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Neutron scattering from fragmented frustrated magnets

F. Museur,1, 2 E. Lhotel,1 and P. C. W. Holdsworth2

1Institut Néel, CNRS & Univ. Grenoble Alpes, 38042 Grenoble, France
2ENS de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France

The fragmentation description is used to analyse calculated neutron scattering intensities from
kagomé ice and spin ice systems. The longitudinal, transverse and harmonic fragments produce
independent contributions to the neutron scattering intensity. This framework is used to analyse
the ordering due to quantum fluctuations in the topologically constrained phase of kagomé ice and
the monopole crystal phase of spin ice. Here, quantum fluctuations are restricted to the transverse
fragment and they drive the system into a double-q structure in which longitudinal and transverse
fragments have a different ordering wave vector. The intensity reduction of the Bragg peaks for
the transverse fragments, compared with known classical limits can be used as a diagnostic tool
for quantum fluctuations. Published quantum Monte Carlo data for spin ice in a [111] field are
consistent with the proposed protocol.

I. INTRODUCTION

Emergent gauge field descriptions [1] have revolu-
tionised our vision of frustrated magnetism, leading us
far from our expectations for microscopic systems. The
monopole picture [2, 3] of spin ice [4, 5], the U(1) quan-
tum spin liquid phase [6–9], or more recently the possible
emergence of gauge fields of higher rank [10] are particu-
larly remarkable examples. In spin ice this emergent de-
scription is a good approximation even at the microscopic
level [11–14] so that the magnetic moments represent el-
ements of a lattice field which, at low temperature and in
zero external field is the curl of an emergent gauge field,

A⃗ [1, 15]. This so called “transverse” field leads to dipo-
lar spin correlations in the low temperature “Coulomb”
phase [16]. The excitations of magnetic monopoles out
of this monopole vacuum requires the syphoning off of a
part of this magnetic flux reservoir to create an orthogo-
nal, or “longitudinal” field, the gradient of a scalar poten-
tial Ψ. Application of an external magnetic field or the
presence of surface charges requires a further separation
giving the required harmonic field contribution [17, 18],

h⃗. This fragmentation of the magnetic resources [15, 19]
corresponds to a Helmholtz-Hodge decomposition [18] of
the emergent vector field

M⃗ = ∇Ψ+∇× A⃗+ h⃗. (1)

In this paper we explore the consequences of fragmen-
tation for neutron scattering on spin ice like systems, con-
centrating on those in which quantum fluctuations are in
competition with, or responsible for the development of
long rang magnetic order. In these systems, because of
the separation in energy scales associated with the trans-
verse and longitudinal fragments, quantum fluctuations
are largely restricted to the transverse fragment. As a re-
sult, the fragmentation picture is extremely useful for the
analysis. A characteristic of the ordered phases discussed
is that the longitudinal and transverse fragments order
with different wave vector giving examples of “double-q”
structures [20]. As our main example we concentrate on
order driven from the “KII”, topological liquid phase of

kagome ice [21–23]. We show that, while the longitudi-
nal fragment responsible for the charge orders in a q = 0
structure, the transverse fragment orders at a finite wave
vector characteristic of the “dimer star phase” defined
in detail below. The KII phase is generated in models
of two-dimensional kagomé ice that include long range
magnetostatic interactions and in the kagomé spin planes
lying perpendicular to an external field placed along the
[111] direction in a spin ice material. Ordering out of the
KII phase can be driven either classically by potential
energy [21, 22], or by quantum fluctuations in quantum
spin models [24, 25]. We make predictions for neutron
scattering intensities from classical and quantum ordered
states and compare with published numerical data from
quantum Monte Carlo simulations on quantum spin ice
in a [111] field [25]. We also comment on the analogous
three dimensional system, the monopole crystal phase of
quantum spin ice [26] in which a dense, ordered monopole
structure would cohabit with a quantum spin liquid su-
perposition of the transverse fragments.
The problems considered map onto dimer problems via

their emergent field description [27]. In these phases,
which show magnetic charge order, the transverse frag-
ment maps exactly onto one of the Z2 sectors of these
emergent fields. The magnetic charge ordering explicitly
breaks this Z2 symmetry leaving a unique opportunity to
observe dimer physics, quantum or classical, with a dipo-
lar probe. That is, using neutron scattering within the
dipole approximation one can visualise the correlations
emerging from the fictive quadrupolar objects.
The rest of the paper is organised as follows: in the

next two sections we review the fragmentation picture for
spin-ice and its two-dimensional equivalent. In section
IV we show that neutron scattering data conveniently
splits into identifiable contributions from the transverse,
longitudinal and harmonic fragments. We illustrate this
discussion using the low temperature, “

√
3×

√
3” phase

of classical dipolar kagomé ice. In section V we show
how quantum fluctuations quantitatively change the pre-
dicted neutron scattering patterns as the classical phase
changes to a quantum resonating phase and illustrate
how this can be used as a diagnostic tool for detecting
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quantum fluctuations. In section VI we relate our discus-
sion to published quantum Monte Carlo data [25]. Sec-
tion VII deals with the monopole crystal in spin ice and
the paper concludes with a general discussion. Through-
out the paper we refer to the kagomé plateau region of
spin ice with an applied [111] field as the kagomé plateau
and to the two-dimensional problem of a single kagomé
plane of triangles as kagomé ice.

II. A REVIEW OF FRAGMENTATION

FIG. 1. Pyrochlore lattice (blue) and its dual diamond lattice
(black). Tetrahedra of type A (B) are shown in shaded purple
(green) respectively. The cubic unit cell is delimited by the
dashed lines and contains sixteen sites. The grey arrows show

the four d⃗i vectors defined in the text.

