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Invariants of real symplectic 4-manifolds and lower bounds in

real enumerative geometry

Jean-Yves Welschinger∗

10th February 2005

Abstract:

We first build the moduli spaces of real rational pseudo-holomorphic curves in a given real
symplectic 4-manifold. Then, following the approach of Gromov and Witten [3, 19, 11], we
define invariants under deformation of real symplectic 4-manifolds. These invariants provide
lower bounds for the number of real rational J-holomorphic curves which realize a given
homology class and pass through a given real configuration of points.

Introduction

Let (X,ω, cX ) be a real symplectic 4-manifold, that is a triple made of a compact dif-
ferentiable 4-manifold X, a symplectic form ω on X and an involution cX on X such that
c∗Xω = −ω. The fixed point set of cX is called the real part of X and is denoted by RX. It
is either empty or a smooth lagrangian submanifold of (X,ω). The connected components
of RX are labelled (RX)1, . . . , (RX)N . Assume that the first Chern class c1(X) of the sym-
plectic 4-manifold (X,ω) is not a torsion element and let d ∈ H2(X; Z) be a homology class
satisfying c1(X)d > 0 and (cX)∗d = −d. Let x ⊂ X be a real configuration of points, that is
a subset invariant under cX , made of c1(X)d− 1 distinct points. Denote by ri the number of
such points which are in the real component (RX)i, i ∈ {1, . . . , N}, and by r = (r1, . . . , rN ).
This N -tuple r encodes the equivariant isotopy class of the real configuration of points x in
X. Let Jω be the space of almost complex structures of X, tamed by ω, and which are of class
C l where l ≫ 1 is a fixed integer, large enough. This space is a contractible separable Banach
manifold. Denote by RJω ⊂ Jω the subspace consisting of those J ∈ Jω for which cX is
J-antiholomorphic. It is a contractible separable Banach submanifold of Jω (see Proposition
1.1). If J ∈ RJω is generic enough, then there are only finitely many rational J-holomorphic
curves in X which pass through x and realize the homology class d (see Theorem 1.10). These
curves are all irreducible and have only transversal double points as singularities. The total
number of their double points is δ = 1

2(d2 − c1(X)d + 2). Let C be such a curve which is
assumed to be real. We define the mass of the curve C to be the number of its real isolated
double points (see §2.1 for a definition). For every integer m ranging from 0 to δ, denote by
nd(m) the total number of those real rational J-holomorphic curves in X which pass through
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x, realize the homology class d and have mass m. Define then:

χdr(x, J) =

δ∑

m=0

(−1)mnd(m).

The main result of this paper is the following (see Theorem 2.1):

Theorem 0.1 The integer χdr(x, J) neither depends on the choice of J nor on the choice
of x.

From Theorem 0.1, this integer can be denoted without ambiguity by χdr and when
∑N

i=1 ri
does not have the same parity as c1(X)d − 1, we set χdr to be 0. We then denote by χd(T )

the generating function
∑c1(X)d−1

|r|=0 χdrT
r ∈ Z[T1, . . . , TN ], where T r = T r11 . . . T rNN and |r| =

r1 + · · · + rN . This polynomial function is of the same parity as c1(X)d − 1 and each of its
monomials actually only depends on one indeterminate. It follows from Theorem 0.1 that the
function χ : d ∈ H2(X; Z) 7→ χd(T ) ∈ Z[T1, . . . , TN ] only depends on the real symplectic 4-
manifold (X,ω, cX ) and is invariant under deformation. This means that if ωt is a continuous
family of symplectic forms for which c∗Xωt = −ωt, then this function is the same for all triples
(X,ωt, cX). This invariant is proved to be non-trivial for degree less or equal than five in the
complex projective plane, see Proposition 3.7. As an application of this invariant, we obtain
the following lower bounds in real enumerative geometry (see Corollary 2.2).

Corollary 0.2 The integer |χdr | provides a lower bound for the total number of real ra-
tional J-holomorphic curves of X which pass through x and realize the homology class d,
independently of the choice of a generic J ∈ RJω.

Now, for convenience, let us assume that RX is connected. Let y = (y1, . . . , yc1(X)d−2) be
a real configuration of c1(X)d − 2 distinct points of X, and s be the number of those which
are real. We assume yc1(X)d−2 to be real, so that s 6= 0. If J ∈ RJω is generic enough, then
there are only finitely many rational J-holomorphic curves in X which pass through y, realize
the homology class d and have a double point at yc1(X)d−2. These curves are all irreducible
and have only transversal double points as singularities. For every integer m ranging from 0
to δ, denote by n̂+

d (m) (resp. n̂−d (m)) the total number of these curves which are real, of mass
m and with a non-isolated (resp. isolated) real double point at yc1(X)d−2 (see §3.1). Define
then:

θds(y, J) =

δ∑

m=0

(−1)m(n̂+
d (m) − n̂−d (m)).

Theorem 0.3 The integer θds(y, J) neither depends on the choice of J nor on the choice
of y.

Once more, the integer θds(y, J) can then be denoted without ambiguity by θds , and we set
θds = 0 when s does not have the same parity as c1(X)d. This invariant makes it possible to
give relations between the coefficients of the polynomial χd, namely (see Theorem 3.2):

Theorem 0.4 Let d ∈ H2(X; Z) and r be an integer between 0 and c1(X)d − 3. Then
χdr+2 = χdr + 2θdr+1.
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The text is organized as follows. The first paragraph is devoted to the construction of the
moduli space Md(x) (resp. RMd(x)) of rational pseudo-holomorphic curves (resp. real
rational pseudo-holomorphic curves) which pass through the given real configuration of
points x and realize the homology class d. The space RMd(x) appears to be the fixed point
set of a Z/2Z-action on Md(x) induced by cX . The main result of this paragraph is the
theorem of regular values (see Theorem 1.10) which states that the set of regular values of the
Fredholm projection π : Md(x) → Jω intersects RJω in a dense set of the second category
of RJω. The second paragraph is devoted to the definition of the invariant χ and the proof
of Theorem 0.1. It involves in particular several genericity arguments which are given in
§2.2. Few computations of this invariant and applications to real enumerative geometry are
given in §2.1. Finally, the last paragraph is devoted to the definition of the invariant θ, the
statements and proofs of Theorems 0.3 and 0.4 and the proof of the non-triviality of χd for
d = 4, 5 in the complex projective plane. With the exception of this non-triviality, all these
results have been announced in [17].
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1 Moduli space of real rational pseudo-holomorphic curves

In this paragraph, we carry out over the reals the construction of the moduli space Md(x)
of rational pseudo-holomorphic curves which realize the homology class d and pass through
the configuration of points x, following [9] and [12]. We prove that this moduli space comes
equipped with a Z/2Z-action induced by the real structure cX . The fixed point set of this ac-
tion is the moduli space of real rational pseudo-holomorphic curves which realize the homology
class d and pass through x.

1.1 The manifold RJω
Let Jω be the space of almost complex structures of X tamed by ω and which are of

class C l where l ≫ 1 is a fixed integer, large enough. This space is a contractible separable
Banach manifold. The real structure cX of (X,ω) induces a Z/2Z-action on Jω given by
cX

∗ : J ∈ Jω 7→ cX
∗(J) = −dcX ◦ J ◦ dcX . Denote by RJω the fixed point set of this action.

It consists of those J ∈ RJω for which cX is J-antiholomorphic. Let J0 ∈ RJω, the involution
cX

∗ induces an involution dJ0cX
∗ on the tangent space TJ0Jω = Γl(X,Λ0,1X ⊗C TX), where

Γl(X,Λ0,1X ⊗C TX) denotes the Banach space of sections of class C l of the vector bundle
Λ0,1X ⊗C TX over X. Denote by Γl(X,Λ0,1X ⊗C TX)+1 (resp. Γl(X,Λ0,1X ⊗C TX)−1) the
eigenspace of this involution associated to the eigenvalue +1 (resp. −1), so that TJ0Jω =
Γl(X,Λ0,1X ⊗C TX)+1 ⊕ Γl(X,Λ0,1X ⊗C TX)−1.

Proposition 1.1 The fixed point set RJω of cX
∗ is a separable Banach submanifold of

Jω which is non-empty and contractible. For every J0 ∈ RJω, the tangent space TJ0RJω is
isomorphic to Γl(X,Λ0,1X ⊗C TX)+1.

Note that in particular, the decomposition TJ0Jω = Γl(X,Λ0,1X⊗C TX)+1 ⊕Γl(X,Λ0,1X⊗C

TX)−1 is a direct sum of locally trivial Banach sub-bundles.

Proof:

Let us first prove that RJω is non-empty. Let gX be a riemannian metric on X invariant
under cX . Let A ∈ Γ∞(X,EndR(TX)) be such that for every x ∈ X, u, v ∈ TxX, ωx(u, v) =
gx(Au, v). Denote by A = QJ0 the polar decomposition of A, where J0 is orthogonal for gX .
Then J0 ∈ Jω, cX

∗(A) = A and since Q =
√
−A2, c∗X(Q) = Q. We deduce that cX

∗(J0) = J0

and thus J0 ∈ RJω 6= ∅. Now, the standard transform of Sévennec (see [1], p. 42) provides a
Z/2Z-equivariant diffeomorphism between Jω and

W = {W ∈ Γl(X,EndR(TX)) |J0W = −WJ0 and 1 −W tW ≫ 0},

where W is equipped with the involution c∗X . Since the fixed point set RW = W ∩ {W ∈
Γl(X,EndR(TX)) | c∗X (W ) = W} is a contractible separable Banach submanifold of W, the
same holds for RJω ⊂ Jω. The tangent space of RJω is then Γl(X,Λ0,1X ⊗C TX)+1. �

1.2 Space of pseudo-holomorphic maps P∗(x)

Let x = (x1, . . . , xm) be an ordered set of distinct points of X, globally invariant under
cX . Such a set is called a real configuration of points. Let τ be the order two permutation
of {1, . . . ,m} induced by cX . Let S be an oriented 2-sphere, JS be the space of complex
structures of class C l of S compatible with its orientation and z = (z1, . . . , zm) be m distinct
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points on S. Finally, let d ∈ H2(X; Z) be a fixed homology class such that c1(X)d > 0 and
(cX)∗d = −d. Denote then by

Sd(x) = {u ∈ Lk,p(S,X) |u∗[S] = d and u(z) = x},

where 1 ≪ k ≪ l and p > 2 (see [9], §3.1). This is a Banach manifold whose tangent space
at u ∈ Sd(x) is the space TuSd(x) = {v ∈ Lk,p(S,Eu) | v(z) = 0}, where Eu is the pull-back
bundle u∗TX. Let E (resp. E ′) be the Banach bundle over Sd(x)×JS ×Jω whose fibre over
(u, JS , J) ∈ Sd(x) × JS × Jω is the space TuSd(x) (resp. the space Lk−1,p(S,Λ0,1S ⊗C Eu)).
Let σ∂ be the section of E ′ defined by σ∂(u, JS , J) = du+ J ◦ du ◦JS , and Pd(x) be the set of
its zeros. This is the space of pseudo-holomorphic maps from S to X which pass through x.
Fix some Levi-Civita connection ∇ on TX associated to some riemannian metric gX invariant
under cX . All the induced connections on the bundles associated to TX will also be denoted
by ∇, for convenience. The linearization of σ∂ at (u, JS , J) ∈ Pd(x) is defined by (see [9],
§3.1 or [7], formula 1.2.3)

∇σ∂(v, J̇S , J̇) = Dv + J ◦ du ◦ J̇S + J̇ ◦ du ◦ JS ,

where D is the Gromov operator defined by

v ∈ E|(u,JS ,J) 7→ D(v) = ∇v + J ◦ ∇v ◦ JS + ∇vJ ◦ du ◦ JS ∈ E ′|(u,JS ,J).

Finally, denote by P∗(x) the subspace of Pd(x) consisting of non-multiple maps, that is the
space of triples (u, JS , J) such that u cannot be written u′◦φ where φ : S → S′ is a non-trivial
ramified covering and u′ : S′ → X is a pseudo-holomorphic map.

Proposition 1.2 The space P∗(x) is a separable Banach manifold of class C l−k whose
tangent space at (u, JS , J) ∈ P∗(x) is the space T(u,JS ,J)P∗(x) = {(v, J̇S , J̇) ∈ T(u,JS ,J)(Sd(x)×
JS × Jω)) |∇(v,J̇S ,J̇)σ∂ = 0}. �

This proposition follows from the fact that at (u, JS , J) ∈ P∗(x), the operator ∇σ∂ :
T(u,JS ,J)(Sd(x) ×JS ×Jω)) → E ′|(u,JS ,J) is surjective and has a right inverse (see [9], Propo-
sition 3.2.1).

1.3 Gauge action of Diff(S, z)

Denote by Diff(S, z) the group of diffeomorphisms of class C l+1 of S, which either pre-
serve the orientation and fix z, or reverse the orientation and induce the permutation on
z associated to τ . Let Diff+(S, z) (resp. Diff−(S, z)) be the subgroup of Diff(S, z)
of orientation preserving diffeomorphisms (resp. its complement in Diff(S, z)) and s∗ be
the morphism Diff(S, z) → Z/2Z of kernel Diff+(S, z). The group Diff(S, z) acts on
Sd(x) × JS × Jω by

φ.(u, JS , J) =

{
(u ◦ φ−1, (φ−1)∗JS , J) if s∗(φ) = +1,

(cX ◦ u ◦ φ−1, (φ−1)∗JS , cX
∗(J)) if s∗(φ) = −1,

where φ ∈ Diff(S, z), (u, JS , J) ∈ Sd(x)×JS ×Jω and (φ−1)∗JS = s∗(φ)dφ◦JS ◦dφ−1. The
action of Diff(S, z) lifts to the following actions on the bundles E and E ′:

(φ, v) ∈ Diff(S, z) × E(u,JS ,J) 7→
{

v ◦ φ−1 ∈ Eφ.(u,JS,J) if s∗(φ) = +1,

dcX ◦ v ◦ φ−1 ∈ Eφ.(u,JS,J) if s∗(φ) = −1,
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and

(φ, α) ∈ Diff(S, z) × E ′
(u,JS ,J) 7→

{
α ◦ dφ−1 ∈ E ′

φ.(u,JS ,J) if s∗(φ) = +1,

dcX ◦ α ◦ dφ−1 ∈ E ′
φ.(u,JS ,J) if s∗(φ) = −1.

The section σ∂ is obviously Diff(S, z)-equivariant for these actions. As a consequence, the
manifold P∗(x) is invariant under the action of Diff(S, z).

