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Probing neural language models for understanding of words of estimative probability

. In this study, our focus is to gauge the competency of neural language processing models in accurately capturing the consensual probability level associated with each WEP. Our first approach is utilizing the UNLI dataset (Chen et al., 2020), which links premises and hypotheses with their perceived joint probability p. From this, we craft prompts in the form: "[PREMISE]. [WEP], [HYPOTHESIS]." This allows us to evaluate whether language models can predict if the consensual probability level of a WEP aligns closely with p. In our second approach, we develop a dataset based on WEP-focused probabilistic reasoning to assess if language models can logically process WEP compositions. For example, given the prompt "[EVENTA] is likely. [EVENTB] is impossible.", a wellfunctioning language model should not conclude that [EVENTA&B] is likely. Through our study, we observe that both tasks present challenges to out-of-the-box English language models. However, we also demonstrate that fine-tuning these models can lead to significant and transferable improvements.

Introduction

Expression of uncertainty is an important part of communication. Formal statistics are the rigorous way to quantify uncertainty but do not fit all communication styles. Words of estimative probability (WEP) such as maybe and believe are adverbs or verbs that are informal alternatives. [START_REF] Kent | Words of estimative probability[END_REF] noted the importance of clarifying WEP meaning for intelligence analysis in the Central Intelligence Agency, and provided guidelines for mapping WEP to numerical probabilities. Several studies then measured the human perceptions of probability words and discovered some agreement with [START_REF] Kent | Words of estimative probability[END_REF]'s guidelines. In this work, we use the scale derived from a survey [START_REF] Fagen-Ulmschneider | Perception of probability words[END_REF], which is the largest and most recent WEP perception survey available. 123 participants were asked to label WEP with numerical probabilities. We use the median of the participant answers to assign a consensual value to each WEP. Associated probabilities for the 19 WEP we use are available in Appendix A, table 2.

Here, we assess whether neural language models learn the consensual probability judgment of WEP from language modeling pretraining. We develop datasets and a methodology to probe neural language model understanding of WEP. The first dataset leverages previously annotated probability scores between a premise and a hypothesis, in order to measure a language model's ability to capture the agreement between numerical probabilities and WEP-expressed probabilities. The second dataset is based on compositions of facts with WEP-expressed probabilities, and measures verbal probabilistic reasoning in language models. Our contributions are as follows: (i) two datasets and methods to measure understanding of WEP; and (ii) evaluation of the ability of neural language models (GPT2, RoBERTa-trained on MNLI) to tackle WEP-related problems, showing that offthe-shelf models are very little influenced by them, even though fine-tuning on our constructed datasets quickly leads to high accuracies. The code and generated datasets are publicly available1 

Related work

Our work probes a particular aspect of language understanding. We do not analyze the inside of the models [START_REF] Rogers | A primer in BERTology: What we know about how BERT works[END_REF]. We focus on the models' ability to perform controlled tasks [START_REF] Naik | Stress test evaluation for natural language inference[END_REF]Richardson et al., 2020) involving WEP. WEP were studied in the context of intelligence analysis and linguistics, our work is the first to look at them through natural language processing (NLP) models. Our study also pertains to NLP analyses of logical reasoning and probability problems, and to uncertainty in natural language inference tasks.

Linguistics study of WEP Kent (1964)'s seminal work was the first to link WEP and numerical probability estimates, with intelligence analysis motivations (Dhami and Mandel, 2021) and a prescriptivist approach. This inspired further quantifications of human perceptions of WEP, in the context of medical reports (O 'Brien, 1989;[START_REF] Douglas | Words representing numeric probabilities in medical writing are ambiguous and misinterpreted[END_REF] and weather reports [START_REF] Emily D Lenhardt | How likely is that chance of thunderstorms? a study of how national weather service forecast offices use words of estimative probability and what they mean to the public[END_REF]. [START_REF] Fagen-Ulmschneider | Perception of probability words[END_REF] proposed the largest survey up to date with 123 participants about generaldomain WEP perception.

