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Abstract: 8 

A comparative study of basement structures, basins geometry and evolution, around SE Asia, 9 

highlights an intrinsic relationship between crustal inherited structures, and deformation 10 

through time from the Late Mesozoic to the Present. The present continental margin developed 11 

alongside of a large magmatic arc active from the Permian to the middle of the Cretaceous 12 

subsequently stretched during the Cenozoic. The Permo-Triassic crustal configuration was 13 

affected by a regional compression during the middle to late Cretaceous which appears to be 14 

mostly radial to the horse-shoe shape of the magmatic belt, and is best imaged by large regional 15 

shear zones, broad folds and penetrative shear joints. A subsequent extension perpendicular to 16 

the margin followed in the Paleogene, which is firstly marked by an early stretching 17 

characterized by block faulting, dykes, and parallel extensional joint. We observed that the 18 

main necking zones follow former sutures, and the direction of opening is interestingly also 19 

perpendicular to them. The following thinning phase initiated with only minor discrepancies in 20 

the timing of initiation from E to W of SE Asia, marked by large crustal tilted blocks 21 

underlining a first thinning of the crust. This event was dominated by the occurrence of low 22 

angle normal faults bounding basins which capture most of the clastics derived from the 23 

formerly uplifted magmatic arc. These faults are frequently continent-dipping (counter-24 

regional). Rooted into the lower crust, they often reactivate former thrust faults and plutons 25 
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boundaries on the edges of the Mesozoic magmatic arc. Therefore, a link with the relaxation 26 

of the Late Mesozoic thickened crust is invoked. 27 

In a later stage, rifting developed across the outer edges of the previously thinned crust, outside 28 

the magmatic arc and up to the final continent-ocean boundary (COB of the South China Sea 29 

in the East and the Andaman Sea to the West). It is marked by distal low angle normal faults 30 

mostly ocean dipping (regional) that do not seem to be sensitive to margin fabric but more 31 

dependant to the thermal state and boundary stress conditions.  32 

Therefore, the pattern of basin structure and development seems conditioned by the intrinsic 33 

crustal configuration of SE Asia, specifically by the Triassic and Cretaceous orogenic 34 

structures (suture, crustal faults, and crustal thickness variations). The Late Mesozoic margins 35 

were indeed characterized by thickened crust which may have undergone collapse just before 36 

the onset of rifting sensus stricto. As a consequence, the general dip direction of these major 37 

crustal boundaries was often preserved during the Cenozoic extension that affected the 38 

marginal regions. Where the crustal thinning was strong enough, the fault plane dipped 39 

oceanward as a result from the crust/mantle relative motion. It is proposed that the rifting of 40 

the Cenozoic basins was triggered and conditioned by the relaxation of the orogens that 41 

assembled Sunda Plate in the past. 42 

 43 

 44 

 45 

 1. Introduction 46 

  47 

Continental stretching and breakup processes have been studied extensively in the recent years, 48 

due to a large amount of information coming from the exploration of rifted basins (Ziegler, 49 

1988, Péron-Pindivic, 2007; Whitmarsh et al. 2001). The simple pattern which was the 50 
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reference for years showed a stretched continental crust with the upper crust affected by large 51 

normal faults rooted to one or several décollement levels, which ultimately separate crustal 52 

slivers (Le Pichon and Sibuet, 1981, Taylor et al., 1995, Péron-Pindivic et al., 2013). Many 53 

factors control the mechanical behavior of the crust during extension. The boundary forces and 54 

the coupling with the mantle are critical to explain the distribution – localized or diffuse - of 55 

deformation and the classification of margins, notably into magmatic or non-magmatic is not 56 

clear-cut (Franke, 2013, Tugend et al., 2020, Sapin et al., 2021). Traditionally, these normal 57 

faults are ocean-dipping or “regional” faults (Figure 1). However, extension in continental 58 

margin is often marked by systemic “counter regional” or “continent-dipping” normal faults 59 

(CRNF).  60 

In places where the crust is extremely thinned, such as near the continent-ocean transition 61 

(COT), the normal faults are generally ocean-verging (Figure 1c) and more densely spaced. 62 

Where they exist, CRNF are thought to be associated with the relative motion of the continental 63 

crust versus the upper mantle (Clerc et al., 2017) along a detachment near the Moho (Figure 64 

1b). In areas where the crust is only moderately thinned such as the South China Sea, CNRF 65 

are dominant, it is suspected that reactivation of pre-existing large crustal heterogeneities 66 

controls the location and the dip direction of normal faults. Therefore, the inherited crustal 67 

thickness and/or the lithostatic pressure, adding to the rheological boundaries of the crust, may 68 

also be factors intervening in the localization of the faults during the stretching (Savva et al., 69 

2014, Sapin et al., 2021). In this paper we explore the effects of the last orogenic event of the 70 

continental core of SE Asia (between Sulawesi, Sumatra and South China, see Figure 2) and 71 

the subsequent extension during the Cenozoic. The sharply curved geometry of the 72 

Sunda/Philippine margin offers a wide range of compressional and extensional directions that 73 

support the interpretation of a genetic link between them.   74 
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The present-day configuration of SE Asia (Fig. 2) reflects the long lasting evolution of this 75 

plate which was separated from the rest of Eurasia starting from the Late Miocene (Fig. 2) 76 

(Hamilton, 1979, Hall, 2002; Pubellier & Morley, 2014). The horseshoe shape of SE ASIA 77 

finds its origin in the large Permian to Cretaceous magmatic arc bordering the core of its 78 

thickened crust (Metcalfe, 2017; Pubellier & Morley, 2014; Sautter et al. 2017; Zahirowic et 79 

al., 2016). This granitic belt is fringed by numerous Cenozoic basins on its sides (Fig 3).  80 

Therefore, the history of the deformation of SE Asia is inherent to the evolution of the 81 

subductions which were taking place all around SE Asia. The pre-Cenozoic basement 82 

complexity of SE Asia is itself the result of the amalgamation, since the Middle Triassic and 83 

up to the Late Cretaceous, of several continental blocks whose migration is witnessed by the 84 

occurrence of magmatic arcs, accretionary wedges and suture zones (Fig 2) (Hamilton, 1979, 85 

Hutchison, 1977, Metcalfe, 1998, Cai & Zhang, 2009, Tran et al., 2020;  Faure et al. 2018). 86 

 87 

Many of the basins are likely to have developed during the Cenozoic in a back-arc setting with 88 

geometries intrinsically influenced by the obliquity between SE Asia trench curvature and the 89 

direction of convergence of the Neo-Tethys and Indian oceanic crusts (Pubellier and Morley, 90 

2014). Despite a well characterized geodynamic setting, the existence of a major asymmetry in 91 

the rifting structures remains poorly understood. Numerous studies have shown that structural 92 

inheritance of pre-rifting crustal heterogeneities is likely to have influenced the accommodation 93 

of the extension in the Cenozoic (Morley et al. 2004; Hall, 2009; Morley et al. 2011; Morley, 94 

2014; Sautter et al., 2017; Ye et al., 2018).  95 

 96 

Indicators of an active margin since the Late Palaeozoic are well documented and the geometry, 97 

elevation, rheology and tectonic features observed today are a direct result from this 98 

geodynamic configuration (Lepvrier et al., 2004, Carter and Clift, 2008, Faure et al., 2014), 99 
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although Cretaceous and Paleogene deformation may have disrupted the continuity of the 100 

sutures as illustrated with the Red River Fault motion induced by the India-Eurasia collision 101 

(Leloup et al., 1995, and references therein). It has been shown in various publications that the 102 

basement rocks involved in the extension were affected by large normal faults reactivating the 103 

metamorphic fabrics, ophiolitic sutures (Morley, 2012, 2016; Morley et al., 2004) or the 104 

granitic plutons (Sautter et al., 2017; Savva et al., 2014). Polyphase inversion of the Palaeozoic 105 

and Mesozoic basement resulted in a highly deformed and fractured pre-rifting basement. This 106 

remarkable slivering of the plutons illustrated by penetrative fractures is observed at all scales 107 

