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profonds sur les surfaces r egl ees.

Introduction

Soit (X; J) une vari et e presque-complexe de classe C 1 de dimension r eelle 4. Une structure r eelle sur (X; J) est une involution c X de classe C 1 dont la di erentielle anti-commute avec J. L'ensemble des points xes de c X est alors une sous-vari et e de dimension deux de X not ee RX, et appel ee partie r eelle de X (cette terminologie provient de la g eom etrie alg ebrique r eelle).

Une J-courbe r eelle de X est un plongement dans X d'une surface de Riemann S munie d'une structure r eelle c S , o u d'une part le plongement commute avec les involutions c X et c S , et d'autre part sa di erentielle commute avec les structures presque-complexes de S et X. Dans ce cas, le plongement restreint a RS est a image dans RX et un th eor eme de Harnack (v. 15] par exemple) a rme que le nombre de composantes connexes de RS ne peut pas être sup erieur a g + o u g est le genre de S, et le nombre de composantes connexes de S. La J-courbe r eelle S est alors dite maximale, ou M-courbe (resp. (M r)-courbe), si le nombre de composantes connexes de RS co ncide avec g + (resp. vaut g + r).

Par ailleurs, la J-courbe r eelle S est dite s eparante s'il existe une partie S + de S, bord ee par RS, telle que S + c S (S + ) = S et S + \c S (S + ) = RS. Une telle partie S + (qui est canoniquement orient ee, l'orientation provenant de la structure presque-complexe de S) induit une orientation sur RS appel ee orientation complexe. Lorsque S est connexe, sa partie r eelle RS poss ede exactement deux orientations complexes qui sont oppos ees. Notons que les surfaces de Riemann r eelles maximales sont toujours s eparantes.

Lorsque S est une J-courbe r eelle s eparante, la topologie du couple (RX , RS) est soumise a des restrictions. Les premi eres restrictions ont et e donn ees par une congruence d'Arnol'd 1] et une formule de Rokhlin 10], ces restrictions s'appliquent aux courbes alg ebriques r eelles s eparantes non-singuli eres de degr es pairs de C P 2 . Depuis, plusieurs r esultats sont apparus pour les courbes de C P 2 , de l'hyperbolo de ou de surfaces plus g en erales (v. 8], 16], 6], 7], 14]) et notament, S.

Yu. Orevkov 9] a obtenu r ecement une nouvelle formule d'orientations complexes pour les courbes s eparantes a nids profonds de C P 2 .

Dans cet article sont pr esent ees une g en eralisation de la formule d'Orevkov aux courbes a nids profonds sur les surfaces r egl ees, ainsi que des in egalit es apportant des restrictions sur la position de ces courbes dans le br e. Le x1 contient des d e nitions pr eliminaires, en particulier celles des surfaces r egl ees en question et des courbes a nids profonds. Dans le x2 sont expos es les r esultats li es a la formule d'Orevkov, ainsi que des applications de celle-ci, par exemple pour des courbes a deux nids de C P 2 . En n, le x3 contient les enonc es et d emonstrations des in egalit es, ainsi qu'une application de celles-ci.
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Notations : jAj: cardinal de l'ensemble A. b i (T ) : i eme nombre de Betti de la vari et e T .

1 D e nitions pr eliminaires.

1.1 Les surfaces r egl ees.

Soient X une vari et e presque-complexe connexe de dimension r eelle 4 et B une surface de Riemann r eelle s eparante. Supposons qu'il existe une application J-holomorphe p : X ! B de classe C 1 , ainsi qu'une structure r eelle c X sur X telles que c X = c B . Supposons de plus que les bres correspondant aux valeurs r eguli eres de p sont des sph eres J-holomorphes, que les valeurs singuli eres de p sont r eelles (c'est-a-dire appartiennent a RB), et que les bres singuli eres associ ees sont constitu ees de deux sph eres J-holomorphes r eelles s'intersectant transversalement en un point. La vari et e X est alors appel ee surface r egl ee de base B, et dans toute la suite de cet article, X sera suppos e être une surface r egl ee qui poss ede une J-section r eelle e, c'est-a-dire une section J-holomorphe invariante par c X (cette hypoth ese suppl ementaire n'est pas automatique, comme le montre l'exemple donn e en annexe B).

Munissons RB d'une orientation complexe et e R de l'orientation induite. Si C est une courbe orient ee dans une composante connexe de RX situ ee au-dessus d'une composante B 0 de RB, alors le degr e de la projection pj C : C ! B 0 est appel e nombre d'enroulement de C et not e n(C).

Notons n le nombre de valeurs singuli eres de p, et v i (i 2 f1; : : :; ng) les composantes des bres singuli eres qui sont disjointes de e (l'intersection de e avec chaque bre est r eduite a un point qui est distinct de l' eventuel point singulier, ce qui justi e l'existence de v i ). La famille ( v]; e]; v 1 ]; : : :; v n ]), o u v est une bre non-singuli ere de X, forme une base du r eseau H 2 (X; Z ) que nous xons, de sorte que les el ements de H 2 (X; Z ) seront identi es a des el ements de Z 2+n .

Remarquons que les courbes v i satisfont v i v i = 1. La surface obtenue apr es contraction de ces courbes est une surface r egl ee sans bre singuli ere, et les composantes connexes de sa partie r eelle sont alors des tores ou des bouteilles de Klein. Remarquons egalement qu'au-dessus de chaque composante de RB est situ ee une et une seule composante de RX. (Ceci signi e que le nombre de composantes connexes de RX est maximal : certaines surfaces r egl ees ont une partie r eelle poss edant moins de composantes connexes que RB, mais ces surfaces ne poss edent alors pas de J-section r eelles, comme c'est le cas dans l'exemple donn e en annexe B).

Les termes et

Une J-courbe r eelle A de X, de classe (a; b; a 1 ; : : :; a n ) dans H 2 (X; Z ) (muni de la base d e nie au x1.1), est dite a nids profonds si toute bre r eelle intersecte RA en au moins b 2 points. Les composantes de RA qui sont bord ees par des disques de RX sont appel ees ovales. La J-courbe r eelle a nids profonds A est dite standard si pour chaque composante de RX sur laquelle RA n'a pas d'ovale, les bres r eelles associ ees interectent RA en exactement b points. (Cette hypoth ese suppl ementaire va permettre de simpli er les enonc es et d emonstrations qui suivent.)

Soit donc A une J-courbe r eelle s eparante connexe a nids profonds standard de X, de classe (a; b; a 1 ; : : :; a n ). Munissons RA d'une orientation complexe provenant d'une partie A + de A n RA.

Remarquons que si n = 0, quitte a e ectuer une chirurgie sur la courbe A et a modi er la structure presque-complexe de X (de la même fa con que dans 9], proposition 3:5:1), on peut supposer que chaque ovale de RA n'est tangent aux bres qu'en deux points, et que les autres composantes de RA sont transverses aux bres. De plus, quitte a e ectuer une isotopie le long des bres de X, on peut supposer que les ovales de RA sont disjoints de e R . La forme de la courbe RA ainsi obtenue est une forme normale pour les J-courbes r eelles a nids profonds de X.

