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Carbon acquisition, assimilation and storage in eukaryotic microalgae and cya-

nobacteria occur in multiple compartments that have been characterised by the

location of the enzymes involved in these functions. These compartments can be

delimited by bilayer membranes, such as the chloroplast, the lumen, the peroxi-

some, the mitochondria or monolayer membranes, such as lipid droplets or plas-

toglobules. They can also originate from liquid–liquid phase separation such as

the pyrenoid. Multiple exchanges exist between the intracellular microcompart-

ments, and these are reviewed for the CO2 concentration mechanism, the

Calvin–Benson–Bassham cycle, the lipid metabolism and the cellular energetic

balance. Progress in microscopy and spectroscopic methods opens new perspec-

tives to characterise the molecular consequences of the location of the proteins

involved, including intrinsically disordered proteins.

Keywords: bioenergetics; Calvin–Benson–Bassham cycle; Chlamydomonas

reinhardtii; cyanobacterium; diatom; intrinsically disordered protein;

liquid–liquid phase separation; nuclear magnetic resonance; photosynthesis;

structural biology

Photosynthesis is an essential metabolic pathway that

allows autotrophic organisms to mobilise inorganic

carbon and produce carbohydrates and fatty acids that

are further used by other metabolic pathways. These

pathways are differentially localised in compartments

that have distinct physicochemical properties, which
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can affect the physiology. The complete photosynthetic

carbon metabolism is complex, and only three main

stages will be discussed here: The first stage is the

acquisition of inorganic carbon and its accumulation

at the location of the enzyme ribulose-1,5-bisphosphate

carboxylase/oxygenase (RuBisCO; Fig. 1). In the

Fig. 1. Schematic of the carbon metabolism pathways that are discussed in this Review (A) together with schemes of the ultrastructures of

a cyanobacterial cell (B), of C. reinhardtii (C) and of P. tricornutum (D). The location of some enzymes has been determined experimentally

(refer to the main text) and the colour of the rectangle surrounding their name indicates their localisation: blue: pyrenoid or carboxysome;

light green: cytosol of cyanobacteria or chloroplast of eukaryotic algae; dark green: thylakoids; grey: cytosol of eukaryotic algae. ATP S.ase,

ATP synthase; ATP, adenosine triphosphate; BPGA, bisphosphoglyceric acid; CA, carbonic anhydrase; Carb., carbamylated RuBisCO; DGDG,

digalactosyldiacylglycerol; FA, fatty acid; Fdx, ferredoxin; FNR, ferredoxin NADP+ reductase; GAP, glyceraldehyde-3-phosphate; GAPDH,

glyceraldehyde-3-phosphate dehydrogenase; MGDG, monogalactosyldiacylglycerol; NADPH, nicotinamide adenine dinucleotide phosphate;

PGA, phosphoglyceric acid; PGK, phosphoglycerate kinase; PRK, phosphoribulokinase; Ri5P, ribose-5-phosphate; Ru5P, ribulose-5-phosphate;

RuBP, ribulose-1,5 bisphosphate; SQDG, sulfoquinovosyldiacylglycerol; TAG, triacylglycerol; Trx, thioredoxin.
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second stage, RuBisCO fixes CO2 with a carboxylation

step and produces two molecules of phosphoglyceric

acid (PGA), a three-carbon molecule that is further

converted into reduced carbohydrates in the Calvin–
Benson–Bassham (CBB) pathway. The CBB pathway

relies on the availability of a reducing power and

adenosine triphosphate (ATP) generated by the photo-

chemical phase of photosynthesis. Finally, the third

stage is the synthesis of the carbon storage compounds

in the form of either carbohydrates or fatty acids fur-

ther esterified into membrane and storage lipids (tria-

cylglycerol lipids). Each of these three stages is finely

tuned according to light intensity, availability of the

inorganic carbon source or environmental stresses

(nutrient shortage, temperature, salinity, drought, pres-

sure, etc.).

The molecular mechanisms underlying the regulation

of carbon acquisition, assimilation and storage path-

ways are well-described in the literature. These involve

physicochemical transitions such as changes in pH,

redox potential, metabolites and metal ion concentra-

tions within the cellular compartments where photo-

synthesis occurs [1–4], post-translational modifications

[5–7], structural transitions of key enzymes [8–10] and
reorganisations within supramolecular complexes [11–14].
Recent high-resolution cryo-electron microscopy

images and tomograms from the cyanobacterium Syne-

chocystis 6803 [15], the green alga Chlamydomonas

reinhardtii [16–18] and the diatom Phaeodactylum tri-

cornutum [19] enabled the cellular localisation of some

metabolic pathways. The location of enzymes within

the cells (Fig. 1B) can be correlated with the molecular

description of the biochemical pathways (Fig. 1A)

thanks to progress in biophysical methods such as

microscopy, mass spectrometry, several spectroscopic

methods such as fluorescence spectroscopy and nuclear

magnetic resonance (NMR) and machine-learning-

assisted-data interpretation [16,20,21].

Here, we will focus on unicellular photosynthetic

organisms, where all stages of the carbon cycle occur

in a single cell, unlike most higher plants. In multicel-

lular organisms, cell specialisation can allow to sepa-

rate physiological functions on the macroscopic level.

In eukaryotic unicellular photosynthetic organisms,

different organelles participate in the compartmentali-

sation of some metabolic pathways. This partitioning

helps prevent futile cycles of antagonist metabolic

pathways that share the same metabolites. For exam-

ple, the oxidative pentose phosphate (OPP) cycle in

diatoms is localised in the cytoplasm, and its antago-

nist pathway, the CBB, also named reductive pentose

phosphate cycle, is localised in the chloroplast [22]. In

eukaryotic microalgae, inorganic carbon is imported

and assimilated in the chloroplasts (Fig. 1B). Carbon

storage is then ensured by the synthesis of polysaccha-

rides that accumulate in the form of starch granules in

the chloroplast of green algae, of starch-like polymers

in cyanobacteria [23], or of chrysolaminarin granules

in the vacuoles of diatoms [24,25]. Alternatively, car-

bon can be stored through the synthesis of triacylgly-

cerols (TAG) that assemble in lipid droplets (LD) [26].

Even though these carbon metabolic pathways are sep-

arated in different spaces within the cell, they are inter-

connected by exchange of metabolites between the

different partitions and across their boundaries.

The physical–chemical nature of these cell compart-

ments varies. For example, LDs encapsulate an

organic liquid phase [27], whereas polysaccharide gran-

ules are composed of amorphous and semicrystalline

layers of polysaccharides [27–29]. Traditionally, the

term ‘organelle’ refers to large aqueous cellular com-

partments surrounded by a bilayer membrane such as

the chloroplast, the vacuole or the mitochondrion. The

term organelle has been also proposed to name LDs

that are smaller organic partitions surrounded by a

monolayer membrane [27,30]. Organelles can be them-

selves divided in different regions of space that we

chose to name microcompartments. For example,

polysaccharide granules that localise within the chloro-

plast of green microalgae or within the vacuole of dia-

toms can be referred to as a microcompartment. One

can also refer to the self-assembled granules of poly-

saccharide as ‘biomolecular condensates’. Indeed, the

term ‘condensation’ has been used to denominate

the spontaneous clustering of biomolecules that result

in a high local concentration surrounded by a dilute

phase and the partitioning of the cell [31]. Different

types of biomolecules can spontaneously cluster in bio-

molecular condensates, including ribonucleic acid,

polysaccharides, proteins or lipids [32–34]. The pyre-

noid matrix is a well-described example of protein bio-

molecular condensate that is described in details in

Pyrenoid and carboxysome section. Because biomolec-

ular condensates do not possess membranes, they are

also referred to as membrane-less organelles [32–34].
The physicochemical properties of these biomolecular

condensates are the focus of intense scrutiny.

Microcompartments can be observed in microscopy

images of prokaryotic unicellular organisms, such as

carboxysomes, in nonheterocystous cyanobacteria,

where inorganic carbon and RuBisCO are condensed

[35]. The thylakoid membranes can also be considered

as a microcompartment because they define a new

region of space in the chloroplast where the photo-

chemical phase of photosynthesis produces ATP and

NADPH. Their associated plastoglobules are another

3FEBS Letters (2023) ª 2023 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
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example of partition, the function of which is multiple

[36]. Plastoglobules encapsulate a hydrophobic core

with varying compounds that change according to cul-

ture conditions, surrounded by a monolayer membrane

[37]. They have been proposed to provide storage for

thylakoid components, and to be involved in insoluble

isoprenoid synthesis or degradation, and in stress

response, as well as in the storage of compounds that

can be toxic for the cell such as terpenes [36,38].

