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Abstract

Haug and Spavieri have recently presented a new exact solution to Einstein’s field equa-
tion. In this paper, we will list multiple implications of this model concerning predicted: grav-
itational time dilation, redshift, light bending, escape velocity, and more. All the new results
contain a relativistic correction term added to the Schwarzschild metric. The Schwarzschild
metric can almost be seen as a weak gravitational field approximation of our mass-charge
metric. The di↵erence in predictions of the two metrics, can be verified even in the weak
gravitational field of the Sun and also in the gravitational field of the Earth by utlizing
atomic or optical clocks on board of satellites. Yet, in the gravitational field of the Earth
the e↵ect is so small, that to be detected, we must have access to the most advanced state of
the art in modern optical clocks. However in the Sun’s gravitational field it seems that even
current cesium atomic clocks are good enough to test the di↵erences in predictions between
the two metrics.

Also, photons, sent out in a strong gravitational field close to the event horizon of black
holes, can likely be used to verify what metric derived from general relativity theory is the
best to explain observed phenomena in black holes, such as the lack of velocity time dilation
in high-z quasars.
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1 Predictions from the Haug-Spavieri metric versus

the Schwarzschild metric

Einstein [1] field equation is given by

Rµ⌫ �Rgµ⌫ =
8⇡G

c4
Tµ⌫ (1)

The field equation must be solved based on certain boundary conditions to yield equations
capable of predicting gravitational e↵ects, which can then be verified through observations.
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The most well-known and thoroughly tested solution is, by far, the Schwarzschild metric.
It has undergone extensive testing in weak gravitational fields, confirming its accuracy in
predicting gravitational time dilation, redshift, light bending, and more.

Recently, Haug and Spavieri [2] have derived a new exact solution to Einstein’s field
equation. This solution takes into account a stress-energy tensor that considers both the
electric field energy of the charge and the gravitational field energy of the mass. To determine
if this metric better describes the real world compared to the Schwarzschild metric, one must
calculate predictable di↵erences.

The new metric derived by Haug and Spavieri is given by in S.I. units:

ds2 = �
✓
1� 2GM

c2r
+

G2M2

c4r2
+

Q2

r2
+

P 2

r2

◆
c2dt2+

✓
1� 2GM

c2r
+

G2M2

c4r2
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Q2

c2r2
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P 2

c2r2

◆�1

dr2+r2⌦2

(2)
We will focus here on the case when the charge Q and magnetic moment P are set to 0
(Q = P = 0). Then, the metric simplifies to

ds2 = �
✓
1� 2GM

c2r
+

G2M2

c4r2

◆
c2dt2 +

✓
1� 2GM

c2r
+

G2M2

c4r2

◆�1

dr2 + r2⌦2 (3)

From this, we can easily derive predictions for gravitational time dilation, redshift, and
the gravitational bending of light. The results, when compared to the Schwarzschild metric,
are presented in Table 1.

Table 1: The table displays well-known predictions from the Schwarzschild metric and also from the
metric proposed by Haug and Spavieri. In all the predictions, there is a second-order term in the Haug
and Spavieri metric that is absent in the Schwarzschild metric. This additional term primarily leads to
predictable di↵erences in strong gravitational fields, especially for observations from photons emitted
close to a black hole horizon. Alternatively, extremely precise measurement devices are required to
detect the predicted di↵erence in a weak gravitational field, such as experiments conducted in the
gravitational field of the Earth or the Sun.

Prediction Schwarzschild: Haug-Spavieri:

Gravitational red shift z =

q
1� 2GM

R1c2q
1� 2GM

R2c2

� 1 z =

r
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r1c2
+G2M2

r21c4

r
1� 2GM

r2c2
+G2M2

r22c4

� 1

Time dilation T1 = T2

q
1� 2GM

r2c2q
1� 2GM

r1c2

T1 = T2

r
1� 2GM

r2c2
+G2M2

r22c4

r
1� 2GM

r1c2
+G2M2

r21c4

Gravitational deflection ✓ = 4GM
c2r ✓ = 4GM

c2r � 2G2M2

c4r2

Escape velocity ve =
q

2GM
r ve =

q
2GM

r � G2M2

r2c2

Event horizon black-hole Rs =
2GM
c2 Rh = GM

c2

Mass from horizon radius M = c2Rs
2G M = c2Rh

G

2 The Haug-Spavieri metric is likely verifiable rel-

ative to the Schwarzschild metric even in weak grav-

itational field

Theoretically, there is a clear distinction in the formulas between the Schwarzschild and
Haug-Spavieri metric. However, it is important to inquire about the magnitude of the pre-
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dicted di↵erences. Since it is a second-order term that creates the di↵erence in predictions
between the two metrics, it is evidently a relativistic e↵ect that will predominantly have
significant implications in strong gravitational fields. Nevertheless, it will also exhibit some
minor observable e↵ects in weak gravitational fields, the magnitude of which we can easily
calculate.

