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Abstract: It was proposed that the last universal common ancestor (LUCA) evolved under high tempera- 19 

tures in an oxygen-free environment, similar to those found in deep-sea vents and on volcanic slopes. 20 

Therefore, spontaneous DNA decay such as base loss and cytosine deamination were the major factors 21 

affecting LUCA’s genome integrity. Cosmic radiation due to weak Earth’s magnetic field and alkylating 22 

metabolic radicals added to these threats. Here, we propose that ancient forms of life had only two distinct 23 

repair mechanisms: versatile apurinic/apyrimidinic (AP) endonucleases to cope with both AP sites and 24 

deaminated residues, and enzymes catalysing direct reversal of UV and alkylation damage. The absence 25 

of uracil–DNA N-glycosylases in some Archaea, together with the presence of an AP endonuclease that 26 

can cleave uracil-containing DNA, suggest that the AP endonuclease-initiated nucleotide incision repair 27 

(NIR) pathway evolved independently from glycosylase-mediated base excision repair . NIR may be a 28 

relic that appeared in an early thermophilic ancestor to counteract spontaneous DNA damage. We hy- 29 

pothesize that a rise in the oxygen level in the Earth’s atmosphere ~2 Ga triggered the narrow specializa- 30 

tion of AP endonucleases and DNA glycosylases to cope efficiently with a widened array of oxidative 31 

base damage and complex DNA lesions.  32 

Keywords: DNA repair; DNA glycosylases; AP endonucleases; protein folds; structural homology.  33 

 34 

1. Introduction 35 

This theoretical essay was inspired by Miroslav Radman’s works on the mechanisms of SOS 36 

response and mismatch repair in bacteria. In their seminal paper, Watson and Crick did not 37 

point out the key role of the double-stranded DNA structure for maintaining genome stability 38 

thanks to DNA repair. Indeed, to carry out its hereditary function DNA requires not only rep- 39 

lication for self-reproduction and transcription for converting genetic information into RNA 40 

and then to proteins, but also repair, to fix eventual DNA damage that otherwise can induce 41 

mutations and block template reading. During the course of the evolution, cellular organisms 42 

conceived several distinct strategies to counteract mutagenesis and DNA damage to their dou- 43 

ble-stranded genomes, such as direct reversal (DR) (Figure 1A), DNA excision repair (Figure 44 

1B-J), lesion tolerance/bypass, nucleotide pool sanitization, and recombination repair. It should 45 
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be stressed that the mechanistic principles used in each repair strategy are fundamentally dif- 46 

ferent. In DR and nucleotide pool sanitization pathways, both of which do not require double- 47 

stranded structure, DNA damage is either removed or prevented without the need for excision 48 

of modified nucleotides and de novo DNA synthesis (Figure 1A). DNA damage tolerance strat- 49 

egy employs both template switching and lesion bypass and, similar to DR, does not require 50 

excision of damaged base. In contrast, DNA excision repair that includes pathways such as the 51 

base excision repair (BER) (G-H), nucleotide incision repair (NIR) (F), alternative excision repair 52 

(AER) (I), nucleotide excision repair (NER) (J), and mismatch repair (MMR), proceeds through 53 

phosphodiester bond cleavage, removal of DNA damage via excision, de novo DNA synthesis 54 

with the non-damaged strand as a template, and ligation. Recombination repair also relies on 55 

de novo synthesis but the template is provided by another copy of double-stranded DNA. 56 

The very multiplicity of DNA repair pathways begs for a question how they, particularly ex- 57 

cision repair now in charge of the elimination of deleterious DNA base lesions, could emerge 58 

very early in the evolution? Could the copious details known about the molecular mechanisms 59 

of repair pathways yield insights into hypothetical DNA repair mechanisms in the last universal 60 

common ancestor (LUCA) of all living organisms? Obviously, the genotoxic factors faced by the 61 

most ancient life forms depend both on the environment of the early Earth and on the metabolic 62 

reactions used by life then. The earliest commonly accepted geochemical evidence of life are 63 

dated at least ~3.77 Ga, whereas molecular evidence suggest a date >3.9 Ga, before the Late 64 

Heavy Bombardment events [1-3]. For a significant part of the early biotic evolution, life was 65 

likely exposed to hostile conditions such as high temperatures, extreme pH, anoxic UV-transpar- 66 

ent atmosphere and weak Earth’s magnetic field. The genetic evidence also suggest that the me- 67 

tabolism in LUCA was replete in carbon radical-based reactions [4,5]. Thus, several candidates 68 

for primeval genotoxic factors appear feasible: spontaneous DNA hydrolysis, short-wavelength 69 

UV (UVC) light, ionizing radiation and alkylating compounds. On the other hand, there is a gen- 70 

eral agreement that oxygen-rich atmosphere and widespread oxidative metabolism appeared 71 

much later in the history of Earth, thus making oxidative DNA damage of substantially less con- 72 

cern than it is today. 73 

The main products of spontaneous DNA decay in water are apurinic/apyrimidinic (AP) sites, 74 

generated by the hydrolysis of N-glycosidic bonds, mainly in purine deoxynucleotides, and ura- 75 

cil (U) residues, arising from hydrolytic deamination of cytosines; hypoxanthine (Hx) and xan- 76 

thine (Xan) residues are also produced by deamination of adenine and guanine, respectively, but 77 

with lower yields (Figure 2A). The main products of UV radiation are cyclobutane pyrimidine 78 

dimers (CPD) and pyrimidine–pyrimidone (6–4) photoproducts (6–4PP) (Figure 2B) [6]. Both 79 

photoproducts are cytotoxic (block DNA replication and transcription) and mutagenic. Notably, 80 

fossilized intertidal microbial mats with evidence of periodic atmosphere exposure suggest that 81 

the pathways to cope with UV damage were already in place as early as ~3.4 Ga [7]. DNA strand 82 

breaks with 3’-blocking groups, abasic sites and modified bases are major products of ionizing 83 

radiation [8,9]. Pyrimidine hydrates in DNA such as 6-hydroxy-5,6-dihydrothymine occur spon- 84 

taneously and can be also generated by exposure to UV light and ionizing radiation under anoxic 85 

conditions (Figure 2A) [10-12]. Electrophilic agents, including carbon radicals, avidly react with 86 

electron-rich positions of nucleobases, forming several classes of their N- and O-alkylated deriv- 87 

atives [13,14]. Last but not least, the replication machinery is not a perfect copier and can make 88 

mistakes, misincorporating ribonucleotides or non-complementary dNMPs [15,16].  89 