This perspective review aims to discuss the organisa-

tion of carbon metabolism in different microcompart-

ments and at different scales within the cell. This

includes the molecular description of the regulatory

processes with the physical separation of their key

actors, as well as the formation of supramolecular

assemblies/biocondensates leading to the segregation

of metabolites and enzymes.

Illustration from the emblematic case
of RuBisCO

The study of RuBisCO, which is a complex made up

of large (L) and small (S) subunits (Fig. 2A), is

emblematic of the structure–function relationships in a

complex [39]. Since the first X-ray structure of the

active RuBisCO in 1989 [40], more than 240 structures

from all the photosynthetic lineage have been depos-

ited in the Protein Data Bank (PDB). The mainly

described oligomeric state of the enzyme is the L8S8
hexadecameric form, but other oligomeric states exist

[41]. The regulation of the enzyme, notably by pH, a

Mg2+ cation and an ‘activating’ nonsubstrate CO2

molecule via the carbamylation of Lysine 201 in the

active site of the large subunit is well-understood [7]

(numbering from C. reinhardtii, Fig. 2A). Binding of

RuBP to noncarbamylated RuBisCO results in an

inhibited state. This state is resolved by interaction

with a RuBisCO activase or possibly by CBB X

protein (CbbX) in diatoms [42,43]. The ‘structure–
function’ correlation of this model enzyme is thus

well-established. Since more than 30 years, its localisa-

tion in an ultrastructure has been observed on micros-

copy images: in the pyrenoid in eukaryotic microalgae

or in the carboxysomes in cyanobacteria [35,44–46].
More precisely, in C. reinhardtii and under atmo-

spheric CO2 (� 400 ppm) and O2 concentrations,

RuBisCO is present both in the chloroplast stroma

and in the pyrenoid microcompartment (Fig. 2D).

Under CO2 concentrations lower than atmospheric

(< 200 ppm) or high O2 conditions, RuBisCO relo-

cates from the stroma to the pyrenoid (Fig. 2E)

[18,47,48]. Only very recently, the physicochemical

nature of the pyrenoid has been described. This bio-

molecular condensate is detailed in the following

section [32,49–52]. Also, recent metabolic flux models

provide insights into the consequence of this ‘segrega-

tion’ or ‘condensation’ of RuBisCO within these

demixing condensates as regard to the CBB metabolic

flux [18].

From the example of RuBisCO, one can now extend

the ‘structure–function’ relationships from quaternary

structure (oligomeric enzyme complex) to an addi-

tional level of supramolecular assembly that could be

named ‘ultrastructure-function’ relationships. Such an

organisation raises new questions. What is the signifi-

cance of the heterogeneity within a cell, in other words

‘roughness’, observed in microscopy images [53,54]?

What are the physicochemical properties of the various

microcompartments? Some are mesoscopic macromo-

lecular complexes such as carboxysomes or starch

granules. Some are separated liquid phases that demix

because of the presence of different water-insoluble

compounds such as lipids. Some are separated liquid

phases that demix because of condensation of protein

constituents through multivalent transient intermolecu-

lar interactions such as the pyrenoid [33,34,55]. While

the phase separation of lipids appears obvious, why do

carbohydrates (starch) and proteins (pyrenoid) also

phase separate? These microcompartments cannot be

considered as strictly confined zones, as metabolites

diffuse in and out. How is their formation/disassembly

regulated? How do proteins fold in these different

microcompartments? All these questions can be raised

for each stage of the carbon cycle of microalgae, but

this is also true for all metabolic pathways in all types

of cells.

Fig. 2. RuBisCO regulation at the molecular and supramolecular levels. (A) Structure of the active site of RuBisCO (PDB ID: 1IR2). (B)

Hexadecameric L8S8 RuBisCO bound to eight Essential Pyrenoid Component 1 (EPYC1) proteins, obtained by cocrystallisation with

saturating concentrations of synthetic peptides shown in brown (PDB IDs: 7JSX and 7JFO). In addition, one full-length EPYC1 protein is

artistically depicted in green. (C) Schematic of the molecular contacts between EPYC1 and RuBisCO underlying the phase separation. (D, E)

Confocal microscopy images of C. reinhardtii showing Venus-labelled RuBisCO that indicating the location of the hexadecameric complex.

(D) Location of RuBisCO in both the chloroplast stroma and the pyrenoid at atmospheric CO2 concentration with 5 mM bicarbonate. (E)

Hyperoxia phenotype and the relocation of RuBisCO induced by 100 μM H202 to the culture. Panels D and E are adapted from [48]. The

same relocation is observed under low CO2 conditions without hyperoxia.
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Ideally, to grasp the above-defined ‘ultrastructure-

function’ relationships, one would like to be able to

describe all the ultrastructural elements observed on

electron microscopy images at the molecular level and

provide a rationale on their role for the regulation of

the metabolic pathways they are hosting. Most of the

recent technological developments that allowed deci-

phering some of these aspects on the carbon metabo-

lism of microalgae will be mentioned.

Pyrenoid and carboxysome

As mentioned above, the most emblematic enzyme for

CO2 fixation is RuBisCO, which is responsible for the

conversion of 1014 kilogrammes of carbon each year

[56]. Surprisingly, the maximum catalytic activity for

the carboxylation of RuBP by RuBisCO is achieved at

significantly high CO2 concentrations (ranging from 25

to 100 μM). These concentrations are higher than the

atmospheric CO2 concentration (c.a. 15 μM in

the oceans) [57,58]. The pH of the compartment where

RuBisCO is localised, such as the chloroplast stroma

or the cyanobacteria cytosol (pH 7.9), suggests that

the major form of inorganic carbon is bicarbonate.

Considering these biochemical data, it can be con-

cluded that RuBisCO is not working at its maximum

rate and that the carboxylation reaction is in competition

with the oxygenation of RuBP. The latter produces an

inhibitor of the CBB cycle, 2-phosphoglycolate, that must

be metabolised in the C2 respiratory pathway. This

apparent paradox may be resolved when the ultrastruc-

ture of the chloroplast is taken into consideration. The

chloroplast membranes, including the thylakoids mem-

branes, are permeable to CO2, and bicarbonate trans-

porters catalyse the import of HCO�
3 into the stroma

(Fig. 1B). In each compartment, carbonic anhydrases

catalyse the HCO�
3 /CO2 conversion so that their pH-

dependent ratio is instantly achieved. Besides, the equilib-

rium across multiple microcompartments that have differ-

ent pH—the thylakoids lumen (pH 6) versus the

chloroplast stroma and the pyrenoid (pH 7.9)—drives the

import of inorganic carbon to the pyrenoid [57]. The ‘pas-

sive’ transport of inorganic carbon through the different

microcompartments can support RuBisCO carboxylation

activity in the pyrenoid under atmospheric CO2 condi-

tions, while additional HCO�
3 transporters enhance inor-

ganic carbon import under low CO2 [59]. Finally, the

condensation of RuBisCO together with CAs in the car-

boxysome (cyanobacteria) or the pyrenoid (eukaryotic

microalgae) increases the availability of CO2 in the vicin-

ity of the enzyme, which enables its activity. The pyrenoid

is often surrounded by a discontinuous layer of starch

granules that could contribute to the confinement of

inorganic carbon that results in a higher CO2/O2 ratio

compared with the stroma and that supports carboxyla-

tion at the expense of oxygenation reaction [47]. Under

specific conditions (hyperoxia), the pyrenoid has no starch

sheath and presents a large interface with the chloroplast

stroma [48]. The existence of such interface will be dis-

cussed later.

For decades, it was enigmatic how the colocalisation

of RuBisCO and CAs was mediated, even though the

functions of the carboxysome and pyrenoid were

known [35,44,45]. RuBisCO was copurified in cyano-

bacterial β-carboxysome as a supramolecular complex

with small putative shell proteins (CcmM) that are

composed of three RuBisCO small subunit-like

domains (SSUL) and one isoform that possesses a CA

domain [60]. Reconstitution of the RuBisCO–CcmM

complexes in vitro induced a liquid–liquid phase sepa-

ration: One phase is a biomolecular condensate of

RuBisCO-CcmM and the other phase is free of pro-

teins [61,62]. In a nutshell, multivalent interactions

between the hexadecameric RuBisCO (L8S8) and the

SSUL domains result in the condensation of the two

protein complexes when they are mixed in the appro-

priate stoichiometry (0.25 : 1 molar ratio). The revers-

ible demixing of these two separated liquid–liquid
phases (LLPS) can be observed using fluorescent-

tagged proteins and fluorescence microscopy. Demix-

ing does not occur under high salt concentrations that

interfere with electrostatic intermolecular interactions.