Spin ice forms a pyrochlore lattice of corner sharing
tetrahedra, a four-sublattice face centred cubic struc-
ture. The convention in discussing this system is to use
the overlying cube of side ac containing sixteen sites, as
shown in Fig. (1). A laboratory frame [x̂, ŷ, ẑ] is then de-
fined with respect to the basis vectors of the cube. The
spins take discrete orientations, pointing towards or away
from the centres of the tetrahedra, along one of the four

body diagonals of the cube: S⃗i = ±d⃗i

d⃗1 =
1√
3
[−1,−1, 1], d⃗2 =

1√
3
[1,−1,−1]

d⃗3 =
1√
3
[−1, 1,−1], d⃗4 =

1√
3
[1, 1, 1]. (2)

At the microscopic level, the monopole picture corre-
sponds to replacing the spins by needles carrying mag-
netic flux and therefore dumbbells [2, 28] of magnetic
charges into the centres of the tetrahedra. The tetrahe-
dra form a diamond lattice of magnetic charge vertices,
with a spin on each bond. The spins and diamond lat-
tice sites are labeled i, j and I, J respectively. The nee-
dles carry flux units of m/a, where m is the magnetic

moment associated with the spin and a =
√
3
4 ac the di-

amond lattice constant. They can thus be considered
as elements of a lattice field lying along the bonds of

the diamond lattice: MIJ = (S⃗i.d⃗i)
m
a ηI . For the bipar-

tite diamond lattice, ηI = 1 for a tetrahedron of type

A in which the out pointing spin S⃗1 falls along d⃗1 and
ηI = −1 for type B which is the inverse. This conven-
tion ensures that MIJ = −MJI . These scalar elements
can be converted into vector field elements by multiply-

ing once again by the unit vector d⃗i lying on the bond

IJ , M⃗IJ =MIJ d⃗i = −M⃗JI , which is proportional to the
vector spin at the centre of the bond.
The magnetic charge associated with each vertex is

given by a discrete, on lattice Gauss’ law;
∑

J MIJ =
−QI , where the sum goes over the four nearest neigh-
bours J to site I. The minus sign allows for the satis-
faction of properties of both the emergent field and the
real magnetostatic problem of spin ice [19]. The vertex
charge takes values QI = 0,±Q,±2Q, where Q = 2m/a
is the monopole charge [2]. Labelling the four field el-
ements [MIJ ] in order 1 . . . 4 (see eqn. (2)), a vertex
satisfying the ice rule, with QI = 0 (two spins pointing
in and two out) can be written [MIJ ] = [1, 1,−1,−1] in
units of m/a. Using the same notation, monopole carry-
ing vertices are of the form [MIJ ] = ±[1,−1,−1,−1] for
QI = ±Q.

At this microscopic level, the Helmholtz-Hodge decom-
position implies that each vertex set [MIJ ] is cut into
three distinct parts indicated by eqn. (1)

[MIJ ] = [MIJ ]m + [MIJ ]d + [MIJ ]h. (3)

Here m stands for monopole and represents the diver-
gence full longitudinal part, d the divergence free trans-
verse part and h the harmonic contribution.

The decomposition can be calculated for any spin
configuration by first identifying the vertices carrying
magnetic charge and solving for the longitudinal field
components via the Poisson equation [29]. Assuming
periodic boundary conditions, the sum of the trans-
verse and harmonic contributions is then the difference,
[MIJ ] − [MIJ ]m, which should satisfy Kirchoff’s cur-
rent law at each vertex. A more practical alternative
method [30], iteratively calculates the divergence free
part [MIJ ]d + [MIJ ]h for a given charge distribution,
yielding [MIJ ]m by the appropriate subtraction.

The harmonic contribution can be understood by con-
sidering the solution to Poisson’s equation for charges
distributed on a torus. It is invariant on adding a term

ψ′(r⃗) = h⃗.r⃗ to the scalar potential, with h⃗ the spatially
uniform harmonic field. As a consequence, multi-valued
solutions are analytically connected by winding a charged
particle around the torus, returning to its starting posi-
tion [29, 31]. Winding a charge q along the ẑ axis of

a torus of scale L in dimension d would change h⃗ by

δh⃗ ∼ q
Ld−1 ẑ.

Moving these arguments directly to spin ice puts us
on the diamond lattice of charge vertices with the cu-
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bic axes lying along the principle directions of the torus.
The individual solutions correspond to different topolog-
ical sectors [32] which fix the topological contribution to
the magnetisation. For simplicity here we consider a sit-
uation with monopole concentration zero and magnetisa-
tion maintained along the [001] direction either by an ex-
ternal field or by a symmetry breaking perturbation [33].

The average magnetisation per spin is then M⃗ = m√
3
ϵẑ

from which we can identify a harmonic fragment for each
field element of amplitude ϵ in units of m/a. For any
vertex lying on the A sublattice, the harmonic flux flows
out along elements 1 and 4 and in through 2 and 3 (see
eqn.(2)):

[MIJ ]h =
m

a
[ϵ,−ϵ,−ϵ, ϵ], 0 ≤ ϵ ≤ 1, (4)

while for a B sub-lattice the signs are reversed. As the
magnetisation becomes saturated, ϵ → 1 and the har-
monic fragment takes on 100% of the magnetic resources.