At least four major DNA repair pathways can efficiently deal with these abnormal chemical 90 

structures in DNA: photolyase-, alkyltransferase- and dioxygenase-catalyzed DR, DNA glyco- 91 

sylase-initiated BER, AP endonuclease-mediated NIR and multiprotein complex-dependent 92 

NER (Figure 1). DR of a damaged base to its native state without excision and de novo DNA 93 

synthesis provides the simplest, most efficient and accurate biochemical mechanism of DNA re- 94 

pair. However, DR mechanisms are known only for a handful of UV-induced and alkylated base 95 

lesions. NER is the main pathway used by present-day cells to remove a variety of structurally 96 

unrelated bulky DNA lesions such as those generated by UV radiation and xenobiotics including 97 

environmental toxins and anti-cancer drugs. Here DNA lesions are eliminated by a multiprotein 98 

http://www.sciencedirect.com/science/article/pii/B9780123749840006604#f0005
http://www.sciencedirect.com/science/article/pii/B9780123749840006604#f0005
http://www.sciencedirect.com/science/article/pii/B9780123749840006604#f0005


Cells 2021, 10, x FOR PEER REVIEW 3 of 38 
 

 

complex through dual incision bracketing the adduct in the damaged strand to form a short oli- 99 

gonucleotide containing the lesion and a single-stranded gap serving as a template to restore 100 

DNA integrity through the action of DNA polymerases and ligases. 101 

 102 

 103 
Figure 1. Principal DNA repair mechanisms employed by cellular organisms. N, deoxyribo- 104 

nucleotide; N with the red backbone, ribonucleotide; Th, thymine hydrate; U, uracil; Hx, hypo- 105 

xanthine; T=T, UV induced pyrimidine dimers.  106 

 107 

The classic BER pathway is initiated by a DNA glycosylase excising a modified or mis- 108 

matched base by hydrolysis of its N-glycosidic bond, generating a free base and an AP site, which 109 

is a cytotoxic and mutagenic repair intermediate (Figure 1G). Then either a hydrolytic AP endo- 110 

nuclease or an AP lyase activity present in certain DNA glycosylases nicks DNA 5’ or 3’ to the 111 

AP site, respectively (Figure 1B,C). The incised DNA is further processed by either 2’-deoxyribo- 112 

5’-phosphate lyase (dRpase) or 3’-cleaning repair activity (3’-phosphodiesterase or 3’-phospha- 113 

tase), and then by a DNA polymerase, DNA ligase, and other accessory proteins to restore the 114 

integrity of DNA. The flow of the DNA glycosylase-initiated BER, which requires the sequential 115 

action of two enzymes for proper DNA incision, must be tightly coordinated because of the gen- 116 

otoxic intermediates generated. In the alternative DNA glycosylase-independent NIR pathway, 117 

an AP endonuclease directly cleaves damaged DNA 5’ to various modified nucleotides, generat- 118 

ing 3’-OH and 5’-phosphate termini thus avoiding potentially genotoxic AP site formation (Fig- 119 

ure 1F) [17]. The NIR pathway, which can be genetically separated from BER, is evolutionary 120 

http://www.sciencedirect.com/science/article/pii/B9780123749840006604#f0005
http://www.sciencedirect.com/science/article/pii/B9780123749840006604#f0005
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conserved in all three domains of life [18,19]. BER and NIR are the most versatile pathways that 121 

recognize a wide range of DNA modifications from small, non-bulky ones to bulky lesions that 122 

distort the helical DNA structure. 123 

 From the mechanistic point of view, DR and NIR pathways are the simplest, requiring few 124 

steps and energy, as compared to the BER and NER machineries, which employ multiple sequen- 125 

tial steps and more than one protein to cleave damaged DNA and generate proper ends. Recent 126 

findings shed light on the evolutionary origins of DNA repair pathways and mechanisms of 127 

DNA damage recognition. In this scenario, following the Oxygen Catastrophe there was an in- 128 

crease in the spectrum and complexity of DNA damage, which overwhelmed the capacity of 129 

ancient DR and NIR system to maintain genome stability and resulted in the appearance of new 130 

pathways such as BER and NER. Here, we propose that the DNA glycosylase-initiated BER and 131 

multi-protein complex mediated NER systems appeared later in evolution, offering more versa- 132 

tile and efficient catalytic mechanisms that involve sequential actions of several repair proteins 133 

to remove DNA damage and generate a single-stranded gap of varying length with a proper 3’- 134 

end that can be used as a primer for DNA repair synthesis and ligation (Figure 1G,H,J). Here, we 135 

advance the idea that under the conditions on early Earth the spectrum of DNA damage was 136 

limited and only few singular repair pathways such as DR and NIR were sufficient to protect the 137 

genome of LUCA. We propose that LUCA employed a photolyase, and O6-alkylguanine alkyl 138 

transferase to repair UV and alkylation DNA damage, respectively, whereas spontaneous DNA 139 

decay and ionizing radiation induced DNA damage were counteracted by the NIR-specific AP 140 

endonucleases, AP lyases and 3’-repair phosphodiesterases (Figure 1B,C,F,F). 141 

 142 

2. Types of DNA damage  143 

Cellular macromolecules such as proteins, lipids and nucleic acids are prone to spontaneous 144 

decomposition because of their intrinsic chemical instability. In addition, endogenous oxidative 145 

stress and number of exogenous environmental factors, such as alkylating and oxidizing agents, 146 

photosensitizers, antibiotics, ionizing and UV radiation also contribute to structural damage to 147 

cellular components. Cellular DNA constantly undergoes structural alterations, resulting in 148 