Notons R l'ensemble des points en lesquels RA est tangente aux bres de En chaque point d'intersection x de RA avec ce segment s t , l'espace tangent T x RX priv e de T x s t est constitu e de deux demi-plans. Posons (x) = +1 si (x) et un vecteur tangent de RA en x sont situ es dans un même demi-plan, et (x) = 1 sinon. Notons alors = P x (x), la somme etant prise sur l'ensemble des points x 2 RA \ t s t . En outre, le nombre de tels points x de RA + de signe positif (resp. n egatif) est not e + + (resp. + ), et de même, le nombre de tels points x de RA de signe positif (resp. n egatif) est not e (resp. + ), de sorte que + = + + + et = + .

Remarque : Tous ces termes ne d ependent clairement que du triplet (RX; RA; e R ) a isotopie \ br ee" de RX pr es, c'est-a-dire a isotopie de RX qui commute avec la projection sur la base B.

Les derniers termes + + ; + ; et + n'interviendront que dans la seconde partie de cet article (au x3). Pour ce qui est des termes + et , on etudie en annexe A leur invariance par isotopie de RX quelconque, pr eservant e R .

1.3 Les cycles A .

L'intersection de A avec la restriction du br e X au-dessus de RB est constitu ee de RA, ainsi que d'une r eunion de cercles O t (1 t T) invariants par c X , qui seront appel es ovales imaginaires. Chacun de ces ovales est stable par c X et intersecte RX en deux points \cons ecutifs" de l'ensemble R, reli es par le segment s t (d e ni au x1.2, on utilise ici le fait que A est standard). Notons A + + (resp. A + ) la partie de A + qui se projette sur B + (resp. sur B = c B (B + )). Le bord des surfaces A + + c(A + + ), A + c(A + ) est la r eunion des ovales O t .

On peut supposer que les ovales O t ne rencontrent pas e. Pour chacun de ces ovales, il existe un disque D t de X au-dessus de p(O t ), bord e par cet ovale, disjoint de e et qui intersecte RX en le segment s t . De plus, ce disque peut être choisi en sorte qu'il n'a aucun espace tangent stable par J (c'est un disque totalement r eel).

Notons A + (resp. A ) la somme de A + + c(A + + ) (resp. A + c(A + )) et de ces disques (resp. de leurs oppos es), en les munissant d'orientations telles que A + et A soient des 2-cycles entiers de X. 

+ n a = 1 2 b ( (B) n ) + g + 1 2 n X i=1 a i (a i 1)
Ce th eor eme admet les corollaires suivants :

Corollaire 2.2 Sous les hypoth eses et notations du th eor eme 2.1, on a les encadrements :

n je R \ RA j 1 2 n X i=1 a i (a i 1) + 1 2 b ( (B) + n ) + g n (a + b je R \ RA j) En particulier, si e A = 0, = 1 2 b ( (B) + n ) + g + 1 2 n X i=1
a i (a i 1):

Le th eor eme 2.1 et le corollaire 2.2 tiennent compte de la position relative de la courbe RA avec la section e R , voire de la position par rapport aux bres (v. annexe A). Si B est de genre nul, = 1, et A est une courbe obtenue a partir d'une courbe alg ebrique r eelle s eparante non-singuli ere de C P 2 telle que RA poss ede un nid profond (apr es eclatement d'un point r eel au centre du nid), alors e A = 0 et les formules donn ees par le corollaire 2.2 sont les formules d'Orevkov [START_REF] Mishachev | Complex orientations of plane M-curves of odd degree[END_REF], th eor eme 1.5A).

Les corollaires suivants sont des r esultats topologiques : ils ne tiennent compte que de a, b, a i et de la courbe RA a isotopie de RX pr es: Corollaire 2.3 Sous les hypoth eses et notations du th eor eme 2.1, on a :

n ( + g + + + ) + n + ( g + ) = 1 2 n + n (2 (B) 2a b) 1 2 (B)(b 2) + 1 2 n X i=1 n + a i (a i 1) + n a + i (a + i 1) = 1 2 b ( (B) + n ) + g n e R ] RA ] + 1 2 n X i=1 a i (a i 1) mod (2n )
Corollaire 2.4 Sous les hypoth eses et notations du th eor eme 2.1, on a la congruence : 

T + + + = b (a + b ) n X i=1 a + i a i + n(RA) e R

D emonstration du corollaire 2.4 :

En sommant les egalit es donn ees par le th eor eme 2.1, on obtient :

+ + = 1 2 (B)b 1 2 n + b+ 1 2 n(RA)b + 1 2 n X i=1 a + i (a + i 1)+a i (a i 1) +g(A) 1 T n + a+n(RA)a Or g(A) = (a + 2 b)(b 1) 1 2 (B)b + 1 P n
i=1 a i (a i 1). L' egalit e se r e ecrit donc :

T + + + = (a + 2 b)(b 1) 1 2 n + b 1 2 b n(RA) n + a n X i=1 a i (a i 1) + 1 2 n X i=1 a + i (a + i 1) + a i (a i 1) + n(RA) a + b = (a + 2 b)b 1 2 b n(RA) n X i=1 a + i a i + n(RA) a + b = (a + b )b n X i=1 a + i a i + n(RA) e R ] RA ] mod (2n(RA)):
2.2 D emonstration du th eor eme 2.1

Le th eor eme 2.1 repose sur le lemme suivant :

Lemme 2.5 Les cycles A + , A satisfont la formule d'adjonction :

A ] A ] = c 1 (X) A ] (A ) 2
Une formule analogue est d ej a apparue dans 5], 2]. Nous pr esentons toutefois ici une d emonstration :

D emonstration :

Choisissons un champ de vecteurs non nuls tangents aux ovales O t , et un champ normal a ces ovales et tangent aux disques D t . Ces champs sont prolong es aux cycles A + , A , de sorte qu'ils soient tangents aux disques D t , que soit tangent aux J-courbes et normal a ces J-courbes. Ce prolongement est choisi de sorte que les champs n'aient pas de z eros communs et soient lin eairement ind ependants sur C en dehors de leurs z eros. Le produit exterieur ^J( ) forme une section du br e vectoriel V 2 TX au-dessus des cycles A + , A , qui s'annule en les points o u un des champs s'annule. Or l'indice d'intersection de cette section avec la section nulle vaut par d e nition c 1 (X) A ]. Cet indice est la somme des contributions des z eros du champs et du champ J( ). Comme l'orientation des cycles sur les J-courbes co ncide avec l'orientation canonique de celles-ci, et que les disques D t sont totalement r eels, on s'aper coit que la contribution du champ est (A ), et celle du champ centre du nid N 1 , on pose i = +1 (resp. + i = +1) si l'ovale x i est homologue (dans le premier groupe d'homologie de C P 2 priv e du centre de cet ovale) a l'ovale ext erieur (resp. a son oppos e), et i = 0 (resp. + i = 0) sinon. En n, notons E (resp. E + ) le nombre d'ovales vides homologues a l'ovale ext erieur du nid N 1 dans le faisceau de droite centr e en x 1 , a l'exterieur du nid N 2 et strictement entre les ovales x 2 et x 4 , et supposons que les ovales sont positionn es comme sur la gure suivante :

J( ) est le nombre normal d'Euler

(A ) = A ] A ] + 2 . La classe de Chern c 1 (X) est duale a ( (B) ) v] + 2 e] P i v i ], et (A ) = 2 2g . D'apr es 2.5, 2a b + (b ) 2 X i (a i ) 2 = ( (B) )b + 2a + 2 b X i a i 2 + 2g 2 ; ce qui se r e ecrit: n a = 1 2 b ( (B) n ) + g + 1 2 P n i=1 a i (
x 1 x 3 x 2 x 4 nid N 1 nid N 2
On a :

2( + + + ) N 1 + ( + ) N 2 + (E E + ) = 2k + 1 (k + 1 + 1) + + 2 + + 4 2r + 2( + ) N 1 + ( + ) N 2 + (E + E ) = 2k 1 (k 1 + 1) + 2 + 4 2r O u 0 r + ; r r et r + + r = r.