The topological harmonic fragment remains defined
even in the presence of a finite monopole concentration
[29]. In this case, it will be dressed by a paramagnetic
contribution to the magnetisation due to the statistics of
monopole configurations of finite extent. We choose to
include this contribution as part of the longitudinal frag-
ment, but both ultimately contribute to the magnetisa-
tion and its fluctuations [32]. More realistic boundaries,
with fixed surface charges and defects [34] will result in a
harmonic component with some structure. Consequently
this will generate some diffuse scattering at finite q⃗ in
addition to the topological contribution at q⃗ = 0.
The topological sectors are iso-energetic (unlike for

a standard fluid of electric charges [29]), but in zero
field the sector straddling zero magnetisation is selected
entropically. As a consequence, in the monopole fluid
phase, in zero external field, the harmonic contribution
is zero to a good approximation, so that the field built
from the magnetic moments decomposes into two “or-
thogonal” fluids with elements [MIJ ]m and [MIJ ]d [15].
As the monopole concentration goes to zero, only the

transverse fragment survives, [MIJ ] → [MIJ ]d, while
crossing the phase boundary into the all-in all-out anti-
ferromagnetic phase (a double monopole crystal [35, 36]),
the field elements are purely longitudinal, [MIJ ] →
[MIJ ]m. The monopole crystal phase [15, 37–40] is inter-
mediate between these two limits [36] with [MIJ ] divided
evenly between [MIJ ]m and [MIJ ]d. The monopole part
forms long range all-in-all-out order and the dipolar part
a Coulomb liquid with characteristic dipolar correlations.

III. FROM THE KAGOMÉ PLATEAU OF SPIN
ICE TO KAGOMÉ ICE

Applying a magnetic field of modest strength along the
[111] body centred cubic axis aligns the apical spins of
each tetrahedron along the field direction, as shown in
Fig. (2). As the monopole concentration goes to zero,

FIG. 2. Pyrochlore spin ice in a [111] field, showing the dis-
tinction between planes of pinned apical spins on a triangular
lattice (green) and kagome planes satisfying the kagome ice
rules (red).

the system enters the kagomé plateau region [41] in which
kagomé planes of spins lying perpendicular to the field di-
rection enter the KII topological liquid phase with resid-
ual entropy at low temperature. In each tetrahedron the
ice rules of two spins in and two out are satisfied but as
the apical spin is fixed to be out for an A tetrahedron
and in for B, the three remaining spins in the in-plane
triangles satisfy the kagomé ice rule with two spins in
and one out on an A triangle and two out one in on a B
triangle [42].
This evolution is well captured by fragmentation. A

magnetic moment along the [111] axis can be decomposed
into three cubic contributions of equal amplitude, each
of which generates an independent harmonic fragment.
Following eqn. (2), a vertex of type A has harmonic
fragment

[MIJ ]h = [MIJ ]
x
h + [MIJ ]

y
h + [MIJ ]

z
h (5)

[MIJ ]h = [−ϵ, ϵ,−ϵ, ϵ] + [−ϵ,−ϵ, ϵ, ϵ] + [ϵ,−ϵ,−ϵ, ϵ]

[MIJ ]h = [−ϵ,−ϵ,−ϵ, 3ϵ], 0 ≤ ϵ ≤ 1

3
.

The kagome plateau corresponds to ϵ = 1
3 so that for one

of the three vertex configurations with spin 4 pointing
along [111]

[MIJ ] = [−1,−1, 1, 1]

= [0]m + [−2

3
,−2

3
,
4

3
, 0]d + [−1

3
,−1

3
,−1

3
, 1]h.

(6)

The longitudinal fragment is zero, the transverse frag-
ment is restricted to the three spins in the plane with two
elements of amplitude 2/3 and one of 4/3 which together
satisfy Kirchoff’s law. The harmonic term is identical for
each tetrahedron or unit cell, spreading out evenly over
the three in-plane spins. The apical spin is purely har-
monic and the sum over the contributions also satisfies
the current law.
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Spin ice fragmentation on the kagomé plateau is inti-
mately related to the fragmentation of two-dimensional
spins in kagomé ice. In this case the basic spin units are
triangles whose centres form a honeycomb lattice of ver-
tices for magnetic charge accumulation [15, 21, 22, 43].
Considering the spins in an isolated kagomé layer on the
kagomé plateau, the in-plane projection of the harmonic
terms leaves a magnetic charge accumulation at the hon-
eycomb lattice sites corresponding to the magnetic charge
crystal observed in the KII phase of kagomé ice [21, 22].
The three-dimensional harmonic term therefore corre-
sponds to a two dimensional longitudinal term. Using
a similar notation to above the three, two-dimensional
field elements entering a triangle of type A can be writ-
ten

[MIJ ]
2D = [−1,−1, 1]

= [−1

3
,−1

3
,−1

3
]m + [−2

3
,−2

3
,
4

3
]d + [0]h. (7)

The units of the field elements are 2m
a
√
2/3

accommodating

the projection of the three dimensional spin vectors onto
the plane [44] and the charge accumulation at the hon-
eycomb vertices is only one half of the in plane monopole
charge [2, 45]. An example of such a decomposition is

shown in Fig. (3) for the ordered
√
3 ×

√
3 phase dis-

cussed in more detail in the next section.

IV. NEUTRON SCATTERING FROM
FRAGMENTED STATES

The fragmentation decomposition is particularly use-
ful for magnetic neutron scattering as the longitudinal
and transverse fragments, when transformed into recip-
rocal space, are mutually orthogonal, while the topologi-
cal harmonic fragment is restricted to wave vector q⃗ = 0⃗
and subsequent Brillouin zone centres. For a system of N
spins the Fourier transform of a magnetic configuration
is defined

M⃗(q⃗) = m
∑

i=1,N

S⃗i exp(iq⃗.r⃗i)

= a
∑

I=1,N/4

∑
J=1,4

M⃗IJ exp
(
iq⃗.(r⃗I + δ⃗J)

)
, (8)

The spin and tetrahedron centres are at positions r⃗i and

r⃗I respectively and δ⃗J = a
2 d⃗J .

Following the spin fragmentation we can write M⃗(q⃗) =

M⃗(q⃗)m + M⃗(q⃗)d + M⃗(q⃗)h. The component M⃗(q⃗)d is
“transverse” in that it lies perpendicular to the wave

vector q⃗∗ = q⃗ − G⃗, which is folded back into the first
Brillouin zone by the appropriate reciprocal lattice vec-

tor G⃗. Both the “longitudinal” component, M⃗(q⃗)m and

the harmonic component M⃗(q⃗)h, lie parallel to q⃗∗ with
the latter restricted to the Brillouin zone centres.