Lemma 1.3 With the exception of the identity, only the order two elements of
Diff−(S, z) may have non-empty fixed point set in P∗(x). In particular, two such invo-
lutions have disjoint fixed point sets. �

Denote by RP∗(x) the disjoint union of the fixed point sets of non-trivial elements of
Diff(S, z). From Lemma 1.3 we know that each element of RP∗(x) determines uniquely
an order two element of Diff−(S, z), these involutions induce bundle homomorphisms on
E|RP∗(x) and E ′|RP∗(x). We denote by E+1, E ′

+1 (resp. E−1, E ′
−1) the eigenspaces associated

to the eigenvalue +1 (resp. −1) of these homomorphisms, so that E|RP∗(x) = E+1 ⊕ E−1 and
E ′|RP∗(x) = E ′

+1 ⊕ E ′
−1.

Proposition 1.4 Let cS be an element of order two of Diff−(S, z) and RP∗
cS

(x) be the
fixed point set of cS in P∗(x). This space RP∗

cS
(x) is a Banach submanifold of P∗(x) of class

C l−k whose tangent space at (u, JS , J) ∈ RP∗(x) is the space T(u,JS ,J)RP∗
cS

(x) = {(v, J̇S , J̇) ∈
E+1 × TJS

RJS × TJRJω |∇(v,J̇S ,J̇)σ∂ = 0}, where RJS is the fixed point set of cS in JS.

Proof:

The action of cS on the product Sd(x)×JS×Jω is antiholomorphic for the almost-complex
structure defined by:

(v, J̇S , J̇) ∈ T(u,JS ,J)(Sd(x) × JS × Jω) 7→ (Jv, JS J̇S , JJ̇) ∈ T(u,JS ,J)(Sd(x) × JS × Jω)

The fixed point set of this action is a Banach manifold denoted by RSd(x)×RJS×RJω. The
restriction of σ∂ to RSd(x)× RJS × RJω takes values in the sub-bundle E ′

+1 of E ′ associated
to the eigenvalue +1 of cS , since σ∂ is Diff(S, z)-equivariant. It suffices then to prove that
this restriction vanishes transversely along RP∗(x)∩ (RSd(x)×RJS×RJω), meaning that at
(u, JS , J) ∈ RP∗(x) ∩ (RSd(x) × RJS × RJω), the operator ∇σ∂ : T(u,JS ,J)(RSd(x) × RJS ×
RJω) → E ′

+1|(u,JS ,J) is surjective and has a right inverse. This follows from the corresponding

properties of ∇σ∂ : T(u,JS ,J)(Sd(x) × JS × Jω) → E ′|(u,JS ,J) and the Diff(S, z)-equivariance
of σ∂ . �

1.4 The Gromov operators D and DR

Remember that the C-linear part of the Gromov operator D defined in §1.2 is some ∂-
operator which will be denoted by ∂, and that its C-antilinear part is some order 0 operator
denoted by R. The latter is given by the formula R(u,JS ,J)(v) = NJ(v, du) where v ∈ E
and NJ is the Nijenhuis tensor of J . In particular, R ◦ du = 0 (see [7], Lemma 1.3.1).
Let (u, JS , J) ∈ P∗(x), the operator ∂ associated to D induces a holomorphic structure
on the bundle Eu = u∗TX for which the morphism du : TS → Eu is an injective homo-
morphism of analytic sheaves (see [7], Lemma 1.3.1). Denote by Eu,−z = Eu ⊗ O(−z),
TS−z = TS ⊗ O(−z) and Nu,−z the quotient sheaf Eu,−z/du(TS−z). This sheaf splits
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under the form O(Nu,−z) ⊕ N sing
u,−z, where Nu,−z = Nu ⊗ O(−z), Nu being the normal

bundle of u(S) in X, and N sing
u,−z = ⊕C

ni

ai
. In the latter, the sum is taken over all

the critical points ai of du and C
ni

ai
denotes the skyscraper sheaf of fibre C

ni and sup-
port ai, ni being the vanishing order of du at ai. The operator D induces on the quo-
tient an operator DN : Lk,p(S,Nu,−z) → Lk−1,p(S,Λ0,1S ⊗C Nu) as well as an operator
D : Lk,p(S,Eu,−z)/du(L

k,p(S, TS−z)) → Lk−1,p(S,Λ0,1S ⊗C Eu)/du(L
k−1,p(S,Λ0,1S ⊗C TS))

(see [7], formula 1.5.1). Note that by definition, Lk,p(S,Eu,−z) (resp. Lk,p(S,Nu,−z)) denotes
the space of sections of Lk,p(S,Eu) (resp. Lk,p(S,Nu)) which vanish at z. It is a Banach
subspace of complex codimension 2#(z) (resp. #(z)) of Lk,p(S,Eu) (resp. Lk,p(S,Nu)). Re-
stricting to this subspace has thus the effect to decrease the real index of D (resp. DN or
D) by 4#(z) (resp. 2#(z)). Denote by H0

D(S,Eu,−z) (resp. H0
D(S,Nu,−z)) the kernel of the

operator D (resp. DN ), and by H1
D(S,Eu,−z) (resp. H1

D(S,Nu,−z)) the cokernel of this op-
erator. Similarly, denote by H0

D(S,Nu,−z) the kernel of the operator D, which is isomorphic

to H0
D(S,Nu,−z)⊕H0(S,N sing

u,−z), whereas its cokernel is isomorphic to H1
D(S,Nu,−z) (see [7],

Lemma 1.5.1). Note that since the operators D,DN and D are elliptic, all these spaces are
finite dimensional and do not depend on the choices of k, p. They satisfy the following long
exact sequence (see [12], Corollary 1.5.4):

0 → H0(S, TS−z) → H0
D(S,Eu,−z) → H0

D(S,Nu,−z) ⊕H0(S,N sing
u,−z) →

→ H1(S, TS−z) → H1
D(S,Eu,−z) → H1

D(S,Nu,−z) → 0. (1)

Remember finally that the formal adjoint of the operator DN is given by some op-
erator D∗ : Lk−1,p(S,Λ0,1S ⊗C Nu)

∗ = L1−k,p′(S,KS ⊗C N∗
u) → Lk,p(S,Nu,−z)

∗ =
L−k,p′(S,N∗

u)/Lk,p(S,Nu,−z)
⊥, where KS = Λ1,0S, 1

p
+ 1

p′
= 1 and Lk,p(S,Nu,−z)

⊥ = {f ∈
L−k,p′(S,N∗

u) | < f,α >= 0 for every α ∈ Lk,p(S,Nu,−z)} is generated by the Dirac sec-
tions of N∗

u at z. Thus, the Riemann-Roch duality provides isomorphisms H0
D(S,Nu,−z) ∼=

H1
D∗(S,KS ⊗C N

∗
u) and H1

D(S,Nu,−z) ∼= H0
D∗(S,KS ⊗C N

∗
u) (see Theorem C.1.10 of [9] or

Lemma 1.5.1 of [12]).

Lemma 1.5 The operators D : E → E ′,DN and D are Diff(S, z)-equivariant. �

Thus, over RP∗(x), the operator D restricts to some operator E+1 → E ′
+1 which will be de-

noted by DR. Similarly, let (u, JS , J) ∈ RP∗(x) and cS be the associated order two element
of Diff−(S, z). Denote by Lk,p(S,Nu,−z)±1 (resp. Lk−1,p(S,Λ0,1S ⊗C Nu)±1) the eigenspace
associated to the eigenvalue ±1 of the action of cS on Lk,p(S,Nu,−z) (resp. Lk−1,p(S,Λ0,1S⊗C

Nu)). Similarly, denote by Lk,p(S,Eu,−z)±1, L
k,p(S, TS−z)±1 (resp. Lk−1,p(S,Λ0,1S⊗CEu)±1,

Lk−1,p(S,Λ0,1S⊗C TS)±1) the eigenspaces associated to the eigenvalue ±1 of the action of cS
on Lk,p(S,Eu,−z), L

k,p(S, TS−z) (resp. Lk−1,p(S,Λ0,1S ⊗C Eu), L
k−1,p(S,Λ0,1S ⊗C TS)). De-

note then by DN
R

(resp. DR) the operator Lk,p(S,Nu,−z)+1 → Lk−1,p(S,Λ0,1S⊗CNu)+1 (resp.
Lk,p(S,Eu,−z)±1/du(L

k,p(S, TS−z)±1) → Lk−1,p(S,Λ0,1S ⊗C Eu)±1/du(L
k−1,p(S,Λ0,1S ⊗C

TS)±1)) induced by DN (resp. D).

Lemma 1.6 The operators DR and DR are Fredholm, of indices ind(DR) = 1
2 ind(D) =

c1(X)d+ 2 − 2m and ind(DR) = 1
2 ind(D) = c1(X)d − 1 −m.

Proof:
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Fix some element cS of order two of Diff−(S, z). Remember that the decomposition
of D into C-linear and antilinear parts writes ∂ + R, where ∂ and R are equivariant
under the action of cS (in fact under the whole Diff(S, z)). The operator ∂ restricts
then to some operator E+1 → E ′

+1 which remains Fredholm, of kernel (resp. cokernel) the
eigenspace ker+1(∂) (resp. coker+1(∂)) associated to the eigenvalue +1 of the action of
cS on ker(∂) (resp. coker(∂)). Since R is of order 0, it follows that DR is Fredholm of
index ind(DR) = ind(∂|E+1) = 1

2 ind(D) = c1(X)d + 2 − 2m. The last equality coming from
Riemann-Roch theorem and the equality before from the fact that ∂ is C-linear. The same
arguments applied to D give the result for DR. �

Denote by H0
D(S,Eu,−z)+1 (resp. H0

D(S,Nu,−z)+1) the kernel of the operator DR (resp.
DN

R
), and by H1

D(S,Eu,−z)+1 (resp. H1
D(S,Nu,−z)+1) the cokernel of this operator. Denote

also by H0
D(S,Nu,−z)+1 = H0

D(S,Nu,−z)+1 ⊕H0(S,N sing
u,−z)+1 the kernel of the operator DR.

Its cokernel is isomorphic to H1
D(S,Nu,−z)+1. These spaces satisfy the following long exact

sequence:

0 → H0(S, TS−z)+1 → H0
D(S,Eu,−z)+1 → H0

D(S,Nu,−z)+1 ⊕H0(S,N sing
u,−z)+1 →

→ H1(S, TS−z)+1 → H1
D(S,Eu,−z)+1 → H1

D(S,Nu,−z)+1 → 0. (2)

Note that H0
D(S,Eu,−z)+1 (resp. H0

D(S,Nu,−z)+1) coincides with the eigenspace associated
to the eigenvalue +1 of the action of cS on H0

D(S,Eu,−z) (resp. H0
D(S,Nu,−z)). Denote by

H0
D(S,Eu,−z)−1 (resp. H0

D(S,Nu,−z)−1) the eigenspace associated to the eigenvalue −1.

Lemma 1.7 Riemann-Roch duality provides isomorphisms:
H0
D(S,Nu,−z)+1

∼= H1
D∗(S,KS ⊗C N

∗
u)−1 and

H1
D(S,Nu,−z)+1

∼= H0
D∗(S,KS ⊗C N

∗
u)−1.

Proof:

The duality between the spaces Lk−1,p(S,Λ0,1S ⊗C Nu) and L1−k,p′(S,KS ⊗C N
∗
u) writes

(ψ∗, α) ∈ L1−k,p′(S,KS ⊗C N
∗
u) × Lk−1,p(S,Λ0,1S ⊗C Nu) 7→ ℜe

∫
S
< ψ∗, α >. Now, fix some

element cS of order two of Diff−(S, z). We have

((dc∗X )t ◦ ψ∗ ◦ dcS , dcX ◦ α ◦ dcS) = ℜe
∫

S

< (dc∗X )t ◦ ψ∗ ◦ dcS , dcX ◦ α ◦ dcS >

= ℜe
∫

S

< ψ∗, α > ◦dcS

= −ℜe
∫

S

< ψ∗, α >,

since cS reverses the orientation of S. It follows that the spaces H1
D(S,Nu,−z)±1 and

H0
D∗(S,KS ⊗C N∗

u)±1 are orthogonal to each other and that the spaces H1
D(S,Nu,−z)±1

and H0
D∗(S,KS ⊗C N

∗
u)∓1 are dual to each other. The same holds for H0

D(S,Nu,−z)±1 and
H1
D∗(S,KS ⊗C N

∗
u)∓1. �

8



1.5 Moduli space of rational pseudo-holomorphic curves

1.5.1 The manifolds Md(x), RMd(x) and the projections π, πR

Denote by Md(x) the quotient of P∗(x) by the action of Diff+(S, z). The projection
π : (u, JS , J) ∈ P∗(x) 7→ J ∈ Jω induces on the quotient a projection Md(x) → Jω still
denoted by π. Remember the following proposition (see [9], Proposition 3.2.1 and Theorem
3.1.5, or [7], Theorem 2).

Proposition 1.8 1) The space Md(x) is a separable Banach manifold of class C l−k.
2) The projection π : Md(x) → Jω is Fredholm of index indR(π) = 2(c1(X)d − 1 −m).

Moreover, at [u, JS , J ] ∈ Md(x), the kernel of π is isomorphic to H0
D(S,Nu,−z) and its

cokernel to H1
D(S,Nu,−z). �

The manifold Md(x) is equipped with an action of the group Diff(S, z)/Diff+(S, z) ∼= Z/2Z.
Let us denote by RMd(x) the fixed point set of this action. The restriction of π to RMd(x)
takes value in RJω. Denote by πR the induced projection RMd(x) → RJω.

Proposition 1.9 The projection πR : RMd(x) → RJω is Fredholm of index indR(πR) =
c1(X)d − 1 − m. Moreover, at [u, JS , J ] ∈ RMd(x), the kernel of πR is isomorphic to
H0
D(S,Nu,−z)+1 and its cokernel to H1

D(S,Nu,−z)+1.

Proof:

The projection π is Z/2Z-equivariant. Let [u, JS , J ] ∈ RMd(x) and (u, JS , J) ∈ RP∗(x)
be a lift of this element. Denote by cS the associated element of order two of Diff−(S, z).
Then Im(d[u,JS ,J ]πR) = Im(d[u,JS ,J ]π) ∩ Γl(X,Λ0,1X ⊗C TX)+1, this image is thus closed

in Γl(X,Λ0,1X ⊗C TX)+1 = TJ (RJω). From Proposition 1.8, we know that the cokernel
of d[u,JS,J ]πR is finite dimensional and isomorphic to H1

D(S,Nu,−z)+1. Similarly, note that
all the order two elements of Diff−(S, z) which have non-empty fixed point sets in S are
conjugated to each other by some element of Diff+(S, z). This follows from the similar
result in Diff(S) which can be proved as follows. Every order two element of Diff−(S)
can be made JS -antiholomorphic for some almost complex structure on S. Then, using Rie-
mann uniformization Theorem, it is conjugated to an antiholomorphic involution of CP 1

having non-empty fixed point set. The latter are well known to be conjugated to each
other. Thus, ker(d[u,JS,J ]πR) = ker

(
d(u,JS ,J)π∩T(u,JS,J)(Sd(x)×JS)+1

)
/Diff+(S, z)cS , where

T(u,JS ,J)(Sd(x) × JS)+1 is the eigenspace associated to the eigenvalue +1 of the action of cS
on T(u,JS ,J)(Sd(x) × JS) and Diff+(S, z)cS is the subgroup of diffeomorphisms of S which
preserve the orientation and commute with cS . The latter acts by reparameterization. From
Proposition 1.8, we deduce now that ker(d[u,JS ,J ]πR) is finite dimensional and isomorphic to
H0
D(S,Nu,−z)+1. The index formula follows from the long exact sequence (2), from Lemma

1.6 and from the Riemann-Roch formula applied to the bundle TS−z, since the operator ∂ on
this bundle is C-linear. �

1.5.2 The theorem of regular values

The following theorem is the main result of this first paragraph.