D emonstration :

Consid erons le faisceau de coniques centr e en les quatre points x 1 ; : : :x 4 , et eclatons ces quatre points. La surface obtenue est une surface r egl ee X poss edant trois bres singuli eres et dont la base est C P 1 . Attribuons a la base RP 1 du br e RX l'orientation oppos ee de celle induite par l'ovale ext erieur au nid N 1 . Notons + i = +1 (resp. i = +1) si l'ovale x i (i 2 f1; 2; 3; 4g) a un nombre d'enroulement +2 (resp. 2), et + i = 0 (resp. i = 0) sinon (cette d e nition prolonge celle donn ee dans l' enonc e). Choisissons comme section e du br e le diviseur exceptionnel se situant au dessus de x 1 (en particulier = 1), et appliquons le cas d' egalit e du corollaire 2.2. Pour calculer le membre de droite, on s'aper coit que n = 4k 1 + 2 1 + 2 2 + 2 3 + 2 4 + 1, que (S) = 2, que g = k 1 + 1 + 2 + 3 + 4 + 2r avec r + + r = r (r + ; r 0), et en n que fa i j i 2 f1; 2; 3gg = f2k 1 + 2 2 + 2 3 + 1( 1); 2k 1 + 2 2 + 2 4 + 1; 2k 1 + 2 3 + 2 4 + 1( 1)g (ces valeurs d ependent en fait de la position de l'ovale ext erieur au nid N 2 par rapport au faisceau, ce qui explique les termes entre parenth eses). Le membre de gauche se calcule directement, et vaut 2(

) N 1 4k 1 (2 1 1) + 4 2 ( 2 1 ) + 4 3 ( 3 1 ) + 4 4 ( 4 1 ) + (E E ) + ( + ) N 2 + ( 2 + 4 2 1
) (ce qui s'obtient en faisant intervenir les faisceaux de droites centr es en

x 3 et x 4 ).

Corollaire 2.9 Si le sch ema r eel d'une courbe alg ebrique r eelle non-singuli ere maximale de degr e 8 de C P 2 est < 1 t 1 < > t1 < >>, o u est pair et impair, alors son sch ema complexe est : < 1 t 1 < ( 2 + 1) + t ( 2 1) > t1 < ( +1 2 ) + t ( 1 2 ) >> D emonstration : Lemme 2.10 Une courbe satisfaisant les hypoth eses du corollaire 2.9 mais n'ayant pas le sch ema complexe < 1 t 1 < ( 2 + 1) + t ( 2 1) > t1 < ( +1 2 ) + t ( 12 ) >> poss ede n ec essairement quatre ovales dispos es comme sur la gure suivante :

x 1 x 3 x 2 x 4
De plus, les points x 2 et x 4 sont de type , ils s eparent le faisceau de droite centr e en x 1 en deux parties, et l'ovale exterieur ne se situe pas dans la même partie que x 3 .

D emonstration du lemme 2.10 :

Si + est strictement sup erieur a deux, on consid ere le faisceau de droite centr e en un point int erieur a un ovale de type . D'apr es la propri et e d'alternance, les orientations complexes des ovales dans ce faisceau sont altern ees et dans le nid contenant les ovales de type , ce faisceau e ectue forc ement a deux reprises un saut entre deux ovales positifs. Comme il n'y a qu'un ovale exterieur, un de ces deux sauts est de la forme recherch ee. De même, si + est strictement inf erieur a deux, alors d'apr es la formule de Rokhlin [START_REF] Yu | Link theory and oval arrangements of real algebraic curves[END_REF]) + est sup erieur ou egal a trois et en consid erant le faisceau de droite centr e en un point int erieur a un ovale de type , on conclut de la même fa con.

Pour d emontrer la seconde partie du lemme, consid erons le faisceau de coniques centr e en les quatre points x 1 ; : : :; x 4 . D'apr es le th eor eme de Bezout, chaque conique coupe la courbe r eelle en au plus seize points. Par cons equent, les ovales vides autres que x 1 ; : : :; x 4 se situent n ecessairement dans la partie hachur ee :

x 1 x 4 x 2 x 3
En particulier, le faisceau de droites centr e en x 1 rencontre tous les ovales de même type que x 1 entre x 2 et x 4 . Ce nombre d'ovales est donc n ecessairement impair, d'o u le r esultat.

En appliquant a pr esent la proposition 2.8, on en d eduit que si le sch ema complexe de la courbe donn ee par le corollaire 2.9 n'est pas < 1 t 1 < ( 2 + 1) + t ( 2 1) > t1 

Construction d'un revêtement double rami e en e A

Notons N + (resp. N ) le nombre de points doubles positifs (resp. n egatifs) de A, et N = N + +N le nombre total de points doubles. Remarquons que si A = A + (resp. A = A ), alors avec les notations du x1.2, N + = + + (resp. N + = ) et N = + (resp. N = + ). Soit e X l' eclatement de X en les N points doubles de A. Supposons a pr esent que les disques D t construits au x1.3 ont et e choisis de sorte qu'ils soient tangents aux bres en chaque point double.

De cette fa con, la transform ee stricte e A de A est une surface de e X ayant pour seules singularit es des plis. La structure presque-complexe J et l'involution c X se rel event en une structure presque- 

D emonstration :

On peut supposer que e X n'a pas de bre singuli ere. En e et, en contractant des diviseurs exceptionnels, chaque surface r egl ee se ram ene a une surface sans bre singuli ere. Si le r esultat est d emontr e pour ce type de surfaces, il l'est dans les surfaces r egl ees quelconques pour les cycles e A n'intersectant pas les diviseurs exceptionnels (en relevant les homologies construites). Or, on peut toujours se ramener a ce cas : chaque 2-cycle qui intersecte un diviseur exceptionnel (ici n ec essairement en un nombre pair de points), est homologue a un 2-cycle n'intersectant pas le diviseur exceptionnel moins un multiple (n ec essairement pair ici) du diviseur exceptionnel, l'homologie pouvant être choisie invariante par c e X . En e et, ceci se v eri e localement et provient du fait que c'est le cas dans C P 2 priv e d'un point.

