows the vertical distribution of key values of the flow, averaged over time and horizontal planes,
obtained with DNS and with the chosen SVV model 2N/3−, at Ra = 109 : temperature θ, square of temper-
ature fluctuation θ

′2, conductive flux −∂θ/∂x3, convective flux u3θ, kinetic energy of the mean flow uiui/2,
and turbulent kinetic energy u′iu

′
i/2. Results with the SVV model are in very good agreement with DNS.

Furthermore, the LES is able to accurately predict the second-order statistics.

5.2 Autocorrelation function of the temperature field

To get an idea of the ability of SVV modelling to capture the structure of the flow, we calculated the autocorre-
lation function in horizontal planes of the temperature field near the bottom wall. The autocorrelation function
was calculated using the Wiener-Khinchin theorem, stating that, for a stationnary random process, the Fourrier
spectral decomposition of the autocorrelation function is equal to the power spectrum of this process.

Let us call θz0(r) the two-dimensional temperature field in the plane z = z0, θ̂z0(k) its Fourrier transform,
and Rθz0

(r) =
∫

Ω θ(r′)θ(r′ + r)dr′ the autocorrelation function of θz0 . Then :

Rθz0
(r) =

1

2π

∫∫ ∞
−∞
||θ̂z0(k)||2 exp(2ιπk · r) dk. (10)

This process is repeated for Nfields instantaneous temperature fields and the mean autocorrelation function of
the temperature field is then defined by :

Rθz0
(r) =

1

Nfields

Nfields∑
i=1

Rθz0 ,i
(r) (11)

Figure 4 shows examples of instantaneous temperature fields obtained with DNS and with the SVV model
2N/3−, at Ra = 109, as well as the mean autocorrelation functions of the temperature field at z=0.007
calculated with Nfields = 78 temperature fields, with DNS and SVV simulations..
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Fig. 3 Vertical distribution of key values, averaged over time and over horizontal planes, at Ra = 109. (a)
Temperature θ, (b) Square of temperature fluctuation θ

′2 (zoom), (c) Conductive flux −∂θ/∂x3 (zoom), (d)
Convective flux u3θ, (e) Kinetic energy of the mean flow uiui/2, (f) Turbulent kinetic energy u′iu

′
i/2. DNS

(black) and LES with the SVV model 2N/3− (red).

First, Figures 4 (a) and 4 (b) show similar structures with the signature of a large scale circulation organized
around a diagonal plane. To further quantify these structures, the computed averaged autocorrelation functions,
shown in Figures 4 (c) for DNS simulations and 4 (d) for the SVV model, are in very good agreement, indicat-
ing that the SVV model preserves the length distribution of large scale turbulent eddies and the integral scale
of turbulence.

6. CONCLUSION

Spectral Vanishing Viscosity model is a very good alternative to classic eddy-viscosity models for Large Eddy
Simulations and has shown many assets, since as its ability to stabilize the numerical simulations of Rayleigh-
Bénard convection with Chebyshev spectral collocation method is quite robust and the numerical cost of the
model is negligible. Moreover, the SVV model accurately predicts key values, such as the Nusselt number at
the wall, the convective flux and the kinetic energy. It has also proven its capability of reproducing the second
order statistics and preserving the large scale distribution of the turbulent eddies. It must be noted that SVV
modelling does not affect the spectral convergence of the numerical method.

Of the two parameters of the SVV model, it seems that one of them has a major role in both the stability of the
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Fig. 4 Snapshots of the temperature field at z=0.007 obtained via DNS (a) and SVV, model 2N/3− (b). Mean
autocorrelation function of the temperature field at z=0.007 for the DNS (c) and SVV (d) simulations, based
on 78 snapshots. Ra = 109.

simulation and the accuracy the results: the cut-off mode. The weight plays a minor role and should preferably
be kept quite low. This feature leads to the the most obvious limitation of SVV simulations: the downgrade of
the accuracy of the results when the reduction of the mesh gets too high. SVV model can be very accurate, but
does not allow for a too coarse mesh.
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