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ARTICLE

Neural fatigue by passive induction: repeated
stimulus exposure results in cognitive fatigue and
altered representations in task-relevant networks
Stefano Ioannucci 1,2✉, Valentine Chirokoff1,3, Bixente Dilharreguy1, Valéry Ozenne4, Sandra Chanraud1,3 &

Alexandre Zeńon 1

Cognitive fatigue is defined by a reduced capacity to perform mental tasks. Despite its

pervasiveness, the underlying neural mechanisms remain elusive. Specifically, it is unclear

whether prolonged effort affects performance through alterations in over-worked task-rele-

vant neuronal assemblies. Our paradigm based on repeated passive visual stimulation dis-

cerns fatigue effects from the influence of motivation, skill and boredom. We induced

performance loss and observed parallel alterations in the neural blueprint of the task, by

mirroring behavioral performance with multivariate neuroimaging techniques (MVPA) that

afford a subject-specific approach. Crucially, functional areas that responded the most to

repeated stimulation were also the most affected. Finally, univariate analysis revealed clusters

displaying significant disruption within the extrastriate visual cortex. In sum, here we show

that repeated stimulation impacts the implicated brain areas’ activity and causes tangible

behavioral repercussions, providing evidence that cognitive fatigue can result from local,

functional, disruptions in the neural signal induced by protracted recruitment.
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Cognitive fatigue is characterized by a pervasive avoidance
of mental effort, usually triggered by periods of sustained
cognitive activity. It is a distinctively recognizable state

that is often experienced on a daily basis: without fail, even the
most energetic individuals ultimately succumb to fatigue and feel
the urge to seek rest and recovery. Behavioral scientists have so
far formalized two key aftermaths of cognitive fatigue. The first,
objective, component is an incapacitation to carry out effortful
mental actions with a quantifiable decline in performance1. The
second, subjective, component consists of a sensation of mental
exhaustion1. The methods of assessment of both components
remain debated due to their murky overlap with other constructs,
such as boredom and underlying levels of motivation, which are
hardly controllable in experimental settings1–3.

Despite its ubiquity, the causes of mental fatigue remain elusive
but have been theorized along a functional and a motivational
axis. The former focuses on posited alterations taking place in the
circuitry directly subtending the effortful action due to
overwork4–7, while the latter stresses the importance of the drive
to partake in actions according to their intrinsic reward and
utility3,8,9.

As the functional paradigm proposes that fatigue issues from
accumulation of metabolites or depletion of resources over
repeated recruitment of the same neural networks, this leads to
the prediction that even passive neural stimulation should even-
tually produce fatigue in specific neuronal assemblies. In previous
work, we provided support for this hypothesis by showing, across
multiple experiments, that passive visual stimulation had tangible
repercussions on a task that involved stimuli identical to the
repeatedly presented ones10.

These performance drops were mainly present, if not bound
within, the portion of visual field that underwent continuous
passive stimulation, observed only under conditions of higher
arousal and cognitive load, which were induced by auditory tasks
concurrent to the visual stimulation10.

The striking specificity of the aforementioned findings provides
evidence for fatigue-induced performance drops that are
unequivocally dissociated from other confounds such as bore-
dom, level of skill in the task, and motivation. Although the
neural underpinnings of such behavioral phenomenon are
unknown, its selectivity points to an impact on the cortical
regions that are engaged by the stimulation, coherently with
previous reports of fatigue-induced alterations in the task-
relevant networks in humans4,6,11,12 and rats13. Such specific
disruption, caused by protracted activity, would strongly support
the functional paradigm of fatigue and could help to shed light on
its neural basis, which has yet to reach a clear consensus in the
literature, as attested by the diverging reviews on the topic8,14–17.

Therefore, in the present study, we set out to test if the decline
in performance following sustained passive stimulation is related
to altered cortical responses in the brain regions recruited by the
fatiguing condition, a hypothesis for which we have so far only
partial and indirect evidence4,6,11,12.

To do so, we hindered visual processing in a specific region of
space (quadrant) by repeatedly stimulating this region with
flashing stimuli (saturation), to induce objective fatigue in the
texture discrimination task (TDT)18. The task’s goal at each trial
is to identify the orientation (vertical or horizontal) of a per-
ipheral target that may appear in either upper quadrant, while
maintaining central fixation. Importantly, the task’s difficulty was
adapted to the level of skill of each individual. In-between TDT
sessions, participants underwent saturation of all the possible
targets in a single quadrant, hence allowing to probe the after-
math of prolonged exposure on performance.

Concerning the neural mapping of this effect, we hypothesized
that each participant would have their own functional response to

the task-relevant stimuli, since cortical response to identical sti-
muli and tasks varies from individual to individual19. Therefore,
we adopted a subject-specific functional approach, instead of a
one-size-fits-all procedure, by employing multivariate pattern
analysis (MVPA)20 to run a classifier on the brain activity within
the subject-specific clusters of voxels that responded to the target
stimuli in each quadrant. These clusters were identified via a
localizer task, and the classifier’s performance was compared
before and after saturation, within and between quadrants,
similarly to human agents.

Univariate analysis of the pre-post brain scans was also per-
formed to identify the cerebral regions where the alteration
between sessions was most prominent across participants. We
also expected the regions of the brain that were the most
responsive to the stimulation to show the largest drops in
encoding reliability, which we tested by correlating the voxel-wise
change in classifier accuracy to the degree of response to passive
stimulation.

Lastly, the evolution of self-reported fatigue and sleepiness
across the experiment was monitored and correlations between
classifier accuracies, brain activity estimates, and behavioral per-
formance were assessed, along with correlations between objec-
tive and subjective measures of fatigue.