(Fig 4) (Sautter et al. 2017). The structures appear to have been reactivated during the Cenozoic 108 

rifting that developed across a wide extensional domain with half-grabens opening between 109 

reef-capped horsts, comparable to the Basin and Range province of the North American 110 

continent (Franke et al., 2014).  111 

In order to evaluate the impact of compressional structure reactivations on the extensional 112 

pattern, we compiled and mapped surface expressions of inherited structures such as former 113 

suture zones, fractured granitic belts and basins morphologies integrated in a detailed regional 114 

structural map of SE Asia (Fig.2). In this respect we do not emphasize on the strike slip relative 115 

motion between blocks when these do not parallel former orogens and because, being mostly 116 

vertical, they are not prone to be reactivated during thinning. Based on a large database of 117 

seismic lines and digital elevation models, we juxtapose the geometries of Mesozoic structures 118 

with the emplacement of the basins to explore their consistency at different scales of 119 

observation. We propose that the rifting evolution of margins may be significantly sensitive to 120 

inherited structures, in agreement with previous studies (Liang et al. 2019; Morley et al. 2011; 121 

Morley 2014), particularly the dip direction of the former crustal thrusts, and how the higher 122 

lithostatic stress belonging to thickened margins can account for the trigger of a subsequent 123 

extensional deformation.   124 
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 125 

2. A plate surrounded by subduction zones since the Permian  126 

SE Asia was formed by successive accretions of continental blocks drifted away from 127 

Gondwana (Audley Charles, 1977, Hutchison, 2013; Metcalfe, 2013a; C. K. Morley, 2012) 128 

principally since the Permian (Figure 2 and 3a). We do not focus on the deformation which had 129 

taken place during the Palaeozoic for which the rifting from Gondwana had certainly shaped 130 

the geometry of SE Asia core but rather emphasize on the Late Mesozoic and Early Cenozoic 131 

active margins of SE Asia. These are thought to have conditioned the stretching and thinning 132 

of the plate’s fringe during the Late Cenozoic.  The docking of the large Argo block along the 133 

Meratus suture zone ended a journey starting from the NW Australian margin (Hamilton, 1979, 134 

Audley Charles, 1977, Pubellier et al., 1999, Granath et al., 2011, Metcalfe, 2013a), and has 135 

been initially thought to be related to the amalgamation of the Woyla and Burma terranes along 136 

western Sunda (Barber, 2000) despite poorly constrained geodynamic reconstructions. 137 

However, more recent studies suggest that the Burma block collided with Southeast Asia in the 138 

Cenozoic (Westerweel et al., 2019; Morley et al., 2021). 139 

2.1 - Triassic to Cretaceous subductions and outward migration of magmatism 140 

The western, southern and eastern magmatic margins of SE Asia evolved in a strikingly similar 141 

way (Hall, 2002; Pubellier & Morley, 2014; Metcalfe 2017). Across SE Asia, Permian 142 

granitoids were emplaced in the interior of the present-day plate configuration (Figure. 2 and 143 

3), and we observe that the activity of the arcs migrated toward the outside of the plate during 144 

the Mesozoic. The opening of the Paleogene and Neogene was later conditioned by the location 145 

of the Mesozoic crust thickened by the successive shortening and the magmatism (Figure 3b 146 

and 3c). 147 
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Most of the Permian granitoids known in Southeast Asian are concentrated inland Vietnam and 148 

the Malay Peninsula until the East Himalayan Syntaxes (Figure 2) and are characterized by I-149 

Type arc-related chemical signature originating from the subduction of the Paleo-Tethys 150 

(Hutchison, 1977, 1989, Ghani et al., 2013; Metcalfe, 2013b). On the eastern side of SE Asia 151 

near the edges of the Indochina Block, Permian and Triassic subduction/collision belts 152 

(Lepvrier et al., 2004, Faure et al., 2018, Gardner et al., 2017) shaped the gross geometry of 153 

Eastern SE Asia. Younger arc-related granitoids migrated oceanward from the Late Jurassic to 154 

the early Upper Cretaceous (Searle et al. 2012); the youngest magmatic indicators in the 155 

continental core being the late Cretaceous coastal dykes (Sewell et al., 2012) as they are 156 

observed near Hong Kong and the Guangdong Province of PRC (Li & Li, 2007, Yeh et al. , 157 

2017). To the west, the successive magmatic provinces defined three distinctive belts building 158 

the Malay Peninsula’s basement which is cored by the large Main Range Batholith (Hutchison, 159 

1977; Metcalfe, 2013b; Sautter and Pubellier, 2015). These belts extend to the South to the 160 

islands of Bangka and Belitung (G.J.J. et al., 1973; Katili, 1975, Schwartz et al., 1995). The 161 

youngest arc-related granitoids are dated to the Late Cretaceous to Paleogene and are located 162 

in Sumatra, Myanmar and Thailand (Figure 3b) (Gardiner et al., 2015). Upper Cretaceous 163 

diorite dykes in eastern Peninsular Malaysia as well as Late Cenozoic basaltic lavas along the 164 

northern shoreline of the Gulf of Thailand (Tjia, 2010) intruded the intensively fractured Late 165 

Paleozoic Early Mesozoic eastern belt. On the other hand, the Upper Triassic-Lower Jurassic 166 

Main Range granitic province is affected by numerous felsic dykes from southern Malaysia to 167 

Northern Thailand, and accompanied by smaller isolated granitic intrusions, suspected to 168 

represent a poorly constrained late Cretaceous thermal anomaly (Cottam et al. 2013, Sautter et 169 

al., 2019). Subduction was still active as more sporadic pulses in the Eocene along the Mergui 170 

ridge as evidenced by syn-rift volcanism in the Mergui basin (Sautter et al., 2017; Srisuriyon 171 
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and Morley, 2014), and later in the midst of the Andaman Sea during the Neogene (Morley et 172 

al., 2015; Morley and Alvey, 2014).  173 

In the southern part of the plate, the late Palaeozoic paleogeographic indicators are scarce 174 

(Barber et al., 2005) but magmatism became increasingly important during the Cretaceous 175 

(Figure 3a) as shown by the extensive granitic province of the Schwanner Mountains in 176 

Kalimantan, and by intense volcanism developed during the Cenozoic along Sumatra, Java and 177 

the eastern Sunda arc (Abdullah et al., 2000; Soeria-Atmadja and Noeradi, 2005). 178 

 179 

2.2. Triassic and Cretaceous orogens; building the core of SE Asia  180 

During the Triassic, the SE Asia core was subjected to the forces inherent to the termination of 181 

the subduction (Hall and Wilson, 2000) which closed the different branches of the Paleotethys 182 

in Asia. The first docking of Gondwanian blocks occurred during the Late Permian-Early 183 

Triassic along the eastern side of the Indochina block (Faure et al., 2014,2016, Lepvrier et al, 184 

2004), then in the Middle Triassic along the Ailao Shan and all the Red River system (Leloup 185 

et al., 1995 Cai & Zhang, 2009, Metcalfe, 2000, 2013). Indicators of the Early to Middle 186 

Triassic tectonics marked by a sharp angular unconformity are also seen to the South of the 187 

South China Block (Faure et al., 2018, Cai & Zhong, 2017). This geodynamic configuration 188 

embodies a large sheltered domain in the central part of SE Asia which became the locus of 189 

massive continental sedimentation during the Mesozoic (Clements et al., 2011; Fyhn et al., 190 

2010; Tran and Vu, 2011). To the west of SE Asia, suture zones run from South China-Thailand  191 

area to Peninsular Malaysia and Bangka-Belitung Island in Indonesia. Traces of a back-arc 192 

closure onshore Thailand are evident but become poorly exposed southward suggesting that 193 

less subducted crust was involved in the shortening (Choong et al., 2021). The southward 194 

decrease in metamorphic grade and relics of ultramafic rocks along the suture zones, from 195 
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Thailand to Bangka-Belitung Island, may reflect a weaker orogenic event towards the southern 196 

end of the Paleo-Tethys. The main elements associated with this large suture zone are the post 197 

collision granitic bodies of Thailand and Peninsular Malaysia. These granites constitute the 198 

backbone of the peninsula and conditioned the geometry of the rifting during Eocene and 199 