In Earth’s gravitational field, if we examine the gravitational time dilation between a
clock placed at sea level and another one at a 1000-meter tower (or mountain top), we would
only expect to observe approximately 7.6⇥ 10�23 seconds of di↵erence in time dilation over
a second. This is considerably outside the precision of the current best atomic and optical
clocks, which have a precision of approximately 10�18 per second. See, for example, [3–
6]. To increase precision, one can increase the distance between the clocks, for example,
by synchronizing an atomic clock on the surface of the Earth with an atomic clocks placed
on board of a geostationary satellite. Geostationary satellites are about 35,786 km out in
space, so this is the distance between the clocks. Then the predicted di↵erence is about
2.367 ⇥ 10�19 seconds per second. Over a month (30 days), it amounts to 6.13 ⇥ 10�13

seconds. This could be possible with clocks better than the o↵-the-shelf atomic clocks, as it
is well within the limit of precision in today’s best atomic and optical clocks (10�18). The
predicted di↵erence arises from the di↵erence between the gravitational time-dilation foreseen
by the Schwarzschild metric and that of the Haug-Spavieri metric. This predicted di↵erence
is after properly adjusting for velocity time dilation as well as the Sagnac e↵ect [7]. Table 2
gives examples of predicted di↵erences for gravitational time dilation from the Schwarzschild
metric and the Haug and Spavieri metric in clocks placed distance d apart from each other.

Table 2: The table shows predicted gravitational time dilation di↵erences between initial Einstein
synchronized clocks placed distance (altitude) d apart in the Earth gravitational field. The di↵erence
represents the prediction of the Schwarzscihld metric versus the Haug-Spavieri metric.

Altitude distance d Predicted di↵erence Predicted di↵erence Predicted di↵erence

between clocks per second : per day: per month (30 days):
one ground based

Altitude of tower or mountain clock:
1 km 7.6⇥ 10�23 s 6.57⇥ 10�18 s 1.97⇥ 10�16 s

Altitude of airplane clock:
10 km 7.59⇥ 10�22 s 6.56⇥ 10�18 s 1.97⇥ 10�15 s

Altitude of air-baloon clock:
30 km 2.27⇥ 10�21 s 1.96⇥ 10�16 s 5.88⇥ 10�15 s

Altitude satelite clock:
20,000 km 2.28⇥ 10�19 s 1.97⇥ 10�14 s 5.91⇥ 10�13 s

Altitude geostationary satelite clock:
35 786 km 2.37⇥ 10�19 s 2.05⇥ 10�14 s 6.14⇥ 10�13 s

In the Sun’s gravitational field, at a distance of 6.9 million kilometers from the center of
the sun—this is the distance at which observational solar satellites orbit the sun—we find a
predicted time-dilation di↵erence of about 3.1 ⇥ 10�14 seconds per second when using two
satellites with clocks 1 km apart from each other (one further out from the sun). If the
satellites are placed 100 km apart, one at 6.9 million kilometers from the sun and one 100
km further out, then the predicted time dilation di↵erence between the Schwarzschild metric
and the Haug-Spavieri metric is about 3.1⇥ 10�12 seconds per second.

The predicted di↵erences are well within the measurement capabilities of the best atomic
and optical clocks with precision of approximately 10�18 s. If the satellites are placed at
100,000 km apart, then we only need clocks with nanosecond accuracy, 10�9, which is achiev-
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Table 3: The table shows predicted time dilation di↵erences between clocks placed a distance d
apart on board solar satellites. The inner satellite is assumed to be placed at a distance of 6.9 million
kilometers from the sun, and the next one is located a distance d further out from that. The clocks
on the two satellites are Einstein synchronized and then compared after 1 second or after 1 day or
after 30 days, the longer one wait the bigger the predicted di↵erence between the two metrics

Altitude distance d Predicted di↵erence Predicted di↵erence Predicted di↵erence

between clocks per second : per day: per month (30 days):
1 km 3.1⇥ 10�14 s 2.69⇥ 10�9 s 8.04⇥ 10�6 s
10 km 3.1⇥ 10�13 s 2.69⇥ 10�8 s 8.04⇥ 10�5 s
100 km 3.1⇥ 10�12 s 2.69⇥ 10�7 s 8.04⇥ 10�4 s
1,000 km 3.1⇥ 10�11 s 2.69⇥ 10�5 s 8.04⇥ 10�3 s
10,000 km 3.1⇥ 10�10 s 2.69⇥ 10�4 s 8.04⇥ 10�2 s
100,000 km 3.1⇥ 10�9 s 2.69⇥ 10�3 s 8.04⇥ 10�1 s
1000,000 km 3.1⇥ 10�8 s 2.69⇥ 10�2 s 8.04 s

able with o↵-the-shelf atomic clocks. If measured over a day (24 hours), all di↵erences of the
clocks placed distance d apart as shown in table 3, are 10�9 seconds or larger. This implies
that standard o↵-the-shelf atomic clocks and even chip-sized atomic clocks can likely be used
to verify if the Haug-Spavieri metric models reality more accurately than the Schwarzschild
metric. Organizations like NASA should be able to conduct such experiments. Naturally mul-
tiple factors must be included such as clock-stability, velocity time dilation and the Sagnac
e↵ect in addition to gravitational time dilation. Therefore, errors in other factors must be
smaller than the predicted di↵erence. The predicted di↵erence can be further reduced, for
example, by letting the experiment run for a whole month, as shown in the last column.
Then, we go down to the need of a reduced accuracy of 10�2 seconds per month.