Supposons donc que e

X n'a pas de bre singuli ere, et xons un di eomorphisme entre ( e Xne; c e X ), et un br e vectoriel de rang 2 sur R au-dessus de B, muni d'un endomorphisme involutif c. En particulier, la section nulle de ce br e correspond a une section di erentiable ẽ de e X, stable par c e X , et satisfaisant ẽ e = 0.

Notons alors e H = ftx j t 2 0; 1]; x 2 e Ag, qui est compact si l'on convient que lorsque x 2 e A\e, l'ensemble ftx j t 2 0; 1]g est toute la bre associ ee, compt ee avec multiplicit e. Ce complexe e H est de dimension 3, stable par c, et son bord est constitu e de e A moins un multiple pair de ẽ et la somme des bres passant par les points d'intersection de e avec e A (compt ees avec multiplicit es). Or dans chaque composante de R e X est contenu un nombre pair de telles bres, puisque par hypoth ese 

= 2 (B) (A) 2 (R e X ) , et 2 = 2 (R e X ) 1
2 A A. Proposition 3.3 Soit A une J-courbe r eelle s eparante connexe a nids profonds standard de la surface r egl ee X, telle que e A] = 0 2 H 2 ( e X), et R e A] = 0 2 H 1 (R e X). Soit Y le revêtement double construit au x3.1, et 1 E 1 les huit sous-espaces orthogonaux d e nis ci-dessus. Les dimensions de ces sous-espaces sont : Les autres formules d ecoulent des relations suivantes : X nR e S, telles que les adh erences des surfaces p 1 (D i ) de Y associ ees soient orientables. Ici, e S d esigne la r eunion des diviseurs exceptionnels situ es au-dessus des points doubles de A, et notons S = p 1 ( e S). Les adh erences des surfaces p 1 (D i ) seront not ees D i , leurs bords sont des r eunions de cercles, chacun plong e dans une sph ere de S, qui s epare donc cette sph ere en deux demi-sph eres canoniquement orient ees (comme revêtements doubles des diviseurs exceptionnels de e X rami es en deux points).

dim( +1 E + +1 ) = dim( +1 E +1 ) = 0 ; dim( 1 E + 1 ) = 1 ; dim( 1 E 1 ) = N + n + 1; dim( 1 E + +1 ) =
dim( 1 E + +1 ) + dim( 1 E +1 ) + dim( +1 E + 1 ) + dim( +1 E 1 ) + N + n + 2 = b 2 (Y ) dim( 1 E + +1 ) dim( 1 E +1 ) + dim( +1 E + 1 ) dim( +1 E 1 ) N n = (Y ) dim( 1 E + +1 ) dim( 1 E +1 ) dim( +1 E + 1 ) + dim( +1 E 1 ) + N + n = c+ (Y ) dim( 1 E + +1 )+dim( 1 E +1 ) dim( +1 E + 1 ) dim( +1 E 1 ) N n 2 = (Y + ) 2+tr(c + jH 1 (Y ; R) H 3 (Y ; R)) (la
Munissons D i d'une orientation quelconque, et recollons a son bord la r eunion des demi-sph eres (munies de leur orientation canonique) induisant une orientation oppos ee de celle du bord, de fa con a former un cycle entier, dont la classe d'homologie dans H 2 (Y ; R) est not ee i . Le projet e de i sur le sous-espace propre de c associ e a la valeur propre +1 est alors not e i , de sorte que i = 1 2 ( i + c ( i )). Nous allons d e nir une forme quadratique f sur R m , et montrer dans le lemme 3.7 qu'elle correspond a la forme quadratique de Poincar e de H 2 (Y ; R) dans la famille i . Soit s un point double du cycle A et supposons que s joint les composantes D i et D j de R e X , o u 1 i; j m ( eventuelement i = j). Posons s = +1 (resp. s = 1) si les surfaces orient ees D i , D j associ ees induisent une orientation oppos ee (resp. la même orientation) sur le cercle situ e au-dessus de s, bordant D i et D j . D e nissons alors la forme quadratique f s sur R m par f s (x 1 ; : : :; x m ) = 1 2 (x2 i + x 2 j ) + s x i x j . Dans le cas o u le point double s ne borde pas deux composantes D i et D j , mais une composante D i et une composante de R e X n R e S, n'appartenant pas a j D j , on pose f s (x 1 ; : : :; x m ) = 1 2 x 2 i .

En n, remarquons que le champ d e ni au x3.2 s' etend a tout le bord des parties D i , en imposant que sur la partie commune avec R e S, le champ est normal a cette partie et tangent a R e X . On note alors (D i ) la somme des indices des z eros d'un prolongement de a D i tout entier, et la forme quadratique f est d e nie comme la somme des f s o u s d ecrit l'ensemble des points doubles de A, et de la forme diagonale 2 P m i=1 (D i )x 2 i , c'est-a-dire :

f = X s f s 2 m X i=1 (D i )x 2 i
Notons + (f ) (resp. (f )) la dimension maximale d'un sous-espace de R m sur lequel la forme quadratique f associ ee ( = 1) se restreint en une forme d e nie positive (resp. d e nie n egative), et notons 0 (f ) la dimension du noyau de cette forme.

Lemme 3.7 La forme d'intersection de Poincar e de Y dans la famille ( i ) 1 i m est la forme f .

D emonstration :

Rappelons que i = 1 peut se calculer g eom etriquement: le champ J( ) ( est le champ d e ni au x3.3) se rel eve en un champ normal a D i , qui s' etend en un champ normal a i , dont l'indice des z eros vaut 1 sur chaque demi-sph ere, et vaut 2 (D i ) sur D i . En d ecalant ce cycle a l'aide d'un ot associ e a ce champ de vecteurs, on obtient alors un cycle transverse a c ( i ), et dont l'indice d'intersection avec c ( i ) vaut 2 (D i ) auquel s'ajoute deux fois le nombre de points doubles s bordant D i de part et d'autre et pour lesquels s = +1. En sommant ces contributions, on s'aper coit donc que ( i ) 2 vaut exactement f (e i ), o u e i est le i eme vecteur coordonn ee de R m .

Pour e ectuer un calcul g eom etrique de i j avec i 6 = j, on d ecale le cycle i comme pr ec edement, de fa con a le rendre transverse a j . Ainsi, les seuls points d'intersections entre ces deux cycles sont situ es sur les diviseurs de carr e 2 et la somme des indices est exactement la somme des s o u s d ecrit l'ensemble des points doubles bordant D i et D j , ce qui co ncide avec f (e i ; e j ).

R esultat principal.

Th eor eme 3.8 Soit A une J-courbe r eelle s eparante connexe a nids profonds standard de la surface r egl ee X. On a, en conservant les notations de la proposition 3.3, pour 2 f g :

max(0; ~ 0 (f )) + + (f ) 1 4 2N + + 1 + 2 + 2h ( e X; e A) ; max(0; ~ 0 (f )) + (f ) 1 4 1 2 + 2h ( e X; e A) 2N + ; o u ~ 0 (f ) = 0 (f ) 2 dim(H 1 ( e X; e A)) 4g(B) 1
Remarque : Rappelons que N + = + + (resp. N + = ) si A = A + (resp. A = A ). Par ailleurs, lorsque la r eunion des D i n'est pas toute la surface R e

X nR e S, le terme 1 peut être enlev e dans la d e nition de ~ 0 (f ) ; et lorsque la base B est une sph ere, les termes g(B) et dim(H 1 ( e X; e A)) sont nuls.