Oligocene (Sautter et al., 2017). 200 

2.3. Cretaceous compression 201 

 202 

After the Early to Middle Triassic Orogeny (Faure et al., 2018) and the Late Triassic to Jurassic 203 

Cimmerian orogeny, the main tectonic event affecting  SE Asia continental core is a Cretaceous 204 

regional diffuse compression (Morley, 2012, Clements et al., 2011, Nanni et al., 2017). This 205 

period was marked by the accretion of several blocks at the outer rim of SE Asia, (Barber, 206 

2000, Morley, 2012, Hall, 2012), but the extent and the timing of accretion are still debated. In 207 

eastern and south-eastern Asia, examples show that a Triassic tectonic event was reactivated 208 

during the Cretaceous by alternating phases of compression and extension (Lin, 2015, Morley, 209 

2016; Chu et al., 2019) with a deformation involving folds, thrusts and metamorphism (Chan 210 

et al., 2008, Nanni et al., 2016) resulting in local highs (Yan et al., 2014, Huang et al., 2017), 211 

and erosional surfaces (Liang et al., 2019. The geodynamic environment included hot 212 

geotherms in western Sunda (Watkinson et al. 2011) and could possibly be linked to the 213 

subduction of a large Meso-Tethys ridge (Zahirovic et al., 2014) The area located along the 214 

present-day position of the southern margin of the South China Sea is a re-entrant of the general 215 

horse-shoe shape and is interpreted to be a consequence of the docking of the Luconia Block 216 

(or Dangerous Grounds Block; Hall, 2012) during the Cretaceous, prior to the opening of the 217 

South China Sea (Fig. 2). The location of the suture, although only poorly imaged at depth with 218 

basement deformation on seismic lines, must be presently located offshore outward of the 219 

Cretaceous granites of the South China margin and South China (Fyhn et al., 2010, Pubellier 220 
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et al., 2017). The deformation includes, on either side of the internal orogenic zone, a thick-221 

skinned fold and thrust belt with ductile exhumation along metamorphic domes (François et 222 

al., 2017, Chan et al., 2008, Sautter et al. 2019; Wei et al., 2015; Nanni et al. 2017; Yan et al., 223 

2014).  224 

Finally, the extreme outer edges of the system were subjected to the Cenozoic docking of the 225 

eastern Philippine Arc carried by the Philippine Sea Plate in the east (Karig, 1983, McCabe 226 

and Almasco, 1985, Pubellier et al., 1998), and the formation of thick accretionary wedges 227 

involving debated pieces of ocean floor (Wajzer, 1991, Barber and Crow, 2003, Barber et al., 228 

2005) in the west (Fig 2).  229 

3. Deformation regimes around SE Asia from Late Mesozoic to recent. 230 

We hereafter consider that most of the deformations affecting the post-Triassic granitoids is 231 

late Cretaceous and Cenozoic. The Cretaceous is marked by a regime of intense magmatism 232 

and compression both in Western and Eastern Sunda. The terranes which might have accreted 233 

at that time are still a matter of debate. The Burma block is represented by sporadic Cenozoic 234 

sediments in Myanmar (Mitchell, 2017); the Woyla terrane is probably composed of an oceanic 235 

arc (Advokaat et al. 2018; Wajzer et al., 1991); the Natuna block is debated in terms of location 236 

and docking age. Only the Argo Block seems to be well identified. This tectono-magmatic 237 

event may be related to the subduction of large oceanic ridges as suggested by the 238 

reconstruction of Setton and Muller and Zahirovic et al., (2014). In Eastern SE Asia, this event 239 

is poorly dated due to lack of shallow marine deposits but is locally considered as late Early 240 

Cretaceous as for instance around Hong Kong (Campbell and Sewell, 2007; Nanni et al., 2017). 241 

The compression is marked by an angular unconformity on seismic lines blanketing broad folds 242 

involving the Cretaceous sediments in the South China Sea (Yan et al., 2014, Huang et al., 243 

2017). It results in a major sedimentary hiatus from the late Cretaceous to the Eocene in SE 244 
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Asia (Hutchison et al., 1992; Clements et al., 2011). The Cenozoic basins that opened in SE 245 

Asia are all located on the edge of the thickened crust following a post-Cretaceous relaxation 246 

(Pubellier and Morley, 2014; Zahirowic et al., 2016). 247 

We selected five principal synthetic cross-sections (Figure 4 to 8) out of the database compiled 248 

on the map of Figure 2. These sections integrate published seismic lines in each area and were 249 

supported by other unpublished lines in order to extrapolate observations located outside the 250 

strip which is presented. Two E-W sections are located in the west, one NW-SE composite 251 

section in the south and two NW-SE sections in the east of SE Asia. Each of these sections is 252 

accompanied by a selected enlargement of a detailed structural map in order to show the lateral 253 

extent of the geological indicators of the Mesozoic compression, and the later extension which 254 

opened marginal basins. 255 

3.1. Western SE Asia 256 

In Western Sunda, pre-rifting compression has been documented extensively. The Mesozoic 257 

deformation involved high temperature conditions and a large amount of wrench motion 258 

(Lacassin et al., 1997; Morley, 2004). There was possibly a partitioning between N-S striking 259 

thrust faults and fold axis, and a synchronous activity of sinistral NW-SE and dextral NE-SW 260 

wrench faults (Figure 2 and 4) (Emmel and Curray, 1982; Morley, 2012; Sautter et al., 2017). 261 

Southward, in Peninsular Malaysia, a dextral shear is suspected in the midst of the Main Range 262 

batholith (Fig 5) (Harun et al., 2002; Sautter and Pubellier, 2015). The observed directions of 263 

shear joints are strikingly homogeneous as for instance in the granites of southern Thailand, 264 

and well imprinted on the morpho-structures along the coast of Southern Myanmar (Figure 5), 265 

although field observations are still lacking in the southernmost part. The fractures are indeed 266 

expressed mainly in very competent rocks, particularly in granite which do not record well 267 
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developed slickensides except for rare crystallisation of epidote, or Late Palaeozoic limestone 268 

which appears karstified preferentially along this fabric. 269 

In Peninsular Malaysia, field evidence includes remarkable sets of joints oriented NW-SE and 270 

NE-SW (Figure 7). A convincing example is present in granites surrounding the Kinta Valley 271 

in northern Malaysia (Choong et al., 2015, Figure 7). They are often clogged by massive quartz 272 

dykes that pre-date the rifting stage (Sautter et al., 2017). Broad folds are also present in 273 

Peninsular Malaysia (Tjia 1994; Metcalfe, 2013b). These large folds, which affect de granites, 274 

are indicative of an E-W shortening (Figure 6). 275 

In terms of extensional structures, Western Sunda is characterized principally by large normal 276 

faults cutting the Palaeozoic basement and the Mesozoic granites. The early extensional 277 

deformation is mostly visible along the edges of the Mesozoic granites in Malaysia and 278 

Southern Thailand. There is however no spectacular normal fault onshore. The extension is 279 

marked only offshore on the margins of the Andaman Sea (Figure 6), particularly on the Mergui 280 

ridge (Sautter et al., 2017). The normal faults reactivate pluton flanks and pre-existing 281 

conjugate shear joint sets and are marked by stockwerk-like cataclasite of quartz porphyric 282 

material with clasts of the host rock, running parallel to the axis of the granitic belt. 283 

Aforementioned porphyric felsic dykes are exhumed through the ductile-brittle transition at the 284 

shift from compression to extension, as seen in the field by ductile shear in agreement with a 285 

and E-W compression and brittle open fractures following a later undated E-W extension. The 286 

edge of the granites acted as a decollement surface which stacks up carbonate platform slices 287 

under high temperature conditions evidenced in ductily deformed limestone (Choong et al., 288 

2015). The precise discrimination between the last stages of the compressional deformation 289 

and the early stages of the extensional conditions is yet to be assessed.  290 
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The early extensional event also includes an early stretching accommodated through discrete 291 

E-W faults that presently follow the edge of the Malay Peninsula thickened crust (figure 3b). 292 