Results
Behavior. The generalized linear mixed model run on the accu-
racy in the TDT revealed significant Session (X2

(1,19200)= 6.61,
p= 0.01) and Quadrant (X2

(1,19200)= 7.98, p= 0.005) main
effects, as well as a significant Session-Quadrant interaction
(X2

(1,19200)= 23.61, p < 0.001). Post hoc tests, corrected for mul-
tiple comparisons by Holm procedure, confirmed a lack of dif-
ference at baseline between the saturated and non-saturated
quadrant (β= 0.24, CI=−0.19, 0.66, Z= 1.4, pcorrected= 0.48,
exp(β)= 1.27), and between baseline and conclusion for the
non-saturated quadrant (β= 0.13, CI=−0.21, 0.48, Z= 0.88,
pcorrected= 0.76, exp(β)= 1.14), while highlighting a significant
decrease between sessions in the saturated quadrant (β= 0.64,
CI= 0.02, 1.27, Z= 3.85, pcorrected < 0.001, exp(β)= 1.91; Fig. 1).

Thus, we successfully replicated the finding that ~40 min of
passive visual stimulation hinder the performance in a behavioral
task involving the same stimuli. Inducing specific, measurable,
objective fatigue10.

Fig. 1 Behavioral results in the Texture Discrimination Task. Graphical
depiction of the average accuracy in the TDT (y-axis), between
experimental sessions (x-axis) and condition (color). Error bars depict the
95% confidence intervals.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-04527-5

2 COMMUNICATIONS BIOLOGY |           (2023) 6:142 | https://doi.org/10.1038/s42003-023-04527-5 | www.nature.com/commsbio

www.nature.com/commsbio


Subject-wise ROI determination. Concerning the subject-
specific regions of interest (ROI), we found via a paired sam-
ples t-test that significantly more voxels responded to stimulation
in the right quadrant (RQ) than in the left quadrant (LQ) (mean
1889 vs 636, p= 0.025). However, this significant difference did
not carry over when ROIs were divided into saturated and non-
saturated (mean 1135 vs 1391, p= 0.66). In any case, an unde-
niable variability was found in the personal profile of response to
stimulation, with the most overlapping areas lying within the
visual cortex, common across at most 18 participants for the RQ
and 12 for the LQ (Fig. 2a).

MVPA on localizer brain activity. The rANOVA on the classifier
accuracy revealed the effect of Session (F(1, 23)= 12.59, p= 0.002,
η2p= 0.35) and the interaction of Quadrant and Session (F(1,
23)= 9.79, p= 0.005, η2p= 0.3) as significant. A post hoc test on
this interaction, corrected for multiple comparisons by Holm
procedure, confirmed the absence of any baseline difference
between saturation conditions (T(23)= 0.5, pcorrected= 0.67), and
yielded a significant difference in performance between baseline
and conclusion, exclusive to the saturated quadrant (Fig. 4;
T(23)= 4.43, pcorrected= 0.001), while none was found in the non-
saturated quadrant (T(23)= 1.25, pcorrected= 0.67).

The MVPA findings thus display a remarkable consistency
with the behavioral results, with a specific drop between
experimental sessions in classifier accuracy, exclusively when
exploiting the brain activity within the saturated ROIs (Fig. 2b).

MVPA on TDT brain activity. Regarding the assessment of the
MVPA results employing brain activity during the TDT, the
interaction between Quadrant and Session failed to reach statis-
tical significance (F(1, 23)= 3.24, p= 0.085, η2p= 0.124; Fig. 2c),
along with any other effect.

Univariate analysis. The repeated-measures cluster-wise uni-
variate analysis revealed two significant clusters showing sig-
nificant decrease in response to the localizer task following
saturation [K= 139, Kz= 1.42, pfwe= 0.017; K= 38, Kz= 0.97,
pfwe= 0.048], on the side of the brain controlateral to saturation.
These were anatomically located, by probabilistic cytoarchitec-
tonic mapping via the Julich anatomy toolbox21, in the lingual
gyrus and inferior lateral occipital cortex, divided among func-
tional regions V4 and V5 (Fig. 3a).

Voxel-wise baseline activity in response to stimuli & change in
classifying accuracy. We next looked at the relation between the
level of activation of individual voxels and their susceptibility to
saturation-induced disruption. We hypothesized that voxels that
responded the most to the stimulation would also be the most
impacted by the saturation procedure. A mixed linear model
highlighted the interaction of saturation condition and baseline
beta activation as impacting significantly on the change in voxel-
specific classifying accuracy, revealing that the voxels exhibiting
the highest beta estimates at baseline in response to stimuli in the
saturated quadrant also displayed the largest loss in classifying

Fig. 2 Aggregated subject-specific ROIs and MVPA results. a Overlapping ROIs projected in the standard MNI single-subject T1-weighted MRI across
participants, obtained from the union of voxels responding to stimuli in the left or right quadrant across pre and post localizer sessions, red-yellow = LQ,
blue-green = RQ. b Graphical depiction of the accuracy of the classifier (y-axis) exploiting the brain activity of participants in response to stimuli during the
localizer task, between experimental sessions (x-axis) for both experimental conditions (color). Error bars represent the 95% confidence intervals.
c Graphical depiction of the accuracy of the classifier (y-axis) exploiting the brain activity of participants in response to stimuli during the TDT, between
experimental sessions (x-axis) for both experimental conditions (color). Error bars represent the 95% confidence intervals.
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accuracy between experimental sessions, while the opposite was
true when stimuli were present in the non-saturated quadrant
(β=−2.76, CI=−3.35, −2.17, T(36369)=−9.15, p < 0.001;
Fig. 3b).

Correlation between classifier performance and behavior. No
significant correlation was observed between the coefficients from
the significant interaction in the behavioral analysis (Quadrant *
Session) and the difference between baseline and conclusion
accuracy of the classifier exploiting the saturated ROI in the
localizer data (R(21)=−0.08, CI=−0.47, 0.34, p= 0.72).

Correlation between brain contrasts and behavior. The corre-
lation between the aforementioned estimates of performance in
the TDT and the change in the univariate localizer brain signal
within the subject-specific saturated ROIs revealed a significant
positive correlation (R(21)= 0.42, CI= 0.01, 0.71, p= 0.048;
Fig. 3c), meaning that people who had a decrease in the average
value of brain activity within the saturated ROI displayed a larger
loss of performance in the TDT when the target was in the
saturated quadrant.