There are multiple methods to reduce errors in clocks. For example one would typically
have at least three or even whole clusters of initially synchronized clocks on each satellite for
control and error reduction. This should be no big task for NASA and could be one of the
most important breakthroughs in gravity for decades if the Haug-Spavieri metric is verified
to be a more accurate model of reality.

3 The Haug-Spavieri metric is likely verifiable rel-

ative to the Schwarzschild metric in strong gravita-

tional fields

When close to a black hole horizon, the term G2M2

r2c4 that appears in most formulas as an
additional relativistic term relative to the Schwarzschild predictions, suddenly becomes very
significant. Another important way to test the Haug-Spavieri metric against the Schwarzschild
metrics is therefore from photons sent out close to the horizon of black holes.

There are multiple interesting types of black holes that could be worth investigating. For
example, in high-z quasars (which all likely have black holes at their center), surprisingly,
velocity time dilation [9, 10] has not been observed. Based on the results foreseen by our
metric, photons can be sent out closer to the center of the mass of the quasar black holes than
what possible in the Schwarzschild metric. The reason is that in our metric, the event horizon
is only half of that of the Schwarzschild horizon, and photons can then be sent out closer to
the center of the black hole without being inside the horizon. So, this is one possibility that
can be more carefully investigated by researchers.
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It has also been pointed out by many researchers [11–17] that the Hubble sphere has many
mathematical properties similar to a black hole, but the Schwarzschild black hole does not
seem to be able to fit observations that well. One possibility is therefore to investigate if the
Hubble sphere resembles more closely to a Haug-Spavieri black hole; we have outlined this
possibility in a tentative theory for it in [18], which should also be investigated further.

When it comes to gravitational light bending (deflection), our preliminary result (which

we will have to carefully check later on) shows that the deflection is ✓ = 4GM
c2r � 2G2M2

c4r2 . In

a weak gravitational field, the extra term �2G2M2

c4r2 has too little impact to be tested, for
example, from the bending of light around the sun. Here, the two models are currently
indistinguishable. In a very strong gravitational field, it is interesting that the Schwarzschild
metric predicts light bending at the event horizon itself (or just outside) as ✓ = 4GM

c2rs
= 2. A

light bending of 2 basically means a photon could orbit the black hole. We get the identical
result at the horizon from our new metric, namely ✓ = 4GM

c2rh
� 2G2M2

c4r2h
= 2. However, for

a Planck mass black hole, in our theory, we can go all the way down to the Planck length
radius, while the Schwarzschild metric can only go down to twice the Planck length. This
could possibly indicate that our model is better suited to fit the Planck scale properties than
the Schwarzschild metric; see also the table about micro black holes in [19].

We hope that other researchers will closely investigate our metric and compare carefully its
predictions with observations from black holes and the Schwarzschild metric. The comparison
can, hopefully, be extended to other metrics such as the Reissner-Nordström [20, 21], Kerr
[22] metric, the Kerr-Newman [23, 24] metric, and even our new generalized rotation metric
[19].

4 Conclusions

We have shown that, with present technology, the metric derived by Haug-Spavieri appears
to be verifiable relative to the Schwarzschild metric, even in the weak gravitational field of
the Sun or the Earth. This can be achieved using just two Einstein-synchronized standard
atomic clocks at normal orbital altitudes around the Sun. If one wishes to test the metrics
in the Earth’s gravitational field, it is necessary to maximize the distance and employ very
modern equipment—likely requiring the use of state-of-the-art optical or atomic clocks, as
achieving an observable minimum precession of 10�13 seconds per month is essential. Solar
satellite experiments are possibly preferable, as such experiments meet accuracy requirements
well within the reach of standard atomic clocks.

Additionally, observations from photons sent out close to the horizon of a black hole can
likely help us distinguish which metric is best suited to describe reality. It seems that the
Haug-Spavieri metric possibly interprets more e↵ectively the lack of observed time dilation
in High z quasars. Furthermore, if the Hubble sphere is taken to represent a black hole, then
photons sent out close to the Hubble horizon could possibly be better described through the
Haug-Spavieri metric. Our tentative considerations about some cosmological and gravita-
tional phenomena, related to the Haug-Spavieri metric, need to be scrutinized by multiple
researchers over time before drawing any conclusions.
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