DNA lesions that are cytotoxic, miscoding, or both and are believed to be at the origin of cell 149 

death and mutations [20,21]. DNA damage can be classified by its nature: spontaneous vs in- 150 

duced and by structure of the produced lesions: singular vs complex.  151 

2.1. Hydrolytic DNA damage. As today, the ancestral life would encounter spontaneous DNA 152 

decay as a primary challenge to the genetic inheritance, further promoted by elevated tempera- 153 

tures. In aqueous solutions, sufficiently long DNA molecules are prone to spontaneous N-glyco- 154 

sidic bond hydrolysis and deamination at significant rates [22,23] (Figure 2A). Under normal 155 

physiological conditions, ~1 per 105 purines are lost from DNA per day, generating AP sites [22]. 156 

AP sites have miscoding properties, since the replication machinery follows the “A rule”, pref- 157 

erentially incorporating dAMP opposite them [24,25]. Spontaneous loss of the exocyclic amino 158 

groups in C, A and G bases generates highly mutagenic U, Hx and Xan residues, which induce 159 

C→T, A→G, and G→A transitions, respectively (Figure 2A) [26-28]. Under typical intracellular 160 

conditions, deamination in DNA occurs in about 1 per 107 C residues per day, whereas purines 161 

are deaminated at ~1/10 of this rate [23]. Importantly, C deamination in single-stranded nucleic 162 

acids is an order of magnitude faster than in duplex DNA, and the need to distinguish an in- 163 

structive genomic base from the damage product is believed to play a critical role in T substitut- 164 

ing for U upon transition from the RNA world to the modern DNA world [29]. 165 

 166 

http://www.sciencedirect.com/science/article/pii/B9780123749840006604#f0005
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 167 
Figure 2. Chemical structures of spontaneous and induced DNA lesions. (A) Singular DNA 168 

base damage, including products of spontaneous DNA decay, oxidative DNA base damage and 169 

DNA base modifications generated by exposure to ionizing radiation under anoxic conditions. 170 

(B) Complex DNA damage, including bulky DNA adducts induced by UV light and inter-strand 171 

DNA crosslink generated by reactive aldehydes.  172 

 173 

2.2. UV damage. Solar light is, and was, the primary source of UV radiation from the very begin- 174 

ning of life on Earth. The UV radiation spectrum can be divided into three bands: the least ener- 175 

getic long-wavelength UVA (315–400 nm), medium-wavelength UVB (280–315 nm), and the 176 

most energetic short-wave UVC (100–280 nm). The UV radiation, especially UVC, is very effi- 177 

cient in killing bacteria, and germicidal UVC-emitting lamps are frequently used for sterilization 178 

purposes. The most frequent and detrimental effect in DNA of UVC and UVB is the formation 179 

of pyrimidine dimers (Figure 2B), first discovered over sixty years ago by Beukers and Berends 180 

[30]. Two most common UV products are CPDs formed by cyclization of C5=C6 bonds of two 181 

adjacent pyrimidines, and 6–4PPs in which two adjacent pyrimidines are connected by a covalent 182 

bond between C6 and C4 (Figure 2B). 6–4PPs can be converted into Dewar valence isomers upon 183 

UVB irradiation [31]. CPDs are more frequent than 6–4PPs and constitute ~80% of the total UV- 184 

induced lesions [6]. In addition to bulky DNA adducts, UV radiation induces genotoxic small 185 

base modifications – pyrimidine hydrates such as 6-hydroxy-5,6-dihydrothymine, 6-hydroxy- 186 

5,6-dihydrocytosine and 6-hydroxy-5,6-dihydrouracil (Figure 2A) [32,33]. Appearance of oxygen 187 
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in the atmosphere ~2.4 Ga lead to the formation of the ozone layer, which absorbs radiation be- 188 

low ~310 nm, thus blocking all UVC and 95% of UVB from the surface of the Earth and offering 189 

an efficient protection for living organisms from excessive UV radiation [34,35]. 190 

2.3. Ionizing radiation damage. Ionizing radiation consists of subatomic particles or electromag- 191 

netic waves that are sufficiently energetic to tear electrons off atoms or molecules. Cosmic rays 192 

and the decay of radioactive isotopes are the primary sources of natural ionizing radiation on 193 

Earth contributing to background radiation. Since the Earth’s core solidified only ~1.5 Ga, the 194 

early Earth’s magnetic field was much weaker than it is today, resulting in ~100-fold higher solar 195 

high-energy flux [36,37]. Ionizing radiation induces high-energy radiolysis of water molecules 196 

producing highly reactive species such as hydrated electrons, •H and •OH radicals. The major 197 

products generated by ionizing radiation are DNA strand breaks with 3’-phosphoglycolate and 198 

3’-phosphate termini, which arise by the abstraction of a hydrogen from deoxyribose at C1’ or 199 