Also excess of CcmM prevented the condensation of

the separated liquid phase, indicating that stoichiome-

try is essential [61]. The fluidic (liquid) nature of the

protein condensate was confirmed by dual-colour fluo-

rescence cross-correlation spectroscopy and fluores-

cence recovery after photobleaching (FRAP) that

allowed to quantify the short live-time of the

RuBisCO–CcmM contacts.

Similarly, the α-carboxysome biogenesis involves

multivalent interactions of the hexadecameric

RuBisCO with four N-terminal repeat regions (NTR)

of a large (� 900 residues) intrinsically disordered pro-

tein (IDP) named CsoS2. Demixing into two liquid–
liquid phases was observed when RuBisCO and

CsoS2-NTR are present in the appropriate stoichiome-

try (1 : 1 molar ratio) [63]. The dynamics that are

characteristic for the LLPS biocondensates only have

been studied by in vitro studies of carboxysomes bio-

genesis. This biphasic state is not conserved in the final

mesoscopic RuBisCO-CA supramolecular complex,

that is surrounded by shell proteins. This suggests that

the transient interactions are fixed upon the recruit-

ment of other partners of the final aggregates that

acquire microcrystalline properties [64].

6 FEBS Letters (2023) ª 2023 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
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Unlike carboxysomes, the pyrenoid has no protein-

shell. It has been a challenge to isolate this membrane-

less microcompartment in order to identify its molecu-

lar constituents. It is not a microcrystalline structure

and therefore it loses its integrity upon purification

steps. The constituents of the pyrenoid were identified

by a combination of genetic screening with the crea-

tion of a library of GFP-mutant chloroplast proteins,

microscopy and proteomic screening [65]. An essential

protein for the formation of the pyrenoid is the

Essential Pyrenoid Component 1 (EPYC1) that has

no enzymatic activity [66]. Like CsoS2, EPYC1 (in

C. reinhardtii) is an IDP composed of five repeat

domains having a small RuBisCO subunit binding

site (Fig. 2B). If EPYC1 and hexadecameric RuBisCO

are present in a defined stoichiometry (2 : 1 molar

ratio), demixing into two phases occurs in a process

similar to that of the RuBisCO : CcmM or the

RuBisCO : CsoS2 biomolecular condensates [49,51].

As for the RuBisCO–CcmM biocondensates, the

demixing is prevented by high salt concentration or

by excess of EPYC1 or RuBisCO, indicating that the

multivalent electrostatic interactions are essential for

the condensation. Similarly, FRAP revealed the very

transient EPYC1 : RuBisCO contacts, which is also a

hallmark for LLPS and the formation of bioconden-

sates [51] (Fig. 2C).

EPYC1, CsoS2 or CcmM act as scaffolds, ‘smooth

mortar’ or ‘stickers’ to confine RuBisCO in a biomo-

lecular condensate due to their multivalent binding

sites with this enzyme. This condensate can maintain a

high degree of freedom—liquid properties—because

the intermolecular interactions are transient. Other fac-

tors can contribute to the rigidification as it is the case

for the mature carboxysomes. On the contrary, in the

cells, the pyrenoid retains a high degree of freedom

that characterises liquid droplets. The absence of a sta-

ble three-dimensional structure in CsoS2 and EPYC

provides an extra level of flexibility to the scaffold.

Intrinsically disordered proteins are described as essen-

tial in the responsiveness to stimuli, and their roles in

the regulatory network also have been demonstrated

for the regulation of the carbon metabolism [11]. Their

structural flexibility enables fast re-arrangement upon

exposition to different conditions, such that they can

act as sensors. For example, the intrinsically disor-

dered region of the MAPK phosphatase AP2C3 of

Arabidopsis thaliana was proposed to be the CO2 sen-

sor that regulates the phosphatase activity in response

to increasing CO2 concentration [67]. The molecular

description of AP2C3 revealed that the IDP fosters the

condensation of LLPS droplets at 10 000 ppm CO2,

whilst the proteins were scattered or dispersed at

atmospheric CO2 concentrations (400 ppm). To our

knowledge, the catalytic properties of RuBisCO in the

pyrenoid compared with that free in solution is not

known but new properties might emerge in this more

complex environment. How the condensation of

protein-dense phases might contribute to the catalytic

efficiency will be discussed at the end of this perspec-

tive paper. Intrinsically disordered proteins are also

prone to have post-translational modifications (PTMs)

as response to signalling pathways, and these PTMs

can trigger dissociation of LLPS as it is the case for

histone containing LLPS [68]. Altogether, IDPs are

considered as key regulators for the formation/disas-

sembly of LLPS [69].

Intrinsically disordered proteins are also often

described as ‘hub’ proteins, a property observed for

several scaffold proteins in liquid biomolecular con-

densates. The full molecular properties of EPYC or

CsoS2 in the condensates are not yet described. Only

transient contacts between the scaffold protein and

RuBisCO have been described by using fusion proteins

with small polypeptides (Fig. 2B) [49,63]. It is expected

that the entire proteins will remain highly flexible like

other IDPs scaffolds for LLPS biocondensates. Several

of them have been investigated at the residue-scale

using NMR such as FUS [70], hnRNPA2 [71],

CAPRIN1 [72,73], HP1α [74], tau [75,76], Ntail [77]

and TCP42 [78] (for global review, refer to [70]).

Nuclear magnetic resonance can indeed complement

the fluorescence-based methods that have mostly been

employed to characterise the RuBisCO-containing

LLPS. The NMR chemical shift reflects the structural

properties of the protein at the residue-specific scale

(are they in folded regions or disordered?). Putative

conformational dynamic timescales can be probed

using a range of NMR experiments (ns-μs using spin

relaxation experiments, 100 μs–100 ms using relaxation

dispersion or off-field saturation experiments) and the

short-range and long-range transient contacts can be

probed using nuclear Overhauser effect spectroscopy

or paramagnetic relaxation enhancement experiments.

A review of the recent NMR method developments

and their use in structural biology can be found in

Thiellet and Luchinat, Prog. in NMR Spec. (2022)

[79]. In addition, recent developments of pulsed-field

gradient NMR spectroscopy (or diffusion-ordered

spectroscopy) can be used to discriminate the localisa-

tion of the proteins within the different phases [73,76].

Nuclear magnetic resonance is thus a unique method

that can combine structural and physicochemical infor-

mation in complex environments such as LLPS.
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Regulation of the RuBisCO substrate
regeneration

The positive effect of pyrenoid or carboxysome forma-

tion for the availability of CO2 in the vicinity of the

RuBisCO active site has been modelled [18,57], but

their effect for the availability of the sugar substrate,

RuBP, within these microcompartments is puzzling. In

the higher plant Nicotiana tabacum, the RuBP carbox-

ylation by RuBisCO is not the rate limiting step for

CO2 assimilation, but the RuBP regeneration by the

CBB enzymes is limiting [80], and one could assume

that it is the same in green microalgae. The last step of

RuBP regeneration is performed by the phosphoribu-

lokinase (PRK) that catalyses the phosphorylation of

ribulose-5-phosphate with ATP. Decrease of up to

80% of the amount of PRK did not affect CO2 assimi-

lation in Nicotiana tabacum and C. reinhardtii, indicat-

ing that the rate limiting step is not the last step of

the RuBP regeneration [81,82]. Genetic engineering

of a fluorescent-tagged protein library in C. reinhardtii

allowed to localise PRK in the chloroplast stroma

around the pyrenoid (Fig. 3A) [16,18], which raises

the question of how the PRK product, RuBP, crosses

the pyrenoid boundaries. Similarly, phosphoglycerate

kinase (PGK) that catalyses the phosphorylation of

RuBisCO product PGA into bisphosphoglycerate is

also localised in the chloroplast stroma, such that the

PGA has to migrate out of the pyrenoid. The bispho-

sphoglycerate is in turn reduced by the glyceraldehyde

3-phosphate dehydrogenase (GAPDH) that shares the

same stromal localisation (Fig. 3A). It is known that

substrate and cofactor availability is a key parameter

in the regulation of the enzymes in general and of the

CBB pathway in particular [1,83]: PRK and PGK

phosphorylate their substrate by using ATP, and the

reducing power of GAPDH is provided by NADPH.