Theorem 1.10 The set of regular values of the projection π : Md(x) → Jω intersects
RJω in a dense subset of the second category of RJω.
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Proposition 1.11 The submanifold RJω of Jω is transversal to the restriction of π to
Md(x) \ RMd(x).

Proof:

Let J ∈ RJω and [u, JS , J ] ∈ Md(x) \ RMd(x). Fix some element (u, JS , J) ∈ P∗(x)
lifting [u, JS , J ]. Then from Proposition 1.8, coker(d[u,JS,J ]π) is isomorphic to H1

D(S,Nu,−z).
Let 0 6= ψ ∈ H0

D∗(S,KS ⊗C N∗
u) ∼= H1

D(S,Nu,−z)
∗, it suffices to prove that there exists

J̇ ∈ Γl(X,Λ0,1X⊗C TX)+1 = TJ(RJω) such that < ψ, J̇ ◦du◦JS > 6= 0. But D∗ψ = 0, which
means that (∂ −R∗)(ψ) is a linear combination of Dirac sections of N∗

u at z, thus ψ vanishes
only at a finite number of points outside a neighbourhood of z (see [4]). Since u is neither
real, nor multiple, there exists an open subset U of S, disjoint from z ⊂ S, such that u|U is
an embedding, u(U)∩u(S \U) = ∅, cX(u(U))∩u(S) = ∅ and such that ψ does not vanish on
U . Then, there exists a section α of Λ0,1S ⊗C Eu with support in U such that < ψ,α > 6= 0.
Let J̇ ∈ Γl(X,Λ0,1X ⊗C TX) be a section with support in a neighbourhood of u(U) such
that J̇ ◦ du ◦ JS = α. The section J̇R = J̇ + cX

∗(J̇) then belongs to Γl(X,Λ0,1X ⊗C TX)+1

and also satisfies J̇R ◦ du ◦ JS = α, hence the result. �

Proof of Theorem 1.10:

From Proposition 1.11 and the theorem of Sard-Smale (see [15]), there exists a dense set
of the second category of RJω, denoted by U1, such that every point of π−1(U1) \ RMd(x) is
regular for π. Similarly, from Proposition 1.9 and the theorem of Sard-Smale, the set of regular
values of πR is a dense subset of the second category of RJω denoted by U2. Then U = U1∩U2 is
suitable. Indeed, let J ∈ U and [u, JS , J ] ∈ π−1

R
(J). Choose some element (u, JS , J) ∈ RP∗(x)

lifting it and denote by cS the associated order two element of Diff−(S, z). By hypothesis,
H1
D(S,Nu,−z)+1 = 0. It suffices thus to prove that H1

D(S,Nu,−z)−1 = 0. If this would
not be the case, since S is rational, we would have H0

D(S,Nu,−z) = 0 (see [4], Theorem

1′). Since u is real and H0(S,N sing
u,−z) is carried by the cuspidal points of u, we see that

dimH0(S,N sing
u,−z)+1 = dimH0(S,N sing

u,−z)−1 = 1
2 dimH0(S,N sing

u,−z). From this we would obtain

ind(π) = 2dimH0(S,N sing
u,−z)+1 − dimH1

D(S,Nu,−z)−1 < 2 ind(πR),

which contradicts Proposition 1.9. �

2 The invariant χ of real symplectic 4-manifolds

2.1 Statements of the results

Let (X,ω, cX ) be a real symplectic 4-manifold and Jω be the space of almost complex
structures of X tamed by ω and of class C l. Label the connected components of the real part
RX by (RX)1, . . . , (RX)N . Let C be a real irreducible rational pseudo-holomorphic curve of
X having only transversal double points as singularities, and d ∈ H2(X; Z) be its homology
class. The total number of double points of C is given by adjunction formula and is equal
to δ = 1

2(d2 − c1(X)d + 2). The real double points of C are of two different natures. They
are either the local intersection of two real branches, or the local intersection of two complex
conjugated branches. In the first case they are called non-isolated and in the second case they
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are called isolated.

double point
Non-isolated real
double point

Isolated real

We define the mass of the curve C to be the number of its isolated real double points, it is
denoted by m(C). This integer satisfies the upper and lower bounds 0 ≤ m(C) ≤ δ. Now, let
x ⊂ X be a real configuration of c1(X)d− 1 distinct points, ri be the number of such points
which are in (RX)i, i ∈ {1, . . . , N}, and r = (r1, . . . , rN ). Let J ∈ RJω be generic enough,
then there are only finitely many rational J-holomorphic curves in X which pass through x
and realize the homology class d. Moreover, these curves are all irreducible and have only
transversal double points as singularities. For every integer m ranging from 0 to δ, denote by
nd(m) the number of these curves which are real and of mass m. Then define:

χdr(x, J) =

δ∑

m=0

(−1)mnd(m).

The main result of this paper is the following:

Theorem 2.1 Let (X,ω, cX ) be a real symplectic 4-manifold and d ∈ H2(X; Z) be
such that c1(X)d > 0. The connected components of the real part RX are labelled
(RX)1, . . . , (RX)N . Let x ⊂ X be a real configuration of c1(X)d − 1 distinct points, ri
be the cardinality of x ∩ (RX)i , and r = (r1, . . . , rN ). Finally, let J ∈ RJω be an almost
complex structure generic enough, so that the integer χdr(x, J) is well defined. Then, this
integer χdr(x, J) neither depends on the choice of J nor on the choice of x.

From Theorem 2.1, this integer can be denoted without ambiguity by χdr and when
∑N

i=1 ri
does not have the same parity as c1(X)d − 1, we set χdr to be 0. We then denote by χd(T )

the generating function
∑c1(X)d−1

|r|=0 χdrT
r ∈ Z[T1, . . . , TN ], where T r = T r11 . . . T rNN and |r| =

r1 + · · · + rN . This polynomial function is of the same parity as c1(X)d − 1 and each of
its monomials actually only depends on one indeterminate. The latter follows from the fact
that the real part RS of a real rational pseudo-holomorphic curve S is always connected and
thus cannot pass through points in different connected components of RX. It follows from
Theorem 2.1 that the function χ : d ∈ H2(X; Z) 7→ χd(T ) ∈ Z[T1, . . . , TN ] only depends
on the real symplectic 4-manifold (X,ω, cX ) and is invariant under deformation of this real
symplectic 4-manifold. This means that if ωt is a continuous family of symplectic forms for
which c∗Xωt = −ωt, then this function is the same for all triples (X,ωt, cX ). As an application
of this invariant, we obtain the following lower bounds in real enumerative geometry.

Corollary 2.2 Under the hypothesis of Theorem 2.1, the integer |χdr | provides a lower
bound for the total number of real rational J-holomorphic curves of X which pass through x
and realize the homology class d, independently of the choice of a generic J ∈ RJω. �

Note that this number of real curves is always bounded from above by the total number Nd

of rational J-holomorphic curves of X which pass through x and realize the homology class
d. The latter does not depend on the choice of J , it is a Gromov-Witten invariant of the
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symplectic 4-manifold (X,ω) and was computed by Kontsevich in [8]. A typical problem of
real enumerative geometry is, in this context, to know whether there exists a generic real
almost-complex structure J such that all these rational J-holomorphic curves are real. The
following corollary provides a criterium for the existence of such a structure.

Corollary 2.3 Under the hypothesis of Theorem 2.1, assume that χdr ≥ 0 (resp. χdr ≤ 0).
Assume that there exists a generic J ∈ RJω such that X has 1

2(Nd−|χdr |) real J-holomorphic
curves of odd (resp. even) mass passing through x in the homology class d. Then, all the
rational J-holomorphic curves of X which pass through x and realize the homology class d are
real. �

Example:

Let (X,ω, cX ) be the complex projective plane equipped with its standard symplectic
form and real structure. We denote the homology classes of the complex curves of CP 2

by integers. Then χ1(T ) = 1 + T 2, χ2(T ) = T + T 3 + T 5 and χ3(T ) =
∑4

r=0 2rT 2r. The
latter can be obtained using the observation of V. Kharlamov (see [2], Proposition 4.7.3 or
[16], Theorem 3.6). Indeed, the Euler characteristic of the real part of the projective plane
blown up at the nine base points of a pencil of elliptic curves, (r + 1) of which are real, is
−r. This real pencil of cubics provides this surface with an elliptic fibration over RP 1. The
generic fibres of this fibration are real parts of smooth cubics, so their Euler characteristic
vanishes. The singular fibres of this fibration are the real parts of the rational curves passing
through the configuration of points. Their Euler characteristic is thus +1 or −1 depending
on whether they have an isolated or non-isolated real double point. The relation χ3

2r = 2r
follows. The non-triviality of the polynomials χ4(T ) and χ5(T ) is proved in §3.4.2.

The following question arise from Corollary 2.2. Are the lower bounds given by this
corollary sharp? In the above example, for the degree 3 and r = 8, the lower bound is
sharp from [2], Proposition 4.7.3. Also, is it possible to define a similar invariant using
higher genus curves in real symplectic 4-manifolds, or in real symplectic manifolds of higher
dimensions? Note that the straightforward generalization of the integer χdr(x, J) using higher
genus curves, even taking into account the coherent orientation of the complex moduli space
Md

g(x, J), certainly does depend on x, J . This can be noticed for plane projective curves of
degree d ≥ 4 with one nodal point, using the same trick as for the degree 3 curves, see the
above example. Indeed, let x be a generic real configuration of d(d+3)

2 − 1 distinct points, r of

which being real. Then the linear pencil of curves of degree d passing through x has d(d−3)
2 +1

other fixed points. Denote by s the number of those additional points which are real. The
Euler characteristic of RP 2 blown up at these r + s real points is 1 − r − s. We deduce as
before that χdr(x, J) = r + s − 1. Now, using linear pencils close to ones generated by lines
arrangements, one realizes that s does depend in general on the choice of x.

Remark 2.4 Some lower bounds for the invariant χd
c1(X)d−1 have been obtained in [5] whenX

is a toric Del Pezzo surface. In particular, it is proven there that χd3d−1 ≥ d!
2 for the projective

plane. Also, I recently defined similar invariants in complex dimension 3, providing thus a
partial answer to the above question, see [18].
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2.2 Genericity arguments

From now on, the real symplectic 4-manifold (X,ω, cX ) is fixed, so that it will not be
mentioned in general in the following statements.

Denote by B2 (resp. B
2
) the open (resp. closed) unit disk of C and by jst the standard

complex structure on this disk. Similarly, denote by B4 the open unit ball of C
2 and by Jst

(resp. conj) the standard complex (resp. real) structure on this ball.

Lemma 2.5 Let J be an almost complex structure of class C l on B4 tamed by the standard

symplectic form and satisfying conj
∗
(J) = J . Let u0 : B

2 → B4 be a real J-holomorphic map
having an isolated singularity of order µ at 0 = u0(0). Then, as soon as J is close enough to
Jst = J(0) in C1 norm, for every v ∈ R

2 and every integer ν ≤ 2µ+1, there exist ǫ > 0 and a

family of real maps wλ ∈ Lk,p(B
2
,C2), λ ∈]− ǫ, ǫ[, such that w0 = 0,

.
w0=

d
dλ
|λ=0(wλ)(0) = 0

and for every λ ∈] − ǫ, ǫ[, the map uλ(t) = u0(t) + tν(λv + wλ(t)) is J-holomorphic and real.

This is a real version of a weaker form of Lemma 3.1.1 of [12]. For the reader’s convenience,
we reproduce a sketch of proof here.

Sketch of proof:

One can write the equation σ∂(uλ, jst, J) = 0 in the form

(x+ yjst)
−νσ∂(u0(t) + (x+ yjst)

ν(λv + wλ(t)), jst, J) = 0,

where by definition x+ yjst = t. The linearization of this equation writes

(x+ yjst)
−ν(∂ +R)|(uλ,jst,J)((x+ yjst)

ν(v+
.
wλ (t))) = 0,

which takes the form

(∂ +R)(ν)|(uλ,jst,J)
.
wλ (t) = −(∂ +R)(ν)|(uλ,jst,J)(v)

for some generalized ∂-type operatorD(ν) = (∂+R)(ν) = (x+yjst)
−ν(∂+R)|(uλ,jst,J)(x+yjst)

ν .

To solve this equation, it is thus sufficient to find a right inverse T (ν) of this operator D(ν)

such that T (ν)(α)(0) = 0 for every α ∈ Lk−1,p(B
2
,Λ0,1B

2 ⊗ C
2). As soon as J is close

enough to Jst = J(0) in C1 norm, the existence of such a right inverse follows from
the existence of a right inverse for the standard ∂-operator, see Lemma 1.2.2 of [7] for in-
stance. Moreover, the operators ∂

ν
, Rν ,Dν and T ν are Z/2Z-equivariants, hence the result. �

Denote by RJ
B

2 the space of complex structures of B
2

compatible with the complex
conjugation conj.

Lemma 2.6 Let η > 0 and RP ′ = {(u, J
B

2, J) ∈ Lk,p(B2
, B4)×RJ

B
2×RJω | du+J ◦du◦

J
B

2 = 0, cX ◦u = u◦conj , ||J−Jst||C1 < η and u(B
2
) has a unique singularity of multiplicity

two outside u(∂B
2
)}. Let RP ′

s be the subspace of RP ′ consisting of maps having a unique
cuspidal point. Moreover, let (uλ, J

λ
B , Jλ)λ∈]−1,1[ be a path of RP ′ such that (u0, J

0
B , J0) ∈ RP ′

s

and du0 has a real ordinary cusp at the point 0 ∈ B
2
. Then, as soon as η is small enough,

1) The space RP ′ is a separable Banach manifold of class C l−k and RP ′
s is a separable

Banach submanifold of RP ′ of codimension one.
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2) The path (uλ, J
λ
B , Jλ)λ∈]−1,1[ is transversal to RP ′

s at λ = 0 if and only if ∇ .
u0 (T0B

2)
is not the tangent line of u0(B

2) at the cusp u0(0). Under this condition, there exists ǫ > 0

such that for every λ ∈] − ǫ, 0[ (resp. λ ∈]0, ǫ[), the curve uλ(B
2
) has a non-isolated (resp.

isolated) real double point in a neighbourhood of the cusp, or vice-versa.