This event is clearly antecedent to the opening of isolated N-S half grabens in the Late Eocene 293 

to Oligocene. Ubiquitous in the Penyu Basin and the deep section of the Malay Basin, this set 294 

of faults is also retrieved from fault tensor analysis onshore despite the absence of major dip 295 

slip movements (Sautter et al. 2017, 2019; Choong et al. 2021). After the development of 296 

numerous small scale continental basins oriented NNW-SSE and NNE-SSW, the basins 297 

experienced strong thinning as seen on seismic profiles, forming deep half-grabens from the 298 

Earliest Oligocene (Morley et al., 2011; Raj et al., 1998). In the southern region (around 299 

Peninsular Malaysia), the syn-rift sequences (Figure 6) were deposited mainly during the 300 

Oligocene and are characterized by a grading from continental shales to thick deltaic marine 301 

sandy sequences in the middle to late Oligocene (Sautter et al., 2017), merging former isolated 302 

grabens into larger basins (Figure 6) whereas northward, in the Andaman Sea-Mergui region, 303 

syn-rift sequences are marine influenced (Polachan et al., 1991). (The major syn-rift faults are 304 

predominantly deep rooted low angle normal faults (Morley, 2009) mostly dipping eastward 305 

(CRNF). These are restricted to the East of the Mergui ridge (Sautter et al., 2017) within the 306 

westernmost occurrences of the Upper Cretaceous magmatic arc and to the east of the Triassic 307 

granitic belts in the Gulf of Thailand (Figure 2, Polachan and Racey, 1994; Putthapiban, 1992). 308 

In western SE Asia, the Andaman Sea (Figure 2 and 4) is the only domain that suffered extreme 309 

stretching leading to oceanic spreading in the Late Miocene (Curray 2005; Morley and Alvey, 310 

2015). A recent study suggested that the East Andaman Basin depression would have 311 

originated from a to-top-the-west detachment in the Oligocene and subsequently controlled by 312 

a N-S right lateral transtentional system (Mahattanachai et al., 2021). However, our data 313 

suggest that this region was affected by two successive rifting episodes; the first one in the 314 

Oligocene generated CRNF presently located in the deepest sections (see section on Figure 6). 315 
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Following an abrupt change in the obliquity of the convergence in the Miocene, the second 316 

rifting is defined by ductile distal normal faults verging towards the oceanic crust (Figure 4). 317 

In the East Andaman basin, the two generations of faults are preserved with deep CRNF 318 

dipping eastward overlaid by shallower DNF dipping westward (Figure 2).  319 

 320 

3.2. North-Eastern SE Asia 321 

The northern margin of the South China Sea is marked by crustal stretching and thinning which 322 

took place mostly in the Paleogene (Ru and Pigott 1986; Savva et al., 2014). Similarly to the 323 

history of Western Sunda, the extension is followed in the Miocene by an extreme crustal 324 

thinning and mantle uplift that sometimes places sediments in contact with the Moho 325 

discontinuity (Savva et al., 2012, Lei and Ren, 2016). Most of the large faults responsible for 326 

the thinning are CRNF, particularly in the Pearl River Basin which was mostly affected by the 327 

Eocene to Early Oligocene rifting 328 

The Late Mesozoic to Present evolution of the eastern Sunda area similarly began with a 329 

Cretaceous compression. A remarkable early insight of the succession of events was given for 330 

the Pearl River delta by Pigott and Ru, (1994) and Pinglu and Chuntao, (1994). These authors 331 

noticed that in the coastal region of the South China Sea, an early compression is oriented NW-332 

SE and marked by a penetrative set of conjugate faults which is developed on top of broad 333 

folds and was attributed to an Early Paleozoic deformation. Although Palaeozoic deformation 334 

exists, the last important folding event has since then been attributed to late Cretaceous on the 335 

basis of seismic interpretation (Yan, 2014) and onshore mapping (Campbell and Sewell, 2007; 336 

Nanni et al., 2017).  The Cretaceous deformation is also marked by broad folds and thrusts in 337 

the coastal region of SE China particularly around the Pearl River delta (Chan et al., 2010) and 338 

along the shelf of the northern margin of the South China Sea (Yan et al. 2014; Ye et al., 2020). 339 
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These fractures are also present in the Tonkin region (N. Vietnam), where they are intersected 340 

by Eocene to Miocene wrench faults responsible for the opening of the Baise (China) and Cao 341 

Bang (Vietnam) basins (Pubellier et al, 2004). Towards the centre of the plate, fractured 342 

reservoirs are present in the coastal strip of granites offshore Vietnam and are controlled by a 343 

similar set of first order regional fractures striking WNW-ESE and NE-SW (Cuong and 344 

Warren, 2009). This penetrative conjugate shear joints remarkably affected the Mesozoic 345 

granites along the South China Sea in Guangdong and Guangxi provinces of China as well as 346 

in Southeast Vietnam coast (Figure 8 and 9). They are compatible with an E-W compression 347 

that is evidenced on remotely sensed data as well as fault tensors analyses. In the offshore 348 

region, Cretaceous folds within the shelf have been interpreted in seismic data (Yan et al. 2014), 349 

with axes of compression oriented NNE-SSW to NW-SE on late Cretaceous thrusts faults (Ye, 350 

2020), but also on field data onshore in Hong Kong (Nanni et al., 2017).  351 

 352 

3.2.1. Early extension; close set of faults and joints 353 

In the coastal strip from Southern China and Vietnam, parallel extensional joints and normal 354 

faults affect the late Cretaceous series in the Pearl River region (Cuong and Warren, 2009; Cao 355 

et al., 2018; Chan et al., 2010), and large faults delineating half-grabens offshore (Franke et al., 356 

2014). The pre-Cenozoic basement, where it crops out on land, is affected by numerous 357 

fractures which appear well on remote sensing images and can be easily observed in the field 358 

onshore (Pubellier et al., 2017). They are unfortunately almost systematically buried under 359 

thick Cenozoic clastic series and carbonate platforms offshore. They appear clearly on seismic 360 

lines such as the section 1555 (Larsen et al., 2018) (figure 8). 2D seismic lines reveal relatively 361 

simple structures with a clear pattern of normal faults with moderate offsets resulting in diffuse 362 

block faulting (Fig 6, 7). Although these fractures are characteristic of Sunda Plate pre-rifting 363 

basement (Tg in the South China Sea, Ding et al., 2013), we rarely have a clear picture of their 364 
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3D geometry, and it can be argued that they strike in the same direction as the older set of 365 

conjugate shear joints described above. However, these have a clear dip-slip motion indicating 366 

classical “block-faulting” pattern and the spacing is in favour of a regular set  of fractures and 367 

faults related to the early stretching stage of extension (Figure 8 left of section). Others have 368 

been shown by Lei and Ren (2016). The apparent spacing on seismic data is 5 to 10 Km, but it 369 

does not preclude that a shorter wavelength also exists beyond the detection of the seismic 370 

profiles. These fractures pre-date the main stage of thinning as they always appear along 371 

basement surfaces subsequently tilted by rotational faults (figure 6). In the field, many localities 372 

show an early phase of extension prior to the tilting as for instance in the Guangdong Province 373 

NE of Shenzhen (Donggan Basin, Shen, 2008, Chan et al., 2010). Along most of the coastal 374 

region of the South China Sea, the early extension is oriented NW-SE with faults generally 375 

parallel to both the coastline and the trend of the Triassic to Cretaceous arc and tectonic belt 376 

(Figures 8 and 9). These early faults are characterized by minor offset as compared to the 377 

subsequent large listric faults responsible for most of the thinning.  378 

 379 

3.2.2. Listric normal Faults  380 

This second system is a middle Eocene to early Oligocene rift event characterized all across 381 

the wide margins of the South China Sea, showing a succession of rift basins with thinned 382 

continental crust associated with large extensional detachment faults soling on top of the lower 383 

crust (Ding et al., 2013, Savva et al., 2012, Franke et al., 2014, Lei et al., 2016, 2018, 384 