Logical and probabilistic reasoning Another strand of work probes NLP text encoders capabilities, notably reasoning abilities. [START_REF] Weston | Towards ai-complete question answering: A set of prerequisite toy tasks[END_REF] probed understanding of specific problems like negation, spatial and temporal reasoning with the bAbI dataset. Richardson et al. (2020) probe understanding of first-order logic reasoning, [START_REF] Sileo | Mindgames: Targeting theory of mind in large language models with dynamic epistemic modal logic[END_REF] probe epistemic logic reasoning. Our work is the first to address probabilistic logic, alongside [START_REF] Dries | Solving probability problems in natural language[END_REF]; [START_REF] Suster | Mapping probability word problems to executable representations[END_REF] who construct a dataset of natural language probability problems, e.g., "A bag has 4 white and 8 blue marbles. You pull out one marble and it is blue. You pull out another marble, what is the probability of it being white?". They also rely on the ProbLog solver [START_REF] De Raedt | Problog: A probabilistic prolog and its application in link discovery[END_REF], but focus on numeric probability problems. By contrast, our work targets WEP, and textual probabilistic logical reasoning.

Natural language inference, uncertainty, modality, evidentiality Uncertainty was also studied in the context of natural language inference tasks. [START_REF] Zhou | Distributed nli: Learning to predict human opinion distributions for language reasoning[END_REF] study the disagreement across annotators when labeling entailment relationships. [START_REF] Zhang | Ordinal common-sense inference[END_REF] annotate graded entailment with 5 probability levels, and the UNLI dataset [START_REF] Chen | Uncertain natural language inference[END_REF]) go further by annotating numerical probabilities. Our work also pertains to the study of modality [START_REF] Palmer | Words and worlds; on the linguistic analysis of modality[END_REF][START_REF] Saurí | Annotating and recognizing event modality in text[END_REF] and more particularly evidentiality [START_REF] Su | Evidentiality for text trustworthiness detection[END_REF], but where previous work focused on WEP.

3 Probing WEP understanding

Verbalization and distractor generation

Our goal is to measure the understanding of WEP. One requirement of WEP understanding is capturing the consensual probability level. To test that, we use contexts (PREMISE) paired with a conclusions (HYPOTHESIS). The likelihood of a conclusion, p, depends on the associated context. One example from UNLI [START_REF] Chen | Uncertain natural language inference[END_REF], which annotates that, is (A man in a white shirt taking a picture , A man takes a picture , 1.0).

We convert a triplet (PREMISE, HYPOTHESIS, p) to the following verbalization:

PREMISE. T p (HYPOTHESIS).

(

) 1 
where T p is a text template assigned to the probability p. To select a template, we find the WEP whose associated median probability (see table 2) is the closest to p. We then use handcrafted templates to construct a modal sentence from the selected WEP and the hypothesis, e.g., "It is certain that a man takes a picture". Table 3 in appendix B displays the templates that we associate with each WEP.

We also generate an invalid verbalization by randomly selecting an incorrect WEP (a WEP whose consensual probability differs from p by at least 40%)2 , e.g., It is unlikely that a man takes a picture. We hypothesize that language models and entailment recognition models should give a higher score (respectively likelihood and entailment probability) to the correct valid verbalization than to the invalid verbalization of p.

WEP-UNLI: probability/WEP matching

The UNLI dataset annotates (PREMISE, HYPOTH-ESIS) pairs from the SNLI dataset [START_REF] Samuel | A large annotated corpus for learning natural language inference[END_REF] with joint probability scores p, totaling 55k training examples, 3k/3k validation/test examples. We use these examples to generate WEPunderstanding dataset with verbalization validity prediction as shown in the previous subsection.

% Round 1 template

Sampled round 1 (premise) p1::factA.

There is a very good chance that Bernhard is a swan. p2::factB.

It is almost certain that Greg is gray.

p3::factC.

There is a better than even chance that Sandra left the apple.

% Round 2 template

Sampled round 2 (premise, continued) p4::factX:-op1(fact1, fact2).