Pour d emontrer ce th eor eme, nous allons calculer la dimension du sous-espace de H 2 (Y ; R) engendr e par les cycles i , calcul e ectu e dans le lemme 3.10, puis utiliser le lemme 3.7, pour en n conclure.

Commen cons donc par donner deux lemmes pr eliminaires. Rappelons que S = p 1 e S o u e S est la r eunion des diviseurs exceptionnels de e X situ es au-dessus des points doubles de A. L'image des cycles i dans le groupe H 2 (Y; S; R), est r ealis ee par les surfaces D i (i 2 f1; : : :; mg), elle peut donc être consid er ee dans H 2 (Y; S; Z ) et H 2 (Y; S). Lemme 

(f )) + + (f ) dim( 1 E + +1 ) max(0; ~ 0 (f )) + (f ) dim( 1 E +1 )
Le th eor eme 3.8 provient alors de la proposition 3.3.

Une application.

Th eor eme 3.11 Soit A une courbe alg ebrique r eelle maximale a nids profonds de classe 8k v]+ holomorphe de carr e n egatif 2k). Supposons que RA poss ede deux composantes homologues a e R . Ces deux composantes s eparent le tore RX en deux cylindres, dont un est divis e en deux moiti es par e R . Supposons que les ovales de RA se situant dans ce dernier cylindre se situent en fait dans une même moiti e.

Alors RA] = 0 2 H 1 (RX; Z ), et en orientant la base de sorte que la composante s eparant les ovales soit de nombre d'enroulement +1, on a : + + 2k + 2 Remarque : Il est facile de voir que d es que k > 1, ce th eor eme fournit des restrictions sur les courbes qui ne sont pas donn ees par les th eor emes pr ec edents. Par exemple, la courbe suivante, bien que satisfaisant au corollaire 2.2, n'existe pas sur X 6 : eR D emonstration du th eor eme 3.11 : Le fait que RA] = 0 2 H 1 (RX; Z ) provient de la proposition 4:1 de 14] (c'est ici qu'on utilise le fait que k est impair).

Appliquons ensuite le th eor eme 3.8 au cycle A + . Notons RX + la moiti e de RX form ee de N disques, o u N est le nombre de points doubles de A + . La courbe poss ede 12k 4 ovales, A + ] = 4k v] + 2 e], 1 = 4 + 2N et 2 = 2N 4k. D'apr es le th eor eme 3.8, on a donc :

(f + ) N + k + 1 1 2 + +
Or la matrice de f + dans la famille associ ee aux N disques est de la forme (a ij ) avec a ii = 1, a ij = 1 2 si ji jj = 1 et a ij = 0 sinon (on utilise ici le fait que la classe caract eristique du revêtement Y au-dessus de R e X est RE] o u E = 2kv + e est donn e par le lemme 3.2). Cette forme est donc d e nie n egative, de sorte que (f + ) = N. D'o u le r esultat.

Remarque nale.

Les r esultats de cet article s'appliquent egalement aux J-courbes a nids profonds poss edant des points r eels multiples ordinaires en dehors des bres singuli eres, puisqu'un eclatement en ces points rend la courbe non-singuli ere et que la surface reste r egl ee. Mieux, nous aurions pu e ectuer des hypoth eses moins fortes sur les surfaces r egl ees, et admettre que les bres singuli eres soient des arbres quelconques de J-sph eres (les enonc es des r esultats auraient alors et e encore plus longs). Il en d ecoule donc que les r esultats s'appliquent egalement a toutes les J-courbes a nids profonds dont les singularit es sont r eelles. Remarquons toutefois que le fait d'être a nids profonds impose de fortes conditions sur la nature de ces singularit es.

Annexes.

A D ependance des termes + et . Soit L une courbe orient ee sur un tore ou une bouteille de Klein muni de sa structure de br e en cercle sur S 1 . On suppose que les composantes non-contractiles de L sont transverses aux bres, que les ovales ne sont tangents aux bres qu'en deux points et que chaque bre ne rencontre au plus qu'un seul ovale, et en n que ces ovales n'intersectent pas la section e R et satisfont la propri et e d'alternance. Pour une telle courbe, on d e nit de la même fa con que dans 1.2 un entier . Cette d e nition utilise la structure de br e de la surface, et le probl eme est de savoir si pour deux courbes L 1 et L 2 isotopes par une isotopie de la surface pr eservant e R , les termes 1 et 2 associ es sont egaux. Pour r epondre a cette question, nous allons distinguer le cas du tore de celui de la bouteille de Klein, et interpr eter le terme comme une int egrale sur un ensemble ni mesur e K. L'invariance de en d ecoulera imm ediatement. Toutefois, dans le cas du tore, une telle construction ne sera valable que si e R L = 0, et dans le cas contraire il s'av ere que n'est pas invariant. Par soucis de concision, aucune d emonstration ne sera donn ee (elles sont directes).

A.1 Cas du tore.

Dans ce cas, on munit le tore d'une orientation quelconque, et le compl ementaire de e R est un cylindre qui lui aussi est orient e. La courbe L priv ee de ses ovales est une courbe a bord dans ce cylindre, et on note fC k j k 2 Kg l'ensemble des composantes connexes de son compl ementaire. B Une surface r egl ee sans J-section r eelle.

Soit X = T 2 C P 1 o u T 2 est un tore, et p la projection X ! T 2 . Notons U 1 le groupe des nombres complexes de module un, et (x; y) les coordonn ees sur T 2 = U 1 U 1 . On munit alors T 2 de la structure r eelle c T : (x; y) 7 ! (x; y), et on d e nit : c X : X ! X (x; y; z) 7 ! x; y; (1 + x)z + i(1 x)

(1 x)z + i(1 + x) i Proposition B.1 L'involution c X est une structure r eelle sur la surface r egl ee X ! T 2 . La partie r eelle RT a deux composantes connexes, alors que RX est connexe.

Une cons equence imm ediate de cette proposition est que X ne poss ede pas de section continue invariante par c X .
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  A), (A) : caract eristique d'Euler, nombre de composantes connexes de la surface A. g(A): genre de la surface A. A]: classe d'homologie du cycle A. x y : forme bilin eaire d'intersection de Poincar e.
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  In egalit es suppl ementairesDans cette partie, nous construisons des revêtements doubles rami es en les cycles A d e nis au x1.3 (apr es quelques eclatements de ces cycles), et obtenons des in egalit es en etudiant le second groupe d'homologie r eelle de ces revêtements. Pour all eger les notations, xons un signe 2 f g, et notons A le cycle A . De même, lorsque les groupes d'homologies seront a coe cients dans Z=2Z , nous omettrons de mentionner ce groupe de coe cients.Les r edactions des x3:2, 3:3 et 3:4 sont inspir ees de 15], 4] et 17] respectivement. Par ailleurs, la m ethode que nous utilisons ici est analogue a celle d ej a utilis ee parRokhlin 11], Arnol'd 1] (voir aussi le survey 15]), etViro 13].