Nirrengarten et al., 2020). They are responsible for the tilting of the blocks and create the large 385 

half-grabens of the Pearl River Mouth Basin. They appear in some places to broadly bend the 386 

top basement surface in addition, suggesting that the thinned crust could have suffered from a 387 

roll-over at a crustal scale (Figure8). The majority of these rifting faults are counter regional 388 
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beneath the shelf. As we look closer to the COT where the continental crust is thin, they are 389 

systematically ocean-verging (regional). 390 

 391 

 392 

3.3. Central-Eastern SE Asia 393 

Toward the South, along the coast of Vietnam (Figure 2), the set of conjugate shears constitute 394 

the main argument for a middle to late Cretaceous deformation as the folding event is difficult 395 

to date onshore due to the scarcity of reliable ages in the overlying sediments. The conjugate 396 

set of fractures is also compatible with an E-W compression (Figure 11) and reflects the set of 397 

conjugate strike-slip faults described by (Rangin et al., 1995). The evolution of the large faults 398 

was affected during the Paleogene by the slip of the Vietnam Fault during the opening of the 399 

South China Sea (Fyhn et al., 2009). Few normal faults exist on the narrow shelf, but the 400 

extension offshore is stronger starting from the shelf break (Figure 2 and 10). Two large graben 401 

opened; the Cuu Long Basin and the Nam Con Son Basin. They also are characterised by a 402 

number of CRNF close to the coastline (Savva et al., 2014, Franke et al, 2014, Clerc et al, 403 

2017). While the Cuu Long basin was affected by the displacement of the Mae Ping Fault 404 

(Schmidt et al., 2019), the more distal the Nam Con Son Basin is located at the tip of the SCS 405 

propagator and displays numerous overlying oceanward distal normal faults (DNF) which 406 

occur just prior to the breakup.  407 

The conjugate (southern) margin of the South China Sea does not permit to observe the 408 

basement fractures indicative of the Cretaceous compression. The rifting structures are only 409 

visible on seismic lines in front of the North Borneo accretionary wedge, large crustal 410 

Paleogene faults dip to the northwest (Fix 2). They clearly pre-date the late normal faults 411 

occurring closer to the oceanic crust (figure 10) and they created large half graben being the 412 

locus of important clastic sedimentation, mostly continental and shallow marine lacustrine but 413 
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also sub-tidal (Kosa 2015; Mathew et al. 2020). If the faults are in an ocean-dipping position 414 

(toward SCS oceanic crust) at Present, reconstructions prior to the complete opening of the 415 

South China Sea show that they were formed as large CRNF (toward South China and 416 

Indochina blocks) in the Paleogene rifting stage (Lei and Ren, 2016). In the Luconia Basin and 417 

offshore NW Palawan (Schlütter et al., 1996), both Regional (RNF, Yao et al., 2018) and 418 

Counter Regional (CRNF) are observed. This implies that the CRNF were formed on both 419 

margins of the SCS in the period of intense rifting during the Eocene and the Early Oligocene 420 

at a time where the margin was shorter and juxtaposed to the South China and Indochina blocks 421 

(figure 2). 422 

 423 

It is a general characteristic for distal parts of continental margins to be affected by normal 424 

faults cutting through thinned continental crust (Franke et al., 2014, Ranero, 2020, Chang et 425 

al., in press). IODP drilling results emphasize the complexity of the crustal thinning next to the 426 

COT where breccias have been found (Larsen et al, 2018). These seaward dipping faults affect 427 

even margins where CRNF dominate (Clerc et al. 2017). In the South China Sea, distal normal 428 

faults are well expressed and appear with a low angle in most places near the COB (Fig 6 and 429 

7). Interestingly, they appear steeper where they affect the Cretaceous granites as for instance 430 

at the edge of the Spratlys or the Paracel margins (Figure 6).  431 

 432 

3.4. Southern SE Asia 433 

In the southern part of SE Asia, the pre-rifting basement crops out exclusively in the Cretaceous 434 

granitoids of the Schwanner Mountains (Figure 2). In this region, the compression is also better 435 

illustrated on remotely sensed data than on direct field observations because morphologies are 436 

not well preserved in these low elevation granitic provinces. There, the set of pre-rifting 437 

conjugate joints indicates a N-S (N10°E) direction of maximum principal stress (Figure 13). 438 
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Interestingly, the sharp angle is  small (25°) between the conjugate fractures, thus constraining 439 

accurately the main horizontal compression.  440 

The extension in the southern Sunda is localized within a narrow zone of less than 100km width 441 

on the margins of the Makassar basin (Figure 2), but it still dramatically thins the continental 442 

crust. Along the coast of Makassar, east of the Meratus Montains, conjugate joints indicate a 443 

NW-SE extension in addition to a NE-SW one (Pubellier et al., 1998). In the Makassar Basin 444 

of SE Sunda, the rifting is marked by faults dipping mainly toward the north (CRNF), 445 

particularly the deep-rooted ones which account for most of the thinning. Some CRNF 446 

affecting the pre-rifting basement of the basin are located along the flanks of the Cretaceous 447 

Schwanner Mountains granites (Figure 2 and 12), but are not spectacular or poorly documented 448 

Further south, in the Java basin, N-S extension was initiated just after the late Cretaceous where 449 

most of the syn-rift section is Eocene (Figure 3b and 12). The finite extension is not as strong 450 

as that of the Western and Eastern Sunda and is oriented N-S, creating basins orthogonal to the 451 

previous compressional axis observed in the Schwanner Mountains of South Kalimantan.  452 

These early Paleogene E-W are predominant in southern Sunda but interestingly occur locally 453 

further North in the Gulf of Thailand and in the South China Sea (Figure 2 and 3b). Both CRNF 454 

and RNF are seen on seismic lines (Fig X) (Granath et al., 2011). The difficulty to match the 455 

observations in the Southern Sunda with those of Eastern and Western Sunda, is that most of  456 

the rifting faults which are observed South and SE of the Meratus/Argo suture zone are actually 457 

inherited from the rifting of the Australian margin (Hall, 2012, Granath et al., 2011) (Figure 2 458 

and 12). Yet, it is clear that the early faults initiate on the edges of the Schwanner granite in 459 

the Barito Basin, and end as distal normal faults in the Makassar Basin. The CRNF are mostly 460 

located on the edge of the Bawean arch (Bawean Trough) and the Central Deep north of Madura 461 

Island (Satyana et al., 2004). The extension is mostly Eocene, but the whole region was 462 

shortened in the middle Miocene (Figure 12). The shortening affected the Makassar and Kutei 463 
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basins, but also inverted the early normal faults in the Java Sea near Kangean Island and the 464 

Madura Peninsula.  465 

 466 

4. Synthesis 467 

In spite of the large extent of SE Asia, every region in SE Asia witnessed similar evolutions 468 

and share comparable structural features. A large subduction zone surrounded the margin 469 

which created a backbone of granites developed from the Permian to the end of the Early 470 

Cretaceous. Compression in the late Cretaceous is documented through a series of shear joints 471 

indicating a radial maximum stress imprinted in the granites but also broad folds and thrusts 472 

which reactivate Triassic and Early Cretaceous sutures. Starting from the Cretaceous-473 

Paleogene boundary, the margins entered an extensional regime (Pubellier and Morley, 2014) 474 

that began with shear zones and cataclastic deformation at the boundaries of the granites, and 475 

counter regional normal faults often reactivating former Mesozoic folds and pluton edges. The 476 

accommodation of the extension migrated towards the plate margins with a critical thinning of 477 

the crust restricted to SE Asia edges which are marked by distal regional normal faults (DNS) 478 

dipping towards the newly formed oceanic crust.  479 

4.1. Indicators of Cretaceous compression, broad folds and shear joints  480 

The striking aspect of the deformation observed within the Permian to Cretaceous granites is 481 

represented by a set of conjugate shear fractures which are ubiquitous and well expressed 482 

particularly in competent rocks around SE Asia (figure 4 to 8). We observe that the formation 483 

of shear joints always pre-date the Cenozoic extensional joints.  484 

Therefore, the average measurements both on outcrops and on SAR images (ERS-1, JERS-1, 485 