Proof:

1) Consider the map

Φ :
Lk,p(B

2
, B4) × RJ

B
2 × RJω → Lk−1,p(B

2
,Λ0,1B

2 ⊗C Eu) × RJ
B

2 × RJω
(u, J

B
2 , J) 7→ (du+ J ◦ du ◦ J

B
2 , J

B
2 , J).

As in §1.2, the linearization of Φ writes

d|(u,J
B

2 ,J)Φ :
Lk,p(B

2
, Eu) × TRJ

B
2 × TRJω → Lk−1,p(B

2
,Λ0,1B

2 ⊗C Eu) × TRJ
B

2 × TRJω
(v, J̇

B
2 , J̇) 7→ (Dv + J̇ ◦ du ◦ J

B
2 + J ◦ du ◦ J̇

B
2 , J̇

B
2 , J̇).

Remember that as soon as η is close enough to zero, the operator D has a continuous right

inverse T : Lk−1,p(B
2
,Λ0,1B

2 ⊗C Eu) → Lk,p(B
2
, Eu), since the operator ∂st has one, see,

for example, Lemma 1.2.2 of [7]. It follows that the operator d|(u,J
B

2 ,J)Φ between separable

Banach spaces is surjective as soon as η is close enough to zero, and its kernel has a closed
complement. From the implicit function theorem (see Theorem A.3.3 of [9] for example)
follows then that RP ′ is a separable Banach manifold of class C l−k. Now, let E (resp. F )
be the vector bundle over RP ′×] − 1, 1[ whose fibre over ((u, J

B
2 , J), t) is the vector space

Tu(t)(R
2 ∩ B4) (resp. T ∗

t ] − 1, 1[). Denote by Γ the section of the bundle F ⊗ E defined by
Γ((u, J

B
2 , J), t) = dtu. Then Γ vanishes transversely over RP ′

s. Indeed, let ((u′0, J
′

B
2, J

′), t) ∈
RP ′×]−1, 1[ be such that dtu

′
0 = 0, and let v be an element of Tu′0(t)(R

2∩B4). We can apply
Lemma 2.5 with ν = 1. Let (u′λ, J

′

B
2 , J

′) be the path of RP ′ given by this lemma. We have

Γ((u′λ, J
′

B
2 , J

′), t) = dtu
′
λ, thus

∇
((

.
u
′

0,0,0),
∂

∂t
)
Γ = ∇ .

u
′
0 |t + ∇ ∂

∂t

(du′0) = v ⊗ d

dt
+ ∇ ∂

∂t

(du′0).

Choosing t constant in ]− 1, 1[, we deduce the surjectivity of ∇Γ since the vector v has been
chosen arbitrarily in Tu′0(t)(R

2 ∩B4). Thus, Γ−1(0) is a codimension two submanifold of class

C l−k of RP ′×] − 1, 1[. Now the projection RP ′×] − 1, 1[→ RP ′ restricted to Γ−1(0) is an
immersion. Moreover, if (u′, J ′

B
2 , J

′) ∈ RP ′
s and ((u′, J ′

B
2 , J

′), t) ∈ RP ′×] − 1, 1[ lifts this

element, then there exists a neighbourhood V of (u′, J ′

B
2 , J

′) in RP ′ such that the projection

Γ−1(0) ∩ (V×]− 1, 1[) → RP ′
s ∩ V is one to one, since by hypothesis the cusp of u′ is unique.

Finally, it is proper, since the condition to have a cuspidal point is a closed condition in RP ′.
The first part of the lemma follows.

2) The kernel of the projection RP ′×] − 1, 1[→ RP ′ is generated by vectors of
the form ((0, 0, 0), ∂

∂t
). From what we have done, ∇((0,0,0), ∂

∂t
)Γ = ∇ ∂

∂t

(du0). Since

the image of ∇ ∂

∂t

(du0) is the tangent line of the curve u0(] − 1, 1[) at the real cusp,

and ∇((
.
u0,J̇

B
2 ,J̇),0)Γ = ∇ .

u0, we deduce the transversality condition. For example, let

uλst : t ∈ B
2 7→ (1

4t
2, 1

8t
3 + 1

2λt) ∈ B4, where |λ| is small enough so that it indeed takes
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values in B4. Then, the path (uλst, jst, Jst) of RP ′ is transversal to RP ′
s at λ = 0. Indeed,

∇ .
u

0
st= (0, 1

2) ⊗ d
dt

and the tangent line of u0
st at the cusp is generated by the vector (1, 0),

so that the transversality condition is satisfied. Note that for λ < 0 (resp. λ > 0), uλst
has a non-isolated (resp. isolated) real double point at the parameters t = ±2

√
−λ. Since

RP ′
s is smooth at (u0

st, jst, Jst), we deduce that there exists some neighbourhood W of
(u0
st, jst, Jst) in RP ′ such that for any path (uλ, J

λ
B , Jλ)λ∈]−1,1[ of W which is transversal

to RP ′
s at λ = 0, there exists ǫ > 0 such that for every λ ∈] − ǫ, 0[ (resp. λ ∈]0, ǫ[), the

curve uλ(B
2
) has a non-isolated (resp. isolated) real double point in a neighbourhood of the

cusp, or vice-versa. Now, let (uλ, J
λ
B , Jλ)λ∈]−1,1[ be any path of RP ′ transversal to RP ′

s at
λ = 0. Let us prove that there exists an isotopy among paths which are transversal to RP ′

s

at λ = 0 between this path and a path included in W . This isotopy will be obtained via
some rescaling argument. After performing a Z/2Z-equivariant linear transformation which
conjugates J0(0) to the standard complex structure of C

2 if necessary, we can assume that
J0(0) = Jst. Then, from Corollary 1.4.3 of [7] for example, we can assume that u0 writes

t 7→ (1
4 t

2, 1
8t

3) + t3ǫ0(t) in complex coordinates, where ǫ0 : B
2 → B4 satisfies ǫ0(0) = 0. For

every δ ∈]0, 1[, denote by aδ : (z1, z2) ∈ C
2 7→ (δ2z1, δ

3z2) ∈ C
2 and hδ : t ∈ C 7→ δt ∈ C. For

δ ∈]0, 1[ and |λ| ≤ ǫ1(δ) where ǫ1(δ) is close enough to zero, denote by u(λ, δ) = a−1
δ ◦uλ ◦hδ ,

JB(λ, δ) = h∗δJ
λ
B and J(λ, δ) = a∗δJλ, so that the map u(λ, δ) : (B

2
, JB(λ, δ)) → (B4, J(λ, δ))

is pseudo-holomorphic. This map u(λ, δ) indeed takes value in B4 as soon as ǫ1(δ) is close
enough to zero, since the map u(0, δ) itself takes value in B4, restricting the domain of
definition of u(0, 1) from the beginning if necessary, since ǫ0 is bounded. Note that J(0, δ)
converges to Jst in C1-norm as δ converges to zero, and JB(0, δ) to jst. Moreover, the map

u(0, δ) converges to the real ordinary cusp u0
st : t ∈ B

2 7→ (1
4t

2, 1
8t

3) ∈ B4 as δ converges to
zero. As a consequence, as soon as δ is small enough, the element (u(0, δ), JB (0, δ), J(0, δ))
belongs to W . Hence, for δ small enough and |λ| ≤ ǫ1(δ) where ǫ1(δ) is close enough
to zero, the path (u(λ, δ), JB (λ, δ), J(λ, δ))λ∈]−ǫ1(δ),ǫ1(δ)[ belongs to W and is transversal
to RP ′

s at λ = 0. We deduce a smooth family parameterized by δ ∈]0, 1] of paths
(u(λ, δ), JB (λ, δ), J(λ, δ))λ∈]−ǫ1 (δ),ǫ1(δ)[ of RP ′, which are transversal to RP ′

s at λ = 0. The
topology of the real double point of u(λ, δ), λ > 0, and u(λ, δ), λ < 0, thus does not depend
on δ ∈]0, 1]. The result follows since it has already been checked for paths included in W . �

The moduli space RMd(x) which has been constructed in §1.5.1 admits a natural strat-
ification whose strata are given by equisingular rational pseudo-holomorphic curves. The
remaining part of this paragraph is devoted to the computation of the dimension of each
stratum. For this purpose, a stratum will be said to be of codimension k if it is the image of
a separable Banach manifold N under a smooth Fredholm map φ of Fredholm index −k such
that all the limits of sequences φ(xn), where xn is a diverging sequence in N , belong to a
countable union of strata of higher codimensions. In particular, the map φ is not required to
be proper. The point for us is that a generic path γ : [0, 1] → RMd(x) avoids every stratum of
codimension greater than one, and intersects each stratum of codimension one at only finitely
many points.

Proposition 2.7 Let (X,ω, cX ) be a real symplectic 4-manifold, d ∈ H2(X; Z) and x be
a real configuration of distinct points of X.

1) The subspace of RMd(x) consisting of curves having a real ordinary cusp (resp. a
non-ordinary cusp or several cusps) is an immersed submanifold of codimension one (resp.
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two).
2) The subspace of RMd(x) consisting of curves having a real tacnode or a real ordinary

triple point (resp. a multiple point of higher order or several such points) is a stratum of
codimension one (resp. two) transversal to the previous one.

3) The subspace of RMd(x) consisting of curves having a real ordinary cusp, a real tacnode
or a real ordinary triple point at some point of x ∩ RX is a stratum of codimension two.

Proof:

Let us prove the first part of the proposition. For this purpose, let [u, JS , J ] ∈ RMd(x)
and (u, JS , J) ∈ RP∗(x) be a lift of this element. Denote by cS ∈ Diff−(S, z) the associated
involution and by RS (resp. C) the fixed point set of cS in S (resp. RP∗(x)). Assume that
(u, JS , J) has an ordinary cusp at t ∈ RS. Fix then some real neighbourhood V of t in

S diffeomorphic to B
2

and a real neighbourhood W of u(t) in X diffeomorphic to B4. As
soon as these neighbourhoods have been chosen small enough, we deduce some “restriction
map” rest : CW → RP ′, where CW is such that (u|V , JS |B , J |W ) belongs to RP ′ (see Lemma
2.6). This map is transversal to RP ′

s. Indeed, denote by (ũ0, J̃
0
S , J̃) = rest(u, JS , J) ∈ RP ′

s.

Extend this into a path (ũλ, J̃
λ
S , J̃)λ∈]−1,1[ transversal to RP ′

s. Using the Z/2Z-equivariant

identification between W and B4, we deduce a path (ũλ, J̃
λ
S , J̃)λ∈]−1,1[ of maps in W . There

exists then a smooth family (Jλ)λ∈]−1,1[ in RJω extending J = J0 such that for every λ ∈
] − 1, 1[\{0}, Jλ differs from J only in a neighbourhood of u(∂V ), and a smooth family
(uλ, J

λ
S , Jλ) of real Jλ-holomorphic curves extending (u, JS , J), such that for λ 6= 0, the image

of uλ is obtained topologically from ũλ(V ) and u(S \V ) by gluing a small annulus embedded
in a neighbourhood of u(∂V ). This proves the transversality of the restriction map.

W

(small annulus, Jλ)

neighbourhood of u(∂V )

(ũλ, J)

(u(S \ V ), J)

We deduce that the subspace rest−1(RP ′
s) ⊂ CW made of curves having a real cuspidal point

in a neighbourhood of u(t) is an immersed codimension one submanifold of CW . Hence,
the subspace of RMd(x) consisting of curves having a real ordinary cusp is an immersed
submanifold of codimension one. Moreover, it follows from this proof that the condition to
have two different cusps is transversal, so that the subspace of these curves is an immersed
submanifold of codimension two of RMd(x). It remains to prove that the same holds for curves
having some cuspidal point of higher order or some non-ordinary cusp. For this purpose,
we can assume that the cuspidal point is unique. Denote by RMd(x)cusp the subspace of
RMd(x) consisting of curves having a unique cuspidal point which is thus real. Let [u, JS , J ] ∈
RMd(x)cusp and (u, JS , J) ∈ RP∗(x) be a lift of this element. Denote as before by cS ∈
Diff−(S, z) the associated involution and by RS (resp. Ccusp) the fixed point set of cS in
S (resp. in RP∗(x)cusp). Let t ∈ RS be the point where du vanishes. Remember that the
order three jet j3t (u) of u at t is well defined (see [7], Corollary 1.4.3). It is a polynomial map
from TtRS to Tu(t)RX whose first order term vanishes since we restrict ourselves to Ccusp.
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Denote by Γ2 the section of the space of 2-jets over Ccusp which maps (u, JS , J) to the term
of order two of j3t (u). Writing u in a local chart in a neighbourhood of u(t), we prove that
this section is smooth, of class C l−k (see [12], Lemma 3.2.3). Moreover, it follows as before
from Lemma 2.5 with ν = 2 that this section is transversal to the zero section. Indeed, from
Lemma 2.5 with ν = 2, it is possible to deform u in a neighbourhood of u(t) into a path of

J-holomorphic maps from a disc B
2

to X. Then it is as before possible to glue this path to the
initial map outside this neighbourhood by adding a small embedded annulus. We thus obtain
a smooth family (uλ, J

λ
S , Jλ) of real Jλ-holomorphic curves extending (u, JS , J) = (u0, J

0
S , J)

and over which Γ2 vanishes transversely. It follows that the subspace of RMd(x) consisting
of curves having a cuspidal point of order ≥ 2 is an immersed submanifold of codimension
three. Let us now restrict ourselves to the open set V ⊂ Ccusp on which Γ2 does not vanish.
Let (u, JS , J) ∈ V and t ∈ RS be the cuspidal point. The term of order two of j3t (u) defines a
line in Tu(t)RX, it is the tangent line of the curve u(S) at u(t). Denote by Nu(t) the quotient
of Tu(t)RX by this line. Projecting the term of order three of j3t (u) on Nu(t), we define a
section Γ3 of the bundle of 3-jets from TtRS to Nu(t), bundle defined over V. As before, this
section is smooth of class C l−k−1 (the bundle Nu(t) is only of class C l−k−1), and it follows
from Lemma 2.5 with ν = 3 that it is transversal to the zero section. This ends the proof of
the first part of Proposition 2.7.