  0. Ces bres sont donc homologues a un multiple pair d'une bre r eelle, l'homologie pouvant être choisie invariante par c. De même, les bres imaginaires sont coupl ees par deux avec c, et sont donc homologues a un multiple pair d'une bre r eelle, l'homologie pouvant egalement être choisie invariante par c. L'homologie totale H construite convient, le cycle E etant constitu e de la demisomme des bres r eelles, et d'un multiple de ẽ.

3

 3 derni ere relation est la formule des points xes de Lefschetz appliqu ee a l'involution c + ). Remarquons que, puisque c + pr eserve la forme d'intersection et que celle-ci est non-d eg en er ee, tr(c + jH 1 (Y ; R)) = tr(c + jH 3 (Y ; R)). Par ailleurs, les membres de droite des quatre relations pr ec edentes ont et e calcul es dans le lemme 3.5. Pour terminer la d emonstration de la proposition 3.3, il su t donc de r esoudre le syst eme d' equations pr ec edent, et d'utiliser les estimations donn ees par le lemme 3.6. En e et, d'apr es ce lemme, b 1 (Y ) tr(c + jH 1 (Y ; R)) = 2g(B) + h ( e dim(H 1 (Y ; R)) tr(c + jH 1 (Y ; R)); et ces quantit es sont positives et satisfont l'in egalit e : Les formes quadratiques f . Notons D 1 , : : :, D m les composantes connexes de R e

  Lemme A.1 Si L e R = 0, il existe une mesure sur l'ensemble K poss edant la propri et e suivante : si C 1 et C 2 sont deux composantes voisines, et un chemin orient e in nit esimal transverse a L reliant C 1 a C 2 , alors (C 2 ) = (C 1 ) + 2L . De plus, deux telles mesures di erent d'une constante. Chaque ovale de L borde un disque orient e, et cet ovale est dit positif (resp. n egatif) si l'orientation de ce disque co ncide (resp. ne co ncide pas) avec l'orientation du tore. On d e nit alors la fonction g sur K en posant g(k) egal au nombre alg ebrique d'ovales situ es dans C k . Il d ecoule de la propri et e d'alternance que P k g(k) = 0, ce qui peut se r einterpr eter comme le fait que l'int egrale de g sur K muni d'une mesure constante est nulle. Lemme A.2 Si L e R = 0, et que est une mesure donn ee par le lemme A.1, alors R K gd est ind ependante du choix de et : = Z K g d : Par contre, si L e R 6 = 0, le terme n'est pas invariant comme le montre l'exemple suivant de deux courbes isotopes sur le tore, pour lesquelles vaut 1 : Cas d'une bouteille de Klein.Dans ce cas, le compl ementaire de e R est un ruban de M bius, et on introduit le même ensemble fC k j k 2 Kg. Trois cas sont a distinguer : le cas o u une composante C k n'est pas orientable, le cas o u toutes les composantes C k sont orientables du fait de la pr esence d'une composante l de L homologue a l'âme du ruban de M bius, et le cas o u toutes les composantes C k sont orientables du fait de la pr esence d'une composante l a bord de L ne R , de classe d'homologie non nulle. Fixons dans le premier cas une orientation du compl ementaire de la composante non orientable, et dans les deux autres cas l'orientation du compl ementaire de l qui induit sur l la multiplicit e +2l (l est orient ee comme incluse dans L qui est orient ee). A pr esent, d e nissons dans les deux premiers cas une mesure sur l'ensemble K, qui poss ede la propri et e enonc ee dans le lemme A.1 et qui valle 0 sur la composante non orientable dans le premier cas, et 1 sur la composante voisine de l dans le second. Remarquons qu'ici, L est egalement bien d e ni, puisque seule une composante peut être non-orientable, et que le compl ementaire de cette composante est orient e. Dans le troisi eme cas, on d e nit dans un premier temps une mesure 0 sur K qui poss ede la propri et e enonc ee dans le lemme A.1 et qui valle 0 sur la composante situ ee d'un cot e de l. Dans ce cas, la mesure 0 de la composante situ ee de l'autre cot e de l est de la forme 2m (m 2 Z), et on d e nit comme la somme de 0 et de la mesure constante 1 m, de fa con que valle 1 m et 1 + m de part et d'autre de l. En n, de la même fa con que dans le paragraphe pr ec edent, chaque ovale de L situ e dans une composante orientable a un signe, et on d e nit la fonction g sur K comme etant nulle sur l' eventuelle composante non orientable, et comme valant le nombre alg ebrique d'ovales sur les autres composantes. Lemme A.3 Dans tous les cas d ecrits ci-dessus, et pour les mesures et fonctions g d e nies,

  Ces cycles A sont stables par c X et contiennent pour seules singularit es des \plis" et des Soit X une surface r egl ee de base B poss edant une J-section r eelle e, et A une (M 2r) J-courbe r eelle s eparante connexe a nids profonds standard de classe (a; b; a 1 ; : : :; a n ) dans H 2 (X; Z ). Soient , a i , n les termes d e nis aux xx1.2, 1.3, et = e e. Alors :

	2 Formules d'orientations complexes.
	2.1 Enonc es des r esultats
	Th eor eme 2.1
	points doubles. On note (A ) la caract eristique d'Euler de A auquel on ajoute le nombre de points doubles de A , c'est-a-dire la caract eristique d'Euler de la normalisation de A . On note egalement le nombre de composantes connexes, et g le genre de cette normalisation, de sorte que (A ) = 2 2g . En n, notons a ; b ; a i les entiers tels que A ] = a v]+b e] P i a i v i ] 2 H 2 (X; Z ), et b = n + 1.
	Remarque : Il est facile de voir que : a + + a = a, a + b = e R ] RA ] mod (2) et je R \ RA j a + b a + b je R \ RA j, o u = e e.
	Lemme 1.1 Supposons que n = 0 et que RA est sous forme normale. Alors, le genre g est minor e par le nombre c de composantes de RA autres que les ovales, et satisfait g + + g c + + c + (RX)+ 2r 1 si A est une (M 2r)-courbe. De plus, les nombres satisfont les in egalit es 1 (RX) et + + (RX) + 1.
	(le nombre d'enroulement est d e ni au x1.1.)
	D emonstration : S'il n'y a pas d'ovale imaginaire O t , un des cycles A est vide, alors que l'autre co ncide avec A. L'in egalit e g + + g c + + c + (RX) + 2r 1 est donc satisfaite. Sinon, chaque point de A peut être reli e par un arc de A a un ovale imaginaire O t , et donc a un segment s t . Ainsi, le nombre est major e par le nombre de composantes de RA contenant des segments s t , et donc major e par (RX). En e et, remarquons que chaque ovale priv e de ses deux points de tangence avec les bres r eelles, est constitu e de deux segments transverses aux bres dont un a une orientation compatible avec celle de la base, et l'autre l'orientation oppos ee. Dans chaque composante X 1 de RX, la courbe RA + \ X 1 (resp. RA \ X 1 ) poss ede une composante form ee de ces segments dont l'orientation est compatible avec (resp. oppos ee a) celle de la base, et des segments s t de X 1 , et ses autres composantes sont les composantes de RA \ X 1 de nombre d'enroulement strictement positif (resp. n egatif). Ceci justi e en particulier que (RX). La minoration de g provient alors du fait que pour la normalisation e A de A, et d'apr es le th eor eme de Harnack, (R e A ) g + .