Subjective fatigue. Concerning the pen and paper questionnaires,
the statistical tests confirmed that there was a strong increase in
the perception of both fatigue (T(24)=−7.61, p < 0.001, d= 1.52)
and sleepiness (Z=−4.18, p < 0.001, r=−0.87) during the
experiment.

Correlations between subjective and objective fatigue. No sig-
nificant correlation was found between the performance in the

TDT and the evolution of subjective fatigue between sessions,
whether employing the random coefficients for the interaction
between Session and Quadrant (R(22)=−0.22, CI=−0.57, 0.22,
p= 0.29) or solely those of Session (R(22)=−0.30, CI=−0.63,
0.11, p= 0.15).

On the other hand, a significant negative correlation was found
between self-reported sleepiness change and behavioral estimates
of TDT performance in the saturated condition (R(21)=−0.54,
CI=−0.79, −0.16, p= 0.008, Fig. 4). To confirm the robustness
of this latter finding to extreme values in the data, we ran the
same variables through a Spearman correlation, which yielded
similar results (Rs(21)=−0.52, CI=−0.77, −0.14, p= 0.01).
Therefore, participants who performed worse in the saturated
quadrant in the second TDT session tended to report greater
levels of perceived sleepiness at the end of the experiment.

Post hoc power analyses. We have run exploratory tests to
evaluate the statistical power of the reported results.

In regard to the repeated measures ANOVA on the MVPA
classifier accuracies, the results from G*Power22 state that with
our reported effect size and employed sample size, a statistical
power of 90% was reached, indicating that a significant result
could have been found with a sample of only 10 participants.

With respect to the univariate analysis, we calculated the
average Cohen’s d measure of effect size in the significant clusters
for the post–pre contrast, which yielded a value of d=−0.52.
This is generally interpreted as a medium effect size23, and
matches the higher end of the distribution of fMRI effect sizes
reported in the study on the topic from Poldrack and
colleagues24, as could have been expected since we recorded
activity in response to visual stimulation, which is known to

Fig. 3 Univariate analysis results, relationship between baseline activity and classifying accuracy, brain–behavior correlation. a Graphical
representation of the clusters, controlateral to saturation, that presented significant changes in blood-oxygen-level-dependent signal before and after
saturation across participants, projected in the standard MNI single-subject T1-weighted MRI. b Fit of the mixed model ran on the voxel-wise baseline
activity in the subject-specific ROI (y axis) as a function of the change in the voxel-wise quadrant classifying accuracy (x axis) for both conditions (color).
Shaded areas represent the standard error. c Scatterplot of the change in the estimated brain activity within the ROI responding to stimulation in the
saturated portion of the visual field (y-axis) and the change in the performance of the behavioral task (x-axis) across the experiment, with the regression
line depicted in dashed gray.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-04527-5

4 COMMUNICATIONS BIOLOGY |           (2023) 6:142 | https://doi.org/10.1038/s42003-023-04527-5 | www.nature.com/commsbio

www.nature.com/commsbio


display relatively large effect sizes compared to other manipula-
tions. With our sample size, this translates in an achieved
statistical power level of 68%, as calculated with G*Power.

Although reporting effect sizes should be standard practice in
scientific endeavors involving statistical analyses25, we would like
to point out that post hoc power analyses should be approached
with caution, as their use is a source of much debate within the
scholarly community26.

Discussion
In the present work, we found evidence of specific, passively
induced, neural fatigue. We replicated our finding that objective
fatigue manifests itself after ~40 min of passive visual stimulation,
in a behavioral task that involves identical stimuli in a delimited
portion of visual field. This result has been found consistently
across repeated experiments10, when other variables such as
motivation and level of skill in the fatiguing task are controlled
for. Thereby, this objective fatigue effect cannot be explained by
motivational accounts of cognitive fatigue8,9, nor disproven by
those that posit the objective component of fatigue as secondary
with respect to the subjective one3.

We also show that the accuracy of a classifier trained to decode
participants’ functional brain activity mirrored the results found
in the behavior of those same participants, displaying a
saturation-specific loss of performance (Figs. 1 and 2b).

Moreover, we found that voxels responding significantly to the
stimuli employed in the saturation procedure exhibited the largest
loss of classifying accuracy, suggesting a direct link between the
level of activity during saturation and the consecutive disruption
(Fig. 3b).

This discovery of specific neural fatigue was additionally cor-
roborated by the correlation between the difference (conclusion—
baseline; Fig. 3c) in measures of brain activity in response to the
stimuli in the saturated quadrant within the saturated ROIs and
the estimates of performance in the TDT. To our best knowledge,
this set of results is one of the first cases of clear-cut relation

between purposefully induced neural fatigue and objective fatigue
in human participants.

The above-mentioned behavioral consequences of fatigue
occurred along with an increasing sense of tiredness and sleepi-
ness in all the participants, as predicted. Admittedly, most
experimental settings are likely to induce some measure of fati-
gue, sleepiness or boredom—all closely related constructs. How-
ever, the correlation we witnessed between the quantified
performance alteration and the sensation of sleepiness (Fig. 4)
provides a link between objective performance and subjective
states that resonates with the notion that this construct is hardly
distinguishable from fatigue17,27,28, especially in experimental
settings.

The present results indicate that by keeping specific neural
assemblies active over a prolonged period of time, passive visual
stimulation brings them to the point of disruption due to
overwork10, in agreement with recent findings that found
decreased task-related responses in relation to fatigue develop-
ment in the absence of alterations in the motivational circuit of
the brain6. They also concur with research carried on habituation,
neural adaptation and repetition suppression, which have thor-
oughly investigated the mechanisms by which relevant neuronal
populations reduce their activity in response to repeated pre-
sentations of identical stimuli29. Indeed, the earlier theorizations
of said phenomena explicitly framed them in terms of fatigue30,31,
and this view has been taken up more recently in a fatigue model
that explains such effects by a reduction in firing rates caused by
lessened synaptic efficiency, especially in the visual cortex32. A
crucial feature of the present study is the performance drop that
parallels the altered responses in the saturated portions of the
brain. This is in stark contrast with standard neural adaptation, in
which performance remains unaffected, or even improves, despite
decreased neural responses, indicative of improved efficiency of
encoding33.