C4’ by •OH radicals following base loss and sugar fragmentation [38]. A salient feature of ioniz- 200 

ing radiation is the generation of closely spaced DNA lesions forming clusters, i.e. two or more 201 

damaged bases or strand breaks spaced by less than one helical turn of duplex DNA, either on 202 

the same strand or on the opposite DNA strands [8]. It should be stressed that the exposure to IR 203 

under low oxygen concentration favours the formation of 5,6-dihydrothymine (DHT), thymine 204 

hydrates, α-anomeric 2’-deoxynucleotides (αdN) and 8,5’-cyclopurine deoxynucleosides, but not 205 

the classic oxidized bases such as 7,8-dihydro-8-oxoguanine (8oxoG), 5-hydroxycytosine (OHC) 206 

or thymine glycol (Tg) (Figure 2A) [39-45]. This might suggest that such “anoxic” lesions were 207 

more physiologically relevant as damage generated by ionizing radiation in the cellular DNA on 208 

the early Earth.  209 

2.4. Alkylation damage. Nitrosamines are formed under acidic pH by a reaction between ni- 210 

trates or nitrites and secondary amines generated during protein degradation. Most of nitrosa- 211 

mines are potent mutagens and carcinogens. Metabolic activation of nitrosamines convert them 212 

to alkylating electrophilic compounds that react with DNA bases at all exocyclic oxygens and 213 

most ring nitrogens [46,47]. These agents can also alkylate non-bridging oxygen atoms of inter- 214 

nucleoside phosphates, generating alkylphosphotriesters. SN1 alkylating agents, such as N-me- 215 

thyl-N-nitrosourea (MNU) and N-methyl-N’-nitro-N-nitrosoguanidine (MNNG) use a monomo- 216 

lecular mechanism to alkylate at N and O atoms, while the SN2 agents, which include methyl 217 

methanesulfonate (MMS) and dimethylsulfate (DMS), act through a bimolecular mechanism to 218 

alkylate at N atoms only. Ethyl methanesulfonate (EMS) uses both SN1 and SN2 mechanisms. 7- 219 

methylguanine (7meG), 3-methyladenine (3meA) and O6-methylguanine (O6meG) are the most 220 

abundant alkylated lesions [48,49]. 1-Methyladenine (1meA) and 3-methylcytosine (3meC) are 221 

also generated by SN2 agents, such as MMS, preferentially in single-stranded DNA and RNA 222 

[50]. The presence of 3meA, 1meA and 3meC residues in DNA template can block DNA replica- 223 

tion, making them highly cytotoxic lesions, whereas 7meG is non-toxic and non-mutagenic 224 

[51,52]. SN1 type agents such as MNNG and MNU are most potent chemical carcinogens because 225 

they react more readily with exocyclic oxygen of DNA bases to generate the highly miscoding 226 

O6meG and O4-methylthymine (O4meT) adducts [53]. The major adduct O6meG mispairs with T 227 

during DNA replication, resulting in G→A transitions. Interestingly, mutagenic SN1 nitroso- 228 

compounds can arise endogenously in bacteria through the nitrosation of amino acids, peptides 229 

or polyamines [54]. Endogenous methyl donor S-adenosylmethionine (SAM) can also act as a 230 

weak SN2 type of alkylating agent in vivo and contribute to endogenous DNA alkylation [55]. 231 

Moreover, SAM is cleaved by a variety of enzymes (radical SAM enzymes) producing a 5’-deox- 232 

yadenosyl radical that is further used to generate other free radical metabolic species [56]. Radical 233 

SAM reactions likely constituted a significant part of LUCA metabolism [5]. Thus, exogenously 234 

and endogenously generated alkylating species would present a danger for the genetic material 235 

of ancestral life forms. 236 

2.5. Oxidative damage. The appearance of oxygen-rich atmosphere resulted in the wide adop- 237 

tion of oxidative phosphorylation as the major pathway to produce adenosine triphosphate 238 

(ATP). In a canonical electron transport chain, free radicals are generated when an oxygen mol- 239 

ecule promiscuously reacts with one of the transported electrons before it reaches the final com- 240 
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plex IV (cytochrome c oxidase). Superoxide anion radical (•O2−) is generated, which is then con- 241 

verted to hydrogen peroxide (H2O2). Reduced transition metals such as Fe2+ and Cu+ react with 242 

H2O2 to produce a highly reactive hydroxyl radical •OH via Fenton reactions [57], which in turn 243 

damages cellular DNA, proteins and membrane lipids [58]. About 80 different types of base and 244 

sugar lesions induced by these reactive oxygen species (ROS) have been identified [59]. ROS can 245 

damage both nucleobases and sugars in DNA either directly or indirectly. Hydroxyl radicals, 246 

which are the most active species, predominantly react at C8 of purines forming 8oxoG [60] and 247 

imidazole ring-opened products such as 2,6-diamino-5-formamidopyrimidine (FapyG) or 4,6- 248 

diamino-5-formamidopyrimidine (FapyA) [61], at the C5=C6 double bond of pyrimidines to form 249 

glycols [39,62], and at C8 and C5’ of purine deoxynucleosides forming their 8,5’-cyclopurine de- 250 

rivatives [63]. Major oxidized bases due to endogenous ROS, such as 8oxoG, 5OHC, and 5-hy- 251 

droxyuracil (5OHU) are miscoding and, if not repaired, lead to mutation upon replication 252 

[16,64,65]. Others, such as oxidized AP sites, thymine glycols and fragmentation products of 253 

DHT, cause replication block and therefore have a strong cytotoxic effect [66-69].  254 

Indirectly, ROS can damage DNA through membrane lipid peroxidation (LPO) generating 255 

highly reactive α,β-unsaturated aldehydes (enals), e. g., acrolein, crotonaldehyde, and 4-hy- 256 

droxynonenal (4-HNE), which can react with nucleobases forming exocyclic adducts such as 257 

1,N2-γ-hydroxypropano-dG [70-72]. When present in DNA, these exocyclic adducts can further 258 

yield inter-strand DNA crosslinks (ICLs), often between guanines in CpG context, as a result of 259 

exocyclic ring opening and interaction with undamaged guanine in opposite DNA strand (Figure 260 