Now let us prove the second part of Proposition 2.7. Since all the cases are proved almost
along the same lines, we only give a proof in the case of the tacnode. Let cS ∈ Diff−(S, z) be
an involution and Diff+(S, z)cS be the subgroup of orientation preserving diffeomorphisms
of (S, z) which commute with cS . Denote by RS (resp. C) the fixed point set of cS in S (resp.
P∗(x)), so that C/Diff+(S, z)cS is a union of connected components of RMd(x). The latter
follows from the fact that all the order two elements of Diff−(S, z) which have non-empty
fixed point sets in S are conjugated to each other by some element of Diff+(S, z) (see the
proof of Proposition 1.9). Let

Cr = {((u, JS , J), t1, t2) ∈ C × RS × RS | t1 6= t2 , u(t1) = u(t2) and dt1u 6= 0 6= dt2u}.

This is a codimension two submanifold of class C l−k of C×RS×RS. Denote by Nr (resp. Fr)
the vector bundle of class C l−k−1 over Cr whose fibre over ((u, JS , J), t1, t2) is the quotient
space Tu(t1)RX/dt1u(Tt1RS) (resp. T ∗

t2
RS). Denote by Θr the section of the bundle Fr ⊗Nr

defined by Θr((u, JS , J), t1, t2) = dt2u. As before, the section Θr is smooth of class C l−k−1,
and from Lemma 2.5 with ν = 1, it is transversal to the zero section. We deduce that Θ−1

r (0)
is a codimension one submanifold of Cr, and a codimension three submanifold of C×RS×RS.
This manifold thus maps onto a codimension one stratum of RMd(x), since the projection
(C × RS × RS)/Diff+(S, z)cS → RMd(x) is of index two. This codimension one stratum of
RMd(x) is transversal to the one defined in the first part of this proposition. Now, let

Ci = {((u, JS , J), t) ∈ C × (S \ RS) |u(t) = u ◦ cS(t) and dtu 6= 0}.

This is a codimension two submanifold of class C l−k of C × S. Denote by Ni (resp. Fi) the
vector bundle of class C l−k−1 over Ci whose fibre over ((u, JS , J), t) is the quotient space
Tu(t)X/dtu(TtS) (resp. T ∗

cS(t)S). Denote by Θi the section of the bundle Fi ⊗ Ni defined

by Θi((u, JS , J), t) = dcS(t)u. As before, the section Θi is smooth of class C l−k−1, and

from Lemma 2.5 with ν = 1, it is transversal to the zero section. We deduce that Θ−1
i (0)

is a codimension one submanifold of Ci, and a codimension three submanifold of C × S.
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This manifold thus maps onto a codimension one stratum of RMd(x), since the projection
(C×S)/Diff+(S, z)cS → RMd(x) is of index two. This codimension one stratum of RMd(x)
is transversal to the one defined in the first part of this proposition. The second part of
the proposition follows and the proof of the third part of the proposition is left to the reader. �

Denote by RMd(x)s the immersed codimension one submanifold of RMd(x) consisting of
curves having a unique cuspidal point which is a real ordinary cusp. Let [u, JS , J ] ∈ RMd(x)s,
we have dimH0

D(S,N sing
u,−z)+1 = 1. Since ind(πR) = 0, it follows that dimH1

D(S,Nu,−z)+1 ≥ 1.
Thus, S being rational, dimH0

D(S,Nu,−z)+1 = 0 (see [4]) and dimH1
D(S,Nu,−z)+1 = 1. Let

ψu be a generator of the vector space H0
D∗(S,KS ⊗C N

∗
u)−1 = H1

D(S,Nu,−z)
∗
+1. Remember

that since ψu 6= 0 and D∗(ψu) = 0, this section ψu vanishes at a finite number of points
outside a neighbourhood of z.

Proposition 2.8 The subspace of RMd(x)s consisting of curves [u, JS , J ] for which the
section ψu vanishes at the unique real cuspidal point of u is an immersed codimension one
submanifold of RMd(x)s.

Proof:

The following proof is analogous to the proof of Lemma 4.4.3 of [12]. Fix some component
of RMd(x)s and a lift Cs of this component in RP∗(x). Denote by cS ∈ Diff−(S, z) the
associated involution, so that Cs is included in the fixed point set of cS in P∗(x). Denote
also by RS the fixed point set of cS in S and by Diff+(S, z)cS the subgroup of orientation
preserving diffeomorphisms of (S, z) which commute with cS . For every (u, JS , J) ∈ Cs, we
denote by tu ∈ RS the unique point at which du is not injective. Let then F be the real vector
bundle of rank one over Cs whose fibre over (u, JS , J) is the vector space (KS ⊗ N∗

u)−1|tu .
It is a vector bundle of class C l−k−1. Let ψ be a local section of class C l−k−1 of the vector
bundle over Cs whose fibre over (u, JS , J) is the vector space H0

D∗(S,KS⊗CN
∗
u)−1. We assume

that ψ does not vanish and we will denote as before by ψu the value ψ(u, JS , J). We then
deduce a section Γψ of the bundle F defined by Γψ(u, JS , J) = ψu(tu). This section Γψ is
of class C l−k−1 and we have to prove that it vanishes transversely. For this purpose, we
fix a riemannian metric on S invariant under cS and the associated Levi-Civita connection.
This connection as well as the connection ∇ on X induce connections on all the associated
bundles, like F for instance. For convenience, all these connections will be denoted by ∇.
Hence, suppose that (u, JS , J) ∈ Cs is such that Γψ(u, JS , J) = 0, we have to prove that
∇|(u,JS ,J)Γψ : T(u,JS ,J)Cs → F(u,JS ,J) is surjective. Let then j0 ∈ (KS ⊗ N∗

u)−1|tu , we are

searching for (v, J̇S , J̇) ∈ T(u,JS ,J)Cs such that ∇(v,J̇S ,J̇)Γψ = j0. Let (uλ, J
λ
S , Jλ)λ∈]−1,1[ be

a path in Cs such that (u0, J
0
S , J0) = (u, JS , J) and d

dλ
(uλ, J

λ
S , Jλ)|λ=0 = (v, J̇S , J̇). For

every w0 ∈ Lk,p(S,Nu,−z)+1, we extend w0 into a path wλ ∈ Lk,p(S,Nuλ,−z)+1 such that
∇(

.
uλ,J̇

λ

S
,J̇λ)wλ = 0. Then the relation D∗

λψuλ
= 0 becomes equivalent to

∀w0 ∈ Lk,p(S,Nu,−z)+1, < ψuλ
,Dλwλ >= 0.

We deduce after differentiation

∀w0 ∈ Lk,p(S,Nu,−z)+1, <
.

ψuλ
,Dλwλ > + < ψuλ

,
(
∇(vλ,J̇

λ

S
,J̇λ)Dλ

)
(wλ) >= 0. (3)

Note that ∇(v,J̇S ,J̇)Γψ =
.

ψ (tu) +∇.

tuλ

ψ. It is then enough to find (0, 0, J̇) ∈ T(u,JS ,J)Cs and a

18



section
.

ψ∈ L1−k,p′(S,KS ⊗C N
∗
u)−1 such that

.

ψ (tu) = j0 and

∀w ∈ Lk,p(S,Nu,−z)+1, < D∗
.

ψ,w > + < ψu,∇(0,0,J̇)D(w) >= 0. (4)

Indeed, this relation (4) ensures that
.

ψ equals
.

ψu0
up to the addition of a multiple of ψu0 ,

and thus the evaluation
.

ψ (tu) equals
.

ψu0
(tu). Moreover, the choice v = 0 implies that

.
tuλ

= 0 and thus ∇(v,J̇S ,J̇)Γψ =
.

ψ (tu). Let us start to construct the section
.

ψ. Let
.

ψ1∈
L1−k,p′(S,KS ⊗C N∗

u)−1 be a local section such that
.

ψ1 (tu) = j0 and D∗(
.

ψ1) = 0 in a
neighbourhood of tu. Such a section does exist. Indeed, extend j0 in a neighbourhood of
tu as a holomorphic section of (KS ⊗ N∗

u)−1 for the complex structure associated to the
complex linear part ∂ of D∗. It suffices to solve locally the equation D∗(j0 + zφ(z)) = 0
where the unknown φ is defined in the neighbourhood of tu. This equation is equivalent to
(z−1D∗z)(φ(z)) = −z−1D∗(j0). Note that since j0 is holomorphic, D∗(j0) = R∗(j0) and since
tu is a cusp of u and R(v) = NJ(v, du(.)), the right hand side z−1D∗(j0) of the previous
equation is well defined. The operator z−1D∗z is equivariant under the action of cS and
has, once restricted to a neighbourhood of tu, a right inverse T also Z/2Z-equivariant. Thus
φ = −T ◦ z−1D∗(j0) is a local solution and satisfies dcX ◦ φ ◦ cS = −φ, which provides the

existence of
.

ψ1. Using partition of unity, this local section is completed to a global section
.

ψ∈ L1−k,p′(S,KS ⊗C N
∗
u)−1 which has support in a neighbourhood of tu where ψu has no

other zero than tu. It remains to find (0, 0, J̇) ∈ T(u,JS ,J)Cs such that (4) is satisfied. Let us

search for such a vector among those for which J̇ = 0 in a neighbourhood of the cusp u(tu)
and along u(S). Such a vector is then tangent to Cs as soon as cX

∗(J̇) = J̇ . Remember that
by definition, Dw = ∇w + J ◦ ∇w ◦ JS + ∇wJ ◦ du ◦ JS , thus at such a vector (0, 0, J̇ ), we
have ∇(0,0,J̇)D(w) = ∇wJ̇ ◦ du ◦ JS . Now the relation (4) rewrites:

∀w ∈ Lk,p(S,Nu,−z)+1, < D∗
.

ψ,w > + < ψu,∇wJ̇ ◦ du ◦ JS >= 0,

or −D∗
.

ψ=< ψu,∇J̇ ◦ du ◦ JS > . (5)

Outside of a neighbourhood of tu, this equation determines the value of the derivative of J̇
in the normal direction of the curve u(S). After integration of this condition, we construct a
solution J̇ satisfying (5) and cX

∗(J̇) = J̇ . Hence the result. �

Proposition 2.9 Let (X,ω, cX ) be a real symplectic 4-manifold, d1, d2 ∈ H2(X; Z), and
y1, y2 be two finite disjoint subsets of X invariant under cX . Denote by

∆ = {([u1, JS1 , J ], [u2, JS2 , J ]) ∈ RMd1(y1) × RMd2(y2) |u1(S1) = u2(S2)}.

Then, the projections π1
R

: RMd1(y1) → RJω and π2
R

: RMd2(y2) → RJω are transversal to
each other outside of ∆.

Note that as soon as d1 6= d2, the diagonal ∆ is empty.

Corollary 2.10 Let (X,ω, cX ) be a real symplectic 4-manifold, d1, . . . , dl ∈ H2(X; Z) and
y1, . . . , yl be finite disjoint subsets of X invariant under cX . Denote by

∆ = {([u1, JS1 , J ], . . . , [ul, JSl
, J ]) ∈ RMd1(y1)×· · ·×RMdl(yl) | ∃i 6= j for which ui(Si) = uj(Sj)}.
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Then the fibre product (Πl
i=1RMdi(yi)) \∆ over RJω is a separable Banach manifold of class

C l−k. Moreover, the projection (Πl
i=1RMdi(yi)) \ ∆ → RJω is Fredholm of index c1(X)d −

l − #y, where d =
∑l

i=1 di and y = ∪li=1yi. �

Proof of Proposition 2.9:

Let [u1, JS1 , J ] ∈ RMd1(y1) and [u2, JS2 , J ] ∈ RMd2(y2), so that π1
R
([u1, JS1 , J ]) =

π2
R
([u2, JS2 , J ]) = J ∈ RJω. Fix (u1, JS1 , J) (resp. (u2, JS2 , J)) a lift of [u1, JS1 , J ] (resp.

[u2, JS2 , J ]) in RP∗(y1) (resp. RP∗(y2)), so that u1 (resp. u2) is a J-holomorphic map
(S1, z1) → (X, y1) (resp. (S2, z2) → (X, y2)). Assume that u1(S1) 6= u2(S2). From
Proposition 1.9, coker(πi

R
|[ui,JSi

,J ]) ∼= H1
D(Si, Nui,−zi

)+1. Let 0 6= ψ1 ∈ H0
D∗(S1,KS1 ⊗C

N∗
u1

)−1
∼= H1

D(S1, Nu1,−z1)
∗
+1 (see Lemma 1.7). It suffices to prove the existence of J̇ ∈

Γl(X,Λ0,1X ⊗C TX)+1 such that < ψ1, J̇ ◦ du1 ◦ JS1 > 6= 0 and < ψ2, J̇ ◦ du2 ◦ JS2 >= 0
for every ψ2 ∈ H0

D∗(S2,KS2 ⊗C N∗
u2

)−1. Since D∗(ψ1) = 0 and ψ1 6= 0, the section ψ1

vanishes only at a finite number of points outside a neighbourhood of z1 (see [4]). Since
u1 is not multiple, there exists an open set U ⊂ S1 \ z1 such that u1|U is an embedding,
u1(U) ∩ u1(S1 \ U) = ∅, cX(u1(U)) ∩ u1(U) = ∅ and such that ψ1 does not vanish on U .
Moreover, since u1(S1) 6= u2(S2), the intersection u1(S1) ∩ u2(S2) consists only of a finite
number of points and thus the open set U can be chosen such that u1(U) ∩ u2(S2) = ∅.

Denote by cS1 the order two element of Diff−(S1, z1) whose fixed point set in RP∗(y1)
contains (u1, JS1 , J), it is in fact the JS1-antiholomorphic involution of S1 induced by u1 and
cX . Let then αU be a section of Λ0,1S1 ⊗ Eu1 with support in U such that < ψ1, αU > 6= 0.
There exists J̇ ∈ Γl(X,Λ0,1X ⊗C TX), with support in a neighbourhood of u1(U) in X, such
that J̇ ◦ du1 ◦ JS1 = αU . Denote by J̇R = J̇ − dcX ◦ J̇ ◦ dcX ∈ Γl(X,Λ0,1X ⊗C TX)+1. We
have

< ψ1, J̇R ◦ du1 ◦ JS1 > = < ψ1, J̇ ◦ du1 ◦ JS1 > + < ψ1, cX
∗(J̇) ◦ du1 ◦ JS1 >

= < ψ1, αU > + < ψ1, dcX ◦ J̇ ◦ du1 ◦ JS1 ◦ dcS1 >

= < ψ1, αU > − < (dcX )t ◦ ψ1 ◦ dcS1 , αU >

(changing of variables, since cS1 reverses the orientation of S1)

= 2 < ψ1, αU > 6= 0.

Since the support of J̇ is disjoint from u2(S2), we have J̇R ◦ du2 ◦ JS2 = 0 and thus
< ψ2, J̇R ◦ du2 ◦ JS2 >= 0 for every ψ2 ∈ H0

D∗(S2,KS2 ⊗C N
∗
u2

)−1. �

Under the hypothesis of Proposition 2.9, we will denote by RMd1,d2(y1, y2) the fibre
product (RMd1(y1) ×RJω

RMd2(y2)) \ ∆.