Chances are slight that if Bernhard is a swan, or Sandra left the apple, then sheep are afraid of mice.

p5::factY:-op2(fact3, fact4).

It is improbable that if Greg is gray, and Bernhard is a swan, then Lily is a rhino. p6::factZ:-op3(fact5, fact6).

There is a very good chance that if Greg is gray, and Sandra left the apple, then Sumit is thirsty.

% Round 3 template

Sampled hypothesis hypothesis:-op4(fact7, fact8). Figure 1: WEP-reasoning task constructions, with 2 hops. We sample randomly concrete facts f act i and probabilities p i then build modal sentences with verbalization templates. We randomly sample logical operators to compose the modal sentences from the previous rounds to construct a premise, then a hypothesis, and we use a probabilistic soft logic solver to compute the hypothesis probability. We then correctly and incorrectly verbalize this probability. This process generates data for the task of probability verbalization validity. 1 hop reasoning skips the second round: fact7 and fact8 are sampled from {factA,factB,factC}

WEP-Reasoning: WEP compositions

Here, our goal is to assess models' ability to reason over combinations of probabilistic statements. We construct synthetic (PREMISE, HYPOTHESIS, p) examples from random factoids extracted from the bAbI dataset [START_REF] Weston | Towards ai-complete question answering: A set of prerequisite toy tasks[END_REF]. Figure 1 illustrates the construction of WEP-reasoning examples:

We randomly sample initial facts and associated probability levels, and we verbalize them with the previously mentioned templates from Table 3 (Round 1). We further compose them with randomly sampled logical operators (and, or, xor). We then generate a hypothesis with logical combinations of the previous round. Finally, we feed the constructed premise and hypothesis to a probabilistic soft reasoning engine in order to derive the likelihood of the hypothesis given the premise. We rely on the ProbLog [START_REF] De Raedt | Problog: A probabilistic prolog and its application in link discovery[END_REF] reasoner which implements [START_REF] Dantsin | Probabilistic logic programs and their semantics[END_REF] semantics.

To evaluate different complexities of reasoning, we propose two variants: 2-hop reasoning, where facts in Round 2 combine facts from Round 1, and the final hypothesis combines facts from Round 2. and 1-hop reasoning where facts from the hypothesis combine Round 1 facts (Round 2 is skipped).

Since we want to sample more than two facts and we cannot a priori use text from the UNLI dataset, because UNLI only provides entailment likelihood for specific pairs. Combining several sentences could cause unaccounted interference. Therefore, we sample subject/verb/object factoids from the bAbI [START_REF] Weston | Towards ai-complete question answering: A set of prerequisite toy tasks[END_REF] datasets instead, which is built with handwritten arbitrary factoids such as John went to the kitchen. To sample multiple factoids, we prevent any overlap of concepts (verb, subject, object) between any pair of facts to make the facts independent of one another.

We sample probability levels from the list of medians of all WEP to prevent sampling the levels that too distant from a known WEP. When we assign a WEP to a probability level, we assume that the correct semantics is the consensual one, but humans differs slightly from this consensus. Still, when adding random perturbations of 20% to sampled p 1...6 , the hypothesis probability is perturbed by less than 40% for 98% of examples.

We generate 5k examples using the template depicted in Figure 1, and use 10%/10% of the data for the validation/test splits. Appendix C shows the distribution of correct WEP for each dataset.

Experiments

We conduct verbalization validity prediction (binary classification task of WEP correctness detection between two candidates) under two settings. Table 1: Test accuracy percentage of different models over the 3 WEP-understanding tasks. The last three rows display the accuracy when fine-tuning on each task, and transferability of the fine-tuned model outside the diagonal.