Our experiment was inspired by methodology employed in
closely related scientific domains, such as perceptual learning34–38

Fig. 4 Correlation between reported sleepiness and behavioral performance. Scatterplot of the change in the self-reported perceived sleepiness scores
(y-axis) and the change in the performance of the behavioral task (x-axis) across the experiment with the regression line depicted in dashed gray.
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and perceptual deterioration11,39–41. The majority of previous
research stemming from these literatures has tended so far to
theorize, or find, an involvement of the primary visual cortices in
their phenomenon of interest. In the earliest reports on percep-
tual learning, the enhancement effect was interpreted in terms of
local plasticity induced by retinal input at the level of orientation
sensitive cells in the primary visual cortex34.

Across the years, other investigators have built upon these
theories by means of functional neuroimaging. For example,
Schwartz et al.42 found evidence for diverging activity within the
lingual gyrus during TDT in humans, in a trained eye vs
untrained eye contrast. Another study on the topic that did not
focus exclusively on the early visual areas investigated the activity
within the middle frontal gyrus, the superior parietal gyrus and
the intraparietal sulcus, however, being limited to univariate
contrasts of activity estimates within these a priori anatomical
ROIs43. Studies on primates recording directly in the visual
cortices have found extrastriate V4 neurons to be involved to a
greater extent in perceptual learning than V1 cells44,45.

Concerning perceptual deterioration, Mednick et al.11 found
proof of alterations in the signal within early visual area V1 fol-
lowing extended repetitions of the TDT (4 h in one day). Yet, also
in this case, the followed procedure was to single out areas of the
participant’s brains and contrast the activity in each area with
itself across experimental conditions.

Here, by combining the subject-specific approach with a uni-
variate test between the brain scans at baseline and conclusion of
the experiment, we were able to identify the cluster of voxels that
were predominantly affected by the saturation procedure across
the majority of participants, without enforcing an a priori ana-
tomically determined comparison. As could have been expected,
these clusters lied within the visual cortex, precisely within the
lingual gyrus and the inferior lateral occipital cortex, functionally
defined as areas V4 and V5.

Therefore, our results point to an involvement of the extra-
striate cortex, in line with previous accounts in the domain of
perceptual learning42,44,45.

Indeed, V4 is thought to contain neuronal populations tuned to
the orientation of basic visual stimuli46, such as the lines
employed in the present study, while V5 is believed to be involved
in motion perception47, making it presumably sensitive to their
continuous 7.5 Hz fluttering.

Accounts of mental fatigue that posit its origin as the product
of functional alterations that take place in over-worked cellular
populations provide potential explanations as to which may be
the processes taking place within these areas. One of the main
candidates is the mechanism of consumption and storage of
glucose, the brain’s main source of energy. It has been argued that
performance decrements arising during extended task repetition
are related to abrupt use of this molecule, paired with reduced
replenishing from the astrocyte support network48,49. It must be
noted that the association between decreased global availability of
glucose and cognitive activity has been contested by some authors
as being confounded by extra-experimental factors50. Never-
theless, at the local level, research assessing the release of lactate, a
molecule derived from glucose and thought to be the most
immediately available fuel of neurons51 found evidence of
alterations in the concentrations of this metabolite, along with
glutamate, in response to repeated visual stimulation related to
concurrently measured blood-oxygen-level-dependent (BOLD)
signal52.

An alternative theory postulates the accumulation of metabo-
lites as a consequence of prolonged cognitive effort53,54.
Decreases in neuronal pH, presumably caused by lactate accu-
mulation, have been shown to relate to decreased performance in
a serial calculation task55. More recently, a study has found a

relation between the behavioral manifestation of fatigue and
increases in glutamate concentration in the task-relevant neural
network12. Additional studies have associated glutamate56,
tryptophan57, and tyrosine58 with the subjective feeling of fatigue,
however given the opacity of this construct further research is
needed to validate such claims.

Finally, a last possible mechanism of cerebral functional
alterations underlying fatigue may be local, use-dependent,
sleep59–61. Accordingly, Vyazovskiy and colleagues13 revealed, via
deep electroencephalographic recordings, a remarkable correla-
tion between specific neuronal assemblies displaying sleep-like
activity and behavioral deficits in sleep deprived rats.

The accumulation of evidence for local use-dependent sleep
has shifted the theory on sleep mechanisms from a static, global
process, to a more dynamic and local process7. A similar shift
may take place in the domain of cognitive fatigue, as this process
is usually considered as a global mechanism, yet it may be well
arising from the summation of several interconnected units that
progressively reach the point of failure. This duality reflects, to
some extent, the arguments between bottom-up functional
accounts of fatigue and their top-down motivational counter-
parts. As is oft the case in science, the truth is likely to lay in the
middle ground. One may suppose that the objective component
of fatigue can be explained both by diminished cortical processing
of the regions responsible for top-down motivational control,
hindering the ability to partake in goal-directed behavior effi-
ciently, with a concomitant decay of bottom-up signals in task-
related regions due to metabolic constrains on prolonged activity.
This view is compatible with recent frameworks put forth on the
relationship between rising fatigue and its impact on the moti-
vational circuits in the brain62. The subjective component would
be a manifestation of these integrated processes, possibly with a
distinct time-course63, which would explain why they are rarely
observed to correlate1,64. In such perspective, the two schools of
thought of mental fatigue can be seen not as mutually exclusive,
but explaining different aspects of this phenomenon, which is
transversally recognized as multidimensional1,2,15.