Proposition 2.11 The subspace of RMd1,d2(y1, y2) consisting of couples
([u1, JS1 , J ], [u2, JS2 , J ])) for which the union u1(S1) ∪ u2(S2) does not have only transversal
double points as singularities, or has a double point in y1 ∪ y2, is a stratum of codimension
one.

Proof:

This subspace consists of couples for which u1 or u2 is not an immersion; or u1 and u2 are
immersions, but u1(S1) or u2(S2) has some multiple points or tacnode; or u1(S1) and u2(S2)
have only transversal double points as singularities, but the intersection u1(S1) ∩ u2(S2) is
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not transverse; or u1(S1)∪u2(S2) has only transversal double points as singularities, but with
some double point in y1 ∪ y2.

In the two first cases, the result follows from Proposition 2.7. In the two last cases, the
proof is analogous to the one of cases 2 and 3 of Proposition 2.7, and mainly follows from
Lemma 2.5 with ν = 1. It is left to the reader. �

Remark 2.12 Over a generic path γ of RJω, elements of RMd(x) cannot degenerate onto a
multiple curve or an element of the diagonal ∆ of Proposition 2.9. Indeed, the condition for
a curve having homology class d

j
to pass through c1(X)d− 1 points is of codimension greater

than one unless j = 2 and c1(X)d = 2. In this case, a generic immersed rational curve having
homology class d

2 has 1
2

(
(d2)2 +1

)
transversal double points. After perturbation, each of these

double points is reponsible for four double points of the doubled irreducible curve. In the
case of a multiple curve, the doubled curve should then have at least 2

(
(d2)2 + 1

)
= d2

2 + 2
transversal double points, which is impossible. In the case of a curve coming from ∆, one
of these double points gets smoothed, but still, 1

2d
2 + 1 is too much. Likewise, when such

elements degenerate on a reduced curve given by Proposition 2.11, none of its irreducible
components can be multiply covered.

2.3 Proof of Theorem 2.1

Let J0, J1 be regular values of the projections π : Md(x) → Jω and πi : Mdi(xi) → Jω,
for every di ∈ H2(X; Z) realized by a component of a reducible pseudo-holomorphic curve in
the class d, and xi ⊂ x a real configuration of more than c1(X)di − 1 points. Such values
exist from Theorem 1.10. Let γ : [0, 1] → RJω be a path transversal to the projections
πR : RMd(x) → RJω and π : (Md(x) \ RMd(x)) → Jω (see Proposition 1.11), joining J0 to
J1. Then, RMγ = π−1

R
(Im(γ)) is a submanifold of dimension one of RMd(x), equipped with

a projection πγ : RMγ → [0, 1] induced by πR.

J0 J1RMγ

The path γ is chosen such that every element of RMγ is a curve with only transversal double
points as singularities, with the exception of a finite number of them which may have a
unique real ordinary cusp, a unique real triple point or a unique real tacnode. Moreover,
this path is chosen such that when a sequence of elements of RMγ converges in Gromov
topology to a reducible curve of X, then this curve has only two irreducible components,
both real, and only ordinary double points as singularities. Finally, this path is chosen such
that if [u, JS , J ] ∈ RMγ has a unique real ordinary cusp at the parameter tu ∈ RS, then the
generator ψu of H0

D∗(S,KS ⊗C N
∗
u)−1 does not vanish at tu. Such a choice of γ is possible

from Propositions 2.7, 2.8, 2.9 and Remark 2.12.

Lemma 2.13 The critical points of πγ are the curves [u, JS , J ] ∈ RMγ having an ordi-
nary cusp. Moreover, all these critical points are non-degenerated.
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Proof: From Proposition 1.9, at a point [u, JS , J ] ∈ RMγ , the cokernel of dπγ is isomor-

phic toH1
D(S,Nu,−z)+1 and its kernel toH0

D(S,Nu,−z)+1 = H0
D(S,Nu,−z)+1⊕H0(S,N sing

u,−z)+1.
If [u, JS , J ] is a critical point of πγ , then dimH1

D(S,Nu,−z)+1 = +1. Since S is rational and D
is of generalized ∂-type, this implies that H0

D(S,Nu,−z)+1 = 0 (see [4]). Since ind(dπγ) = 0,

we have dimH0(S,N sing
u,−z)+1 = 1 and thus u is not an immersion. From the hypothesis

made on γ, this implies that u has a real ordinary cusp. Conversely, if [u, JS , J ] ∈ RMγ

has a real ordinary cusp, then dimH0(S,N sing
u,−z)+1 = 1. Thus, ker(d[u,JS ,J ]πγ) 6= 0 and since

ind(dπγ) = 0, coker(d[u,JS ,J ]πγ) 6= 0, hence the first part of the lemma.
Now let [u, JS , J ] ∈ RMγ be a critical point of πγ . Fix some lift (u, JS , J) ∈ RP∗(x) of

this element, denote by cS ∈ Diff−(S, z) the associated element of order two and by RS ⊂ S
the fixed point set of cS . Let tu ∈ RS be the point at which du is not injective. We have to
prove that the second order differential

∇|[u,JS ,J ]dπγ : H0(S,N sing
u,−z)+1 ×H0(S,N sing

u,−z)+1 → H1
D(S,Nu,−z)+1

is non-degenerated. The differential dπγ is identified with (v, J̇S , J̇) ∈ T |[u,JS,J ]RMd(x) 7→
J̇ ◦ du ◦ JS ∈ Lk−1,p(S,Λ0,1S ⊗ Nu)+1. From the relation Dv + J ◦ du ◦ J̇S + J̇ ◦ du ◦ JS =
0, we deduce that ∇|[u,JS ,J ]dπγ = −∇|[u,JS,J ]D̂R, where D̂R(v, J̇S , J̇) = DRv + J ◦ du ◦
J̇S . Now, the result follows from [12], Lemmas 4.3.3, 4.3.4 and 4.3.5. A similar but more
direct approach in this setting, as was communicated to me by J.-C. Sikorav, can be the
following. Let ψ be a generator of H0

D∗(S,KS⊗CN
∗
u)−1 = H1

D(S,Nu,−z)
∗
+1 and (v, J̇S , 0) be a

generator of H0(S,N sing
u,−z)+1. Without loss of generality, we can assume that J̇S vanishes in a

neighbourhood of the cusp. Then v can be written du(ṽ) where ṽ ∈ Lk,p(S, TS−z⊗CO(tu))+1

(see [12], Lemma 4.3.1), that is ṽ is a meromorphic real vector field of S having a simple
pole at tu and vanishing at z ⊂ S. After differentiation of the relation DR ◦ du = du ◦ ∂S ,
we deduce that (∇vDR) ◦ du + DR(∇vdu) + (∇J̇S

DR) ◦ du = (∇vdu) ◦ ∂S mod Im(du).

Also, ∇(v,J̇S)D̂R(v, J̇S , 0) = (∇vDR)(v)+(∇J̇S
DR)(v)+(∇vdu)JS J̇S mod Im(du). Thus, for

v = du(ṽ), we get
(
∇(v,J̇S)D̂R

)
(v, J̇S , 0) +DR

(
(∇vdu)(ṽ), 0, 0

)
= (∇vdu)(∂S ṽ + JS J̇S) mod Im(du).

From 0 = Dv + J ◦ du ◦ J̇S = ∂(du(ṽ)) +R ◦ du(ṽ) + du(JS J̇S) = du(∂S ṽ + JS ◦ J̇S) (see [7],
Lemma 1.3.1), we get

(
∇(v,J̇S)D̂R

)
(v, J̇S , 0) +DR

(
(∇vdu)(ṽ), 0, 0

)
∈ Im(du).

Now, since ψ vanishes on Im(du), we obtain:

< ψ,∇|[u,JS ,J ]dπγ((v, J̇S , 0), (v, J̇S , 0)) > = − < ψ,∇|[u,JS ,J ]D̂R((v, J̇S), (v, J̇S)) >

= < ψ,DR(∇vdu)(ṽ) >

= ℜe
∫

S

ψ ◦DR(∇vdu)(ṽ)

= ℜe
∫

S

ψ ◦ ∂(∇vdu)(ṽ) + ℜe
∫

S

ψ ◦R(∇vdu)(ṽ)

= ℜe lim
δ→0

∫

S\B(tu,δ)
d(ψ ◦ (∇vdu)ṽ) + ℜe

∫

S

D∗(ψ)(∇vdu)(ṽ)

= −ℜe lim
δ→0

∫

|ξ−tu|=δ
< ψ, (∇vdu)(ṽ) > .
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Note that the last sign comes from the fact that the orientation on the circle |ξ − tu| = δ
induced by S \ B(tu, δ) is the opposite to the canonical one. Choose some local coordinates
in a neighbourhood of u(tu) ∈ X so that u is conjugated to t 7→ (t2, t3) + t3ǫ(t) ∈ C

2, where

ǫ : B
2 → C

2 satisfies ǫ(0) = 0 (see, for example, Corollary 1.4.3 of [7]). The normal bundle
of u can be identified with the ordinate axis and the connections ∇ with the standard ones,
assuming the chosen metric on X is flat near u(tu). Then, writing ṽ = w

t
for w ∈ R, one

has (∇vdu)(ṽ) = dṽv = dw

t
(2w, 3wt) = (0, 3w

2

t
). We thus finally deduce that the quadratic

form ∇|[u,JS,J ]dπγ : H0(S,N sing
u,−z)+1 × H0(S,N sing

u,−z)+1 → H1
D(S,Nu,−z)+1 is equivalent to

w ∈ R 7→ −3ℜeRest=0(
w2

t
dt), which is non-degenerated. �

Let C0 be a real J0-holomorphic curve having two irreducible components C1 and C2,
only transversal double points as singularities, and which is the limit in Gromov topology of
a sequence [uλn

, Jλn

S , Jλn ] of elements of Mγ , where (λn)n∈N is a sequence of ]0, 1[ converging
to some parameter λ∞ ∈]0, 1[. Denote by d1 ∈ H2(X; Z) (resp. d2 ∈ H2(X; Z)) the homology
class of C1 (resp. of C2) and by x1 = x ∩ C1 (resp. x2 = x ∩ C2), so that d = d1 + d2

and x = x1 ∪ x2. From Propositions 2.9 and 1.9 we see that, exchanging C1 and C2 if
necessary, we can assume that #(x1) = c1(X)d1 − 1 and #(x2) = c1(X)d2. Note that
both C1 and C2 are real. Indeed, C2 would otherwise coincide with cX(C1) and since x1

and x2 are disjoint from each other and from the nodes of C0, this would imply that they
have no real points. In particular, #(x1) and #(x2) would have the same parity. Now
d2 = −(cX)∗d1 and c∗Xc1(X) = −c1(X), so that c1(X)d2 = c1(X)d1. This together with
the above expressions of #(x1) and #(x2) imply that #(x1) and #(x2) do not have the
same parity, hence the contradiction. Let thus [u1, JS1 , J0] and [u2, JS2 , J0] be elements of
RMd1(x1) and RMd2(x2) representing C1 and C2 respectively. From Proposition 1.9 we know
that dimH1

D(S1, Nu1,−z1)+1 ≥ 0 and dimH1
D(S2, Nu2,−z2)+1 ≥ 1. Moreover, since S1 and S2

are rational and immersed, this Proposition 1.9 together with Theorem 1′ of [4] ensure that
these inequalities are equalities. As a consequence, the projection π1

R
: RMd1(x1) → RJω

restricts in a neighbourhood of [u1, JS1 , J0] to a submersion onto a neighbourhood V1 of J0

in RJω. Similarly, in a neighbourhood of [u2, JS2 , J0], the projection π2
R

: RMd2(x2) → RJω
maps onto a codimension one submanifold of a neighbourhood V2 of J0 in RJω. Denote by
V = V1 ∩ V2 and by H ⊂ V this codimension one submanifold. We can assume that V is
connected and that V \H has two connected components.

H

V

J0

Denote by Md
(x) (resp. RMd

(x)) the Gromov compactification of Md(x) (resp. RMd(x)),

and by π (resp. πR) the projection Md
(x) → Jω (resp. RMd

(x) → RJω). Restricting V if

necessary, we can assume that there exists a neighbourhood W of C0 in RMd
(x) such that

π(W ) = V and such that the image of reducible curves of W under this projection is exactly
H ⊂ V . Finally, note that restricting W if necessary, we can assume that every irreducible
J-holomorphic curve of W is topologically obtained from C0 after smoothing one of the real
intersection points of C1 ∩C2.
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Proposition 2.14 Let C0 be a real reducible J0-holomorphic curve of X passing through
x and which is the limit of a sequence of elements of RMγ. Let J0 = γ(λ0) for λ0 ∈]0, 1[ and
C1, C2 be the two irreducible components of C0. Let R be the number of real intersection points
between C1 and C2. Then there exist a neighbourhood W of C0 in the Gromov compactification

RMd
(x) and η > 0 such that for every λ ∈]λ0−η, λ0+η[\{λ0}, π−1

γ (λ)∩W consists of exactly
R real γ(λ)-holomorphic curves, each of them obtained topologically by smoothing a different
real intersection point of C1 ∩ C2.

Proof:

We define as above a neighbourhood W of C0 in RMd
(x), a neighbourhood V of J0 in

RJω and a submanifold H of codimension one of V , such that πR(W ) = V and H coincide
with the image under πR of the reducible curves of W . Let η > 0 be small enough, we will
first prove that for λ ∈]λ0 − η, λ0 + η[\{λ0}, π−1

γ (λ) ∩W contains at most one curve for each
real intersection point of C1 ∩ C2. Otherwise, let C ′ and C ′′ be two such curves associated
to a same intersection point of C1 ∩ C2 denoted by y0 ∈ X. The irreducible curves C ′ and
C ′′ intersect at a finite number of points, each local intersection being of positive multiplicity.
If W has been chosen small enough, these curves have a double point in a neighbourhood
of each double point of C0 except y0. In particular, in a neighbourhood of each such double
point, these curves intersect each other in at least two points. This number of double points
is 1

2(d2 − c1(X)d+2) from adjunction formula. Moreover, since both C ′ and C ′′ pass through
the configuration of points x, they intersect each other at each point of x with multiplicity at
least one. Thus, one has

d2 = C ′ ◦ C ′′ ≥ (d2 − c1(X)d+ 2) + c1(X)d − 1 = d2 + 1,

which is impossible.
Let us now prove that π−1

γ (λ)∩W actually contains exactly one curve for each intersection
point of C1∩C2. Let y ∈ X be such an intersection point. In a neighbourhood of y, the curve
C0 is biholomorphic to the standard real node A0 = {(z+, z−) ∈ B2 | z+z− = 0}. Consider
the cylinders Aϕ = {(z+, z−) ∈ B2 | z+z− = ϕ}, for ϕ ∈ B2(ǫ), ǫ > 0. These cylinders form
a partition of the real analytic space A = {(z+, z−) ∈ B2 | |z+z−| < ǫ}. Note that when the
parameter ϕ ∈ B2(ǫ) \ {0} is real, the cylinders Aϕ realize for ϕ > 0 and ϕ < 0 the two
topological smoothings of the real node A0.