Zero-shot models

We use off-the-shelf language models to assign likelihood scores to a context and its conclusion. We evaluate the rate at which valid verbalization is scored higher than invalid verbalization. We refine the scores by also considering the average likelihood per token [START_REF] Brown | Language models are few-shot learners[END_REF][START_REF] Schick | Exploiting cloze-questions for few-shot text classification and natural language inference[END_REF] and calibrated scores [START_REF] Brown | Language models are few-shot learners[END_REF][START_REF] Zhao | Calibrate before use: Improving few-shot performance of language models[END_REF] where we divide the score of a PREMISE. T p (HYPOTHESIS). by the score of T p (HYPOTHESIS). We evaluate the normalized, length-normalized, and calibrated likelihood on the validation sets of each dataset and select the most accurate method for each dataset and model. We also consider a pretrained natural language inference model, which is trained to predict entailment scores between a context and a conclusion.

GPT2

We use the pretrained GPT2 base version with 127M parameters [START_REF] Radford | Language models are unsupervised multitask learners[END_REF], which is a causal language model trained to estimate text likelihood. We concatenate the premise and hypothesis and compute their likelihood as a plausibility score.

RoBERTa We also use the pretrained RoBERTa base model with 123M parameters [START_REF] Liu | Roberta: A robustly optimized bert pretraining approach[END_REF] to score the masked language modeling likelihood of the premise/hypothesis pair.

RoBERTa-MNLI

We fine-tune RoBERTa on the MNLI entailment detection dataset [START_REF] Williams | A broad-coverage challenge corpus for sentence understanding through inference[END_REF] with standard hyperparameters (see the following subsection).

Human baseline To establish human baseline performance on the constructed dataset, we had two NLP researchers annotate 100 examples randomly sampled from the test set of each dataset, with a multiple-choice question answering setting.

Overall inter-annotator agreement is relatively high, with a Fleiss's κ of 0.70/0.68/0.71 for WEP Reasoning 1 hop, 2 hops and WEP-UNLI respectively.

Fine-tuning and transfer across probes

We fine-tune RoBERTa-base models on our datasets, using standard [START_REF] Mosbach | On the stability of fine-tuning bert: Misconceptions, explanations, and strong baselines[END_REF] hyperparameters3 (3 epochs, sequence length of 256, learning rate of 2.10 -5 batch size of 16. We use length-normalization with GPT2 likelihood and calibration with RoBERTa likelihood as they worked best on the validation sets.). We use a multiplechoice-question answering setup (we predict logit scores for the valid and invalid verbalization, combine their score with a softmax, then optimize the likelihood of the valid verbalization). The same format is applied to all tasks, so we can also study the transfer of capacities acquired during fine-tuning of each probe, for instance, between probability matching and compositional reasoning.

Results and discussion

Table 1 shows the results of our experiments. The very low accuracy of causal and masked language models (first two rows) demonstrates how challenging the WEP-understanding tasks are.

RoBERTa fine-tuned on MNLI dataset performs better than chance for WEP-UNLI. MNLI contains 814 instances of probably in the MNLI dataset, but we found little to no evidence of WEP compositions among them, which can explain the results.

Finally, fine-tuning on the dataset of a particular probe leads to high test accuracy on the associated test set. More surprisingly, fine-tuning on one dataset also causes substantial accuracy gain on other probes. This suggests that our datasets can be incorporated in text encoder training in order to improve WEP handling.

Conclusion

We investigated WEP understanding in neural language models with new datasets and experiments, showing that WEP processing is challenging but helped by supervision which leads to transferable improvement. Future work could extract WEP probability scales from the UNLI dataset as an alternative to human perception surveys, but our work suggests that this requires language modeling progress. 

A Associated probabilities

  Either Bernhard is a swan or sheep are afraid of mice. It is likely that either Bernhard is a swan or sheep are afraid of mice. It is unlikely that either Bernhard is a swan or sheep are afraid of mice. 0

	query(hypothesis). ProbLog Reasoner template Sample bAbI facts A,B,C,X,Y,Z p=0.7235 Sample chances p1…p6 T p1 hypothesis Sample facts 1...8 from facts T p' (hyp.): 1 premise hyp. p A,B,C,X,Y,Z in previous rounds Sample op 1…4 from {and, or, xor} distractor Compute hypothesis likelihood, relevant WEP factA Probability verbalization premise T p' (hyp.) y p' ≈ p likelihood T p' (hyp.): Reasoning Generated label y: p verbalization validity Generated input: premise, T p' (hyp.)