The availability of ATP and NADPH, both products

of the photochemical stage that occurs on thylakoid

membranes, is discussed below. In the cyanobacterium

Synechocystis pcc6803, several CBB enzymes were

localised by immunogold labelling and electron micros-

copy in proximity with the thylakoid membranes: 72%

of the PRK particles, together with 66% of PGK and

GAPDH and 47% of the observed RuBisCO particles

[15].

Regulation of PRK is another emblematic case for

the structure–function relationships. Since 2019, the

crystal structure of the active PRK dimer is available

as well as that of inactive PRK in supramolecular

complexes with GAPDH and the small regulatory pro-

tein CP12 [9,84–86] (Fig. 4B). CP12 colocalises with

PRK and GAPDH in the chloroplast stroma at the

periphery of the pyrenoid [16]. Activity assays of puri-

fied PRK revealed that it is regulated by its redox

state: The reduction in inactive oxidised PRK is cata-

lysed by thioredoxin f or m [87–89]. Phosphoribuloki-
nase is thus a target of the ferredoxin–thioredoxin
network as several other CBB enzymes [5]. The nature

of the spatial organisation of the thylakoid membranes

discussed below could be considered in this regulation.

The molecular description of thioredoxin-mediated

regulation of PRK was deciphered by a combination

of mutagenesis, activity assays and crystallographic

structures and can be summarised as follows. In its

reduced state, the active site is localised in a groove

that harbours Arg64 (numbering from the model

C. reinhardtii) that can coordinate Ru5P and Cys16

that binds ATP (Fig. 4A) [9,90]. Upon oxidation, the

disulphide-bond formation between Cys16 and Cys55

reorganises the ATP binding site (Fig. 4B). When oxi-

dative conditions prevail, PRK has a high affinity for

the GAPDH-CP12 subcomplex [91,92]. The N-

terminal hairpin of CP12 that harbours the disulphide-

bond Cys23-Cys31 occupies the active site groove of

PRK [84,85]. The formation of the ternary complex is

mediated by the redox-dependent structural transition

of CP12 that we have described using NMR and

small-angle X-ray scattering (SAXS) experiments: It is

intrinsically disordered in reducing conditions and

becomes partially ordered in oxidising conditions

[12,93]. This protein is thus conditionally disordered

and is a hub for the ternary complex association. The

weak electron density observed for CP12 in the cryo-

electron microscopy of the GAPDH-CP12-PRK com-

plex suggests that it retains a high degree of flexibility

within the ternary complex [84]. Interestingly, reduc-

tion and re-activation of PRK occurs faster when it is

sequestered within the ternary complex compared with

free oxidised PRK, and this is an example of how

supramolecular organisation modifies the regulation

[14,88,92,94]. Also, in the complex, PRK and GAPDH

are protected from oxidative damage [95]. This large

assembly also recruits another CBB enzyme: the aldol-

ase, conferring new properties to this enzyme when

embedded in this supramolecular edifice [96].

The recent molecular description of the GAPDH-

CP12-PRK complex can be confronted to 30-year-old

reports of copurification of active proteins (Table 1)

[12]. For example in spinach, GAPDH and PRK

were shown to associate with phosphoribose

isomerase (PRI), RuBisCO, sedoheptulose-1,7-

bisphosphatase and ferredoxin-NADP+ reductase close

to the thylakoid membranes [97]. Other studies

revealed the association of at least PRI, PRK and

RuBisCO in spinach [13], rice [98], tobacco [99], all
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higher plants that are devoid of pyrenoids. The coloca-

lisation of successive enzymes for the RuBP regenera-

tion is a strategy to increase metabolite turnover [100].

In C. reinhardtii and other microalgae, however, PRI

and PRK were not observed in the pyrenoid or car-

boxysomes. Nonetheless, RuBisCO is not sequestered

in the pyrenoid or carboxysome under atmospheric or

high CO2 conditions and therefore could be available

for such supramolecular complexes (Fig. 2D) [15,48].

Despite the tremendous efforts that enable to solve the

structure of homomeric complexes for most enzymes

of the CBB cycle [1], no other supramolecular com-

plexes except GAPDH-CP12-PRK or the transient

complex of RuBisCO-EPYC1 have been reconstituted

Fig. 3. (A) Location of different enzymes of the CBB cycle revealed by fluorescence microscopy using Venus-fusion constructs shown

ingreen. The autofluorescence of chlorophyll is shown in purple. Figure adapted from [18]. (B) 3D organisation of the thylakoids stacks that

shows the three continuous phases: the lumen (light green), the bilayer membrane (dark green) and the stroma. (C, D) Show fenestrations

through the thylakoids that enable communications between different stroma compartments delimited by the thylakoids. Figure adapted

from [17].

9FEBS Letters (2023) ª 2023 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
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and studied in vitro (let aside the carboxysomes). Both

of these complexes involve a hub or scaffold IDP, that

has no enzymatic function: EPYC1 or CP12. The iden-

tification of CP12 was enable decades ago thanks to

its homology with the C-terminal extension of the B-

isoform of GAPDH of higher plants [101]. The

RuBisCO–EPYC1 interactions are transient and would

not support copurification by classic chromatographic

strategies, and it has thus escaped knowledge until

recent proteomic studies [66]. The recent advances of

mass spectrometry coupled with cross-linking agents

could be in future at the origin of the identification of

transient protein–protein interactions and of other

protein hubs that may mediate the association of other

CBB enzymes in supramolecular complexes [102].

ATP and reducing power generation

The acquisition of one CO2 molecule (i.e. its transport

to the vicinity of RuBisCO in the pyrenoid) consumes

1.3 ATP molecules [57], and its assimilation by the

CBB cycle consumes two NADPH and three ATP

molecules [1]. Their primary generation occurs in

the thylakoid membranes via the proton gradient

and the linear electron flux (LEF) that are generated

on the photochemical phase of photosynthesis. This

Fig. 4. Regulation of PRK from the molecular to the supramolecular level: from left to right are shown the structure of the active site of

PRK from C. reinhardtii in reducing conditions (PDB ID: 6H7G) and from A. thaliana in oxidising conditions (PDB ID: 6KEZ). The positions of

the ATP/ADP and substrate are modelled thanks to alignment with the structure of S. elongatus PRK (PDB ID: 6KEV). In this structure PRK

is crystallised with glucose-6-phosphate that can occupy the active site at the position of Ru5P. The Arg64 position is indicated. (A) In the

light, reducing conditions prevails in the chloroplast stroma as it is indicated by the low Nernst potential (E’0). CP12 is intrinsically disordered

[204] and the regulatory PRK disulphide Cys16-Cys55 bond is disrupted. (B) In the dark, oxidative conditions prevails in the chloroplast

stroma as it is indicated by the higher Nernst potential. CP12 is partially folded, has a high affinity for GAPDH and the GAPDH-CP12 sub-

complex in turn has a high affinity for PRK [205].
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photochemical process produces two NADPH and 2.6

ATP molecules, and the ATP : NADPH ratio is mod-

ulated by the Mehler reaction, the flavodiiron proteins

and the cyclic electron flux (CEF) though their quanti-

tative contribution is difficult to assess [103,104].

Malate valves that are discussed in the next section are

also involved [105]. Before expending on the energetic

balance across organelles in the case of eukaryotic

algae, the supramolecular organisation of the thylakoid

membranes (that is shared by prokaryote and eukaryote

algae) is discussed. The thylakoids are bilayer mem-

branes of amphiphilic lipids that adopt a well-organised

structure that encapsulates a single internal aqueous

phase that is the lumen, where protons accumulate from

water splitting at the interface of photosystem II (PSII).