In any case, as mentioned in the introduction, the present
study aimed at shedding light on where and if fatigue-induced
functional alterations were occurring in the task-relevant neural
networks, as found in other works employing different tasks,
longer paradigms and univariate fMRI analyses4,6,65. Thereby, it
was not designed to reveal the how, which will need careful,
purposely designed, investigations.

The method employed here has proven reliable in inducing
objective fatigue while controlling for common confounds, and
may thus provide a reliable platform for further experiments. It is
focused on the domain of vision, as this allows for relatively clean
and straightforward experimental manipulations, thus affording
the opportunity to probe the link between the overwork of spe-
cific neuronal assemblies and its behavioral, experiential, and
neural consequences.

Our robust finding of objective fatigue in the visual domain is
not trivial, as it is usually considered a domain where fatigue is all
but absent (for example, see ref. 9). This skepticism is likely
explained by the fact that strict ocular fixation for prolonged
periods of time is extremely rare, as eye movements and micro
saccades prevent saturation to reach noticeable levels in everyday
life. While in the present case neural fatigue was obtained from
prolonged repetition of the same stimulus, we could expect the
same effect to result from more ecological situations, as long as
the same neural networks are solicited repeatedly.

For instance, we may consider the case of someone visiting a
particularly vast and magnificent museum, such as the Louvre in
Paris or the Vatican in Rome. Such person would surely have
high levels of motivation in partaking in such activity, given the

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-04527-5

6 COMMUNICATIONS BIOLOGY |           (2023) 6:142 | https://doi.org/10.1038/s42003-023-04527-5 | www.nature.com/commsbio

www.nature.com/commsbio


substantial time and resources invested. Nevertheless, at a given
moment during the visit, they may experience a progressively
overwhelming sensation of fatigue, in response to the sheer
amount of works of art and history that they are exposed to. In
this case, while there certainly is no visual fatigue due to repeti-
tions of identical visual stimuli, we may suppose that higher-order
neuronal assemblies that process the numerous, complex images
and abstract concepts and underlying associations that each
exhibit implies eventually reach their point of saturation. This, in
turn, prompts the motivational circuits of the agent to diminish
the drive to keep engaged in the visit, urging him to seek a
relieving change in activity—no matter the costs incurred or the
genuine interest in the expositions itself.

Limitations. The main limitation of the present work is, pre-
sumably, the lack of reliable estimates of brain activity during the
TDT, which transferred the burden of hypothesis testing onto the
brain estimates of activity during the localizer sessions, as con-
templated in the pre-registration (https://osf.io/vkrst).

In hindsight, this is likely explained by the diversity of the
tasks. In the TDT trials, the stimuli are presented for very brief
periods (0.34 s) and are mostly identical across conditions, as only
the 3 peripheral target lines relocate from trial to trial, while the
background embedding of horizontal lines remains unchanged.
Accordingly, other experimental works seeking to investigate its
neural signature have either devised methodological changes to
compare between conditions and/or focused on predetermined
anatomically defined areas11,42,43. On the other hand, localizer
sessions had much longer, stable trials (12 s) with clearly distinct
stimuli, thus allowing for more precise estimates of brain activity
in response to them.

Our approach centered on task-related networks may have
overlooked the contribution from task unrelated systems, and
more specifically of facilitation and inhibition system, akin to
those present in the domain of physical fatigue16. These systems
were identified as the limbic-basal ganglia-thalamus-frontal
network in the case of the facilitation system, and as the
insular-posterior cingulate in the case of the inhibition system,
with the latter found to be involved in fatigue on top of task-
related regions only for pathological samples16. At any rate, the
evidence supporting the existence of these systems is limited and
comes from studies that do not involve purely perceptual tasks
such as the present one16.

No significant correlation was found between the accuracy of
the MVPA classifier and the accuracy of participants. MVPA
investigations that assess changes in activity inside brain regions
in relation to the evolution of performance in a task are seemingly
a minority in the literature, as most experiments are concerned
with exploiting this method to localize brain networks underlying
their phenomenon of interest. Within this minority, accounts of
direct correlation between classifier accuracy and behavioral
measures are scarce, with few notable exceptions66,67. As MVPA
output is determined by the unique patterns of activation
recorded rather than the magnitude of the activity, the over-
whelming majority of brain–behavior correlations are carried out
by taking the mean beta coefficient value in the relevant voxels, an
approach with which we did find a meaningful correlation.

Likewise, we did not observe a significant correlation between
subjective fatigue score change and objective fatigue performance
decrement. Accordingly, such correlation is rarely observed in the
field1. However, we had previously reported such a correlation
employing similar methods in two separate samples10. In the
present work, a correlation was found instead between the
sleepiness reports and the behavioral performance, which may
be partially explained by the supine position participants had to

assume during the MRI session68, potentially causing the sleepy
state to overshadow the fatigue state. In any case, sleepiness may
be considered to be a request for rest in order to recover from
fatigue, and the two often follow very similar evolutions69–71.
Coherently, some contend that it is highly challenging to
distinguish reliably between the two states17,27,28.

Another point to be raised here is that beta-behavior
correlation analyses in fMRI72, and in general in the presence
of small sample sizes73 should be interpreted with caution.
Replications will be necessary to conclusively validate the
correlations highlighted in the present work.

Conclusions. Taken together, our results bring substantial proof
that specific functional neural networks can be fatigued by
overwork, even if passive. Further research is needed to char-
acterize exactly what type of process, among candidates in the
literature (glucose/lactate cycle, accumulation of metabolites such
as glutamate or local sleep) takes place in the task-relevant
functional brain networks.

We argue that the results found are a strong indicator that
some forms of cognitive fatigue in healthy individuals stem from
measurable changes in biological circuits caused by their repeated
recruitment.

Methods
The experimental design and main analyses performed in the present study were
pre-registered on the Open Science Foundation platform (https://osf.io/vkrst).