Neutron scattering within the static approximation
gives access to the Fourier transform of the two site, one
time, spin-spin correlation function

Sαβ(q⃗) = ⟨Mα(q⃗)Mβ(−q⃗)⟩ , (9)

where α, β are cartesian indices x, y, z, q⃗ is the wave vec-
tor transfer of the scattering process and ⟨. . . ⟩ represents
a thermal average. The neutron scattering cross section
is proportional to the projection of the correlation tensor
perpendicular to q⃗

S(q⃗) =
〈
|M⃗⊥(q⃗)|2

〉
, (10)

where M⃗⊥ is the projection of M⃗ perpendicular to q⃗.
For simplicity we take the magnetic form factor to be a
constant, independently of q⃗.
As a consequence of the orthogonality condition the

structure factor also decomposes into distinct parts

S(q⃗) = S(q⃗)m + Sd(q⃗), (11)

so that the scattering intensity divides into components
from the divergence full (plus harmonic at the zone cen-
tres) and divergence free fragments of the magnetic mo-
ments with no interference terms. In the following sec-
tions we will demonstrate this property by computing the
elastic scattering intensity of each fragment as well as of
the total spin structure for different fragmented magnetic
states. This property opens up the possibility of defin-
ing fragmentation order parameters by integrating the
scattered intensity in specific regions of reciprocal space.
Inside the first Brillouin zone the scattering is purely

transverse: S(q⃗) = Sd(q⃗). For larger q⃗, as the scat-
tering cross section lies perpendicular to q⃗ rather than
q⃗∗, S(q⃗) develops contributions from the other two
fragments. The separation of these fragments has al-
ready been observed in magnetic charge crystal phases
[15, 38, 39, 43, 46]. In these phases the harmonic com-
ponent can be ignored, the longitudinal fragment gives
antiferromagnetic long range order corresponding to the
ordered array of magnetic charges and the transverse part
gives diffuse scattering characteristic of the Coulomb spin
liquid phase [16].
In the case of polarised neutrons, S(q⃗) can be further

resolved into “spin flip” (SF) and “non-spin flip” (NSF)
components corresponding to scattering events in which
the neutron spin direction is flipped or not [14]. The SF
scattering cross section lies in the plane perpendicular to
the polarisation axis and projects out the component of

M⃗⊥(q⃗) lying in this plane. The NSF component projects

M⃗⊥(q⃗) onto the polarisation axis. This refinement leads
to separate contributions to the structure factor, S(q⃗)SF

and S(q⃗)NSF for scattering perpendicular and parallel to
the polarisation axis, each of which can be decomposed
into the perpendicular fragmentation components. For
an unpolarised source the measurement averages over all
polarisation directions leaving the total scattering inten-
sity proportional to S(q⃗). Polarised neutron refinement
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FIG. 3. Top: Fragmentation of the
√
3×

√
3 phase magnetic structure on a kagomé plane. The magnetic unit cell extends over

9 sites. Colours illustrate the amplitude of each component, and green and purple spheres show the placement of positive and
negative magnetic charges within the dumbbell model. Left panel, full spin configuration. Middle panel, longitudinal fragment
M⃗m showing “all spins in all spin out” ordering. Right panel, transverse fragment M⃗d showing emergent ordering of the star
phase. Bottom: SF neutron scattering intensities for neutrons polarised perpendicular to the plane computed from the total
and corresponding fragment above. The total scattering picture can also be computed by adding the separate intensities of the
two fragments.

is of particular interest for scattering from spin ice ma-
terials on the kagomé plateau. In this case, choosing the
neutron polarisation along the [111] field direction allows
for the resolution of spin components parallel and per-
pendicular to the kagomé plane [44].

As a specific example we show the decomposition of
the scattering intensity from a two-dimensional sam-
ple of kagomé ice. A possible evolution of the classi-
cal KII phase as the temperature is lowered, is to the
“
√
3×

√
3” phase whose structure is illustrated in Fig. (3)

top [21, 22]. The repetition distance for the unit cell is√
3 larger than that of the kagomé lattice. As shown, the

spins in the unit cell can be fragmented. The longitudi-
nal part gives the charge order of alternate positive and
negative charges, with a reduced unit cell of three sites.
The transverse part maintains the 9-site unit cell, whose
configuration maps onto the emergent field of a dimer
solid, the “star phase” in which a tiling of the unit cells
produces three distinct types of hexagonal ring. One out
of the three types of hexagon forms a six-fold symmet-
ric star of dimers from which the phase takes its name

[47, 48]. The longitudinal, transverse and total contribu-
tions to the scattering intensity from this ordered state
are shown in Fig. (3) bottom. For the kagomé plateau
of spin ice, this in-plane scattering intensity would corre-
spond to S(q⃗)SF with the neutron source polarised along
the [111] direction. In this case the longitudinal fragment
corresponds to the projection onto the plane of the three
dimensional harmonic component, which is channelled
out of each tetrahedron via the apical spin (not included)
[44] (see eqns. (6) and (7)). The data is shown in the
scattering plane of the kagomé lattice in units appropri-
ate for spin ice and the kagomé plateau: the in-plane axes
[k, k, 2k̄], [h, h̄, 0] lie perpendicular to the [111] field axis
and are in units of 2π/ac. The six fold symmetry of the
spins lying in the plane is represented in the figure by
scaling the [k, k, 2k̄] axis by a factor of 1√

3
.

