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1. INTRODUCTION _ 2.2 PNCC predictor

1.1 3D face reconstruction

Principle: Get a face 3D mesh from a monocular
face 1image

Predicted
PNCC

1.2 Problem: lack of annotated data & f

e Supervised methods: L e
o Need annotated data to train
o 3D annotations are hard to obtain l
e Self-supervised methods:
o Do not need annotated data Convolution IDeconvqution I Interleaved Skip-connection Ground truth

- block block Transfer block (new) PNCC
o But tend to predict wrong head pose and scale (pre-trained) (pre-trained) Layer (new)

1.3 Goal: Improve self-supervised methods

predicted head pose and scale e Architecture based on SCAF [4]
o Pre-trained face autoencoder adapted to the PNCC prediction task
e Add supervised 3D information o Interleaved Transfer Layers (ITLs) [3] and skip-connections are added for the
e But use as few as possible annotated 3D samples supervised PNCC prediction task

o |TLs adapt the decoder flow to the PNCC prediction task
o Skip-connections improve the quality of the generated PNCCs

o (Can be trained with limited annotated data
2. Method

2.1 Principle 2.3 Enhanced 3D face reconstruction model

e Use the Projected Normalized Coordinate Code (PNCC) [1] as Image
supervised information
e 2-stage pipeline
o Stage 1: Train a PNCC predictor with a few annotated 3D samples
o Stage 2: Add the PNCC as additional input o a self-supervised 3D
face reconstruction model

) Photometric
Loss

\ p / |

Differentiable

_ Image  \ Predicted PNCC - Encoder —f—- T T Lo
PNCC / \ Rendered
predictor image
. (c) Channel concatenation

PNCC

e 3D face reconstruction model based on the self-supervised model MoFa [2]
e The encoder predicts the 3D face parameter vector (3D face reconstruction goal)
e The decoder renders the face from the parameter vector
o 0Only used for training
e \We enhance MoFa [2] with an additional PNCC input to help it predict better head
pose and scale
Predicted e The face image is concatenated with the PNCC predicted with our PNCC predictor
face mesh

Stage 2: self-supervised training

3. Results

3.1 Quantitative results

3.1 Qualitative results 4_ CDnCIUSiDn

e Proposed method for 3D face reconstruction
o Goal: improve the predicted head pose and

Method Dense 2D | |Dense 3D} |Yaw MAE | face scale of self-supervised methods
o Context: use limited annotated data (50
MoFa [2] 4.31 5.85 4.97
examples)
MoFaPNCC,___ (Ours) 4.20 5.66 4 .95 o Principle: use the PNCC [1] to help the 3D
face reconstruction model
MoFaPNCC,(Qurs) (412 2.48 4.66 e Implementation: 2-stage pipeline

o Stage 1: PNCC predictor training
m Based on a pre-trained generative model
m Adapted to the PNCC task via the addition
of ITLs and skip-connections.
m Trained with limited annotated data

e MoFaPNCC, uses PNCC predictions from our PNCC
predictor trained with only 50 annotated samples of
300W-LP [1] dataset

e MoFaPNCC, , uses PNCC predictions from our PNCC

full
predictor Tran?ed on the whole 300W-LP mage MoFa [2] MoFaPNCC. MOFaPNCC, . o Stage 2: Self-supervised 3D face

e Both models improve over MoFa [2] for the dense (Ours) (Ours) reconstruction madel training
alignment (Dense 2D and 3D) and head pose (Yaw MAE) e Our models predict better head pose and face scale m Predicted PNCCs as additional input

error metrics m Results: improved predicted head pose

and face scale compared to baseline
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