Design. The experiment was carried out in two separate days (Fig. 5a). On the first
day, participants would undergo a training on the TDT (Fig. 5b) to adapt the
difficulty of the task to their level of skill, via a Bayesian staircase procedure10, and
to familiarize with the auditory tasks employed during saturation. On the following
day, participants underwent the test session within the MRI scanner. Participants
were first presented to a localizer task, in order to identify the portions of their
brain that responded significantly to the stimuli, which were identical to the targets
used in the TDT. Then, they carried out the TDT at their personalized difficulty.
Following the first TDT session, participants underwent neuronal saturation (see
below), which was then followed by a second TDT and localizer session. At the
beginning and end of the test day, outside the scanner, participants were asked to
fill out the Multidimensional Fatigue Inventory74 and the Karolinska Sleepiness
Scale75 to assess the evolution in their perceived levels of fatigue and sleepiness
during the experiment.

Materials. All experimental tasks were coded in Matlab 2019a (The MathWorks,
Inc., Natick, Massachusetts, United States), using Psychtoolbox76,77. On training
day, participants sat in front of a 1280 by 1024 computer screen at a distance of
60 cm and accommodated their heads on a chin-rest, using a keyboard to respond
across the various tasks. On test day, participants lied in the MRI scanner and
employed bimanual fiber optic response pads (Current Designs Inc., Philadelphia,
USA) to respond during the TDT and auditory tasks. Sounds were presented in the
scanner via OptoActive ANC headphones with active noise cancellation (Optoa-
coustics Ltd., Tel Aviv District, Israel). Heart and respiratory rate were recorded
through the Physiologic ECG and Respiratory Unit of the Physiological Mea-
surement Unit (Siemens AG, Bavaria, Germany).

On both days, an Eye-tracker (SR Research Ltd., Mississauga, Canada) was
employed to ensure compliance of central fixation throughout the tasks, monitored
by the experimenter.

Texture discrimination task. The main behavioral task consisted in the TDT,
based on the task originally developed by Karni and Sagi18. The task’s goal is to
discriminate the orientation of a peripheral target, which consists of three diagonal
lines aligned either vertically or horizontally, against a background of horizontally
oriented bars (Fig. 5b).

Participants were instructed to maintain their gaze on a central fixation cross
and report the perceived orientation of the peripheral target at the end of each trial,
by pressing on the keyboard. These targets would relocate from trial to trial, with 2
possible locations, one for each quadrant of the upper half of the screen. Therefore,
there were 4 possible targets: either horizontal or vertical, in either the left or right
quadrant. In addition, to mitigate potential biases in the brain activity data, the
response keys would invert in each block and their order alternated among
participants, who were informed of this.

On training day, the task comprised 6 blocks with a balanced number of targets
for each alignment (vertical/horizontal) and quadrant (left/right). The first 2 blocks
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differed from the rest as they had a reduced number of trials (40) and extended
interstimulus interval (ISI) durations and target display to allow the participants to
familiarize with the routine. In the remaining 4 blocks, composed of 100 trials each,
a Bayesian staircase procedure was used to determine the ISI depending on the
participants’ online performance, varying within the range of 0.02 to 0.6 s.

On test day, the subject-specific, fixed ISI corresponded to the value that had an
80% ratio of correct responses on the basis of the psychometric curve obtained
from the block with the best performance in the training day. However, the
participants’ extracted ISI could not surpass a 0.6 s threshold, which was set as the
maximum. Therefore, even if a participant’s predicted ISI for an 80% correct
performance was larger than this value, it would have been enforced to be 0.6 s.
However, this wasn’t necessary for any participant, as the average test-day ISI
estimated from training across participants was of 0.22 ± 0.13 s, with the highest
being 0.51 s.

To prevent the predictability of target onset given the fixed ISI, a random Inter
Trial Interval was introduced at the beginning of each trial, varying within the
range of 200 to 800 ms, uniformly distributed across trials and conditions.

A complete TDT test session consisted of 4 blocks, with equal numbers of trials
per quadrant and target alignment, lasting ~15 min on average (~2 s per trial).
Across participants, the order of target locations and alignments was
predetermined to maximize the BOLD signal-to-noise ratio via design efficiency
analysis (CANlab toolbox).

Localizer. To identify the areas involved in the processing of the task stimuli we
devised a localizer task. Here, unique targets (e.g., horizontal alignment of three 45°
lines in left quadrant, etc.) were presented in a block design to participants inside
the scanner as they fixated the central cross.

Each unique target alignment and quadrant combination was presented 6 times
for 12 s, alternating. The total duration of a localizer session was ~5 min.

Note that we opted to employ the actual target stimuli for this retinotopic
mapping, rather than an unrelated grating checkerboard, as done in other works
employing the same behavioral task42,43.

Saturation. In between the baseline and conclusion TDT sessions, participants
underwent a saturation session that lasted for 41 min. This saturation session

consisted in protracted visual stimulation, during which participants had to
maintain their gaze on a central fixation point while the stimuli were continuously
flashed fluttering at 7.5 Hz, with brief pauses between the end and the beginning of
the auditory tasks in which the participants were engaged during saturation. These
stimuli comprised all possible target line locations in one of the quadrants (i.e., the
saturated quadrant, Fig. 5c), which was alternated between participants.

Auditory tasks. During saturation, participants were engaged in 3 different tasks
that tax executive functions, short term memory and attention10. Specifically, we
employed a 3-back task, a side task and a pitch-sequence task.

A trial in the 3-back task would consist of a list of 12 letters where participants
had to report the occurrence of the target letter, which was any letter repeated
3 steps before in the sequence (3-back). A block was composed of 35 trials, each
lasting 15 s.

In the side task, sounds were presented randomly either to the left or to the
right earphone of the participant. These sounds came from different categories,
namely: animal sounds or vehicle sounds.

Participants had a cue voice indicating, at random points during the block,
which category they had to answer coherently to (i.e., if a sound of that category
was presented to the left, they had to press the left key and vice-versa), this
implicitly signaled they had to answer incoherently to the unmentioned category
(i.e., if the sound was on the left, they had to press right and vice-versa).
Furthermore, a third category of sounds was present, the computer/electronics
category, to which they were instructed not to respond. A block would be made up
of 135 sounds subdivided into trials of 5 sounds. A trial would last on average 18 s.