  ] RA ] mod (2n(RA)): Rappelons que si A est sous forme normale, T correspond au nombre d'ovales de RA. La congruence donn ee par ce dernier corollaire implique dans ce cas le corollaire 2.6 de 14]. Les corollaires 2.2 et 2.3 d ecoulent du th eor eme 2.1 et de la remarque faite au x1.3. Nous ne donnons ici qu'une d emonstration du corollaire 2.4.

  a i 1): 2.3 Applications 2.3.1 Courbes sur les surfaces r egl ees Proposition 2.6 Soit X une surface r egl ee de base B sans bre singuli ere, poss edant une Jsection r eelle e et telle que RX est un tore. Soit A une J-courbe r eelle maximale de X telle que e A = 0, v A = 4 o u v est une bre, et telle que RA contienne une composante de nombre d'enroulement +1 et une composante de nombre d'enroulement 1. Chaque ovale se situant dans le cylindre de RX bord e par e R et la composante de nombre d'enroulement positif, s epare ce cylindre en un disque et un cylindre trou e. Notons + (resp. ) le nombre d'ovales pour lesquels il existe (resp. n'existe pas) une orientation du cylindre trou e qui induit sur son bord l'orientation de l'ovale et de la composante de nombre d'enroulement positif. Alors, on a + = 1 2 ( (B) + ). Pour les surfaces pour lesquelles la partie r eelle est une bouteille de Klein, on peut enoncer la proposition suivante :Proposition 2.7 Soit X une surface r egl ee de base S sans bre singuli eres, poss edant une J-section r eelle e et telle que RX est une bouteille de Klein. Soit A une J-courbe r eelle maximale de X telle que e A = 0, v A = 6 o u v est une bre, et telle que RA contienne une composante de nombre d'enroulement +2 et une composante de nombre d'enroulement 2. Alors son sch ema complexe est < t 1 < + t t 1 + < + t >>>, avec +

	= 1 2 (3 + 3 3g(B)) et

+ = 3 3 + 3g(B).

Dans la proposition 2.7, les d e nitions et notations de sch emas complexes sont celles

de 12]

, apr es avoir contract e la section e R de la bouteille de Klein. Ces deux propositionss d ecoulent du corollaire 2.2.

2.3.2 Courbes planes projectives

Proposition 2.8 Soit A une (M 2r)-courbe alg ebrique r eelle non-singuli ere de degr e d = 2k

de C P 2 , telle que la partie r eelle RA poss ede deux nids dont un, not e N 1 , est de profondeur k 2 et l'autre, not e N 2 , est de profondeur 2. Notons k 1 (resp. k + 1 ) le nombre d'ovales non-vides du nid N 1 homologues (dans le premier groupe d'homologie de RP 2 priv e du centre du nid) a l'ovale ext erieur (resp. a son oppos e, de sorte que k + 1 + k 1 = k 3). Supposons de plus qu'au centre de chacun de ces nids se situent deux ovales, et pour chacun des deux ovales x i (i 2 f2; 4g) situ es au

  se rel eve. Un tel revêtement n'existe que sous des hypoth eses suppl ementaires, comme l'indique la proposition suivante : Proposition 3.1 S'il existe un revêtement double de e

	complexe sur e X et une structure r eelle c e X pour laquelle e A est invariant. L'objet de ce paragraphe est de construire un revêtement double Y de e X rami e en e A sur lequel c e
	X rami e en e A sur lequel c e X se rel eve, A sont nulles dans H 2 ( e A et R e alors les classes d'homologies de e X) et H 1 (R e X) respectivement. R eciproquement, si ces deux classes d'homologies sont nulles, un tel revêtement double existe.
	D emonstration : L'existence d'un tel revêtement Y equivaut a l'existence d'un el ement de H 3 ( e X; e A) invariant par X et dont le bord est e c e A] 2 H 2 ( e X), ce qui justi e que la condition e A] = 0 2 H 2 ( e X) est n ec essaire. Par ailleurs, l'involution c e X se rel eve en deux involutions c + , c qui di erent l'une de l'autre par l'automorphisme du revêtement. Les ensembles des points xes de ces involutions sont not es Y + et Y respectivement, ils sont stables par l'automorphisme du revêtement et leur projection dans R e X a pour bord R e A, ce qui justi e que la seconde condition est egalement n ec essaire. Le fait que dans le cas des surfaces r egl ees, ces conditions sont su santes, est donn e par le lemme 3.2.
	Lemme 3.2 Soit e A un 2-cycle entier dans une surface r egl ee ( e X; c e X ) qui poss ede une J-section r eelle e. On suppose que e A est stable par c e X , et que les classes d'homologies de e A et R e A sont nulles dans H 2 ( e X) et H 1 (R e X) respectivement. Alors il existe un 2-cycle entier E, ainsi qu'une 3-cha^ ne enti ere H dans e X, tous deux stables par c e X , tels que @H = e A 2E.

X

  3.2 Calculs de dimensions. se rel eve en deux involutions c + et c sur Y qui commutent. Ces involutions pr eservent l'orientation de Y et induisent donc une d ecomposition de H 2 (Y ; R) en huit sous-espaces deux a deux orthogonaux 1 E 1 , not es de fa con que, par exemple, l'espace 1 E + 1 est un sous-espace maximal de H 2 (Y ; R) sur lequel la forme d'intersection se restreint en une forme d e nie positive, l'involution c + agit comme l'identit e, et l'involution c comme moins l'identit e.L'objet de ce paragraphe est de calculer les dimensions de ces sous-espaces. Notons Y + , Y les ensembles des points xes de c + et c respectivement. Ces parties sont stables par l'involution

	Supposons a pr esent que e A] = 0 2 H 2 ( e X), et que R e A] = 0 2 H 1 (R e X), et notons Y le revêtement double de e X rami e en e A construit au x3.1. Par construction, c e
	du revêtement, leurs projections dans e X, not ees R e X + et R e X ont pour r eunion R e X, et pour intersection R e A. Soit le champ de vecteurs non nuls d e ni sur R e A de sorte qu'en dehors de t s t , est tangent a R e A et compatible avec son orientation, et sur t s t , le champ est prolong e en un champ tangent aux bres r eelles (le fait que le champ se recolle est la propri et e d'alternance, v. x1.2). Notons alors (R e X + ) (resp. (R e X )) la somme des indices des z eros du champ prolong e a R e X + (resp. R e X ). Notons egalement 1

X

  3.9 Le rang de la famille ( i ) 1 i m dans H 2 (Y; S) est sup erieur ou egal a m ( e Les composantes S i de S engendrent un sous-espace de H 2 (Y ; Z)=T orsH 2 (Y ; Z ) Z=2Zde dimension sup erieure ou egale a N 2g(B). En e et, il su t de voir qu'ils engendrent un sous-espace de dimension sup erieure ou egale a N 2g(B) dans H 2 (Y ) puisque l'intersection de ce sous-espace Le noyau de 2 , qui est egal a l'image de , est donc de dimension inf erieure ou egale a 2g(B).

