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Abstract. Making fuel-economy for vehicles is an important and cur-
rent challenge in particular for professionals of transportation. In this
article, we address the challenge of providing a driving serious game
based on artificial intelligence in order to significantly reduce the fuel
consumption for trunks. Our proposition is based on a machine learn-
ing process compound of a Self-organizing Network for clustering task
followed by Reinforcement learning process in order to provide accurate
recommendations for eco-driving. Driving experts provide us knowledge
in order to model the actions-rewards process. Experimentation on simu-
lated data show the recommendations are coherent and allows the drivers
to have an eco-driving behavior.

Keywords: Eco-driving · Self-organizing Network · Reinforcement Learn-
ing · Serious game

1 Introduction

Eco-driving has become one important aspect in the field of road freight trans-
port. The requirements for adapting an eco-driving behavior are becoming stron-
ger: transport companies aims to reduce their fuel consumption and CO2 emis-
sions for economic and environmental issues. Logistic and transportation en-
terprises benefit of research in numerical data. Today, most of the trunks are
equipped with numerous sensors that provide real-time information. When they
are coupled with driving indicators, they can help to punctually optimize driving
efficiency. For example, gear shift indicator can be coupled to engine speed.

In this work, we aim to overtake this simple and punctual driving-assistance
by a complete eco-driving system which assist the driver in the long term jour-
ney. By the analysis of vehicle technical data such as vehicle speed, real-time
consumption or braking state our system should be able to evaluate driving
quality and propose actions that globally optimize fuel consumption and CO2
emissions. Our solution can be viewed as a serious game where driver has to im-
prove its driving score. This work is jointly developed with the company Strada3

3 https://www.stradaworld.com/



2 M. Fassih et al.

specialized in Transport Management System (TMS) for fleet management op-
timization. Strada has a high potential of transport data thanks to there 4800
customers and 5800 connected vehicles. The Strada company’s objective is to
provide drivers wishing to improve their eco-driving awareness and learning tools
through a driving simulator.

The analysis of Strada requirements involve some assumptions and con-
straints. First, since it exists several driving modes and situations depending
on the drivers, vehicles, journeys, roads, etc, the simulator has to self-adapt to
the different contexts and has to offer accurate driving recommendations within
the context. Secondly, the solution should appears as a positive experience for
the learner. Thus a gamification of the solution sounds an appropriate approach.
As driving can be viewed as a continuous sequence of actions, our proposition
is to develop a simulator that increase the driving performance of drivers in a
whole sequence. With these hypotheses reinforcement learning algorithms sound
well adapted to our problematic. Indeed, the reinforcement learning (RL) are
another path of machine learning approach between unsupervised and super-
vised learning. The agent learns to behave in environment depending on future
rewards, and has a goal to develop efficient policy to optimize a cumulus reward.
From our point of view, RL is a adapted response our concern: increase driving
score in a gamification approach.

It exists large number of papers about Reinforcement Learning. We can cite
the introduction to RL presented by Sutton in [1] and some surveys in [2,3,4].
Obviously, numerous and various practical applications are nowadays address
using RL and deep RL. In [5], authors present review of RL for Cybersecurity
domain. In [6], healthy problems are treated. In [7], a survey of Deep RL for
blockchain in industrial IoT is presented. Closer to our problematic, RL and
Deep RL are also used in vehicle management but most of times it concerns
autonomous driving context. One survey is proposed by Elallid and al [8]. In
particular context of eco-driving, some propositions exists but mainly concerns
electric and personal vehicle ([9,10,11]) but trucks consumption assistance in
transport of goods still little treated.

In this article, we propose a solution for truck eco-driving. As a chest game,
our proposal consists in giving to a driver optimal recommendations (driving
actions) that will increase a global performance considering fuel consumption
using reinforcement learning algorithm. As RL is based on the principle of action-
reward estimation, our solution should be able to identify current state of a
vehicle and to provide local rewards. One originality of our proposition is to
combine clustering approach for states estimation and RL. Rewards and states
are defined within expert knowledge.

The remaining part of this paper is organized as follows. Section 3 dedicate
to theoretical aspects of RL and the proposal description: RL basis are first
introduced in section 2 and general scheme of our proposal is described in sec-
tion 3.1. The use of experts’ knowledge for actions-rewards modeling is presented
in 3.2 and section 3.3 describes how states are estimated. Section 4 presents our
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experiments and results. We conclude and propose some new perspectives in
section 5.

2 The basis of Reinforcement Learning

Reinforcement Learning is a body of theory and algorithms for optimal decision
making developed in the last twenty-five years. RL methods find useful approx-
imate solutions to optimal-control problems that are too large or too ill-defined
for classical methods such as dynamic programming. The main explanation and
principle can be found in this reference [1] and we review here only the back-
ground concepts.