This analysis shows that, rather surprisingly this sim-
plest of phases, the classical

√
3 ×

√
3 phase is a frag-

mented double-q structure whose scattering pattern is
the sum of intensities from the longitudinal and trans-
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verse parts. These fragments have different ordering wave
vectors and have no communal Bragg peaks so that the
total scattering is made up of resolvable contributions
from the charge ordering and the emergent field from
the star phase. The charge ordering from the longitu-
dinal component corresponds to antiferromagnetic, “all
spins in all spins out” order. This is a “q⃗ = 0” order,
with Bragg peaks at the centres of the kagomé lattice
Brillouin zone starting at h = 2, k = 0 and symmetry
related points, the scattering intensity being zero at the
zone centres with smaller wave vector transfer. The star
phase from the transverse component shows Bragg peaks
at h = 2

3 , k = 0 and symmetry related points. These
correspond to the basis vectors of the reciprocal space

for the
√
3×

√
3 unit cell with magnitude q = 2π

ac

(
2
√
3

3

)
.

Peaks at larger q repeat in a distinctive, 6-fold symmetric
pinwheel pattern which we can take to be characteristic
of the star phase.

V. QUANTUM FLUCTUATIONS: THE SPIN-P
AND PLAQUETTE PHASES

In this section we consider the effect of quantum fluc-
tuations on the KII phase of kagomé ice. It is known
that quantum fluctuations driven by a small transverse
spin component could drive the spins into a partially or-
dered phase at low temperature [23–25]. In this resonat-

ing
√
3×

√
3 phase which we refer to as the spin-P phase,

two of the three types of hexagonal spin arrangement pro-
vide a framework for resonating loops of six spins around
the third class of hexagon. This quantum resonance cor-
responds to a linear superposition of the two states per
unit cell with spin rotations around the enclosed hexagon
in opposite directions, leaving an effective magnetic state
with reduced total moment, as shown in Fig. (4) top left.

To show that the spin-P phase corresponds to the co-
existence of the classical charge ordered phase and an
emergent quantum dimer phase [47, 48] one must first
apply the fragmentation procedure to the effective re-
duced moments once the quantum spin resonances have
been taken into account. From Fig. (4) top, one can see
that the residual spin on each triangle can be written, us-
ing the previous notation; ±[−1, 0, 0], arranged such that
the charge order is preserved. A vertex carrying a pos-
itive charge can thus be fragmented into a longitudinal
and a transverse part

[−1, 0, 0] = [−1

3
,−1

3
,−1

3
]m + [−2

3
,
1

3
,
1

3
]d + [0]h , (12)

This decomposition confirms that, on driving the
√
3×

√
3

phase into the spin-P phase with quantum fluctuations,
the charge ordering and hence the longitudinal fields are
unchanged, while the amplitude of the transverse part
is reduced by a factor of two. The quantum resonance
is therefore limited to the transverse fragment as an-
nounced. In dimer language, adding quantum fluctua-
tions to the star phase leads to resonating closed loops

of dimers which can lead to a quantum phase transition
to the “plaquette phase”. This is not a liquid phase, as
dimer translational symmetry remains broken such that
resonances are limited to plaquette flips of dimers around
one of the three types of hexagon of the star phase. The
corresponding resonance of the emergent field for the
dimers is shown in Fig. (5) top. Similarly to the residual
spin of the spin-P phase, it is constructed as the average
of both emergent field configurations around a plaquette.
Despite the resonance, the field retains a static residue
which is precisely that of transverse spin fragment shown
in eqn. (12). The spin-P phase is therefore a superposi-
tion of the charge ordered phase and the dimer plaquette
phase represented by a single Z2 sector of its emergent
field.
In the simplest quantum dimer models, quantum fluc-

tuations are generated through off-diagonal couplings be-
tween classical configurations that generate the hexago-
nal plaquette flips of dimers [47, 48]. The off-diagonal
energy scale, g is in competition with a classical, three
body interaction term, µ giving an energy scale for a
three dimer hexagon and an internal energy for each
dimer configuration. An effective Hamiltonian for such a
system can be written

Heff = µ
∑
7

(∣∣ 〉〈 ∣∣+ ∣∣ 〉〈 ∣∣)
− g

∑
7

(∣∣ 〉〈 ∣∣+ ∣∣ 〉〈 ∣∣) , (13)

where the sum over 7 is over all hexagonal loops contain-
ing three dimers, depicted by double links. For g = 0 and
µ < 0 one finds the classical star phase dimer solid [47, 48]
and for µ > 0, the columnar phase which maps onto
the ferromagnetically ordered phase for both kagomé and
spin ice [42]. As g increases from zero, the star phase or-
der parameter is progressively reduced from saturation
[48] up to a threshold and a discontinuous transition into
a small window around µ/g = 0, in which quantum fluc-
tuations favour the plaquette phase (See Fig. (5) bot-
tom). In the mapping between quantum spin ice and
dimer problems µ < 0 could be thought of as represent-
ing the corrections to the dumbbell model from the long
range interactions, that are characteristic of spin ice ma-
terials [49, 50] and artificial spin ice [51] as, in classical

kagomé ice they also drive the system into the
√
3×

√
3

phase at low temperature [22]. In the direct mapping
from classical nearest neighbour models µ is zero but it
is often left as a renormalizable, free parameter [7].
Neutron scattering data from the spin-P phase is eas-

ily interpreted using the fragmentation picture. We again
expect the data to separate into independent longitudinal
and transverse components and predict that the trans-
verse scattering intensity will be reduced by a factor of
four compared with scattering from the classical

√
3×

√
3

phase. This is confirmed in Fig. (4) where we show calcu-
lated neutron scattering data from the spin-P phase for
neutrons polarised perpendicular to the scattering plane.
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FIG. 4. Top: Fragmentation of the spin-P phase magnetic structure on a kagomé plane. The magnetic unit cell extends over
9 sites. Colours illustrate the amplitude of each component, and green and purple spheres show the placement of positive and
negative magnetic charges within the dumbbell model. Left panel, full spin configuration. The quantum resonance on the
hexagonal loop results in the effective absence of spins around the loop. Middle panel, longitudinal fragment M⃗m showing “all
spins in all spins out” ordering. Right panel, residual transverse fragment M⃗d corresponding to the residual emergent field of
the dimer plaquette phase (see Fig. 5 top). Bottom: SF neutron scattering intensities for neutrons polarised perpendicular to
the plane computed from the total and corresponding fragment above. The total scattering picture can be computed by adding
the separate intensities of the two fragments. Note that the absolute intensity scale is one quarter of that in Fig (3).