Space Shuttle Radar) may be complex, but a clear set of conjugate fractures indicative of 486 

varying E-W to NW-SE compression is always dominant all along the eastern and the western 487 
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sides of SE Asia (Ye et al., 2020), whereas it is N-S in the south (Southern Borneo). To all the 488 

sites which were studied in the field, similar directions were observed and they systematically 489 

pre-date the Cenozoic extension (Sautter et al. 2017; Morley 2004). The folds may be several 490 

kilometres in width such as in the Pearl River in Guangdong Province of China (Chan et al., 491 

2010).  492 

          493 

4.2. A post late Cretaceous Orogeny relaxation 494 

 495 

The early stages of extension are difficult to assess in continental margins.  They are generally 496 

diffuse and as a result tend to be sensitive to small variations of rheology or crustal thickness 497 

(Jammes and Lavier 2019). The initial stretching stage is widely distributed (Peron-Pindivic et 498 

al., 2015) as evidenced on many seismic lines by pre-rift sets of normal faults without specific 499 

vergency and limited offsets. They are tilted together with the rest of the pre-rift units. 500 

However, we observe that the faults, usually low-angle normal faults tend to also localize at 501 

the boundary of the more cohesive and resistant granites. Spectacular examples are found 502 

across the Malay Peninsula where “roof pendant” structures are reactivated with a normal dip-503 

slip motion (Sautter et al. 2017; 2019). Reactivation of pluton edges involves important silica-504 

rich fluid circulation and is expressed in the field by development of quartz-porphyric dykes at 505 

the contact between the granites and the host rock (Sautter et al 2017; Tannock et al. 2020). 506 

These penetrate by a few meters in the granites by a dense “stockwerk-like” network of tension 507 

gashes and hydro-fractures.  508 

 509 

4.3. Large crustal scale normal faults (counter regional and regional) 510 

 511 
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The domains affected by major crustal thinning are concentrated in the more distal regions of 512 

the plate, under the continental shelf, and affects largely the granitic belts which are sliced-off 513 

in a series of parallel normal faults with large offsets. These faults are mostly rooted within the 514 

lower crust (Lei et al., 2016, Franke et al., 2014) and often closely spaced. They accommodate 515 

a higher stretching factor (Ding et al, 2011), and constitute the “thinning stage” (Lavier and 516 

Manatschall, 2006). Around the Sunda block, many of the normal faults dipping towards the 517 

core of SE Asia (CRNF) (Figures 4,6,8,10,12), and thus created a large asymmetry within the 518 

thinned margin with series of half grabens rotated continentward. While some of these faults 519 

may originate from major horizontal shear episodes along large-scale strike slip fault (Figure 520 

2), it is worth noticing that a majority of these faults are systematically parallel to the alignment 521 

of the granitic plutons in the proximal regions but also to the shelf break in the more distal parts 522 

(Figure 2 and 3). Hence, the trigger for the initial extension could be linked to the excess of 523 

crustal thickness or topography in the granitic arc region, suggesting a strong influence of 524 

lithostatic stress compared to the actual boundary forces (Figure 14).  525 

 526 

4.4. Distal normal faults (DNF). 527 

 528 

DNF are common at the extremity of most margins in the world and correspond to the region 529 

where the stretching factor is the highest near the COT. Rafts of continental crust may exist 530 

atop of the serpentinized mantle (Boillot et al, 1995, Pérez-Gussinyé, and Reston, 2001, Péron-531 

Pinvidic and Manastchal, 2008). However, in the South China Sea and the Andaman Sea, they 532 

have been considered as resulting from a second rifting episode in the Neogene linked to a re-533 

organisation of the boundary forces resulting in a different orientation of extension (Morley et 534 

al. 2016; Sautter 2017). Although this may be a coincidence, our data suggest that the DNF on 535 

both sides of SE Asia represent the late stages of a single regional extensional phase throughout 536 
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the Cenozoic. The different directions of extension may indicate that hyper-thinned continental 537 

crust is more sensitive to a change in the boundary conditions. The DNF are almost always 538 

ocean-verging (regional faults). 539 

 540 

5 - Discussion:  541 

5.1. Tectonic inversion and outward migration of the rifting 542 

 543 

The basins of SE Asia developed on both sides of the relic of a large orogenic domain inherited 544 

from successive cycles of subduction-collision. This pre-rifting structural fabric can be outlined 545 

by a series of granitic belts, subduction-related, syn and post collision, and the subsequent 546 

collisional features of a large magmatic arc active from the Permian to the middle of the 547 

Cretaceous which was later affected by a regional compression during the middle to late 548 

Cretaceous. Generally, it appears that the deformation began with shear joints (Figures 549 

5,7,9,11,13) and broad folds radial to the horse-shoe shape of the magmatic belt (Figures 4-9). 550 

Extension followed in the Paleogene, firstly with an early stretching marked by limited block 551 

faulting and sets of extensional joints perpendicular to the margin (Figures 4,6,8,10,12).  552 

 553 

The extension seems conditioned by the presence of an anomalously thickened crust at the edge 554 

of the continental masses (Figure 14). All around SE Asia, these crustal thickness anomalies 555 

originate from the subduction-accretion processes which took place during the Triassic and the 556 

middle Cretaceous. Tectonic inversion is marked by the reactivation of former thrusts both in 557 

the west of Sunda (Morley, 2009, 2016) and to the east (Savva et al., 2014, Yeh et al., 2018), 558 

and penetrative conjugate shear joints into tension faults and gashes. The rifting is later marked 559 

by the development of larger listric faults located along the edges of the granites or broad folds’ 560 

flanks. These later faults are generally continent dipping (CRNF) and are responsible for most 561 
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of the crustal thinning. The DNF only appear at the end of the extension process, where 562 

magmatic processes are dominant and the crust is very thin, that eventually ends up with crustal 563 

breakup. 564 

5.2  Location of extension, necking and former suture zones 565 

Narrow basins with molassic sediments developed during the late Cretaceous prior to the main 566 

rifting event (Savva et al., 2014; Shu et al., 2009; Chan et al., 2010) and correspond to the 567 

stretching phase (Figure 8-9). The initiation of this extensional deformation is clearly expressed 568 

since the Early Eocene (Ypresian) in the South China Sea but is suspected in the latest 569 

Cretaceous and the Paleocene while it appears slightly later from the Late Eocene-Early 570 

Oligocene in Western Sunda (Figure 6). The direction of extension is dominantly N-S but 571 

actually varies to NNW depending if the reactivation of earlier morpho-structures is involved 572 

(Franke et al., 2014; Savva et al., 2014) in the east Sunda plate and E-W in the west. It is 573 

important to note that the place where the Cenozoic extension is well expressed falls outward 574 

of the Late Paleozoic suture zone. In western SE Asia, pronounced rift systems developed on 575 

both sides of the Triassic suture zone (Figure 2, 3b,3c,4), and even along its trace in northern 576 

Thailand (Morley et al. 2011). However, extreme crustal stretching and oceanic spreading only 577 

developed outside the Sibumasu block in the Andaman Sea (Figure 3c,4).  578 

The transitions between localized early stretching, pronounced rift systems and extremely 579 

stretched crust illustrated by major crustal necking are interestingly located along inherited 580 

orogenic fabrics revealing the importance of former crustal thickness heterogeneities in the 581 

thinning processes (Figure 15). The crust supporting the Late Permian to Cretaceous arc is 582 

relatively unaffected by the rifting with only isolated shallow deposits in its core, whereas on 583 

each of its edges pronounced rift systems developed (Figure 2, 3b,c). This is particularly 584 

obvious in the west and south of the plate, while in the east the southern part of the arc was 585 

affected by the rifting. Another major crustal necking occurs at the COT, which is often defined 586 
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in SE Asia by younger plutonic rocks. In the SCS, the last fringe of continental crust is also 587 

cored by numerous late Cretaceous plutons while in the south, the deep Makassar basin 588 

developed on the edges of the Schwanner and Meratus Upper Cretaceous granitoids. In the 589 

west, the relatively undeformed Mergui ridge marks the western edge of a late Cretaceous to 590 

Paleogene volcanic arc stretching from onshore Myanmar to Sumatra (Morley, 2015a; Morley, 591 

2014; Polachan and Racey, 1994; Sautter, 2017), and marks the transition from the pronounced 592 

rift system of the Mergui basins and the extremely stretched crust of the Andaman Sea. 593 