2B) [73]. ICLs are highly lethal DNA lesions that block DNA replication, transcription and re- 261 

combination by preventing strand separation. In addition to ICLs, chemical agents such as for- 262 

maldehyde and physical factors, such as the ionizing and UV radiations, can crosslink proteins 263 

to an undisrupted DNA strand generating DNA-protein crosslinks (DPC) [74].  264 

 265 

 266 

3. DNA repair in reconstructed and minimal genomes 267 

The explosive growth of the number of fully or partially sequenced genomes and the appearance 268 

of tools to establish their evolutionary relationships led to several attempts to reconstruct both 269 

minimal genomes allowing modern cells to survive [75-81] and putative ancestral genomes [5,82- 270 

84]. Last Universal Common Ancestor is a hypothetical organism or, more precisely, a common 271 

gene pool from which all presently living organisms descend [85-87]. A recent reconstruction of 272 

the LUCA genome outlined 355 protein families potentially present in this pool [5]. Table 1 lists 273 

representative proteins from E. coli and humans that are related to DNA repair in today’s species 274 

and have their putative ancestry among the LUCA genes.  275 

Table 1. DNA repair protein-coding genes from reconstructed and minimal genomes.  276 

Structural 

superfamily 

Process E. coli human Functiona 

LUCA genome reconstruction: Mirkin et al. [82]b 

O6-

methylguanine-

DNA–protein-

cysteine 

methyltransferase 

DR Ada, 

Ogt, 

Atl1 

MGMT Exocyclic O-

alkyltransferases 

NUDIX 

hydrolases 

nucleotide pool 

sanitization 

MutT MTH1 oxidized NTP/dNTP 

hydrolysis 
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Uracil–DNA 

glycosylase 

BER Ung, 

Mug 

UNG, 

TDG, 

SMUG1 

uracil–DNA 

glycosylase 

Helix–hairpin–

helix 

BER Nth, 

MutY, 

AlkA 

NTHL1, 

OGG1, 

MUTYH, 

MBD4 

DNA glycosylases for 

various lesions 

TIM barrel BER Nfo – AP endonuclease 

5’→3’ 

exonucleases 

various PolA, 

Exo 

FEN1 normal and damaged 

DNA degradation; flap 

endonucleases 

Family A DNA 

polymerases; 

DnaQ-like 3’→5’ 

exonucleases 

repair DNA synthesis, 

proofreading 

PolA POLN, 

POLQ 

DNA polymerases; 

proofreading activity 

may or may not be 

present 

DEAD-box 

helicases 

NER, recombination 

repair 

UvrD, 

RecB 

PARPBP1 monomeric DNA 

helicases involved in 

recombination, 

replication, and repair 

ATP-binding 

cassette 

transporters 

MMR MutS MSH2–

MSH6 

mismatch detection 

S5-like fold; 

histidine kinase-, 

DNA gyrase B-, 

and HSP90-like 

ATPase 

MMR MutL MLH1, 

MLH3, 

PMS1, 

PMS2 

mismatch signal 

transduction 

P-loop NTPases recombination repair; 

non-homologous end 

joining 

SbcC SMC3, 

RAD50 

DSB recognition 

and/or processing 

Calcineurin-like 

phosphoesterases 

recombination repair; 

non-homologous end 

joining 

SbcD MRE11 DSB recognition 

and/or processing 

Haloacid 

dehalogenases 

recombination repair RecJ – 5’→3’ exonucleases 

P-loop NTPases recombination repair RecA RAD51, 

DMC1 

strand exchange 

LUCA genome reconstruction: Weiss et al. [5] 

PDDEXK 

nucleases 

specialized mismatch 

repair 

Vsr – T:G mismatch cleavage 
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PDDEXK 

nucleases 

specialized mismatch 

repair 

– – archaeal mismatch 

endonucleases 

(NucS/EndoMS) 

RNase H-like AER Nfi ENDOV deoxyinosine 3’-

endonuclease 

P-loop NTPases recombination repair RuvB WRNIP1 hexameric DNA 

helicases driving 

branch migration 

during recombination 

Family Y DNA 

polymerases 

translesion synthesis DinB, 

UmuC 

POLH, 

POLI, 

POLK, 

REV1 

DNA polymerases 

capable of translesion 

synthesis 

DEAD-box 

helicases 

various RecQ BLM, 

WRN 

monomeric DNA 

helicases involved in 

recombination, 

replication, and repair 

DEAD-box 

helicases 

unknown, DNA damage-

induced 

Lhr ASCC3 DNA damage-

inducible DNA:RNA 

helicase 

DEAD-box 

helicases 

NER RadD 

(YejH) 

ERCC3 DNA helicase that 

functions in 

transcription and NER 

DNA 

topoisomerases, 

subtype IA 

possibly break repair and 

chromatin 

remodelling/maintenance 

– – archaeal reverse 

gyrase; introduces 

positive supercoils into 

DNA 

Radical_SAM ? – – putative DNA 

modification/repair 

FeS-containing radical 

SAM protein 

Minimal genome: Glass et al. [80]c 

Uracil–DNA 

glycosylase 

BER Ung UNG uracil–DNA 

glycosylase 

TIM barrel BER Nfo – AP endonuclease 

ATP-binding 

cassette 

transporters 

NER UvrA  NER lesion search 

ATP-binding 

cassette 

transporters 

NER UvrB  NER lesion search 

RNase H-like NER UvrC – NER nuclease 
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Minimal genome: Venetz et al. [81]d 

dUTPases nucleotide pool 

sanitization 

Dut DUT trimeric dUTP 

diphosphatase 

Uracil–DNA 

glycosylase 

BER Ung UNG uracil–DNA 

glycosylase 

Haloacid 

dehalogenases 

recombination repair RecJ – 5’→3’ exonucleases 

aGenes with an essential function in replication are not included except DNA polymerase I 277 

