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2. Method

Improving self-supervised 3D 
face reconstruction with 
few-shot transfer learning

2.2 PNCC predictor1. INTRODUCTION
1.1 3D face reconstruction

1.2 Problem: lack of annotated data
● Supervised methods: 

○ Need annotated data to train
○ 3D annotations are hard to obtain

● Self-supervised methods:
○ Do not need annotated data
○ But tend to predict wrong head pose and scale

Principle: Get a face 3D mesh from a monocular 
face  image

2.3 Enhanced 3D face reconstruction model

Method Dense 2D ↓ Dense 3D ↓ Yaw MAE ↓

MoFa [2] 4.31 5.85 4.97

MoFaPNCCfew(Ours) 4.20 5.66 4.95

MoFaPNCCfull(Ours) 4.12 5.48 4.66

3. Results

1.3 Goal: Improve self-supervised methods 
predicted head pose and scale

● Add supervised 3D information
● But use as few as possible annotated 3D samples

● Use the Projected Normalized Coordinate Code (PNCC) [1] as 
supervised information

● 2-stage pipeline
○ Stage 1: Train a PNCC predictor with a few annotated 3D samples
○ Stage 2: Add the PNCC as additional input to a self-supervised 3D 

face reconstruction model

2.1 Principle

3.1 Quantitative results

3.1 Qualitative results

● Architecture based on SCAF [4]
○ Pre-trained face autoencoder adapted to the PNCC prediction task
○ Interleaved Transfer Layers (ITLs) [3] and skip-connections are added for the 

supervised PNCC prediction task
○ ITLs adapt the decoder flow to the PNCC prediction task
○ Skip-connections improve the quality of the generated PNCCs
○ Can be trained with limited annotated data

● 3D face reconstruction model based on the self-supervised model MoFa [2]
● The encoder predicts the 3D face parameter vector (3D face reconstruction goal)
● The decoder renders the face from the parameter vector

○ Only used for training
● We enhance MoFa [2] with an additional PNCC input to help it predict better head 

pose and scale
● The face image is concatenated with the PNCC predicted with our PNCC predictor

   Image                  MoFa [2]           MoFaPNCCfew       MoFaPNCCfull
                                                             (Ours)                   (Ours)

● MoFaPNCCfew uses PNCC predictions from our PNCC 
predictor trained with only 50 annotated samples of 
300W-LP [1] dataset

● MoFaPNCCfull uses PNCC predictions from our PNCC 
predictor trained on the whole 300W-LP

● Both models improve over MoFa [2] for the dense 
alignment (Dense 2D and 3D) and head pose (Yaw MAE) 
error metrics

4. Conclusion
● Proposed method for 3D face reconstruction

○ Goal: improve the predicted head pose and 
face scale of self-supervised methods

○ Context: use limited annotated data (50 
examples)

○ Principle: use the PNCC [1] to help the 3D 
face reconstruction model

● Implementation: 2-stage pipeline
○ Stage 1: PNCC predictor training

■ Based on a pre-trained generative model
■ Adapted to the PNCC task via the addition 

of ITLs and skip-connections.
■ Trained with limited annotated data

○ Stage 2: Self-supervised 3D face 
reconstruction model training
■ Predicted PNCCs as additional input
■ Results: improved predicted head pose 

and face scale compared to baseline

● Our models predict better head pose and face scale