 594 

5.3 Position of Counter Regional Normal Faults relative to previous orogens. 595 

The observation that low angle faults are generally typical occurrences of the much thinned 596 

crust in the vicinity of the COT is common but the CRNF are often omitted in the syntheses. 597 

Although it is a classical aspect of the Coulomb wedge principle and can be modelled with 598 

varying tapper and slope angles (Vendeville, 1987), the dip direction of the faults may reflect 599 

the actual motion of the mantle relative to the crust (Clerc et al., 2017). However, we note that 600 

the CRNF are also located at the edge of the former mountain ranges where the crust has been 601 

previously thickened and they commonly reactivate former thrusts during tectonic inversion. 602 

A striking point regarding the extensional structures around SE Asia is that the style of faulting 603 

varies similarly along any section from a proximal to a distal setting of the margin.  604 

As mentioned in previous parts, the CRNF of eastern, central and western Sunda developed 605 

earlier than the distal regional normal faults. They also control most of the large half-grabens 606 

of the northern margin of the South China Sea (Franke et al., 2014). However, they often 607 

coexist with large regional normal faults. We observe that they are mostly located among the 608 

magmatic arc and on the edges of thickened crust suggesting that the presence of numerous 609 

granite plutons could be a parameter conditioning their occurrence and location (Figure 14). 610 

Recently Clerc et al., (2017) showed that thick-skinned CRNF are typical of passive margins 611 
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such as the Angola and Gabon margins (Dupré et al., 2011) and proposed a model dependant 612 

on the upward motion of the mantle. Besides, thin-skinned CRNF have been documented on 613 

margins such as the SW African margin where thick accumulation of sediments is present due 614 

to extended and long-lasted deltas. This suggests that the load on the lithosphere of the margin 615 

is a significant parameter for the style of deformation, and that it may be due to tectonic load 616 

(former orogenic root) or sedimentary load (excess of sedimentary infill). In sedimentary rocks, 617 

particularly in gravity-controlled provinces such as W Africa or NW Borneo (e.g. offshore 618 

Brunei), it has been shown that CRNF faults are structures activated easily in response to the 619 

increase of sediments weight (Sapin et al., 2012). These authors point out the importance of a 620 

low viscosity layer at the base of the sedimentary pile where faults are rooted. In these 621 

examples, the decollement layer rheology (salt or shale) is primordial and depends on its 622 

composition and its pore pressure (Cobbold et al., 2009). In the case of passive margins, the 623 

weak decollement layer is likely to be located in the lower crust. Therefore, the location of the 624 

CRNF could be influenced by the presence of a low viscosity layer related to magma rich crust 625 

and to a higher lithostatic pressure compared to adjacent regions due to a margin anomalously 626 

thick as a result of tectonic or sedimentary load. 627 

However, the CRNF are not exclusively present within the Cretaceous magmatic arc or at its 628 

boundary; they are also present in the Dangerous Grounds, offshore West Sabah and in the East 629 

Andaman basin. The rheological behavior of the magmatic arc may not be the main cause for 630 

their existence. Another option is that the excessively thick crust at the edge of SE Asia, could 631 

account for bulk forces collapsing the crust toward the core of the SE Asia. In fact, the 632 

magmatic arc is associated with a thickening that took place during the Middle Triassic and the 633 

Upper Cretaceous orogens. In the internal zones of SE Asia, presently occupied by the Khorat 634 

Plateau, the plate was characterized by a depression devoid of important deformation and 635 

associated with a thick accumulation of sediments particularly during the Mesozoic (Clements 636 
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et al., 2011; Heggemann et al., 1994; Racey and Goodall, 2009, Morley, 2012, Pubellier and 637 

Morley, 2014). 638 

The presence of a free edge along the subduction zones may have been a suitable setting for 639 

the development of faults dipping toward this central subsiding depression, thus influencing 640 

them in a “counter-regional” orientation. Moreover, the migration of large basin deposition 641 

with time towards the edges of SE Asia is an indicator for an evolution driven by the relaxation 642 

of a regional dynamic topographic low. Later, during the following phases of the rifting, 643 

extension located outward would be less prone to this style of faulting and more influenced by 644 

the plate boundary geodynamics and the faults would become oceanic dipping (Figure 16). 645 

 646 

6. Conclusion 647 

The parameters that control the tectonic evolution of SE Asia from the last major orogen during 648 

the Cretaceous are explored in this paper. Based on a similar geodynamic setting all around the 649 

former SE Asia, we consider SE Asia continental core as a relatively simple rheological 650 

structure and observe the variations/migration of structural style of large joints and major 651 

faults. Most of the tectonic features observed in SE Asia result from post-Cretaceous 652 

extensional forces which acted on a heterogeneous basement mainly structured during the 653 

Triassic and the Cretaceous. They are commonly large half-grabens developed by tectonic 654 

inversion on the sides of the Mesozoic orogens and have in turn suffered tectonic inversion 655 

mostly in the South of SE Asia (inversion of the Java Basins or in the Eastern Sunda). We 656 

recognized a radial compression in the late Cretaceous that affected a large magmatic arc which 657 

was active from Permian to early late Cretaceous, and subsequent phases of extension during 658 

the Cenozoic. Deformation was mostly brittle and marked by sets of joints expressed in the 659 

granites, which indicate compressional forces radial to SE Asia. The following extension was 660 

continuous from the late Cretaceous to the Present except in place where local compression 661 
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occurred. We observe that the premises of this extension are very sensitive to the lithology 662 

contrasts since the earliest fractures reactivated the edges of granitic plutons and broad folds. 663 

They are therefore parallel to the contact between the granite and the host rocks. As such, they 664 

can also be low angle normal faults if they tend to rest above magma chambers, on the limbs 665 

of Triassic and Cretaceous folds, or thrust faults of the previous shortening event (Morley, 666 

2009; Palin et al., 2013).  667 

The early structures mostly expressed on land are narrow grabens filled with red sandstone and 668 

conglomerate (Chan et al., 2008). Faults are often steep and the compartments are weakly tilted 669 

characteristics of the stretching stage (Péron-Pindivic et al., 2008). They affect the basement 670 

structural surfaces seen on seismic lines, which were later tilted during the thinning stage. The 671 

following stage corresponds to large crustal boudinage with formation of half grabens filled 672 

with terrestrial, fluviatile, lacustrine or shallow marine deposits. Faults root to the top of the 673 

Lower crust and participate intense crustal thinning. If some faults are ocean dipping, many of 674 

them are actually CRNF on all sides of the thick Sunda Plate. They affect mostly the granitic 675 

arc and cease in the distal parts of the margins. Finally, a late stage characterised by distal 676 

normal faults (DNF) appear in the hyper-stretched crust in the final stage of extension. These 677 

faults are low angle and generally dipping ocean-ward, or toward the oceanic crust of the new 678 

marginal basins. Contrarily to the rifting which affects the thickened crust, the late stage 679 

affecting very thin crust seems to be independent of the pre-existing structures, and depend 680 

strongly on the direction of convergence at plate boundaries. This is particularly well illustrated 681 

in the Andaman Sea which underwent E-W extension with faults parallel to the former orogens 682 

and their magmatic arcs during the Oligocene and the Early Miocene, followed sharply by a 683 

N-S extension in the Late Miocene to Present which reflects the extremely oblique motion of 684 

India related to Sunda (Morley et al., 2015, Sautter, 2016).   685 

 686 
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Despite small discrepancies in timing, basin structures are interestingly similar all around SE 687 

Asia. The basins develop on the edge of older orogens and reactivate the associated structures. 688 

Because the orogens are also places where the crust was thickened , and because the opening of 689 

the marginal basins often brings the crust-mantle boundary close to the surface, it is likely that 690 

the location and structure of the basins is due to orogenic collapse of the thickened crust along 691 

the main suture zones, which reactivated the thickening structures. When the extension 692 

continues, the extensional faults seem to lose the memory of the orogen, and be driven mostly 693 

by the plate boundary forces.  694 
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Figure Captions:  1111 

Figure 1 : a) mantle-crust relationship in the context of passive margin formation. IB: Igneous 1112 
Body; UC: Upper Crust; LC: Lower Crust; UM: Upper Mantle. b) occurrence of Counter 1113 