(PolA). 278 

bLUCA1.0 from [82]. 279 

cMinimal genome reconstruction based on combined data from [75-78,80]. The experimental 280 

gene essentiality data were from Mycoplasma genitalium, M. pneumoniae and Bacillus subtilis ge- 281 

nomes. 282 

dMinimized Caulobacter crescentus genome.  283 

 284 

Several notes of caution are imperative when trying to use these reconstructions to under- 285 

stand the evolution of DNA repair systems. Minimal genomes are based on experimental data 286 

from a very limited number of bacterial species and thus necessarily reflect the kinds of geno- 287 

toxic challenges faced by them under the laboratory growth conditions. Even if the gene inacti- 288 

vation experiments would be performed in another environment, or with other species, the 289 

gene sets identified as essential might be different. Reconstructed ancestral genomes, on the 290 

other hand, strongly depend on assumed evolutionary trees of the major phylogenetic groups 291 

included into the analysis, which are still far from being firmly established. The early evolu- 292 

tionary split between Bacteria and Archaea is especially obscure, hindering the analysis of gene 293 

ancestry and lateral transfer in the eukaryotic lineage [88-90]. For example, attempts to uncover 294 

eukaryotic genes of bacterial origin produced widely divergent results, at least concerning 295 

DNA repair genes [91,92]. It is also important to realize that the reconstructed LUCA genome 296 

reflects the metabolism and environment characteristic of the last genetic bottleneck, which 297 

very likely far post-dated both the appearance of life and its transition to the DNA world.  298 

This said, and despite little congruence between essential DNA repair genes in minimal and 299 

reconstructed ancestral genomes evident from Table 1, these exercises may be useful to under- 300 

stand the biology of LUCA and how it coped with the genome damage. A recent reconstruction 301 

focused on LUCA’s metabolism revealed an abundance of iron–sulfur (FeS) clusters, radical 302 

SAM reactions, and a variety of nucleobase modifications [5]. FeS clusters are important mod- 303 

ules in many DNA repair enzymes from BER and NER pathways and in some DNA polymer- 304 

ases, often serving as at-a-distance sensors of oxidative DNA damage [93,94]. Radical SAM en- 305 

zymes catalyse a diverse set of reactions and are based on the ancient TIM barrel fold, which 306 

also includes one major group of AP endonucleases [56,95,96]. Among other cofactors, LUCA 307 

appears to rely on flavin and pterin moieties, critical elements in UV-protecting DR. Finally, 308 

LUCA’s genetic makeup is consistent with the hot environment, making hydrolytic reactions – 309 

base loss and deamination – possibly the strongest threat for its genome.  310 

 311 

4. Spontaneous DNA damage: To BER or not to BER?  312 

 4.1. DNA glycosylases: primordial players or a later adaptation? Today, deaminated bases 313 

(mostly U) are removed by one of multiple uracil–DNA glycosylases, whereas AP sites, either 314 

spontaneous or glycosylase-formed, are nicked by an AP endonuclease (Figure 1G and B). 315 

However, the appearance of toxic and mutagenic AP sites in the course of canonical BER raises 316 

a question why such a potentially hazardous pathway evolved at all. A nuclease activity recog- 317 

nizing a lesion and cleaving DNA next to it (Figure 1E,F and see next sections) would not be 318 

entailed with this drawback. However, uracil–DNA glycosylase is one of few enzymes that 319 
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both apparently existed in LUCA and are essential in minimal genomes (Table 1). Did ancestral 320 

DNA repair pathways require DNA glycosylases? 321 

 Notably, at least seven protein folds can catalyze base excision from DNA: the uracil–DNA 322 

glycosylase-like α/β-fold, helix–hairpin–helix motif (HhH)-containing enzymes, helix–two- 323 

turn–helix motif (H2tH)-containing enzymes, the formyltransferase C-terminal domain fold, 324 

the T4 pyrimidine dimer DNA glycosylase fold, the tetratricopeptide-like repeats fold, and the 325 

HALFPIPE fold [97,98]. Even more strikingly, none of the known DNA glycosylases are based 326 

on structural folds of ubiquitous metabolic enzymes capable of hydrolyzing N-glycosidic bonds 327 

between sugars and aromatic heterocycles (including nucleobases), such as nucleoside hydro- 328 

lases, purine/uridine nucleoside phosphorylases, or N-(deoxy)ribosyltransferases, or more spe- 329 

cialized SMF/DprA-LOG superfamily that includes enzymes producing heterocyclic signaling 330 

molecules, or ribosome-inactivating RNA N-glycohydrolases. One is tempted to speculate that 331 

the weaker nature of the N-glycosidic bond in DNA compared with that in RNA makes its hy- 332 

drolysis so inherently easy that many DNA-binding proteins could evolve an ability to catalyze 333 

this reaction with biologically acceptable rates. It is interesting to note that almost all DNA gly- 334 

cosylases and several other structurally unrelated classes of proteins (e. g., AP endonucleases, 335 

nucleobase dioxygenases, DNA methyltransferases, and epigenetic readers) kink DNA and flip 336 

out the target nucleotide [99,100], and it has been suggested based on molecular dynamics 337 

modeling that the configuration of DNA phosphates in this strained intermediate mainly pro- 338 

vides the catalytic power for the N-glycosidic bond breakage [101]. An intriguing corollary of 339 

the differential N-glycosidic bond stability was noted by Rios and Tor [102] who hypothesized 340 

that the RNA world used an extended repertoire of nucleobases due to the need to combine 341 

information storage and catalysis in one type of nucleic acid, and the primeval glycosylases 342 

might have evolved with the appearance of DNA genomes to eliminate non-standard bases no 343 

longer needed, including U, from the genome carrier. This suggestion aligns both with the 344 

large repertoire of nucleobase modifications in LUCA [5] and with the ubiquitousness of UNG- 345 