	Les diviseurs exceptionnels e S i sont lin eairement ind ependants dans H 2 ( e X; e A), il su t donc de voir que dim H 2 ( e X; e A) \ Ker( ) 2g(B), ce qui se d emontre de fa con analogue a ce qui a et e fait au lemme 3.9: = 1 2 o u 2 etant le morphisme de bord associ e a la paire ( e X; e A), et la suite exacte associ ee est :
	0 ! H 3 ( e X) ! H 3 ( e X; e A) 2 ! H 2 ( e A) ! : : :
	A) S i lin eairement ind ependants dans H 2 (Y ), on s'aper coit S) ! H 2 ( e Consid erons la suite exacte de Smith : 2g(B). D emonstration : ! H 3 ( e X; e A e X; e A e S) H 2 ( e A; e A \ e En choisissant une famille d' el ements e que cette famille engendre un facteur direct dans H 2 (Y ; Z )=TorsH 2 (Y ; Z). En e et, supposons le contraire et choisissons x 2 H 2 (Y ; Z ) et k; l 1 ; : : :; l n des entiers premiers entre eux tels que kx = P i l i S i avec k 6 = 1. En intersectant avec les S i , on s'aper coit que k divise 2l i quel que soit i, donc que k peut être suppos e pair. On en d eduit que 0 = P i l i S i 2 H 2 (Y ; Z) Z=2Z , et puisque les el ements e S i sont lin eairement ind ependants dans H 2 (Y ), que les entiers l i sont pairs, ce qui est une contradiction. Comme une telle famille d' el ements e S i peut être choisie de rang au moins N 2g(B), on en d eduit que dim(Tors(H 2 (Y; S; Z )) Z =2Z) dim(TorsH 2 (Y ; Z ) Z =2Z) + 2g(B), en consid erant la suite exacte ! H 2 (S; Z ) ! H 2 (Y ; Z ) ! H 2 (Y; S; Z ) ! 0 et le fait que Im( ) \ TorsH 2 (Y ; Z) = f0g. Par ailleurs, d'apr es la formule des coe cients universels, S) ! H 2 (Y; S) ! : : : Le rang des el ements ~ i de H 2 ( e X; e A e S) r ealis es par les parties D i de R e X est au moins m ( e TorsH 2 (Y ; Z) = TorsH 1 (Y ; Z ); A). En e et, l'image de ces el ements par le morphisme de bord est de rang m dans H 1 (R e A R e S), et en composant par le morphisme d'inclusion H 1 (R e A R e S) ! H 1 ( e A e S), il ne peut apparaitre qu'un noyau de dimension inf erieure a ( e A) (et de dimension exactement ( e et d'apr es la remarque qui suit le lemme 3.6, dim TorsH 1 (Y ; Z ) Z =2Z 2 dim(H 1 ( e X; e A)) ( e A)+ 1. Ainsi, on a d emontr e l'in egalit e : A) seulement dans le cas o u la r eunion des parties D i est toute la surface R e X n R e S). X; e A)) ( e A) + 1; dim(Tors(H 2 (Y; S; Z )) Z=2Z ) 2g(B) + 2 dim(H 1 ( e Le r esultat d ecoule alors de l'in egalit e suivante : dim H 2 ( e X; e A e S) \ Ker( ) 2g(B): et il suit du lemme 3.9 que le rang de la famille ( i ) 1 i m dans H 2 (Y; S; Z ) R est au moins m 1 4g(B) 2 dim(H 1 ( e X; e A)). Le r esultat en d ecoule.
	Pour d emontrer cette in egalit e, ecrivons = 1 2 , 2 etant le morphisme de bord associ e a la triade ( e X; e A e S; e A \ e S). La suite exacte associ ee a cette triade est : 0 ! H 3 ( e X; e A \ e S) ! H 3 ( e X; e A e S) 2 ! H 2 ( e A e S; e A \ e S) ! : : : Donc le noyau de 2 est form e des el ements de H 3 ( e X; e A\ e S) = H 3 ( e X), et est de dimension inf erieure ou egale a 2g(B). Lemme 3.10 Le rang de la famille ( i ) 1 i m dans H 2 (Y ; R) est sup erieur ou egal a m 1 4g(B) 2 dim(H 1 ( e X; e D emonstration du th eor eme 3.8 : Le sous-espace de H 2 (Y ; R) engendr e par la famille ( i ) 1 i m , isomorphe a R avec m 1 4g(B) 2 dim(H 1 ( e X; e A)) d'apr es le lemme 3.10, est inclus dans le sous-espace propre 1 E + +1 1 E +1 de c associ e a la valeur propre +1. Par cons equent, le noyau de la projection orthogonale de R sur 1 E + +1 (resp. 1 E +1 ) est inclus dans 1 E +1 (resp. 1 E + +1 ), et d'apr es le lemme 3.7, la forme f est d e nie n egative (resp. d e nie positive) sur ce noyau. Il en d ecoule que la dimension de l'image de cette projection est au moins max 0; 0 (f ) 2 dim(H 1 ( e X; e A)) 4g(B) 1 + + (f ) (resp. max 0; 0 (f ) 2 dim(H 1 ( e X; e A)) 4g(B) 1 + (f )), et par suite que : A)). D emonstration : max(0; ~ 0
	avec TorsH 2 (Y ; Z) Z=2Zest r eduite a f0g. La suite exacte de Smith appliqu ee a l'involution du revêtement donne :
	! H 3 ( e X; e A) ! H 2 ( e X; e A) H 2 ( e A) ! H 2 (Y ) ! : : :

En n, enlevons a A les ovales O t . Chaque ovale enlev e a pour e et soit de disconnecter la courbe, soit de faire diminuer son genre de un. Or on remarque que si les ovales O t sont associ es a une même composante de RX, seul le dernier peut disconnecter la surface, de sorte que + + (RX)+1, et g + + g c + + c + (RX) + 2r 1.

( i + c ( i )), de sorte que ( i ) 2 = 1 4 ( i c ( i )) 2 + i c ( i ). Le terme i c ( i ) est la somme des diviseurs de carr e 2 se situant au-dessus des points doubles s bordant D i , le diviseur etant compt e deux fois si D i se situe de part et d'autre de s. Le terme i c ( i )

e] sur la surface r egl ee X 2k de base C P 1 , avec k impair (v est une bre, et e est la section

Les deux derni eres relations sont donn ees par la formule d'Atiyah-Singer-Hirzebruch appliqu ee a l'automorphisme du revêtement et c + respectivement. En e et, cette formule fournit les relations :

En n, Y + Y + = 2 (R e X + ), ce qui peut se v eri er en e ectuant un calcul g eom etrique de ce nombre d'intersection : prolongeons le champ en un champ de classe C 1 tangent a R e X + . Le champ J( ) se rel eve en un champ normal a la surface Y + . L'indice Y + Y + vaut alors l'indice des z eros de ce champ de vecteurs (vu comme section du br e normal de Y + dans Y ), c'est-a-dire deux fois l'indice des z eros du champ J( ) sur R e X + (vu comme section du br e normal de R e X + dans e X).