Table 2 :

 2 Median probability percentage associated to words of estimative probability according to[START_REF] Fagen-Ulmschneider | Perception of probability words[END_REF]. First and last words ( †) are taken from[START_REF] Kent | Words of estimative probability[END_REF].

	WEP	Median probability judgment
	certain almost certain highly likely very good chance 80.0 ± 10.8 100 † 95.0 ± 10.9 90.0 ± 8.4 we believe 75.0 ± 15.0 likely 70.0 ± 11.3 probably 70.0 ± 12.9 probable 70.0 ± 14.7 better than even 60.0 ± 9.1 about even 50.0 ± 4.9 probably not 25.0 ± 14.4 we doubt 20.0 ± 16.9 unlikely 20.0 ± 15.0 little chance 10.0 ± 12.2 chances are slight 10.0 ± 10.9 improbable 10.0 ± 17.5 highly unlikely 5.0 ± 17.3 almost no chance 2.0 ± 17.0 impossible 0 †
	B WEP verbalization template	
	WEP	Verbalization template
	about even	chances are about even that [FACT]
	almost certain	it is almost certain that [FACT]
	almost no chance there is almost no chance that [FACT]
	better than even	there is a better than even chance that [FACT]
	certain	it is certain that [FACT]
	chances are slight chances are slight that [FACT]
	highly likely	it is highly likely that [FACT]
	highly unlikely	it is highly unlikely that [FACT]
	impossible	it is impossible that [FACT]
	improbable	it is improbable that [FACT]
	likely	it is likely that [FACT]
	little chance	there is little chance that [FACT]
	probable	it is probable that [FACT]
	probably	it is probably the case that [FACT]
	probably not	it is probably not the case that [FACT]
	unlikely	it is unlikely that [FACT]
	very good chance there is a very good chance that [FACT]
	we believe	we believe that [FACT]
	we doubt	we doubt that [FACT]

Table 3 :

 3 Templates used to convert a fact and a WEP expressed uncertainty into a modal sentence.

	C WEP frequencies on the generated datasets		
	WEP-reasoning	(1 hop) WEP-Reasoning	(2 hops) WEP-USNLI	
	WEP	frequency WEP	frequency WEP	frequency
	about even probably not better than even we believe highly likely certain highly unlikely almost no chance impossible almost certain very good chance chances are slight little chance probable unlikely likely probably we doubt improbable	11.1 impossible 9.7 about even 7.7 probably not 7.1 highly unlikely 6.4 almost no chance 6.0 better than even 5.9 we believe 5.8 highly likely 5.3 very good chance 5.1 we doubt 4.7 improbable 3.6 chances are slight 3.5 unlikely 3.2 little chance 3.1 almost certain 3.1 certain 3.0 likely 2.9 probable 2.9 probably	13.2 impossible 10.8 better than even 9.0 certain 8.2 about even 8.0 almost certain 6.6 highly likely 4.3 very good chance 4.0 almost no chance 4.0 we believe 4.0 highly unlikely 3.9 probably not 3.9 likely 3.6 probable 3.5 probably 2.9 unlikely 2.7 little chance 2.5 chances are slight 2.4 improbable 2.2 we doubt	25.6 10.7 7.2 6.9 6.7 6.0 5.9 5.0 4.1 4.1 3.4 2.5 2.4 2.4 1.5 1.5 1.5 1.4 1.4

Table 4 :

 4 Validation set frequency of WEP in the correct answer of each dataset (percentages).

/hf.co/.../probability_words_nli

This threshold ensures sufficient distance, while also ensuring that each WEP has at least one possible distractor.

Deviation from these hyperparameters did not yield significant improvement on the validation sets.

Kyle Richardson, Hai Hu, Lawrence Moss, and Ashish Sabharwal. 2020. Probing natural language inference models through semantic fragments. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 8713-8721.
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