like enzymes, which seem to represent an ancient uracil-binding fold [103,104]. Interestingly, 346 

the widest phylogenetic diversity today can be found not among Family 1 uracil–DNA glyco- 347 

sylases where extensively characterized human and E. coli enzymes belong but among Family 4 348 

and Family 5 enzymes that were initially discovered in extremophilic archaea and bacteria and 349 

contain a FeS cluster [105-108]. 350 

In total, eight families of UNG-like enzymes have been defined so far, of which six are bio- 351 

chemically characterized. Some of them, such as Family 1 where extensively studied human 352 

and E. coli enzymes belong, and Family 4 initially discovered in extremophilic archaea and bac- 353 

teria and containing a FeS cluster, seem to be bona fide uracil–DNA glycosylases with little ac- 354 

tivity on other substrates. Others, like SMUG1 (Family 3), FeS-containing Family 5, and the re- 355 

cently discovered SMUG2 and Bradyrhizobium diazoefficiens uracil–DNA glycosylase (BdiUng)- 356 

like enzymes have wider substrate specificity that may additionally include other U derivatives 357 

(5OHU, 5-hydroxymethyluracil, 5-formyluracil), Hx, and Xan [109-112]. Thymine–DNA glyco- 358 

sylase (TDG) present in animals and fungi is involved in active epigenetic demethylation re- 359 

moving oxidized and/or deaminated derivatives of 5-methylcytosine [113,114], and together 360 

with its bacterial homolog Mug may be the primary glycosylase for exocyclic pyrimidine ad- 361 

ducts such as 3,N4-methylcytosine, or for 7,8-dihydro-8-oxoadenine (8oxoA) [115,116]. Finally, 362 

Family 6 lacks uracil-removing activity completely, excising hypoxanthine instead [107]. 363 

The most versatile group of DNA glycosylases is the HhH superfamily, the members of which 364 

are present in all domains of life, remove all major kinds of damaged bases and some mis- 365 

matched bases, and can be monofunctional or have an associated β-elimination activity (Figure 366 

1H). The HhH motif itself is a small non-specific DNA-binding element also found in DNA and 367 

RNA polymerases, transposases, Holliday junction branch migration protein RuvA, RecD hel- 368 

icase and several other DNA-binding proteins [117-119]. In DNA glycosylases with an associ- 369 

ated β-elimination activity (Nth, OGG1, OGG2), the second helix bears a catalytic Lys residue 370 
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that acts as a nucleophile to displace the target base. The homologous Lys in DNA polymer- 371 

ases β and λ serves as a nucleophile in the dRpase reaction catalyzed by these enzymes 372 

[120,121]. In monofunctional enzymes (MutY, AlkA, MBD4) this Lys is replaced with different 373 

non-basic residues, indicating that the ability to perform β-elimination was likely ancestral in 374 

the glycosylases belonging to this superfamily. In DNA glycosylases, the HhH motif is fol- 375 

lowed by a Gly/Pro-rich stretch bearing a second catalytic residue, an Asp side chain (GPD mo- 376 

tif) [122,123], absent from the non-glycosylase members of the superfamily. Some of HhH DNA 377 

glycosylases also contain a FeS cluster. Thus, HhH DNA glycosylases likely arose as a result of 378 

evolution of an ancient universal DNA-binding HhH motif. 379 

The last major group of DNA glycosylases is built on another small DNA-binding module, 380 

the H2tH motif. Unlike the HhH motif, it is found only in a limited group of polypeptides, in- 381 

cluding ribosomal protein S13 (S18 in eukaryotes) and several ribosome quality control pro- 382 

teins. These glycosylases also carry a DNA-binding β-ribbon zinc finger or a structurally equiv- 383 

alent β2-module called a “zincless finger”, and a unique N-terminal β-sandwich domain with 384 

the catalytic N-terminal amino group and a catalytic acidic side chain [124,125]. Members of 385 

this group are missing from Archaea, and, as they are exclusively involved in oxidative dam- 386 

age repair, the H2tH glycosylases represent good candidates for acquisition from symbiotic 387 

mitochondria functionally associated with the evolution of oxidative metabolism. 388 

4.2. AP endonucleases: the archetypal repair endonucleases. The occurrence of an enzyme 389 

recognising AP sites in E. coli was first described in the seminal work of Verly [126]. AP endo- 390 

nucleases cleave DNA 5’ to an AP site by a hydrolytic mechanism [127,128]. Majority of known 391 

hydrolytic AP endonucleases are divided into two distinct families based on amino acid se- 392 

quence identity to either E. coli exonuclease III (Xth) or endonuclease IV (Nfo) [129]. Mg2+-de- 393 

pendent Xth-like AP endonucleases belong to a large endonuclease/exonuclease/phosphatase 394 

(EEP) superfamily that also includes DNase I, tyrosyl–DNA phosphodiesterase 2, retrotrans- 395 

poson endonucleases and various phosphoester hydrolysis enzymes [130-134]. Nfo-like AP en- 396 

donucleases are totally different in their structure, belonging to the multifunctional TIM barrel 397 

superfamily, which probably originally contained sugar metabolism enzymes [95,135], and uti- 398 

lize Zn2+ ions for catalysis. Despite these differences, the geometry of the active sites in Xth- and 399 

Nfo-like AP endonucleases is very similar, underlying a conserved catalytic mechanism [136]. 400 