Reinforcement learning is a class of solutions for solving Markov Decision
Systems defined such that:

– a set S of states,
– a set A of actions,
– a transition probability function p : S × A → Psa(.) that is the transition

probabilities upon taking action a in state s,
– a reward function R : S×S×A→ r which modelizes the reward R(st+1, st, at),

the expected rewards for state-action-next-state triples,
– a future discount factor γ, the discount rate determines the present value of

future rewards.

Markov Decision Processes (MDPs) provide a framework for modeling decision
making. The key feature of MDPs is that they follow the Markov Property; all
future states are independent of the past given the present. In RL, the goal is
to find a policy π : S → A, that maximizes the “action-value function” of every
state-action pair, defined as:

Qπ(s, a) = Eπ

[
T∑

t=0

γtR(st+1, st, at)|a0 = a, s0 = s

]
(1)

In the previous equation, the expectation, noted E is over the state sequence
(s0, s1, ...) we pass through when we execute the policy π starting from s0. In
our setting, we use a finite time horizon T (it is a particular context, the end
of the truck travel). Qπ(s0, a0) is the expected cumulative reward received while
starting from state s0 with action a0 and following policy π. The solution of
an MDP is a policy π∗ that for every initial state s0 maximizes the expected
cumulative reward.

Reinforcement Learning tests which actions are best for each state of an
environment essentially by trial and error. The model sets a random policy to
start, and each time one action is taken. This continues until the state being
terminal (T in the previous equation).

To solve this problem a classical strategy is to use the Q-Learning algorithm.
The Q-Learning algorithm was first introduced by [12], and is one of the most
studied methods. Given an MDP, Q-Learning aims to calculate the corresponding
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optimal action value function Q∗, and thus we can choose any behavioural policy
to gather experience from the environment.

The Q(s, a) function is represented in tabular form, with each state-action
pair (s, a) represented discretely [12]. The Q-Learning algorithm converges to an
optimal policy by applying the following update rule at each step t:

Q(st, at)← Q(st, at) + α[R(st, at) + γmax
a

[Q(st+1, a)]−Q(st, at)] (2)

α ∈ [0, 1] is the learning rate. With the ϵ-greedy strategy, the agent choose
the optimal action with probability (1− ϵ), and to choose a random action with
probability ϵ. The value of the parameter can be varied over time, by decreasing
it over the course of training.

3 A reinforcement learning solution for eco-driving

In order to use the reinforcement learning for eco-driving it is necessary to be
able to define precisely the state space S, the action space A and the reward
function. Before detailing these different parameters in our application context,
we provides in next section, an overview of the proposed solution for Strada
eco-driving problematic.

3.1 General proposition for eco-driving simulator

The Strada driving experts have identified three distinct phases for heavy-duty
vehicles driving: acceleration also called start-up phase, rolling phase and braking
phase. These ones will described in the next section. During each of these three
phases, the engine characteristics and its performance are very different and
the experts estimate that the types of actions a driver can do to improve its
eco-driving are significantly different. Given thus point of view, we propose that
couples {actions− rewards} differ according to the driving phase.

Our global workflow for eco-driving recommendation is described Figure 1.
This proposition is divided into 5 stages. The first is the data collection which
consists of measuring different driving and engine characteristics. The second
is a driving phase detection in charge of identifying the driving phase of the
sequence. The next one consists in estimating of the current state as an entry
of the last stage where the recommendation is given. In the next sections, we
describe how experts’ knowledge can be used in our proposal.

3.2 Actions-Rewards definition using expert knowledge

As previously told, the Strada driving experts have identified three distinct situ-
ations in a time lapse sequence of driving truck: start-up phase, rolling phase and
braking phase a illustrated Figure 2. For each driving sequence, the experts have
defined interesting technical parameters to observe in order to assess whether
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Fig. 1. Global workflow overview

the driver is behaving in the most appropriate way in view of the objective of
reducing fuel consumption.

The Start-up phase is characterized by a strong speed acceleration in a certain
time slot: during this stage, the driver has to increase speed very quickly to
reach the cruising speed of the vehicle. Factually, driver can act on the vehicle
acceleration (more or less acceleration) and change gears. So, engine speed (in
rpm) and acceleration (in %) can be used to characterize vehicle state during the
start-up phase. This couple of measures defines the start-up phase feature space.
Using RL, we can consider that each driver’s action induces a displacement in
this measurement space and we have to be able to associate each position in
the feature space with a state and a local score. Strada’s experts, based on their

Fig. 2. The three driving phases

experience, propose to divide feature space into several sub-spaces and associate
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each sub-space to a local reward. Figure 3 describes their proposal. As we can
see, experts estimate a vehicle can be in 12 different states depending on speed
and acceleration values. Each state is associated with a reward. The more higher
is the reward, the more the engine’s characteristics tends near in optimal position
(green sub-spaces).
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Fig. 3. Start-up phase feature space, states and scoring table