This proton gradient force provides the energy for the

ATP synthase to regenerate ATP. The electrons released

from water splitting are transported by the quinone pool

to the cytochrome b6/f and the photosystem I (PSI), and

finally to ferredoxin and ferredoxin NADP+ reductase

(FNR). This LEF occurs between spatially separated

photosystems: PSII accumulates in thylakoids stacks or

grana that are multilayer packing of thylakoids, Cyt b6/f

is more evenly distributed, whereas PSI accumulates

in unstacked thylakoids lamellae together with ATP

synthase [106]. It should be noted that in C. reinhardtii,

the proportion of stacked over unstacked thylakoid

membranes is much lower than that in higher plant,

and the above-mentioned distribution can be balanced

[17,107]. Continuous progress of tomographic and

cryo-electron microscopy will improve to decipher the

localisation of the photosystem constituents [17]. The

organic interface of the bilayer membranes and the

lumen are continuous phases all through the chloro-

plast, such that there is a unique boundary between the

lumen and the stroma and a unique thermodynamic bal-

ance between the two aqueous phases. The thylakoid

lamellae where NADPH and ATP are regenerated sepa-

rate the chloroplast stroma in a series of microcompart-

ments; in other words, they create boundaries within the

chloroplast stroma [53]. How do NADPH and ATP dis-

tribute through the chloroplast stroma under these cir-

cumstances? The recent electron microscopy tomograms

of C. reinhardtii cells revealed that the thylakoids are

pierced by fenestrations (Fig. 3B) that enable the differ-

ent microcompartments of the stroma to communicate.

As a consequence, the stroma is also a continuous tan-

gled phase in which proteins and metabolites can dif-

fuse. The heterogeneity and complex 3D boundaries

render molecular motions highly complex in the stroma,

and these effects on protein and metabolites are dis-

cussed in the last paragraph of the manuscript.

Biosynthesis of thylakoid lipids and
their supramolecular assembly

The thylakoid membranes should not be seen as rigid

boundary, their assembly in bilayer membranes is

Table 1. Supramolecular complexes containing CBB enzymes, the organism in which they have been observed and the related reference

that had reported these complexes. CA, carbonic anhydrase; FBPase, fructose-1,6 bisphosphatase; FNR, ferredoxin NADP+ reductase;

GAPDH, glyceraldehyde-3-phosphate-dehydrogenase; PGK, phosphoglycerate kinase; PRI, ribose-5-phosphate isomerase; PRK, phosphoribu-

lokinase; RuBisCO, ribulose-1,5 bisphosphate carboxylase/oxygenase; SBPase, sedoheptulose-1,7 bisphosphatase; TPI, triose phosphate

isomerase.

Protein content Organism References

CA/PRK/RuBisCO/PGK Pisum sativum [188]

PRI/PRK/RuBisCO P. sativum [189]

PRI/PRK/RuBisCO/PGK P. sativum [190]

PRI/PRK/RuBisCO/PGK/GAPDH Spinacia oleracea [13]

Anacystis nidulans [191]

PRI/PRK/RuBisCO/PGH/GAPDH/ATP synthase Synechocystis 6803 [15]

RuBisCO/PGK/GAPDH/TPI/aldolase/FBPase S. oleracea [192]

PRI/PRK/RuBisCO/PGH/GAPDH/SBPase/FNR/ATP synthase S. oleracea [193]

RuBisCO/PGK/GAPDH/TPI/aldolase/FBPase S. oleracea [192]

GAPDH/TPI/aldolase/SBPase P. sativum [190]

GAPDH/CP12/PRK S. oleracea [101,194,195]

P. sativum [194,195]

A. thaliana [196]

Galderia sulfuraria [197]

Synechocystis 6803 [198,199]

Synechococcus PCC7942 [200]

C. reinhardtii [199,201,202]

GAPDH/CP12/FNR complex Asterionella formosa [203]
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dictated by phase separation and this is highly depen-

dent on temperature stress [108,109]. Furthermore, sev-

eral molecular mechanisms involved in membrane-

remodelling have been discovered, and the role of the

lipid polar head and fatty acyl chain composition will

be discussed below [110–113]. Membrane-associated

protein can also play a role in membrane remodelling.

For example, the molecular mechanism by which the

protomers of IM30 protein (for Inner Membrane pro-

tein of 30 kDa) self-assemble to thylakoid membranes

has been described using a range of biophysical tech-

nics such as atomic-force spectroscopy, SAXS and

modelling [114]. Their association with the thylakoids

results in the formation of a protective carpet and

their intrinsically disordered C-terminal tail unfolds

and promotes pore forming. The role of IDP in mem-

brane protection and remodelling is another contribu-

tion to the ‘ultrastructure’-function relationships.

The polar lipids present in the thylakoid membranes

and the inner-chloroplast membrane of eukaryotic

microalgae as well as those of cyanobacteria are mainly

monogalactosyldiacylglycerols (MGDG), digalactosyl-

diacylglycerols (DGDG) and sulfoquinovosyldiacyl-

glycerols (SQDG) and a small proportion of

phosphatidylglycerol (PG). These represent 70–80%
of the total lipids of eukaryotic microalgae that also pos-

sess other phospholipids in the extrachloroplastic mem-

branes [115]. In the most studied microalga

C. reinhardtii, betaine lipids such as

diacylglyceryltrimethylhomo-Ser (DGTS) can act

as substitute of phosphatidylcholine (PC). The acyl

chains of galactolipids from eukaryotic microalgae and

cyanobacteria usually differ from those of higher plants

by their enrichment in polyunsaturated fatty acids

(PUFA) such as α-linolenic acid (ALA, 18 : 3), the main

fatty acid in C. reinhardtii, arachidonic acid (ARA;

20 : 4 n-6) and eicosapentaenoic acid (EPA; 20 : 5 n-3)

found in Nannochloropsis gaditana [116] and

P. tricornutum [117], docosahexaenoic acid (DHA;

22 : 6 n-3) found in Schizochytrium limacinum [118] or

hexadecatetraenoic acid (16 : 4 n-3) found in

C. reinhardtii [115]. Interestingly, lipid biosynthesis

in eukaryotic photosynthetic microalgae results from

molecular exchanges occurring between different cellular

compartments [115,119]. A major part of fatty acid bio-

synthesis occurs in the stroma of the chloroplast through

the action of the fatty acid synthase (FAS) complex on

acetyl-CoA as the starting unit further converted in elon-

gated acyl chains by sequential condensation of two-

carbon units. Then, acyl chains bound to acyl carrier

protein can either be incorporated into acylglycerolipids

inside the chloroplast via the so-called ‘prokaryotic’

pathway or be exported outside the chloroplast to reach

the ‘eukaryotic’ pathway in the endoplasmic reticulum

(ER). Finally, their incorporation in acyl lipids is per-

formed by various acyl transferases. Approximately

40% of fatty acids synthesised in chloroplasts enter the

prokaryotic pathway, whereas 60% are exported to the

eukaryotic pathway. About half of the exported fatty

acids returns to the plastid after their desaturation in the

ER and is used for the synthesis of the thylakoid mem-

brane galactolipids by MGDG and DGDG synthases

[120]. Desaturation of fatty acids is tightly linked with

the location of the diacylglycerolipids in which they are

incorporated and their transfer between the chloroplast

envelope and the ER. These fatty acids result from a

combination of elongation and desaturation reactions

taking place either in the ER where the Δ6- or Δ5-the
desaturase are located [121,122], or in the chloroplast

where the Δ4 desaturase CrΔ4FAD [123] acts on

MGDG to generate the 16 : 4 Δ4,7,10,13 PUFA, a pre-

dominant component of MGDG molecular species.

The polar head and fatty acid compositions of the

acylglycerol lipids determine their supramolecular orga-

nisation [110–112]. While DGDGs are known to form

lamellar phases (Lα) and induce bilayer formation,

MGDGs tend to form inverted hexagonal phase (HII) in

aqueous solution [112]. Because of MGDG physico-

chemical properties, the formation of photosynthetic

membrane bilayer in vivo raises questions about the role

of this lipid in the organisation and functional properties

of the chloroplast membranes [124]. It has been sug-

gested that MGDG, which has a conical molecular

shape due to its small head group, may help pack large

protein complexes into biological membranes through

lipid–protein interactions [113]. The molar ratio of

MGDG over DGDG is known to adapt to stress condi-

tions and to modulate the photosynthesis efficiency

[125]. Conversely, fatty acid desaturation depends on

the photosynthetic activity and the molecular composi-

tion of galactolipids varies according to the growth con-

ditions. The high content of PUFAs in galactolipids

contributes to the fluidity of membranes [109]. Lipido-

mics has provided a rich database of the lipid composi-

tion of photosynthetic membranes [126]. Critical

physical and thermodynamic properties such as bilayer

thickness, 2D motions of lipids, packing of the acyl

chains, surface charge distribution and thylakoid mem-

brane packing have been characterised using reconsti-

tuted galactolipid membranes and a range of methods

such as microscopy, differential scanning calorimetry,

solid-state NMR, fluorescence anisotropy, small-angle

neutron and X-ray scattering, atomic force spectroscopy

and molecular dynamics (reviewed here [109]).