In the pitch-sequence task, participants were required to replicate a sequence of
beeps that was presented to them. Four different beeps (from low-pitch (224 hz) to
high-pitch (713hz) and in between (300 hz, 534 hz) were put together in randomly
generated sequences. To each beep corresponded a key on the keyboard. These
sequences comprised 4 to 6 beeps and a block consisted of 60 trials on average, with
a mean duration of stimuli presentation of 3.6 s.

MRI acquisition. A 3T Magnetom Prisma scanner (Siemens, Erlangen, Germany)
was employed using a 64-channel head coil. Subjects underwent anatomical and
functional acquisitions during a single session. 3D T1-weighted MPRAGE

Fig. 5 Schematic of experimental setup. a Experimental design. b Breakdown of a Texture Discrimination Task trial. c Graphical depiction of the saturation
procedure.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-04527-5

8 COMMUNICATIONS BIOLOGY |           (2023) 6:142 | https://doi.org/10.1038/s42003-023-04527-5 | www.nature.com/commsbio

www.nature.com/commsbio


anatomical volumes were acquired with the following parameters: Repetition Time/
Echo Time= 2400/2.21 ms, Inversion Time= 1000 ms, Field-of-view= 256 mm2,
Matrix= 256 × 256 × 208, Slice Thickness= 1 mm.

All the functional MRI series were acquired using a 2D simultaneous multi-slice
echo gradient echo planar sequence (2 × 2 mm voxels in-plane; 2 mm slice
thickness with no gap; 40 transverse slices, 170 × 170mm field-of-view; matrix
86 × 86; partial-fourier 6/8; repetition time= 1 s; echo time= 31 ms; multiband
slice acceleration factor of 4; phase encoding direction Anterior-Posterior; flip
angle 71°; bandwidth 1384 hz/pixel). The acquisition was aligned to the calcarine
scissure of the participants.

Quality control. A quality control was conducted using mriqc software78. MRI
images were visually inspected in order to remove those which presented major
spatial artifacts (deformations and movements). In addition, fMRI series exhibiting
a Framewise Displacement value greater than 2 mm or a DVARS value greater than
0.4% BOLD change were excluded for excessive motion according to Power’s
recommendations79. As mentioned, images from a single participant presented
major deformations and were therefore rejected.

fMRI preprocessing. Susceptibility-induced distortions were estimated and cor-
rected for all functional images using the top-up method80 with FSL6.0.3 (FMRIB,
Oxford, UK). In a second step, they were motion-corrected using linear transfor-
mation with the automated tool MCFLIRT in FSL and intensity-scaled to 1000.
Then, the PhysIO Toolbox with MATLAB v9.7 was used to apply physiological
noise correction81. Both cardiac and respiratory signal were recorded using a finger
pulse oximeter and a pneumatic belt during MRI acquisition. Respective physio-
logical regressors were created using the RETROICOR algorithm82 as well as heart
rate variability83 and respiratory volume per time84 and regressed out of from the
functional MRI time series.

Due to the short repetition time used, no slice timing correction was applied.
Finally, each series was realigned to the first localizer acquisition using rigid
transformation with FSL flirt using mean as reference image and normalized to
MNI space using SPM 12 by warping the T1 anatomical scans and applying the
linear transformations to the functional scans.

fMRI analysis. During statistical contrasts, all the fMRI scans were high-pass
filtered with a cutoff of 128 s/cycle, as per SPM default. For the scans used in the
ROI determination contrast, an additional smoothing step was carried out at the
default SPM value (8 × 8 × 8mm), in order to more leniently determine the extent
of the clusters, as voxels neighboring the peaks include potentially useful signal.
This approach was preferred over directly enforcing a strict anatomical a priori
region of interest, or choosing voxels from contrasts that aren’t corrected for
multiple comparisons which are expected to include more noise and thereby
usually restricted a posteriori by some anatomical criterion (for an example see
ref. 85).

Subject-wise ROI determination. For each participant a contrast was carried out
on their localizer data in both sessions (baseline and conclusion) between the
targets in one quadrant versus the other (e.g., LQ > RQ) and vice-versa. Then, the
clusters surviving Family Wise Error multiple comparison correction (pfwe < 0.05)
in both localizer sessions (AND operation) were combined into a single, subject-
specific, binarized functional ROI, via the marsbar toolbox86. Therefore, for each
participant we obtained two ROIs, one for each side of quadrant stimulation
(Fig. 2a), which were later categorized as saturated or non-saturated, depending on
which quadrant would display the stimuli during saturation.

Multivariate pattern analysis. MVPA was carried out both on the localizer beta
coefficients and the TDT beta coefficients, with the same LQ vs RQ contrasts
mentioned above as regressor. In the case of the localizer, the beta coefficients were
derived by means of separate regressors for each single 12-s block of stimulation,
while in the case of the TDT, regressors included groups of 10 successive same-
condition trials87.

MVPA analysis was carried out via The Decoding Toolbox88, in the baseline
and conclusion sessions, separately for the RQ and LQ ROIs. The classifier was
asked, with a leave-one-out cross-validation procedure, to label in which quadrant
were the stimuli presented, given the observed brain activity. Therefore, for each
participant, we derived a data point of classifier accuracy for each quadrant, at
baseline and conclusion, for both the localizer and the TDT brain scans. In
addition, to estimate a voxel-wise measure of classifying accuracy, the above
analysis was repeated with a searchlight procedure using a 4-voxel radius within
the subject-specific ROIs. Searchlight analyses generate accuracy maps by
measuring the variation in activity in multiple, overlapping, group of voxels in
relation to the experimental conditions89, thus outputting a measure of classifying
accuracy for every voxel in the functional ROIs.