On the same principle, scoring tables can be defined for the two others driving
phases. Considering that rolling phase corresponds to a constant speed without
acceleration neither deceleration and braking phase corresponds to a strong speed
deceleration in a certain time slot, experts propose to retain the measures of
variation speed and fuel consumption for the rolling phase and the measures of
braking percentage and deceleration for the braking phase. Figure 4 presents the
proposed scoring Tables for these phase and the table 1 summarize measures
and driver actions.
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Fig. 4. Rolling and braking phase feature space, states and scoring tables
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Driving phase Useful features/measures Possible driver’s actions
Start-up engine speed, increase acceleration, decrease

acceleration acceleration, change gears
Rolling speed variation, use more inertia, use less inertia,

fuel consumption use less regulator, use more regulator
Braking braking percentage, less deceleration, more deceleration,

deceleration use more brake, more deceleration
Table 1. Driving expertise for RL application

3.3 Estimation of the states

Figures 3 and 4 define the possible states in our RL modeling. The choice by
the experts of the number of states and of the values of rewards is based on
their experience. It meets their main objective which is the determination of the
optimal driving path in the least possible states.

However using Q-Learning method for RL implies to be able to identify at
each iteration the current state (see eq. 2) of the vehicle. The advantage of the
scoring tables as defined be the experts is their simplicity. A simple couple of
measures provide the state. However, at this point, experts are unable to precisely
define the boundaries of each sub-space. Moreover, we have to keep in mind
that the boundaries between each sub-space can not be universal. Indeed, many
exterior parameters influence driving context (type of journey, cargo, vehicle. . . )
and it seems obvious that the boundaries between states can not be static. They
have to be estimated for each driving situation.

Some solutions exist to estimate states by combining the convolutional neural
network with the Q-Learning algorithm as proposed in [13]. In this deep Q-
Learning [13], a full-connected neural network is used to identify some states
according to the input values during a learning state. But this process is very time
consuming and requires a large data bases. This due to the fact that during the
reinforcement learning algorithm it is necessary to learn the weights associated
with the conventional neural network and the full connected part.

In our application, we propose an another strategy: a clustering process in
order to identify the state of the vehicle and the sub-spaces boundaries. Our
proposition is to use Self-Organizing Map (SOM) which is a well-known unsu-
pervised learning tool. Some authors have already proposed to use SOM in RL
[14], [15]. In these articles, the SOM maps the input space in response to the
real-valued state information, and each unit is then interpreted as a discrete
state. This context is near our problematic. So, we propose to use this structure
because its permits one to apply a clustering process that will allow us to detect
the states. Moreover, the huge advantage of SOM is its ability to preserves the
topological properties of the input space. The number of neurons will correspond
to the number of sub-spaces proposed by the experts.

The figure 5 illustrates SOM convergence. Applied to our process, the grid
corresponds to the score space and blue cloud to real data measures.



8 M. Fassih et al.

Fig. 5. 2D-SOM (illustration from wikipedia).

As SOM is a classical algorithm, so we just briefly resume its principles.
Native works on SOM can be find in [16,17,18].

The SOM is a prominent unsupervised neural network, considered as a 2D
mapping of the data group [18]. SOM net is made up of a number of nodes
usually organized in a rectangular grid where an input vector xi is link to a
weigh vector. SOM algorithm is composed of 2 iterative stages: a competitive
and a cooperative stage. The competitive stage aims to select the best neuron
whereas the cooperative one adjust the weights. Topological aspects are driven
during the update using neighborhood function also called kernel. So, in our
proposition, the number of neurons equals the number of states. When SOM
algorithm has converged, input vectors are labeled. The final position of the
neurons are then used to estimate the limits of each subspace as defined by
expert. This learning stage thus provides a way to associates a state to each new
couple of measures for the Q-learning algorithm.

In that section, we have explained our proposed method based on a first
clustering of the driving spaces followed by the RL stage. The next section
details experimentation and results of the proposed method.

4 Results of the SOMQL algorithm

In this part, we describe our experimentation, in particular the used data, the
clustering stage and the driving recommendations.

4.1 Data generation

Our recommendation system is based on Q-learning algorithm. The convergence
of a such system suppose to own a large among of data that covers the represen-
tation space: optimal policy is found by navigating through a stochastic maze
in the feature space. Obviously, it is not realistic to obtain all the data using
a truck inserted in a real traffic. First, some measures could be reached only if
driver makes unsuitable actions which may cause damages to trunk. Moreover,
some actions would have be dangerous in real traffic conditions. So, we decide to
generate simulated data using Euro Truck Simulator 2 [19] which is a software
that proposed various type of truck and journeys (missions). More over, using
this simulator, we stay in serious game situation. Figure 6 illustrates a set of
collected data for the three specific driving phase.
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Fig. 6. Example of data corresponding to start-up, rolling and braking phases (from
left to right)

4.2 States estimation using SOM

As described in section 3.3, SOM is used in order to estimate the boundaries
between the several possible states defined by experts. Indeed, the grids they de-
fined are composed several states/scores but no numerical values were defined.
Given the clusters estimates by SOM, one can divide feature spaces into a grid
which is specific to a truck type. Figures 7 illustrates the some estimated clus-
tering and grid boundaries. Each subspace can then be associated with experts
state and score in reference with the scoring tables presented in Figures 3 and 4).