The phase separations possibly occurring in these

membranes have also been investigated by tensiometry,
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ellipsometry and Langmuir–Blodgett transfer coupled

to atomic force microscopy using biomimetic Lang-

muir monolayers [127]. Enzymes (lipases) interacting

with monolayers were found to be preferentially

adsorbed at the expanded/fluid lipid phases but com-

pounds such as phytosterols and phospholipids induc-

ing phase heterogeneity also favoured the adsorption

of enzymes at the phase boundaries and towards the

defects in condensed phases. Thus, the lipid composi-

tion of photosynthetic membranes affects both the

structure of integral membrane proteins from photo-

systems and the binding of peripheral proteins.

Other chloroplast microcompartments

Another feature of the chloroplast lipids is that they

constitute the boundaries of plastoglobules [54]. The

function of these organic phase droplets encompassed

by the external thylakoid membrane protuberance is

still a matter of debate. It has been proposed that they

serve as a reservoir for the maintenance of the protein/

galactolipid ratio of the thylakoids, or that their

organic phase enables the storage of organic metabo-

lites produced in the chloroplast [36]. In C. reinhardtii,

recent cryomicroscopy tomograms suggest that their

proximity with the thylakoid stack is not obvious [17].

They share some similarities with the eyespots, which

are also LDs that locate at the periphery of the chloro-

plast towards the light. The molecular composition of

the plastoglobules and the eyespot is not clear, except

that they are phase separated from the chloroplast

stroma. They contain mainly prenylquinones and

carotenoids and lower amounts of TAGs [128,129]. A

protocol for their isolation has been proposed in 2022

that may lift a hurdle for their molecular characterisa-

tion [130].

One interesting perspective would be to consider the

fact that many metabolites produced in the chloroplast

in large quantities form natural deep eutectic solvents

(NaDES). These mixtures characterised by a fusion

point lower than those of their isolated components

are liquid at physiological temperature and they pre-

sent peculiar solvation properties [131–133]. This is the
case for instance for Glucose : Fructose, Fructose :

Sucrose, Glucose : Sucrose, Sucrose : Glucose : Fruc-

tose at molar ratio [133]. In vitro reconstitution of

these mixtures studied by NMR showed that in the

fluid phase, intermolecular transient contacts act as in

liquid crystal to partially order the molecule orienta-

tion whilst offering a high fluidity. Chemists have

described the good solvation properties of synthetic

DES and NaDES for poorly soluble molecules

[134,135].

Carbon and energy storage: starch
granules and lipid droplets

In the chloroplast, the main carbon storage compo-

nents are large polysaccharide condensates in the form

of a highly organised semicrystalline fraction: the

starch or chrysolaminarin granules. These are ordered

polymers of polysaccharide where glucose subunits are

predominantly linked by α-(1 → 4)-D glycosidic bonds

with α-(1 → 6) branches for starch and by β(1 → 3)

and β(1 → 6) branches in chrysolaminarin. The starch

granules result from a complex organisation of semi-

crystalline and amorphous concentric layers surround-

ing an amorphous hilum, and different models have

been proposed for their assemblies [27–29]. Contrary

to glycogen that is water-soluble and occurs as nano-

particles of limited diameter, the starch/chrysolami-

narin molecules can have in principle unlimited size

[136]. In the green lineage, starch biogenesis is located

in the chloroplast, whereas in the red lineage such as

in diatoms, chrysolaminarin synthesis occurs in the

vacuole, another membrane-bound microcompartment

of the cytosol [137]. The understanding of gluconeo-

genesis or glycolysis is mainly achieved via genetic

studies [138], and recent biophysical tools are being

used to explore the molecular structure of this large

ordered semicrystalline condensate [139].

The gluconeogenesis vs glycolysis equilibrium is

dependent on the availability of the energy source, pri-

marily ATP and NAD(P)H, and the several regulation

pathways involve exchange through the several micro-

compartments within the stroma discussed above, but

also exchange in and out of the chloroplast in eukary-

otic algae. This will be discussed in the next section.

Another form of carbon storage compartment much

studied in microalgae is the LD. This is the most effec-

tive form of energy storage with 9 kcal�g�1 for fatty

acid and derived acylglycerolipids against 4 kcal�g�1

for carbohydrates. The most common type of LD pre-

sents a hydrophobic core made of TAG and sur-

rounded by a lipoproteic monolayer. Chlamydomonas

reinhardtii LDs contain 95% TAGs, 1–5% polar lipids

and 1–5% proteins [140]. The polar lipid monolayer

surrounding the LDs contains a specific set of polar

lipids including DGTS, SQDG, DGDG and MGDG

with relative amounts depending on culture conditions

(light level, nitrogen depletion) [141]. Also at the

monolayer, LD proteomics has revealed the presence

of enzymes involved in several subcellular mechanisms,

including lipid synthesis, degradation, trafficking, sig-

nalling and lipid homeostasis. For example, in

C. reinhardtii, LD proteomics has shown that around

30 proteins involved in lipid metabolism were present,

13FEBS Letters (2023) ª 2023 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

H. Launay et al. Location of carbon metabolism in microalgal cells

 18733468, 0, D
ow

nloaded from
 https://febs.onlinelibrary.w

iley.com
/doi/10.1002/1873-3468.14754 by Portail B

ibC
N

R
S IN

SB
, W

iley O
nline L

ibrary on [16/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



including the betaine lipid synthase (BTA1), a lysopho-

sphatidic acid acyltransferase (LPAT), a putative long

chain acyl-CoA synthetase (LACS), a diacylglycerol

acyltransferase (DGAT), a major LD protein (MLDP)

of unknown function, the phosphatidylethanolamine-

binding DTH1 (DELAYED IN TAG HYDROLY-

SIS1), two lipases and two enzymes involved in fatty

acid β-oxidation [141–143]. This has led to the classifi-

cation of LDs as new cellular organelles [30].

Triacylglycerol biogenesis regulation is complex, and

often triggered by stress conditions such as heat or

nutriments depletion (e.g. nitrogen) [26,126]. In

C. reinhardtii, TAG biosynthesis is thought to mainly

occur in the cytosol through the same enzymatic steps

as in plants [144], and it requires the transfer to the

cytosol of the acyl chains initially synthesised in

the chloroplast. Galactolipids also appear as the main

backbone in which de novo–synthesised fatty acids are

incorporated before they enter into TAG synthesis. In

C. reinhardtii, a galactolipase, named plastid galacto-

glycerolipid degradation 1 (PGD1), was identified as a

key player in lipid remodelling following nitrogen dep-

rivation. The galactolipase activity of PGD1 allows the

flux of fatty acids from plastid lipids to TAGs in

which they are re-esterified to form LDs [145]. It

remains however unclear whether the final step of

TAG synthesis from diacylglycerol (DAG) also occurs

inside the chloroplast. Indeed, some TAG-synthesising

enzymes such as DGAT1 and phosphoglycerol acyl-

transferase (PDAT) were found in the chloroplast

[146]. Also, data from microscopy studies have showed

that some LDs can be present inside the chloroplast,

as well as in the cytosol in close association with the

chloroplast envelope [146,147]. In the chloroplast, LD

are referred to as plastoglobules, and we have seen

above in ATP and reducing power generation section.

that these contain TAG. Lipid droplet synthesis can

yet be another function of these enigmatic microcom-

partments. We have also seen previously in ATP and

reducing power generation section. that polar lipids

from membranes can serve as a source of recycled acyl

chains for TAG synthesis, besides de novo fatty acid

synthesis.

The study of LD biogenesis and composition is typi-

cally investigated using timely resolved culture sam-

pling and lipid extraction combined with genetic

modification [126]. Nevertheless, these technics require

cellular disruption before isolation of LDs and lipid

extraction. These steps can generate side reactions such

as lipid hydrolysis/degradation due to their mixing

with lipolytic enzymes initially present in other cell

compartments, and binding to LDs of amphiphilic

proteins that are normally not interacting with LDs.