A0 Aϕ, ϕ < 0 Aϕ, ϕ > 0

From Theorem 5.4.1 of [12] (The map Φ given in this theorem is Z/2Z-equivariant for the
real structures induced on U × ∆(ǫ′) and P(A)), the real embedding of A0 in X given by C0

deforms into a one parameter family of real embeddings of the cylinders Aϕ, for ϕ ∈] − ǫ, ǫ[.
There exists then a continuous family (Jϕ)ϕ∈]−ǫ,ǫ[ in RJω extending J0, such that for every
ϕ ∈] − ǫ, ǫ[\{0}, Jϕ differs from J0 only in a neighbourhood of ∂A0 ⊂ X, and a continuous
family (Cϕ)ϕ∈]−ǫ,ǫ[ of real Jϕ-holomorphic curves extending C0, such that for ϕ 6= 0, Cϕ is
obtained topologically from C0 by smoothing the real node y. Indeed, restricting a little bit
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the real embedding of the cylinder Aϕ, the image of this embedding can be glued to the curve
C0 \A0 by adding two small real annuli embedded in a neighbourhood of ∂A0. The real curve
Cϕ we thus obtain can be easily made Jϕ-holomorphic for some almost-complex structure
Jϕ ∈ RJω close to J0 and differing from the latter only in a neighbourhood of ∂A0.

Let us fix now ϕ+ ∈]0, ǫ[ and ϕ− ∈]− ǫ, 0[ such that Jϕ+ , Jϕ−
∈ V \H and Cϕ+ , Cϕ−

∈W .
Deforming locally Cϕ+ , Cϕ−

if necessary, we can assume that Jϕ+ , Jϕ−
are regular values of πR.

The almost-complex structures Jϕ+ and Jϕ−
do not belong to the same connected component

of V \H. Indeed, it would otherwise be possible to join them by a path of V \H transversal
to the projection πR, and there would then be no obstruction to isotop Cϕ−

along this path
into a continuous family of W to end up with a Jϕ+-holomorphic curve denoted by C ′

ϕ−
.

The lack of such an obstruction follows from the fact that Cϕ−
can neither degenerate onto

a reducible curve nor onto a cuspidal curve along this path. Since these curves are rational
and immersed, they are all regular points of the projection (see Proposition 1.9 and [4]). This
provides the contradiction since Cϕ+ and C ′

ϕ−
are two Jϕ+-holomorphic curves in W obtained

topologically by smoothing the same node of C0, which is impossible from the computation
done at the beginning of this proof. Now the result follows similarly. Let λ+ ∈]0, ǫ[ and
λ− ∈]− ǫ, 0[, the almost-complex structures γ(λ+) and γ(λ−) are not in the same component
of V \H. Each of them can be joined to Jϕ+ or Jϕ−

by a path of V \H transversal to the
projection πR. There is then no obstruction to isotop Cϕ−

or Cϕ+ along these paths to get
a γ(λ+) or γ(λ−)-holomorphic curve which is obtained topologically by smoothing the real
node y of C0. Hence the result. �

Remark 2.15 Note that there is actually no need of Theorem 5.4.1 of [12] to deduce the local
gluing argument we used in the proof of Proposition 2.14. Indeed, this local gluing argument
is obvious if the almost complex structure is integrable in a neighbourhood of the node y.
Now, since the space of almost complex structures J ∈ RJω for which C0 is J-holomorphic is
contractible, it can be deduced in general from the isotopy argument we used at the end of
this proof of Proposition 2.14.

Proposition 2.16 Let Cλ0 ∈ RMγ be a critical point of πγ which is a local maximum
(resp. minimum). Then there exist a neighbourhood W of Cλ0 in RMγ and η > 0 such that
for every λ ∈]λ0 − η, λ0[ (resp. for every λ ∈]λ0, λ0 + η[), π−1

γ (λ) ∩W consists of two curves

C+
λ and C−

λ satisfying m(C+
λ ) = m(C−

λ ) + 1, and for every λ ∈]λ0, λ0 + η[ (resp. for every
λ ∈]λ0 − η, λ0[), π

−1
γ (λ) ∩W = ∅.

Proof:

Let us assume that Cλ0 is a local maximum of πγ , and let us denote Cλ0 by [uλ0 , J
λ0
S , Jλ0 ].

Since RMγ is one dimensional and Cλ0 is a non-degenerated critical point (see Lemma 2.13),

it is clear that there exists η > 0 such that in a neighbourhoodW of [uλ0 , J
λ0
S , Jλ0 ], π

−1
γ (λ)∩W

consists of two curves if λ ∈]λ0 − η, λ0[, and π−1
γ (λ) ∩W = ∅ if λ ∈]λ0, λ0 + η[. The only

thing to prove is that if η is small enough, the two curves C+
λ and C−

λ of π−1
γ (λ) ∩W satisfy

m(C+
λ ) = m(C−

λ ) + 1. From the choice of γ we know that the only singularities of Cλ0 are
transversal double points and a unique real ordinary cusp. If η is small enough, the two curves
C+
λ and C−

λ are close enough to Cλ0 so that they have a double point in a neighbourhood of
each double point of Cλ0 plus a double point in a neighbourhood of the cusp of Cλ0 . Since
the double points which are close to double points of Cλ0 are of the same nature, we have
to prove that for one of the curves C+

λ or C−
λ , the real double point close to the cusp of Cλ0
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is non-isolated, and for the other one, it is isolated. The result indeed follows then from the
definition of the mass.

So let us fix a parameterization µ ∈] − ǫ, ǫ[7→ Cµ ∈ RMγ ∩W , such that C0 = Cλ0 and
πγ(Cµ) = πγ(C−µ). Considering the restriction of these curves to a small neighbourhood of
the cusp of C0 diffeomorphic to the ball B4 of C

2, we deduce, with the notations of Lemma 2.6,
a path (C ′

µ)µ∈]−ǫ,ǫ[ of RP ′ such that C ′
0 ∈ RP ′

s. We have to prove that this path is transversal

to RP ′
s at µ = 0. From the hypothesis, we know that vλ0 = d

dµ
(Cµ)|µ=0 ∈ H0

D(S,N sing
u,−z)+1.

Denoting by t0 ∈ RS the point at which duλ0 is not injective, we deduce that vλ0 = duλ0(wλ0)
for a section wλ0 of class Lk−1,p of the bundle TS−z ⊗C O(t0), that is for a vector field
of S vanishing at z and with a simple pole at t0 (see Lemma 4.3.1 of [12]). Restricting
ourselves to the ball B4 defined above, we can write wλ0 = 1

t
w′
λ0

. Moreover, from Corollary
1.4.3 of [7], the diffeomorphism onto this ball can be chosen in order that uλ0 writes

t 7→ (t2, t3) + t3ǫ(t) with ǫ ∈ Lk,p(B
2
,C2) and ǫ(0) = 0. Thus vλ0 = (2w′

λ0
, 3tw′

λ0
) + o(t)

and ∇|t=0vλ0 = (2∇|t=0w
′
λ0
, 3w′

λ0

d
dt

). Hence Im(∇|t=0vλ0) is not the tangent of Cλ0 at
the cusp and the transversality condition of Lemma 2.6 is satisfied, which proves the result. �

Proof of Theorem 2.1:

Let J0, J1 ∈ RJω be two regular values of the projection π : Md(x) → Jω, and γ : [0, 1] →
RJω be the path fixed at the beginning of §2.3 joining them. The integer χdr(x, γ(λ)) is
then well defined for every λ ∈ [0, 1] but a finite number of values 0 < λ1 < · · · < λj < 1
corresponding either to reducible curves, to cuspidal curves, or to curves having a real triple
point or tacnode. Since the function λ 7→ χdr(x, γ(λ)) is obviously constant between these
values, we just have to prove that for i ∈ {1, . . . , j}, χdr(x, γ(λ−i )) = χdr(x, γ(λ

+
i )) where λ−i

(resp. λ+
i ) is the left limit (resp. right limit) of λ at λi. If λi corresponds to a curve having

a real triple point or tacnode, it is straightforward and illustrated by the following pictures.

or

Passing through a real curve with tacnode
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or

Passing through a curve with a real triple point

If λi corresponds to a reducible curve, it follows from Proposition 2.14, and if λi cor-
responds to a cuspidal curve, it follows from Proposition 2.16. Hence, the integer χdr(x, J)
does not depend on the choice of J ∈ RJω. Note that in contrast to the previous cases, the
coefficient (−1)m in the definition of χdr(x, J) plays in this last case a crucial rôle to get the
invariance. This integer χdr(x, J) also does not depend on the choice of x, since the group of
equivariant symplectomorphisms of X acts transitively on the real configurations of points
as long as they have the same number of real points in each connected component of RX.
Theorem 2.1 is thus proved. �

3 Further study of the generating function χd(T )

The aim of the first three sub-paragraphs is to provide relations between the coefficients of
the generating function χd(T ) in term of a new invariant θ. In the last sub-paragraph, we will
prove the non-triviality of this polynomial function in degrees 4 and 5 for (CP 2, ωstd, conj)
(for degree less than four, it has already been computed in the example given in §2.1). We
will assume throughout this paragraph that RX is connected, for convenience.

3.1 The invariant θ

Let y = (y1, . . . , yc1(X)d−2) be a real configuration of c1(X)d − 2 distinct points of X,
and s be the number of those which are real. We assume that yc1(X)d−2 is real, so that
s does not vanish. Let J ∈ RJω be generic enough. Then there are only finitely many
rational J-holomorphic curves in X which realize the homology class d, pass through y and
have a transversal double point at yc1(X)d−2. These curves are all irreducible and have only
transversal double points as singularities. For every integer m ranging from 0 to δ, denote by
n̂+
d (m) (resp. n̂−d (m)) the total number of these curves which are real, of mass m and with a

non-isolated (resp. isolated) real double point at yc1(X)d−2. Define then:

θds(y, J) =
δ∑

m=0

(−1)m(n̂+
d (m) − n̂−d (m)).

Theorem 3.1 Let (X,ω, cX ) be a real symplectic 4-manifold such that RX is connected,
and d ∈ H2(X; Z) such that c1(X)d > 1. Let y ⊂ X be a real configuration of c1(X)d − 2
distinct points and s 6= 0 be the cardinality of y ∩ RX. Finally, let J ∈ RJω be an almost

27



complex structure generic enough, so that the integer θds(y, J) is well defined. Then, this
integer θds(y, J) neither depends on the choice of J nor on the choice of y.

For convenience, this integer θds(y, J) will be denoted by θds , and we set θds = 0 when s
does not have the same parity as c1(X)d. This invariant makes it possible to give relations
between the coefficients of the polynomial χd, namely:

Theorem 3.2 Let (X,ω, cX ) be a real symplectic 4-manifold such that RX is connected,
d ∈ H2(X; Z) and r be an integer between 0 and c1(X)d− 3. Then χdr+2 = χdr + 2θdr+1.

Remark 3.3 When RX is not connected, then as before s should be an n-tuple encodding
the number of points of y in each connected components of RX. Under this modification,
Theorem 3.1 and the analog of Theorem 3.2 are still valid, the proofs being the same.

3.2 Proof of Theorem 3.1

To begin with, we construct as in §1 the moduli space Md(y) of real rational pseudo-
holomorphic maps u : S → X realizing the homology class d, mapping the marked
points z1, . . . , zc1(X)d−2 of S to the corresponding points y1, . . . , yc1(X)d−2 of X and map-
ping zc1(X)d−1 also to yc1(X)d−2. This moduli space is obtained by taking the quotient of
the space of such maps by the group Diff+(S, z) acting by reparameterization. Since now
u(zc1(X)d−2) = u(zc1(X)d−1), there is a degree two extension of this group acting by reparam-
eterization, namely the group of orientation preserving diffeomorphisms of S which fix the
points z1, . . . , zc1(X)d−3, and fix or exchange the points zc1(X)d−2 and zc1(X)d−1. This degree

two extension induces a Z/2Z-action on Md(y) which has no fixed point, since its effect is to

exchange the two local branches at the double point yc1(X)d−2. Denote by M̃d(y) the orbit

space of this action. It is a separable Banach manifold of class C l−k equipped with an index
zero Fredholm projection π̃ on Jω. Denote by π̃R : RM̃d(y) → RJω the restriction of π̃. The
Theorem of regular values 1.10 applies also in this situation, so that the set of regular values
of π̃ intersects RJω in a dense set of the second category.

Let then J0, J1 ∈ RJω be regular values of the projection π̃ : M̃d(y) → Jω such that no
reducible J0 or J1-holomorphic curve in the class d passes through y with a double point at
yc1(X)d−2. Let γ : [0, 1] → RJω be a path transversal to the projection π̃R : RM̃d(y) → RJω,

joining J0 to J1. Hence, RM̃γ = π̃−1
R

(Im(γ)) is a submanifold of dimension one of RM̃d(y),

equipped with a projection π̃γ : RM̃γ → [0, 1] induced by π̃R.

J0 J1RM̃γ

The path γ is chosen such that every element of RM̃γ is a curve with only transversal double
points as singularities, with the exception of a finite number of them which may have a
unique real ordinary cusp, a unique real triple point or a unique real tacnode. This path is
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also chosen such that when a sequence of elements of RM̃γ converges in Gromov topology
to a reducible curve of X, then this curve has only two irreducible components, both real,
and only transversal double points as singularities. Moreover, this path is chosen such that
if [u, JS , J ] ∈ RM̃γ has a unique real ordinary cusp at the parameter tu ∈ RS, then the
generator ψu of H0

D∗(S,KS ⊗C N
∗
u)−1 does not vanish at tu. Finally, it is chosen such that

when a sequence of elements of RM̃γ converges in Gromov topology to an irreducible curve

of X not in RM̃γ , thus a cuspidal curve, then this curve has a real ordinary cusp at yc1(X)d−2,
and only transversal double points as remaining singularities. Such a choice of γ is possible
from Propositions 2.7, 2.8 and 2.9. The integer θds(y, γ(λ)) is then well defined for every
λ ∈ [0, 1] but a finite number of values 0 < λ1 < · · · < λj < 1 corresponding either to
reducible curves, to cuspidal curves, or to curves having a real triple point or tacnode. Since
the function λ 7→ θds(y, γ(λ)) is obviously constant between these values, we just have to prove
that for i ∈ {1, . . . , j}, θds(y, γ(λ−i )) = θds(y, γ(λ

+
i )) where λ−i (resp. λ+

i ) is the left limit (resp.
right limit) of λ at λi. The only cases to consider is the appearance of a cuspidal curve, the
cusp being at yc1(X)d−2, or the appearance of a curve with a tacnode, the tacnode being at
yc1(X)d−2. Indeed, all the other cases follow along the same lines as in the proof of Theorem
2.1, the only additional thing to remark is that the topology of the node at yc1(X)d−2 does
not change under these moves. We will only consider the case of a cuspidal curve, since the
other one can be treated exactly in the same way.