In the next section, we provide some result obtained by our recommendation
system for optimal driving based on this clustering and the QL algorithm.

Fig. 7. Kohonen2D result associated with start-up, rolling and braking phases

4.3 Driving recommendation results and discussions

In order to test the recommendation system, we simulate new data for the three
specific driving phases and produce recommendations. We here describe and
comment some particular cases. First, Table 2 provides some examples of mea-
sures obtained during start-up phase, their estimated score issued from clus-
tering, and the final recommendation. A graph shows displacements in feature
space if drivers apply driving recommendations.

For the start-up phase, in case 1 (first row of table 2), the measures corres-
pond to a low engine speed and a low acceleration. In that case, the thresholds
learn with SOM indicate that the current state of the vehicle is associated to
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local score value of −1 and Q-learning proposes more acceleration recommenda-
tion. If the driver executes that recommended action, the point will move to the
upper state as illustrated with the up arrow on the scatter graph (Figure8, left
sub-figure); the new position is closer to ideal position defined by experts.

In the case 2, with a high engine speed and a low acceleration, current state
is associated to local −1 score. The system recommends to gear up (next gear).
This action decreases the engine speed and induces a new position in the feature
space by moving to the left. Finally, with case 3, we get a previous gear recom-
mendation for a low engine speed and a high acceleration, going to the right of
to current state.

Some data measures Recommendations Score
(1) s = 600, a = 0.7 more acceleration −1

(2) s = 2650, a = 1.1 next gear −1

(3) s = 800, a = 8 previous gear 6

Table 2. Recommendations for start-up phase (s:engine speed in rmp, a acceleration
in m/s2

Fig. 8. Displacements in feature/state space - Scatter space (From left to right: for
start-up, rolling and braking phases

The same analysis is performed for the rolling and braking phases. The Ta-
bles 3 and 4 sum up theses cases. We observe that the system is always trying to
reach the high score zone which is the desired behavior for eco-driving optimiza-
tion. The system seems to be efficient to provide accurate driving recommenda-
tions. The recommended actions successively move feature date toward "green"
regions of the score tables as expected.

Theses results were presented to Strada experts to evaluate the global so-
lution on a complete driving sequence. They estimate that the system offers
consistent recommendations from an eco-driving behavior point of view. The
recommendations proposed by our system seem very relevant. They perfectly
meet the driving advises to give according to the simulated driving sequence.
Right now, the solution can be viewed of as three parallel processes, one per
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Some data measures Recommendations Score
fc = 73, ∆s = 2.1 use more inertia −1

fc = 80, ∆s = 0.15 use more inertia +1

fc = 27.1, ∆s = 4.33 use more regulator +3

Table 3. Recommendations for rolling phase (with fc: fuel consumption in L/100Km,
∆s: speed variation in Km/h)

Some data measures Recommendations Score
d = 8, b = 88% use less brake −1

d = 4.12, b = 75% use less brake +3

d = 8.5, b = 25% less deceleration +6

Table 4. Recommendations for braking phase (with d: deceleration in m/s2, b: braking

driving phase. Individually, each process provides accurate recommendations for
eco-driving. Obviously, driving a truck is a continuous process where start-up,
rolling and braking phases follow one another. Global solution includes automatic
detection of the driving phase. Evaluation of global fuel consumption on a simu-
lated travel has also to be done. Given these results, solution will be adapted to
real truck. Others search will be engaged based on deep reinforcement learning.

5 Conclusion

In the context of eco-driving, we presented a real-time recommendation system
for a simulator-type driving training. The proposed real time recommendations
is based on the reinforcement learning. Since the states domain is continuous,
we introduce an identification of discrete states by using a Self-organizing Map.
All the parameters of our strategy are setting by qualified expert. Finally, we
use our proposed system on simulated driving, and according to the expert,
the recommendations are coherent and allows the driver to have an eco-driving
behavior. Perspectives of this work are numerous. First, introducing Deep RL
should simplify identifications of the current states for Q-learning. However, as
each system based on deep approach, large amount of data still a requirement.
It should be difficulty with real data in transportation context. Secondly, the
proposal can be enriched by taking into account new information such as type of
road during the travel (streets, roundabout, highway. . . ), topology of missions
or shipments.
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