The intensity scale is reduced by a factor of four com-
pared with Fig. (3), highlighting the relative change in
the two intensities. The peak structure is identical for the
classical and quantum phases but the intensity difference
can be used as a diagnostic to distinguish between them.
For example, in the classical limit for the

√
3×

√
3 phase,

the intensity of inner ring of star phase peaks at h = 2
3 ,

k = 0 and symmetry related points, Isd is four times that
of charge ordering peaks at h = 2, k = 0 and related
points, Im, while in the spin-P phase, the two sets of
peaks, Ipd and Im have the same intensity.
This difference could be used as the basis for an order

parameter:

Q =

√
4Im − Id

3Im
, (14)

which distinguishes between the two phases, with Q = 0
for the classical

√
3 ×

√
3 ground state and Q = 1 for a

perfect plaquette phase. This order parameter has the
advantage over the one used in quantum Monte Carlo

simulations of dimers [48], of being built from experi-
mental observables.
The most recent numerical results suggest that the star

to plaquette quantum phase transition is first order [48].
As a consequence we anticipate that Q will undergo a
discontinuous jump at the transition.

VI. QUANTUM SPIN ICE IN A [111] FIELD

In this section we review data from existing work in
the context of the fragmentation picture. Shown in Fig.
(6) is constructed unpolarised neutron scattering data
in the kagomé plane from Quantum Monte Carlo simu-
lations. The data, for nearest neighbour quantum spin
ice in a [111] field is reproduced from Ref. [25]. It is
taken in the intermediate field region corresponding to
the kagomé plateau. The right hand panel shows data
taken at T

J = 1
20 where T is the temperature and J the

coupling constant. It is consistent with Coulomb phase
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FIG. 5. Top: the quantum resonance of the emergent field
for dimers in the plaquette phase is modelled as the average
of left and right circulations. Emergent dimers are located
on the purple minority spins. The resultant quantum super-
position is shown below, with a purple shade illustrating the
dimer resonance of the plaquette phase. Colours illustrate the
amplitude of each spin component. Bottom: phase diagram
of the dimer model given by eqn. (13) on the honeycomb lat-
tice [47].

spin liquid behaviour, showing correlated diffuse scatter-
ing with pinch point features [42, 44]. Bragg peaks at
the Brillouin zone centres (h = 2, k = 0 for example) are
masked. In an experiment these would also coincide with
the structural Bragg peaks. On the right we show data
at much lower temperature, T

J = 1
320 where the develop-

ment of order is clearly observed. A different choice of
scale along the vertical axis distorts the 6–fold symmetry
of the scattering pattern but despite this one can observe
features similar to those shown in Figs. (3) and (4). In
particular, sharpening peaks at h = 2

3 , k = 0 and symme-
try related points are clearly visible at the lower temper-
ature. These are the first elements of the radial pattern
of peaks characteristic of the pin-wheel ordering of the
emergent dimers. Moving out along one of the spokes
of the pattern the characteristic alternation of high and
low intensity peaks is visible. Even here a diffuse scat-
tering background remains, due presumably to remnant
incoherent or thermal spin fluctuations about the ordered
phase. The figures also show additional peaks compared
with Figs. (3) and (4). These are due to scattering from

FIG. 6. Unpolarized neutron scattering data in the kagomé
plane from Quantum Monte Carlo simulations of quantum
nearest neighbour spin ice in a [111] field. Left panel T

J
= 1

20
,

right panel T
J

= 1
320

. Data reproduced with permission from
[25].

the out of plane spin components which appear as a con-
sequence of simulating an unpolarised neutron source.
The order parameter Q, (eqn (14)) could be used as

a diagnostic tool to distinguish between the classical√
3×

√
3 and quantum spin-P phases. For this one would

need to include and analyse the magnetic peak intensities
at the zone centres coming from the harmonic fragment.
Projections of the harmonic sector parallel and perpen-
dicular to the kagomé planes provide both the three di-
mensional ferromagnetic order and the two-dimensional
charge order which can be separated using the analysis
of section III. In experiment the total intensity at these
points also includes a dominant structural contribution.
An independent estimate of this intensity is necessary.
This would be subtracted from the total to give the mag-
netic scattering intensity. However, in the present case
of numerical simulation, the simulated intensities could
be compared directly with predicted values.

VII. NEUTRON SCATTERING FROM THE
MONOPOLE CRYSTAL PHASE OF SPIN ICE

Similar logic involving the fragmentation protocol can
be applied to the ordering process out of the partially
ordered fragmented monopole crystal phase of spin ice in
zero magnetic field [15, 26] and this is the subject of this
section. In the monopole crystal phase a vertex carrying
a south pole (negative charge) takes the form

MIJ = [1, 1, 1,−1] (15)

= [
1

2
,
1

2
,
1

2
,
1

2
]m + [

1

2
,
1

2
,
1

2
,−3

2
]d,

and the transverse fragment maps onto one of the Z2

sectors of the emergent field for hard core dimers on a
diamond lattice [27]. In this case, the element carrying
the flux of magnitude

(
m
a

) (
3
2

)
, which is the minority spin

of either the “three in one out” or the “three out one in
vertex” corresponds to the dimer position. Monopole
charge ordering again coexists with an effective classical
dimer liquid represented by the transverse spin fragment.
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Complete ordering can again be either induced by
quantum fluctuations or by classical corrections to the
monopole picture. As in the case of kagomé ice, adding
corrections to the classical monopole picture through the
use of the dipolar spin ice Hamiltonian drives the sys-
tem into the fully ordered phase illustrated in Fig. (7)
upper panel [26], which we refer to as the spin-R phase.
The upper central and right panels show the longitudinal
and transverse fragments respectively. They show that
this can be represented as a classical superposition of the
“all spins in all spins out” order from the charges and
the emergent field from the phase of ordered dimers, the
R-phase [52] and that these distinct phases emerge from
the two orthogonal spin fragments. The 16–fold degen-
eracy of the spin-R phase can be divided into two sets of
8 states corresponding to the degeneracy of the R-phase.
The two sets have reversed monopole ordering on the two
sublattices of diamond lattice, each of which is tied to a
Z2 sector of emergent dimer field.