There is therefore a need for other methods allowing

the identification and structural characterisation of

lipids and proteins within the cell. One common

approach is the expression of green fluorescent protein

(GFP)-fused protein to localise the protein using fluo-

rescence confocal microscopy and confirm whether it

is effectively bound to LDs in cellula. Regarding lipids,

an emerging methodology using NMR allowed to

investigate the accumulation of TAG in the microalga

N. gaditana [148]. This nondestructive approach allows

real-time analysis of lipids in the living algae, without

the need of lipid extraction and separation. As dis-

cussed above for protein-NMR, NMR can provide

information on the chemistry of lipids such as TAG,

but also on the physicochemical properties of their

supramolecular organisation. For example, the dynam-

ics of LD formation (size changes) in P. tricornutum,

as well as the lipid-motion within the cells, were moni-

tored by pulse field gradient nuclear magnetic reso-

nance [149].

The two main forms of carbon storage are antago-

nistic and correlated. In C. reinhardtii, as in other spe-

cies, fatty acid degradation takes place in the

peroxisome, that are small organelles in the cytosol,

via β-oxidation [150]. The generated acetyl-CoA can

be further converted to carbohydrates serving as build-

ing blocks or cellular energy through respiration in the

mitochondria. This pathway requires a close connexion

between LDs and peroxisome to enable the transfer of

the fatty acid released from LDs’ TAG by lipases.

Also, this pathway is linked to the global energetic

balance within the cell that implies exchange between

organelles.

Exchange of metabolites across the
boundaries of organelles

We discussed above the apparent energy unbalance

between the production by the LEF (ATP/NADPH

ratio of 1.3) and the consumption by CO2 uptake and

the CBB cycle (ATP/NADPH ratio of 2.6). Many

other metabolic pathways have been described that

modulate the ATP/NADPH ratio, which will not be

described here (for review refer to [105]). In eukaryotic

algae, the energetic balance occurs between the chloro-

plast, the mitochondria and the cytosol. Organelle

membranes are impermeable to NAD(P)H, and vari-

ous transporters have been identified together with

malate and oxaloacetate transporters [151]. Malate

conversion to oxaloacetate by malate dehydrogenase

generates reducing power; thus, it is established that

the malate/oxaloacetate shuttle through the different

cellular compartments is a key factor for their
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energetic balance. Malate dehydrogenases are located

in the chloroplast, in peroxisome (also named glyoxy-

somes in C. reinhardtii [152]), in the cytoplasm and in

the mitochondria. Various other transporters also con-

tribute to the maintenance of the metabolic flux, such

inorganic phosphate, ammonium and nitrate/nitrite

transporters [153]. Bicarbonate transporters have been

discussed above in Pyrenoid and carboxysome section.

Also concerning the carbon flux, several sugar trans-

porters are present with specialised functions. For

example, the triose phosphate transporter 3 has been

described as being essential for the metabolic balance

and the export of photosynthetic fixed carbon in green

algae [154].

The case of diatoms is more complex because of

their evolutionary origin, their chloroplast is sur-

rounded by four membranes. Metabolic exchange

between the mitochondria and the chloroplast involves

direct exchange between the two organelles through

their membranes [19,155]. Membranes of intra- and

extracellular vesicles have also been identified as shut-

tles for transferring information, function and metabo-

lites from cellular compartments and the endosomal

trafficking system to other cells and tissues. Still con-

cerning lipids, LDs have been shown to interact with

other organelles such as the peroxisomes, the nucleus,

the mitochondria and involved in metabolite traffick-

ing [140,150].

Metabolic exchange across organelles is also an

example of how the existence of microcompartment

modulates the metabolism. To fully understand the

energetic balance within the cell, one would like to be

able to follow the fate of a metabolite from its synthe-

sis to its conversion. Whilst this challenge remains

unrealistic at the single molecule level, progress in

fluxomic methods provides precious data to improve

the current models [156,157]. Fluxomic or ‘flux-

metabolomics’ enable to characterise the metabolic

pathway downstream of an isotopically labelled metab-

olite using mass spectrometry or NMR. Mass spec-

trometry enables the characterisation of a high number

of metabolites on a wide concentration range and thus

provides a huge metabolic flux database [158]. Nuclear

magnetic resonance has suffered for some time from a

lower sensitivity, but it provides the advantage of

being nondestructive, as opposed to mass spectrome-

try, and is not dependent on extraction using different

solvents [159,160]. As discussed above for the on-flow

monitoring of TAG accumulation, in-situ NMR can

also be used to monitor the fate of specific metabolites

[161–163].
The boundaries of the different microcompartments

are where metabolite exchange occurs at their

interfaces. These boundaries are usually biological

membranes where receptors and transporters are pre-

sent in the form of integral membrane proteins,

as well as peripheral proteins that bind to the mem-

brane upon fulfilling their task as molecular shuttle or

enzymes. In LDs, the monolayer surrounding the

hydrophobic core also contains functional

enzymes and structural proteins, such as MLDP in

C. reinhardtii, that control the biogenesis and fate of

these organelles. Such interfaces have been extensively

studied in the case of LDs/emulsions dispersed in an

aqueous phase [164–167]. The concepts of phase sepa-

ration, interfacial tension, adsorption and partitioning

occurring at the lipid-water interface are well-defined.

Interfacial tension, or surface pressure, for instance,

has an impact on protein and metabolite adsorption

and penetration at the interface, enzyme activity, as

well as on protein folding and stability [168,169]. The

surface of polysaccharide granules also contains starch

granule-associated proteins that are often starch syn-

thetic enzymes but can have other functions such as

modulating the overall properties of the semicrystalline

phase [170,171]. The membrane-less organelles formed

by LLPS create a novel type of interface between dis-

tinct phases. Intracellular phase separation differs

however from demixing of oil and water, because the

compounds involved in LLPS (proteins, nucleic acids,

amino acids, sugars and other small metabolites) are

water soluble and the condensates they form are

hydrated. The interface delimiting two aqueous phases

formed by LLPS should also be considered. Some pro-

teins and other compounds are specifically localised at

this interface, where they might impact physicochemi-

cal properties (surface tension and surface potential).

For example, Starch Granules Abnormal 1 and 2

proteins localise in the pyrenoid in small puncta and

are responsible for the association of starch granules

at the periphery of the LLPS [172]. Deletion of this

protein results in the modification of the volume/sur-

face ratio of the LLPS and induces the formation of

several pyrenoid condensates. Strikingly, hyperoxia is

also a condition where no starch granules surround

pyrenoid, but the number of pyrenoid fraction is not

modified [48]. There is limited understanding of the

quantitative laws governing solute partitioning into

LLPS and adsorption at their interface. Experimental

evidence of solute/metabolite partitioning between

microcompartments and membranes is also missing

[18]. In that context, diffusion-ordered

NMR spectroscopy and estimation of diffusion coef-

ficient can provide information on molecules simulta-

neously present in distinct phases within the cell

[73,76,149,173].
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Molecular consequences of the
composition of the
microcompartments

As discussed above, within a photosynthetic cell, many

microcompartments derived from phase separation are

currently being described at the physicochemical level:

the pyrenoid, the thylakoids bilayer membranes that

separate two phases: the lumen and the stroma, the

LDs, the semicrystalline starch or chrysolaminarin

granules, and others that remain more enigmatic such

as the plastoglobules or the eyespots. For long, bio-

chemists considered only two phases in cells: the aque-

ous phase of cytoplasm and organelles and the

hydrophobic environment formed by membrane mono

or bilayers. The gradual recognition of subcellular

environments with distinct or nonaqueous phase has

drastically changed the representation of the cell and

its functional compartments. Intracellular LD for

instance became considered as organelles and not just

energy storage aggregates when proteomics revealed

the presence of specific proteins and enzymes, and

therefore specific functions, on their surface [30].

The more recent identification of intracellular and

intraorganellar LLPS mediated by protein–protein or

protein–ribonucleic acid transient contacts opened new

perspectives. The import of CO2 is a telling example.

CO2 solubility is poor in water and suffers from

hydration equilibrium that is pH dependent. On the

contrary, CO2 solubility increases in organic phases

where ionisation and pH are not relevant. The pyre-

noid is an aqueous phase, but dense protein packing

could modulate CO2 solvation properties. Indeed, in

the A. thaliana AP2C3 LLPS, CO2 molecules contrib-

ute to the molecular packing at the origin of the con-

densation [67]. Metabolite solubility across these

different phases is very likely variable [174]. Chemists

have been using phase transfer catalysis for decades.