So, let (Cλ)λ∈]λi−ǫ,λi[ be a smooth family of γ(λ)-holomorphic curves in RM̃γ which
converges in Gromov topology to a real irreducible cuspidal γ(λi)-holomorphic curve, the
cusp being at yc1(X)d−2. All these curves have only transversal double points as singularities
as soon as ǫ is small enough. Moreover, such a family is unique. Indeed, if for λ ∈]λi − ǫ, λi[,
there were two γ(λ)-holomorphic curves C ′ and C ′′ close to the cuspidal curve, then they
would have two intersection points in the neighbourhood of each double point of the cuspidal
curve, plus four intersection points at yc1(X)d−2 and moreover, they would intersect each other
at each point of y. This would give

(c1(X)d − 3) + 4 + 2(
1

2
(d2 − c1(X)d + 2) − 1) = d2 + 1

intersection points, which is to much since all multiplicities are positive. In particular, this
family is made of real curves, and since the parity of the number of real curves does not change,
this family does extend to a smooth family (Cλ)λ∈]λi−ǫ,λi+ǫ[ of real γ(λ)-holomorphic curves.
Then, after the transformation, either the topology of the real double point at yc1(X)d−2 is
unchanged and then the mass of the curve is also unchanged, or it has changed, but then the
mass of the curve also has changed. In both cases, the integer θds(y, γ(λ)) is left invariant,
hence the result. �

3.3 Proof of Theorem 3.2

Let y = (y1, . . . , yc1(X)d−2) be a real configuration of distinct points of X, such that

yc1(X)d−2 ∈ RX and #(y ∩ RX) = r + 1. Denote by Md(y) the moduli space of rational
pseudo-holomorphic curves of X which pass through y and realize the homology class d.
Similarly, denote by M̃d(y) the moduli space of such curves which have a transversal dou-
ble point at yc1(X)d−2. This space has been introduced in §3.2. Denote by P (Tyc1(X)d−2

X)

the space of tangent lines of X at yc1(X)d−2. Then the projection [u, JS , J ] ∈ Md(y) 7→
(J, d|zc1(X)d−2

u(Tzc1(X)d−2
S)) ∈ Jω × P (Tyc1(X)d−2

X) is Fredholm of vanishing index. Let
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(J, τ) ∈ RJω ×P (Tyc1(X)d−2
RX) be a regular value of this projection. We also assume that J

is a regular value of the projection M̃d(y) → Jω and that there exists no reducible or cuspidal
rational J-holomorphic curve which pass through y, realize the homology class d and have a
double point or τ as a tangent line at yc1(X)d−2. There are then only finitely many elements

of RMd(y) having τ as a tangent line at yc1(X)d−2. These curves are all irreducible and have
only transversal double points as singularities. For every integer m between 0 and δ, denote
by ñd(m) the number of such curves which are real and of mass m. Denote then by:

χ̃dr(y, J) =
δ∑

m=0

(−1)mñd(m).

Proposition 3.4 Under the above assumptions, we have the relations:

χdr+2 = χ̃dr(y, J) + 2

δ∑

m=0

(−1)mn̂+
d (m),

χdr = χ̃dr(y, J) + 2
δ∑

m=0

(−1)mn̂−d (m).

The integers n̂+
d (m) and n̂−d (m) have been defined in §3.1. The Theorem 3.2 follows easily

from this Proposition 3.4 and the definition of the invariant θ.

Proof of Proposition 3.4:

To begin with, let us prove the first relation. For this purpose, let us fix a path µ :
]− ǫ, ǫ[→ RX of class C2 such that µ(0) = yc1(X)d−2 and µ′(0) ∈ τ . For every λ ∈]− ǫ, ǫ[\{0},
denote by yλ the set (y1, . . . , yc1(X)d−2, µ(λ)). Denote then by RMd(yλ) the moduli space of
real rational pseudo-holomorphic curves of X which pass through yλ and realize the homology
class d. Then J is a regular value of the projection πλ

R
: RMd(yλ) → RJω as soon as λ is close

enough to zero. Indeed, from Gromov compactness theorem, as soon as λ is close enough to
zero, the elements of RMd(yλ) are close, in Gromov topology, either to elements of RM̃d(y)
having a non-isolated real double point at yc1(X)d−2, or to elements of RMd(y) having τ as a
tangent line at yc1(X)d−2. As a consequence, these curves are neither cuspidal, nor reducible,

and thus J is a regular value of πλ
R

from Proposition 1.9. The set {(πλ
R
)−1(J), λ ∈] − ǫ, 0[} is

thus the union of the images of finitely many continuous functions C1(λ), . . . , Cj(λ). Each of
these functions converges as λ goes to zero either to an irreducible real J-holomorphic curve
having a non-isolated real double point at yc1(X)d−2, or to an irreducible curve having τ as
a tangent line at yc1(X)d−2. We will prove that each curve of the first kind (resp. second
kind) is the limit of exactly two (resp. one) such functions Ci1(λ), Ci2(λ). The first relation
of Proposition 3.4 follows, since χdr+2 = χdr+2(yλ, J) for λ close enough to zero, and since the
masses of the curves are unchanged while passing to the limit λ→ 0.

Let then C0 be an element of RMd(y) having τ as a tangent line at yc1(X)d−2. Since by

hypothesis, (J, τ) is a regular value of the projection Md(y) → Jω × P (Tyc1(X)d−2
X), the J-

holomorphic curves in a neighbourhood of C0 in RMd(y) are exactly parameterized by their
tangent lines at yc1(X)d−2. Once we move this tangent line, we see that these curves provide
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a partition of an angular neighbourhood A of yc1(X)d−2 in RX.

C0

yc1(X)d−2

A

Since the path µ : ] − ǫ, ǫ[→ RX satisfies µ(0) = yc1(X)d−2 and µ′(0) ∈ τ , restricting ǫ if
necessary, we can assume that its image is completely included in A. For every λ ∈]−ǫ, ǫ[\{0},
there exists thus one and only one J-holomorphic curve in a neighbourhood of C0, which passes
through yλ, which was the announced result.

Now let C0 be an element of RM̃d(y). This element lifts into two elements C1 and C2 of
the moduli space RMd(y), where y = (y1, . . . , yc1(X)d−2, yc1(X)d−2), see the beginning of §3.2.
Denote by RM̂d(y) the moduli space of real rational pseudo-holomorphic maps which have
c1(X)d − 1 distinct marked points z1, . . . , zc1(X)d−1 at the source, realize the homology class

d and such that u(zi) = yi for 1 ≤ i ≤ c1(X)d − 2. The map π̂R : [u, JS , J ] ∈ RM̂d(y) 7→
(J, u(zc1(X)d−1)) ∈ RJω × RX is Fredholm of index zero. The value (J, yc1(X)d−2) is regular
for this projection. Thus the curves C1 and C2 in (π̂R)−1(J, yc1(X)d−2) extend in a unique

way into two families C1(λ) and C2(λ) of (π̂R)−1(J, µ(λ)) = (πλ
R
)−1(J). These are the two

families we were looking for.
The second relation of Proposition 3.4 can be proved in a similar way. We choose this

time a path µ : ] − ǫ, ǫ[→ X of class C2 such that µ(0) = yc1(X)d−2, µ
′(0) ∈ τ , and for

every λ ∈] − ǫ, ǫ[, cX(µ(λ)) = µ(−λ). For every λ ∈] − ǫ, ǫ[\{0}, denote by yλ the set
(y1, . . . , yc1(X)d−3, µ(λ), µ(−λ)), and by RMd(yλ) the corresponding moduli space. Now, from

Gromov compactness theorem, as soon as λ is close enough to zero, the elements of RMd(yλ)

are close, in Gromov topology, either to elements of RM̃d(y) having a real isolated double
point at yc1(X)d−2 or to elements of RMd(y) having τ as a tangent line at yc1(X)d−2. Now,
each curve of the first kind (resp. second kind) is limit of exactly two (resp. one) families
Ci1(λ), Ci2(λ) of elements of RMd(yλ). Since the masses of these curves are unchanged while
passing to the limit λ→ 0, the second relation follows from the fact that χdr = χdr(yλ, J). �

3.4 Non-triviality of χ4(T ) and χ5(T ) for the complex projective plane

3.4.1 Generalization of the invariant θ

The invariant θ has been defined by fixing the position of one of the double points
of the pseudo-holomorphic curves in the homology class d. More generally, one can de-
fine such an invariant by fixing the position of σ double points of these curves, where
0 ≤ σ ≤ 1

2 [c1(X)d − 1]. More precisely, let y = (y1, . . . , yc1(X)d−1−σ) be a real configu-
ration of c1(X)d − 1 − σ distinct points of X, and s be the number of those which are
real. We assume that yc1(X)d−2σ , yc1(X)d−2σ+1, . . . , yc1(X)d−1−σ are real, so that s ≥ σ. Let
J ∈ RJω be generic enough. Then there are only finitely many rational J-holomorphic
curves in X which realize the homology class d, pass through y and have a transversal dou-
ble point at each of the points yc1(X)d−2σ , yc1(X)d−2σ+1, . . . , yc1(X)d−1−σ . These curves are
all irreducible and have only transversal double points as singularities. For every integer m
ranging from 0 to δ, denote by n̂+

d (m) (resp. n̂−d (m)) the total number of these curves which
are real, of mass m and with an even (resp. odd) number of real isolated double points at
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yc1(X)d−2σ , yc1(X)d−2σ+1, . . . , yc1(X)d−1−σ . Define then:

θd,σs (y, J) =

δ∑

m=0

(−1)m(n̂+
d (m) − n̂−d (m)).

These definitions extend the ones given in paragraph 3.1. In particular, θd,0s (y, J) = χds(y, J)

and θd,1s (y, J) = θds(y, J).

Theorem 3.5 Let (X,ω, cX ) be a real symplectic 4-manifold such that RX is connected,
d ∈ H2(X; Z) such that c1(X)d > 0 and 0 ≤ σ ≤ 1

2 [c1(X)d − 1]. Let y ⊂ X be a real
configuration of c1(X)d − 1 − σ distinct points and s ≥ σ be the cardinality of y ∩ RX.
Finally, let J ∈ RJω be an almost complex structure generic enough, so that the integer
θd,σs (y, J) is well defined. Then, this integer θd,σs (y, J) neither depends on the choice of J nor
on the choice of y. �

The proof of this theorem is the same as the one of Theorem 3.1. As usual, this integer
θd,σs (y, J) will be denoted by θd,σs , and we set θd,σs = 0 when s does not have the suitable
parity.

Theorem 3.6 Let (X,ω, cX ) be a real symplectic 4-manifold such that RX is connected,
and d ∈ H2(X; Z). Let σ be an integer such that 0 ≤ 2σ ≤ c1(X)d − 3, and s be an integer

between σ and c1(X)d − 3 − σ. Then θd,σs+2 = θd,σs + 2θd,σ+1
s+1 . �

The proof of this theorem is the same as the one of Theorem 3.2.

3.4.2 Non-triviality of χ4(T ) and χ5(T )

In this subparagraph, the real symplectic 4-manifold (X,ω, cX ) is the complex projective
plane equipped with its standard symplectic form ωst and the complex conjugation conj.
We use the canonical identification of H2(CP

2; Z) with Z. We defined in §2.1 an invariant
χ : d ∈ Z 7→ χd(T ) ∈ Z[T ] and have computed it for d ≤ 3 in the example of this paragraph.

Proposition 3.7 Let (X,ω, cX ) be (CP 2, ωst, conj). Then the polynomials χ4(T ) and
χ5(T ) of Z[T ] do not vanish.

Lemma 3.8 Let (X,ω, cX ) be (CP 2, ωst, conj). Then θ3
q = 1 for every odd 1 ≤ q ≤ 7

θ4,3
r = 1 for every even 4 ≤ r ≤ 8 and θ5,6

s = 1 for every even 6 ≤ s ≤ 8.

Proof:

The proofs are the same in all the cases, so we will prove only the degree 4 case. Let y be
a real configuration of 8 distinct points in the plane, r ≥ 3 of which being real. Let J ∈ Jω
be generic enough. There exists then only one rational J-holomorphic curve of degree 4 in
CP 2 which passes through y and have its 3 double points at y6, y7, y8. Indeed, if there were
two of them, they would intersect at each point y1, . . . , y5 with multiplicity at least one, and
at each point y6, y7, y8 with multiplicity at least four. This would give an intersection index
greater than 16 which is impossible. This implies that the corresponding Gromov-Witten
invariant is one, since it is obviously not zero. Now let J ∈ RJω be generic enough, this
unique curve is real. Denote by m its mass, we have θ4,3

r (x, J) = (−1)m(−1)m = 1. �
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Proof of Proposition 3.7:

It is a consequence of Theorem 3.6 and Lemma 3.8. �

For instance, the coefficients of the polynomial χ4(T ) satisfy the relations
χ4

3 = χ4
1 + 2θ4

2,
χ4

5 = χ4
1 + 4θ4

2 + 4θ4,2
3 ,

χ4
7 = χ4

1 + 6θ4
2 + 12θ4,2

3 + 8,

χ4
9 = χ4

1 + 8θ4
2 + 24θ4,2

3 + 32, and

χ4
11 = χ4

1 + 10θ4
2 + 40θ4,2

3 + 80.
Hence, all these coefficients cannot vanish simultaneously. Similarly,
χ5

14 = χ5
0 + 14θ5

1 + 84θ5,2
2 + 280θ5,3

3 + 560θ5,4
4 + 672θ5,5

5 + 448.

Remark 3.9 Using the results of this paragraph together with a modification of [10] to
configurations admitting complex conjugated points due to E. Shustin (see [13]), I. Itenberg,
V. Kharlamov and E. Shustin have been able to compute the polynomials χ4(T ) and χ5(T ),
see [6]. The values are:
χ4(T ) = 16T 3 + 40T 5 + 80T 7 + 144T 9 + 240T 11

χ5(T ) = 64 + 64T 2 + 248T 4 + 744T 6 + 1872T 8 + 4272T 10 + 9096T 12 + 18264T 14.
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manifolds and enumerative invariants. Prépublication de l’école normale supérieure de
Lyon, 321, 2003. To appear in Duke Math. J.

[19] E. Witten. Two-dimensional gravity and intersection theory on moduli space. In Surveys
in differential geometry (Cambridge, MA, 1990), pages 243–310. Lehigh Univ., Bethle-
hem, PA, 1991.
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