Regional Normal Faults (CRNF) associated with a hot upper mantle, c) occurrence of 1114 

Regional Normal Faults (RNF) in a Cold margin setting.  1115 

 1116 

Figure 2 : Structural map of SE Asia with emphasis on Cenozoic rift basins and pre-Cenozoic 1117 

compressive fabrics. Basins developed dominantly on the sides of Mesozoic orogens leaving 1118 

the magmatic arcs devoid of sedimentary cover. The rifting migrated through time towards 1119 

the edges of SE Asia where extremely stretched crust and oceanic spreading took place. 1120 

Basin names: CL: Cuu Long, CM: Central Myanmar, CS: Central Sumatra, DG: Dangerous 1121 

Grounds, EA: East Andaman, EJ: East Java, EN: East Natuna, L: Luconia, Ma: Malay, Me: 1122 

Mergui, Mk: Makassar, NCS: Nam Con Son, NS: North Sumatra, Pa: Pattani, Pe: Penyu, PK: 1123 

Phu Khan, PRM: Pearl River Mouth, S: Sabah, SS: South Sumatra, WJ: West Java, WN: 1124 

West Natuna. Sutures: ASZ : Ailaoshan Suture Zone, BRSZ: Bentong Raub Suture Zone,  1125 

ISZ : Inthanon Suture Zone, MSZ: Meratus Suture Zone. The Ailoshan is an Early to Middle 1126 

Triassic Suture while the Bentong Raub represents a Late Triassic collision. The Meratus and 1127 

Woyla sutures are Lower Cretaceous whereas the Burma and Andaman sutures are thought to 1128 

be Late Cretaceous in age. 1129 

 1130 

Figure 3 : Main structural domains of SE Asia. A) Paleozoic core of Sunda and Yanshanian 1131 

magmatic arc and blocs accreted during the Cretaceous (green) with induced shortening 1132 

directions represented with arrows. b) distribution of basins during the Paleogene with 1133 

stretching direction represented with arrows, c) distribution of basins during the Neogene 1134 

with stretching directions represented with arrows. 1135 

 1136 

Figure 4 : A) Extract of the structural map of SE Asia modified after Sautter 2017 showing 1137 

the main faults related to the Upper Cretaceous compression and Cenozoic rifting in 1138 

northwestern SE Asia. B) Synthetic cross-section across main structural features of 1139 

northwestern Sunda built from field observations, seismic profile interpretation and regional 1140 

maps. C) Interpreted seismic profile across the Andaman shelf break modified after Sautter et 1141 

al. (2017). D) Interpreted seismic profile of the East Tanintharyi Basin modified from Racey 1142 

and Ridd (2015). 1143 

 1144 

Figure 5 : A) simplified structural map of a fractured Cretaceous granite in peninsular 1145 

Myanmar. See the grey rectangle in Figure 4a for location. B) Digital elevation model built 1146 

from SRTM30 showing conjugate fracture sets striking WNW-ESE and ENE-WSW. 1147 

 1148 

Figure 6 : A) Extract of the structural map of SE Asia modified after Sautter 2017 showing 1149 

the main faults related to the Upper Cretaceous compression and Cenozoic rifting in western 1150 
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SE Asia. B) Synthetic cross-section across main structural features of western Sunda built 1151 

from field observations, seismic profile interpretation and regional maps. C) Interpreted 1152 

seismic profile across the Mergui Basin modified after Sautter et al. (2017). D) Interpreted 1153 

seismic profile of the Central Graben of the Malacca Straits modified after Sautter (2017). 1154 

See Figure 4 for the legend. 1155 

Figure 7 : A) simplified structural map of fractured Triassic-Jurassic granitoids in peninsular 1156 

Malaysia. See the grey rectangle in Figure 6a for location. B) Digital elevation model built 1157 

from SRTM30 showing conjugate fracture sets striking NW-SE and NE-SW. Important syn-1158 

kinematic fluid intrusions are present and illustrated with elongated red polygons. 1159 

Figure 8 : A) Extract of the structural map of the South China Sea modified after Pubellier et 1160 

al. (2017) showing the main faults related to the Cenozoic rifting in northeastern SE Asia. B) 1161 

Synthetic cross-section across main structural features of eastern Sunda built from field 1162 

observations, seismic profile interpretation and regional maps. C) Interpreted seismic profile 1163 

across the Zhu-3 Trough modified after Zhao et al. (2020). D) Interpreted seismic profile of 1164 

the Pearl River Mouth Basin modified after Ye et al. (2020). See Figure 4 for the legend. 1165 

Figure 9 : A) simplified structural map of fractured Permian-Triassic granitoids in southern 1166 

China. See the grey rectangle in Figure 8a for location. B) Digital elevation model built from 1167 

SRTM30 showing conjugate fracture sets striking WNW-ESE and NNW-SSE. Post-1168 

compression basins developed in the Late Cretaceous to Early Cenozoic reactivating the 1169 

edges of the plutons. 1170 

Figure 10 : A) Extract of the structural map of the South China Sea modified after Pubellier 1171 

et al. (2017) showing the main faults related to the Cenozoic rifting in central SE Asia. B) 1172 

Synthetic cross-section across main structural features of central Sunda built from field 1173 

observations, seismic profile interpretation and regional maps. C) Interpreted seismic profile 1174 

across the Cuu Long basin modified after Fyhn et al. (2019). D) Interpreted seismic profile of 1175 

the East Natuna Basin modified after Savva (2013). See Figure 4 for the legend. 1176 

Figure 11 : A) simplified structural map of fractured Cretaceous granitoids in southern 1177 

Vietnam. See the grey rectangle in Figure 10a for location. B) Digital elevation model built 1178 

from SRTM30 showing conjugate fracture sets striking NW-SE and NE-SW. Important syn-1179 

kinematic fluid intrusions are present and illustrated with elongated red polygons. 1180 

Figure 12 : A) Extract of the structural map of Borneo modified after Sapin (2010) showing 1181 

the main faults related to the Cenozoic rifting in central SE Asia. B) Synthetic cross-section 1182 

across main structural features of central Sunda built from field observations, seismic profile 1183 

interpretation and regional maps. C) Interpreted seismic profile across the Barito Basin 1184 

modified after Winardi et al. (2019). D) Interpreted seismic profile of the East Java Basin 1185 

modified after Ran et al. (2020). See Figure 4 for the legend. 1186 

Figure 13 : A) simplified structural map of fractured Cretaceous granitoids in southern 1187 

Borneo. See the grey rectangle in Figure 12a for location. B) Digital elevation model built 1188 

from SRTM30 showing conjugate fracture sets striking NNW-SSE and N-S. 1189 

Figure 14: Style of extension when controlled by A) CRNF and DNF, and load excess on the 1190 

lithosphere due to the presence of a peri-cratonic orogen cored with large plutons (case of W 1191 

Sunda and N. SCS margins), or B) excess of sediments (NW Borneo, SW Africa) 1192 
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Figure 15: A) Simplified cross section across SE Asia showing the pre-Cenozoic accretion of 1193 

continental blocks and terranes marked with purple polygons for the Triassic orogeny and 1194 

green polygons for the Cretaceous orogeny. Sutures are shown in bright colors whereas 1195 

accreted sediments are in faded colors. B) Setting in the Late Cenozoic showing the 1196 

reactivation of former compressive structures during the rifting. Black faults are CRNF 1197 

whereas red faults are DNF. 1198 

Figure 16: Conceptual model of the evolution of the fault systems forming basins at the edge 1199 

of SE Asia. Gradient of greys represent the continental crustal layers: lightest grey for the 1200 

continental crust affected by extension (tilted blocks), then the upper crust, lower crust and 1201 

finally the mantle in the darkest grey. The purple shape represents the oceanic crust. Set of 1202 

conjugate fractures (shear joints) mostly visible in the Mesozoic granites (red shape). 1203 

Reactivation of the granite edges and development of counter-regional normal faults (CRNF). 1204 

Late evolution of the basins near the COT, with regional distal normal faults (DNF). 1205 

 1206 

  1207 
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