Could phase-transfer catalysis also contribute to regu-

late the carbon metabolism within microalgae? What

are the respective solubilities of CO2, sugar phosphate,

glyceric acid, carbohydrate or fatty acids in the differ-

ent microcompartments mentioned above?

One can also consider the effect of these different

phases on the actors of the carbon cycle: the proteins.

Most structures of globular enzymes have been solved

when the proteins were in crystal phase, and this most

likely represents their in-cell overall structure.

Nevertheless, the high molecular crowding with large

proteins reduces the available space for macromole-

cules of the same size, this phenomenon is known as

excluded volume [175,176]. Excluded volume results in

restricted molecular diffusion (viscosity) and is likely

to significantly alter the mobility of proteins. Excluded

volume effects were also predicted to have a larger

impact on IDP than on globular proteins [177]. The

conformational ensemble that adopts an IDP in a

dilute phase samples large conformations among

others, as demonstrated by their large hydrodynamic

radius compared with globular proteins of the same

molecular mass [178]. In a crowded environment, these

extended conformations may be unfavoured because

of the excluded volume effect [177]. Several studies on

the effect of molecular crowding on IDPs, either in

vitro using macromolecular crowders (polyethylene gly-

col, ficoll, dextran, globular proteins) or in cellular

environments (in vivo or in cell extracts) suggest that

this phenomenon is very complex and each IDP or

IDR will behave specifically, depending also on the

crowding conditions: While a majority of IDPs will

keep their disordered properties in a crowded environ-

ment, some of them will partially fold, completely fold,

or even sometimes become more disordered [179]. The

cell is a complex medium and natural molecular

crowding results also favours interactions between

molecules, likely to modify the affinity of IDPs with

their partners. We have highlighted above several

examples of IDP that are key regulators for the con-

densation of several phases: EPYC1, CsoS2 and IM30.

In these condensed phases, the concentration of the

IDPs can be very high and they can be considered as

self-crowders. Recent studies on several such IDPs

looking for hypothetical conformational changes upon

phase separation suggest that they generally retain

their disordered nature, but their dynamics and mobil-

ity are slowed down [70–75,77,78]. Key components of

the cell may influence these crowding effects and the

dynamics of these phase transitions, as ATP, which

has been shown when it is highly concentrated in the

cell to enhance the solubility of proteins, and thus to

act as a crowd controller [179]. Because each compart-

ment has variable constituents, the nature of the

molecular crowding is not homogeneous within

the cell, the excluded volumes also, and the conforma-

tional sampling of dynamic protein is probably specific

for each localisation. Besides, the molecular diversity

is also restricted in biocondensates that encompass

only specific proteins and/or metabolites. Intrinsically

disordered proteins have the particularity of interact-

ing with many partners, and compartmentalisation will

reduce the presence of several partners to specific loca-

lisations [175,176].

These considerations have driven scientists to per-

form in cellula structural investigations of IDPs, and

again NMR has proven to be a suitable method. A

very complete review of in cell structural investigation

16 FEBS Letters (2023) ª 2023 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

Location of carbon metabolism in microalgal cells H. Launay et al.

 18733468, 0, D
ow

nloaded from
 https://febs.onlinelibrary.w

iley.com
/doi/10.1002/1873-3468.14754 by Portail B

ibC
N

R
S IN

SB
, W

iley O
nline L

ibrary on [16/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



by NMR can be found here [20], and this is a fast

expanding field. An attempt to investigate the struc-

tural properties of a plant protein within a cell was

limited by the requirement of selective isotopic label-

ling of the target protein against a ‘NMR-invisible’

background [180]. A first approach is to use total cell

lysate that encompasses all the molecular components

reorganised by sonication or high pressure to expose

them to the isotopically labelled protein [93]. This,

however, will not allow to investigate the specificities

of distinct microcompartments, which, in contrast,

could be approached by the use of purified compart-

ments (purified pyrenoid, purified plastoglobules) or in

vitro reconstituted LLPS.

Conclusions

In cyanobacteria and in eukaryotic microalgae, carbon

acquisition, assimilation and storage involve various

metabolic routes that spread across various cellular

microcompartments. CO2 is the substrate of RuBisCO

that is located in the carboxysome, a semicrystalline

microcompartment in cyanobacteria, or in the chloro-

plast stroma or in the pyrenoid, a LLPS biocondensate,

in eukaryotic microalgae. The existence of distinct

microcompartments with distinct pH ranging from 6.9

(lumen) to 7.9 (cytosol, stroma, pyrenoid) separated by

boundaries permeable for CO2 but not HCO�
3 (thyla-

koids), and the presence of CA in each aqueous phase

enable the concentration of CO2 at the vicinity of

RuBisCO. The condensation of RuBisCO is also trig-

gered under high O2 conditions. What is the diffusion

of second RuBisCO substrate and the RuBisCO prod-

uct in and out of these biocondensates? What is

RuBisCO catalytic constant in these highly crowded

liquid phase? Separated liquid–liquid phases are a fasci-

nating example of supramolecular organisations that

can modulate the physiology of a cell. Following the

well-studied case of RuBisCO and its substrates, the

existence of other distinct supramolecular organisations

can be considered. How do enzymes of the CBB cycle

organise to optimise both metabolic flux and substrate

availability? Several megacomplexes have been pro-

posed in the literature, but are lacking high-resolution

structural characterisation. The putative low affinity

for these complexes could explain why their reconstitu-

tion is challenging. One can also hypothesise the exis-

tence of linker proteins that remain to be identified, as

this is the case for CP12 that is the linker for the

GAPDH-CP12-PRK complex.

CP12 is a conditionally disordered protein with mul-

tiple functions but no catalytic activity [12]. A high

number of proteins that belong to the IDP family such

as CP12 play a role in the microcompartmentalisation

of the cells. They can be scaffold for LLPS demixing

(e.g. EPYC1 and CsoS2); sensors to induce the forma-

tion of these microcompartments (e.g. AP2C2); or they

can contribute to the remodelling of thylakoid mem-

branes (e.g. IM30). Their malleability enables them to

adapt to many different phases and interphases that

have different physicochemical properties. However,

the lack of catalytic activities and their atypical physi-

cochemical properties renders them difficult to identify,

and it is likely that more IDPs will be identified in

future thanks to advanced omics approaches.

The location of photosynthetic enzymes in a specific

organelle, the chloroplast, is known since the middle

of the nineteenth century [181,182], and the advantage

of physical barriers to confine the toxic O2 photosyn-

thetic product has been well described. Beyond the

membrane-delimited organelles such as the chloro-

plasts, thylakoid lumen, vacuole, peroxisome, mito-

chondria or plastoglobules, other intracellular

biocondensates such as the pyrenoids or LDs are now

emerging. They are not delimited by a lipid bilayer but

demix spontaneously due to their chemical composi-

tion. Lipid droplets demix because of their lipophilic

components and hydrophobic interactions. Protein-rich

LLPS demix because of electrostatic interactions and

hydrogen bonds. Phase separation, in which solutes

self-aggregate but remain in a liquid condensed

state, is named coacervation [183]. The biologists’

interest for this phenomenon has increased after coac-

ervation was found to occur in cells [32,33], but it has

been proposed as one supramolecular organisation as

early as the beginning of the twentieth century [184].

Indeed, Oparin hypothesised that life could have

emerged under the form of spontaneous coacervates

before the occurrence of long amphiphilic lipids

[184,185]. Strikingly, we now know that fatty

acid synthesis and desaturation involve multiple

exchanges in and out of microcompartments of the

chloroplast and out of the chloroplast: ER, peroxi-

somes, mitochondria.

Investigating the structure and function of proteins

in such environments is challenging, but it will cer-

tainly reveal a novel and better understanding of bio-

logical reactions and metabolic pathways. Recent

advances in microscopy and spectroscopic methods,

and the opportunity to perform molecular scale analy-

sis on living cell by in-vivo fluorescent and in-cell spec-

troscopic methods such as NMR and EPR [20,186]

have opened new perspectives. Nuclear magnetic reso-

nance spectroscopy and its various applications appear

as the most powerful biophysical methods to investi-

gate in cellula and in biomimetic media the structure–
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function and ultrastructure–function relationships of

enzymes and their cofactors coupled to reaction kinet-

ics and metabolite monitoring. These are exciting

objectives that drive research projects in this field.
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Renault A, Marion D and Vié V (2007) Galactosyl
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