The calculated unpolarised neutron scattering inten-
sity from the spin-R phase is shown in the lower panels of
Fig. (7) for the [hh0], [00l] plane. They confirm that the
scattering decomposes into a fragmented double-q struc-
ture with different ordering wave vectors for the longi-
tudinal and transverse parts. The longitudinal fragment
shows the characteristic q = 0 ordering of the ionic crys-
tal, while the transverse part orders with q⃗ = [hhl] in
units of the reciprocal cubic cell, 2π

ac
and with h + l an

odd number. The total intensity is again built of the two
independent fragments with no interference terms.

Quantum fluctuations can be added to the dimer model
via ring exchange flips around closed hexagons for which
Hamiltonian (13) can be adapted. This model has been
studied both analytically [47, 53] and numerically [52].
For large and negative µ, the dimers crystallise into the
classical R-phase which maximises the number of hexag-
onal loops or plaquettes of dimers (Fig. (7) top left).
Switching on the off diagonal term through finite g, the
system is driven through a quantum phase transition.
In this case the transition is to a quantum dimer liquid
rather than to a resonating dimer solid. For µ/g = 1,
hexagonal plaquettes become unfavourable and the sys-
tem passes discontinuously into a columnar phase [54]
with dimers aligned along one of the [111] axes. The full
dimer phase diagram is shown in Fig. 8 bottom.

For the monopole crystal such emergent dimer moves
are generated by small transverse spin coupling compared
with the nearest neighbour exchange. Application of de-
generate perturbation theory [53], yields a parameter ra-
tio for the effective dimers of µ/g = 0, which is deep in
the classical R-phase. The critical threshold [47, 53] for
entry into the quantum dimer liquid is estimated numer-
ically to be µ/g ∼ 0.7 [52]. As a consequence, we do not
anticipate the appearance of an effective quantum dimer
liquid in this system. In addition, as the inclusion of
dipolar corrections to the classical monopole model sees
the system order into the spin-R phase [26] this would
take a putative quantum system, inclusive of dipolar in-

teractions, even further from an emergent dimer liquid
phase.
However, if one could push the system into the quan-

tum dimer liquid phase [55], the neutron scattering sig-
nature for the emergent field would strongly resemble
that of quantum spin ice [7]. The emergent field for the
quantum dimers maps to lattice quantum electrodynam-
ics (LQED) [52] with essentially the same structure and
the same emergent photons which should show up in the
inelastic neutron scattering spectrum. Integrating over
the photon bands to give static spin correlations, the
pinch point structure of the classical system [15] would
evolve. The dipolar correlations of the classical system
map to correlations in four dimensional space time with
projection onto three dimensions leading to a suppres-
sion of the pinch point intensities at the Brillouin zone
centres. These predictions could be tested using config-
urations from the quantum Monte Carlo simulations of
Ref. 52 and working backwards to construct the emer-
gent transverse fragment of a monopole crystal. In this
partial quantum liquid phase these modified spin corre-
lations from the transverse fragment would coexist with
the [220] peaks from the longitudinal fragment or charge
order. The intensity of these Bragg peaks should remain
unchanged within the regime of emergent quantum dimer
fluctuations.

VIII. DISCUSSION

Any vector field can be separated, via a Helmholtz
decomposition into divergence full (longitudinal), diver-
gence free (transverse) and harmonic parts. In the
monopole picture of spin ice and related materials, the
magnetic moments play the role of an emergent lattice
field in which such a decomposition or magnetic moment
fragmentation is of particular interest. In this descrip-
tion, both ground state and excitation spectrum separate
perfectly into elements from the different fragments with
well separated energy scales. The monopoles [2, 3] are
built from the longitudinal fragment and are high energy
objects, the classical macroscopic degeneracy or quan-
tum photon spectrum come from the transverse frag-
ment, while the topological properties [33, 42, 44, 56]
are controlled by the harmonic fragment.
We have shown here that it is extremely useful to carry

this decomposition through to the analysis of neutron
scattering results, as each component gives a distinct
contribution to the neutron scattering intensity. Previous
texts have concentrated on situations in which an ordered
monopole fragment coexists with the transverse fragment
in the form of a correlated spin liquid [15, 38, 39, 43, 46].
Here we show that such systems with magnetic charge
ordering, when driven into a fully ordered phase, either
through quantum fluctuations or by small corrections to
the monopole picture, form fragmented double-q struc-
tures in which each fragment orders with a distinct order-
ing wave vector. Due to the separation in energy scales,
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FIG. 7. Top: fragmentation of the spin-R phase magnetic structure - a monopole crystal with ordered transverse fragment.
Only half of the tetrahedra are pictured for clarity. Left panel, spin configuration. The minority spins are indicated by a
darker shade of blue. Middle, longitudinal fragment M⃗m showing “all spins in all spins out” ordering. Right panel, transverse
fragment M⃗d corresponding to the emergent field for the ordered dimer phase (the R-phase, see Fig. (8) top). The colours
illustrate the amplitude of each spin component. Bottom: unpolarized neutron scattering intensities in the [hh0], [00l] plane
computed from the corresponding fragment above. The total scattering picture can also be computed by adding the separate
intensities of the two fragments.

quantum fluctuations are largely restricted to the trans-
verse fragment. In consequence the intensity reduction
of the transverse fragment compared to a known classi-
cal limit can be used as a diagnostic tool for the level of
quantum fluctuations.