Statistics and reproducibility. Given previous results10, and the current con-
sensus on functional neuroimaging sample sizes90, we pre-planned the study to
have 24 participants. We eventually ran a total of 25 participants because one had

to be excluded from the fMRI analysis (due to visible artifacts in MR scans) and
another from the behavioral analysis (due to a software failure to record his
responses in the concluding session). We thus maintained a total sample of 24 in
both the behavioral and neuroimaging analyses, except for the correlations as we
had slightly differing samples: 24 for the MFI questionnaire (one missing partici-
pant), 22 for the Karolinska questionnaire (three missing participants), and 23
participants for the brain–behavior correlation (two missing participants).

Participants were recruited informally and took part voluntarily in the
experiment (Mage= 21.6 ± 1.8, 10 m). All were naive to the experimental
procedure, with no history of mental or visual conditions. Participants had normal
or corrected-to-normal vision and provided written informed consent to
participate. They received 50€ in compensation for their participation. The study
was approved by the Ethical Review Board of the Comité de protection des
personnes Sud-Est V.

rANOVAs on MVPA accuracies and behavioral analyses, except correlations
which were done in Matlab, were carried out in jamovi91 including the package
gamlj92 for linear models. Contrasts and analyses with neuroimaging data were
carried out via SPM 1293, unless otherwise specified.

Behavioral effects were assessed by means of a generalized linear mixed model
on response accuracy in the TDT. Correct response in the task was modeled as a
logistic dependent variable, with Session, Quadrant, and their interaction as
explanatory variables, clustered by participant and also included in the random
part of the model, with the following formula:

Accuracy �Quadrantþ Sessionþ Quadrant � Session
þ 1þQuadrantþ SessionþQuadrant � SessionjSubject� �

:
ð1Þ

Based on previous results10, we expected to find an interaction between Session
and Quadrant, highlighting a specific drop in performance in the saturated
quadrant between baseline and conclusion.

Changes in MVPA accuracy were evaluated by repeated measures ANOVAs
with Session (baseline, conclusion) and Quadrant (saturated, not saturated) as
within-subject factors, separately on the localizer and TDT estimates of brain
activity. Here, we hypothesized that the effectiveness of the classifier exploiting the
participants’ neural signal would follow a similar pattern to their behavioral
performance.

To identify precisely the spatial localization of the alteration induced by the
saturation procedure, we proceeded to homogenize brain images in relation to their
stimulation side (i.e., the brains of participants who were saturated on the left
portion of the visual field were flipped, so that all participants had coherent
saturated and non-saturated sides of the brain).

These beta maps were then contrasted with a classic second-level univariate
approach, by means of a repeated-measures analysis with a non-parametric cluster-
wise bootstrap procedure (SwE toolbox94), between conclusion and baseline scans
of all the participants.

For this analysis, an explicit mask was restricted to the functionally relevant
parieto-occipital portions of the brain, obtained by aggregating each subject-
specific functional ROI and excluding any clusters anterior to the central gyrus
and/or inferior to the lower bound of the occipital lobe.

Most voxels of the single ROIs fell within this mask (91% on average), with the
majority of voxels located in the hemisphere contralateral to stimulation. The
yielded data-driven mask is available for scrutiny in the public data repository. As a
result of this analysis, we expected to find an alteration in the BOLD activations
between baseline and conclusion of the experiment in the portions of the brain
contralateral to the saturation procedure.

Classifier-behavior correlation (Pearson) was assessed by extracting the random
coefficients of the Session-Quadrant interaction from the model on TDT accuracy
data (representing individual deviations of each participant from the mean effect)
and correlating these values to the delta (conclusion—baseline) in classifier
accuracy in the saturated ROI of each participant, while brain–behavior correlation
(Pearson) was assessed by correlating the same random coefficients to the delta
(conclusion—baseline) in mean brain activity inside the saturated ROI of each
participant. In this case, we expected to find a relation between the change in brain
signal of the participants and their drop in task performance.

The quantification of voxel-wise deterioration in classifying accuracy in relation
to the degree of response to passive stimulation was assessed by a linear mixed
model on the delta in voxel-wise classifying accuracy with Baseline estimates of
brain activity, Saturation and their interaction as explanatory variables, clustered by
participant and included in the random part except for their interaction, as
including interactions of between and within factors in the random part of a mixed
model is not recommended95, with the following formula:

DeltaAccuracy �Quadrantþ BaselineBetaþQuadrant � BaselineBeta
þ 1þQuadrantþ BaselineBetajSubject� � ð2Þ

This analysis was run to highlight the relationship between initial estimated
activity in the relevant voxels and their change in classifying accuracy, as we
hypothesized to see the most contributing voxels in the saturated portion of the
brain to display the largest classifying accuracy loss.

The evolution of subjective fatigue was evaluated by a paired samples t-test on
the average change towards fatigued responses in an adapted version of the
Multidimensional Fatigue Inventory that included only the General Fatigue and
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Mental Fatigue items74, and by a sign-rank test between the baseline and
conclusion scores in the Karolinska Sleepiness Scale75. In line with previous
work10, we expected to find increased sensations of fatigue and sleepiness following
the experimental procedure.

The correlation between objective and subjective components of fatigue was
assessed by correlating (Pearson) the random coefficients of the model on behavior
and the delta (conclusion—baseline) in fatigue and sleepiness questionnaire scores
of each participant. Similar to above, in light of our previous experiments10, we
expected to find a correlation between the subjective questionnaire scores and the
estimates of behavioral performance.

All statistical tests were two-sided, where applicable.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All the data employed in this work, along with instructions to reproduce the analyses, can
be found at the following public repository: https://zenodo.org/record/739570396.
Moreover, the source data to recreate the plots present in the paper has been provided as
supplementary data (Fig. 1—Supplementary Data 1, Fig. 2b—Supplementary Data 2,
Fig. 2c—Supplementary Data 3, Fig. 3b—Supplementary Data 4, Fig. 3c—Supplementary
Data 5, Fig. 4—Supplementary Data 6).

Code availability
All the codes employed in this work, along with information on their purpose, may be
downloaded from the following public repository: https://zenodo.org/record/756599197.
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