In the specific examples chosen; the KII phase of
kagomé ice and the monopole crystal of spin ice, the
transverse fragment maps onto a Z2 sector of the emer-
gent field for a hard core dimer system on hexagonal
and diamond lattices respectively, so that the neutrons
indirectly probe dimer solids, both classical and quan-
tum. The analysis we propose relies on the existence of
a gapped energy spectrum above the ground state. In
this case, the proposed quantum resonances of spins, or
effective dimers around small closed loops will lead to a
quantifiable reduction in the observed neutron scattering
intensity. For this to hold, both the temperature scale
and the neutron energy resolution must be smaller than
this gap.

Bojesen and Onoda [25] have argued that their quan-
tum Monte Carlo data for spin ice in a modest [111] field

are consistent with the development of an emergent quan-
tum dimer solid at low temperature. Our paper provides
a protocol for a detailed analysis allowing for the distinc-
tion between the quantum phase and its classical ana-
logue. The energy scale associated with this quantum
phase is extremely low; between 1/20 and 1/320 of the
nearest neighbour coupling strength, so that quantita-
tive measurement appears to be at the limit of numerical
resolution. However, a clearer quantum limit is reached
in dedicated quantum dimer simulations on a hexagonal
lattice [48]. Our protocol could be tested in detail from
such simulations by reconstructing a single Z2 sector of
the emergent field from the dimers and constructing the
corresponding neutron scattering plots.

The low energy scales associated with quantum spin ice
have so far made identification of experimental systems
extremely difficult. One promising example is Pr2Hf2O7

[57] which shows some evidence of a quantum spin liquid
ground state from inelastic neutron scattering of single
crystal samples. Precision experiments in a [111] field
would certainly be of interest here as the first stage in
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~ 0: Spin ice point 

FIG. 8. Top: R-phase dimer structure on the diamond
lattice. The tetrahedra shown in Fig. (7) for the spin-R
structure are shaded in mauve. The dimer representation is
equivalent to the emergent field representation shown in the
top right panel of Fig. (7). Bottom: phase diagram [52] for
dimers on a diamond lattice as a function of the ratio µ/g from
eqn. (13). Also shown is the “spin ice” point corresponding
to the location of the monopole crystal plus small transverse
quantum spin fluctuations [53], deep within the spin-R phase.

the quest to observe dimensional reduction to the two-
dimensional quantum phases predicted in Ref. 25 and
discussed in detail above. The stacked kagomé layer ma-
terial Ho3Mg2Sb3O14 appears to show quantum correc-
tions to a classical fragmented magnetic structure closely
related to the KII phase of kagomé ice [58], although for
the moment only powder samples exist and the synthesis
of pure samples appears challenging. In the absence of
single crystals, our analysis could be extended to treat
a powder sample. This would be of interest as the sig-
nal from the quantum spin−P phase introduced above
would be distinct from the alternative quantum phases
predicted by Dun et al. [58]. However, at least in the
short term, artificial systems, such as cold atom ice fab-
ricated from Rydberg atoms [59] could hold the advan-
tage over materials and could provide promising options
for the observation of tuneable quantum fluctuations in
systems with ice geometry.

Looking forward, open questions remain for the ther-
mal to quantum crossover for the phase transitions from
ordered to spin liquid phases. In two dimensions in the
g = 0 limit of eqn. (13), the thermal phase transition

from the
√
3×

√
3 to KII phase should map to a rough-

ening transition and hence be of Kosterlitz-Thouless
type [60], although this could change in the presence
of monopole defects [22, 23]. As quantum fluctuations

are switched on the fate of the topological transition is
far from clear and open to further studies. In three di-
mensions an evolution of tri-critical form is predicted,
taking the thermal R-phase to dimer liquid transition
from topological to first order as quantum fluctuations
increase [53]. In the context of this paper, the ultimate
goal would be to prepare experimental signatures of these
subtle questions through use of the fragmentation picture
in the neutron scattering analysis.
As a final note, the more mathematically inclined

reader will notice that the Helmholtz decomposition can
be expanded further with regard to the transverse term.
Any divergence-free vector field can be decomposed into
toroidal and poloidal fields:

∇× A⃗ = T⃗ + P⃗

= ∇ϕ× r̂ +∇× (∇χ× r̂) (16)

where r̂ is a radial unit vector, ϕ is the toroidal and χ the
poloidal scalar potentials. Together with the longitudi-
nal potential Ψ they make up the Debye potentials and
allow the mapping of any vector field onto a set of three
scaler fields, up to a harmonic contribution [61, 62]. The
fields from a single point dipole are purely poloidal while
toroidal fields are characteristic of circular solenoids or
toroids. The complete decomposition of the transverse
magnetic fragment into poloidal and toroidal elements
is beyond the scope of this discussion but pragmatically
one can assume that the extensive loop network leading
to pinch point scattering patterns is due largely to the
poloidal component, while short loops contain a toroidal
contribution. In modified spin ice models with induced
attractive interactions between monopoles of like charge,
low energy excitations include like charge clusters char-
acterised by loops of spin flips, identified as toroidal loops
[63–65]. Using the fragmentation picture it is straight-
forward to show that such clusters lead to isolated loops
in the transverse fragment, which indeed correspond to
a pure toroidal contribution. In a spin liquid phase dom-
inated by such loops, the diffuse neutron scattering is
characterised by half-moons of high intensity straddling
the Brillouin zone centre, rather than the pinch points
of the Coulomb phase. This strongly suggests that mag-
netic moment fragmentation could be an essential tool
for a complete description of such systems.
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