Genetic data indicate that AP endonuclease-deficient bacterial, yeast and mammalian mutant 401 

cells are highly sensitive to alkylating agents, oxidative stress and ionizing radiation, indicating 402 

critical role of these enzymes in protecting cells from AP sites and DNA strand breaks with 3’- 403 

blocking groups [137,138]. Furthermore, complete lack of AP site repair enzymes in S. cerevisiae 404 

is lethal, indicating that the background level of AP sites is sufficient to cause cell death, at least 405 

in yeast [139,140]. Interestingly, an Nfo-like AP endonuclease is present in a minimal Myco- 406 

plasma genome and in one of LUCA genome reconstructions (Table 1). Taken together, these 407 

observations suggest that LUCA contained an AP endonuclease (possibly Nfo-like) to counter- 408 

act the effects of spontaneous base loss in its genome. However, as we argue below, AP sites 409 

might not be its only, and even not the primary substrate. 410 

4.3. Archaeal AP endonuclease Mth212 in the repair of deaminated DNA bases. C→T transi- 411 

tions, likely arising through cytosine deamination, are the most frequently occurring base sub- 412 

stitutions observed in living organisms [141-143]. In addition, uracil in DNA can be generated 413 

through incorporation of dUMP instead of dTMP from the nucleotide pool; this process results 414 

in U:A pairs that are not mutagenic but can be lethal when accumulated at a high level in ge- 415 

nomic DNA [144,145]. Indeed, as dU(M/D/T)P pool is a metabolic precursor of thymine nucleo- 416 

tides, the threat of dUMP incorporation is unavoidable, and the need to counteract the buildup 417 

of genomic U may be the main reason for the universal persistence of UNG across all major 418 

domains of life including some viruses.  419 

Surprisingly, no homologues of the major UNG-like families could be detected in the com- 420 

plete genome sequences coming from several orders of Euryarchaeota such as Methanopyrales 421 

[146], Methanococcales (Methanocaldococcus jannaschii [147], Methanococcus maripaludis [148]), 422 

two species of Methanobacteriales (Methanothermobacter thermautotrophicus [149] and Methano- 423 
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sphaera stadtmanae [150]), suggesting the existence of alternative mechanisms for removal of de- 424 

aminated DNA bases. Analysis of protein extracts from M. thermautotrophicus revealed a nick- 425 

ing activity towards U in ssDNA and dsDNA [18]. The purified protein cleaved the 5’-phos- 426 

phodiester bond next to dU in a Mg2+-dependent manner, and was identified as Mth212, a dis- 427 

tinct member of the EEP family. Mth212 cleaves duplex DNA containing AP site or dU paired 428 

with any base but not DNA with mismatched natural bases. Additionally, the U-endonuclease 429 

activity was followed by 3’→5’ exonuclease in the lesion vicinity which extended the nick to a 430 

single-stranded gap upstream of the lesion [151]. The repair of dU in dsDNA was successfully 431 

reconstituted in vitro with purified enzymes. In the first step Mth212 cleaves duplex next to the 432 

lesion and generates the free 3’-OH end extended by DNA polymerase B; the displaced DNA 433 

strand is cleaved by 5’-flap endonuclease producing a nick, which is then sealed by DNA ligase 434 

to accomplish the repair [152]. 435 

The crystal structure of Mth212 exhibits no apparent homology to UNG-like DNA glycosyl- 436 

ases but is very similar to Xth-like AP endonucleases. Attempt to obtain co-crystal structure of 437 

Mth212 and dU-containing DNA yielded several abortive enzyme/DNA complexes in which 438 

either one duplex oligonucleotide was bound at both of its ends by two wild-type Mth212 mol- 439 

ecules, or two duplex oligonucleotides were bound to one molecule of catalytically inactive 440 

Mth212 D151N mutant forming a pseudo-continuous DNA duplex [153]. In the latter structure, 441 

one oligonucleotide was bound in the same way as with wild-type Mth212, and the second oli- 442 

gonucleotide extended the first one at the enzyme’s active site resulting in a joint DNA mole- 443 

cule (Figure 3A). Nevertheless, these aberrant Mth212/DNA complexes revealed the mecha- 444 

nism of dU recognition in duplex DNA surprisingly similar to DNA glycosylases. Mth212 in- 445 

serts Arg209 amino acid into the DNA base stack and stabilizes extra-helical flipped-out con- 446 

formation of dU in specific active site pocket. The specific recognition of the U base is attained 447 

by interactions with Lys125, Ser171 and Gln153. Modelling of dU and dC in active site of 448 

Mth212 showed that these amino acids can discriminate between damaged and regular DNA 449 

base. Thus, nucleotide flipping is a common mechanism used by NIR-specific Xth family AP 450 

endonucleases and uracil-DNA glycosylases.  451 

Further characterization of the Mth212 substrate specificity demonstrated that the archaeal 452 

repair enzyme, similar to NIR-proficient AP endonucleases such as E. coli Nfo and human 453 

APE1, is able to cleave at others lesions such as αdA and 5OHC in duplex DNA. Furthermore, 454 

under low Mg2+ concentrations (≤ 1 mM) APE1 also can cleave duplex DNA 5’ to U opposite G 455 

and then extend the resulting nick to a single-stranded gap by its non-specific 3’→5’-exonucle- 456 

ase activity [154]. Thus, the direct AP endonuclease-catalyzed DNA incision 5’ to a damaged 457 

nucleotide (the NIR pathway) is evolutionary conserved in Xth-like AP endonucleases from 458 

Archaea to humans, and can serve as a back-up – or sometimes the only – mechanism to repair 459 

genomic dU residues. 460 

4.4. Archaeal endonuclease Q in the repair of deaminated DNA bases. Another study by 461 

Ishino and colleagues showed that cell extracts of hyperthermophilic archaeon Pyrococcus furio- 462 

sus contain a new DNA damage-specific endonuclease, endonuclease Q (EndoQ), which 463 

cleaves phosphodiester bond in DNA at the 5’ side of Hx, U, Xan and AP sites [155]. The reper- 464 

toire of P. furiosus EndoQ (PfuEndoQ) substrates was later extended to include oxidized pyrim- 465 

idines such as 5,6-dihydrouracil, 5-hydroxyuracil and 5-hydroxycytosine residues, reminiscent 466 

of E. coli Nfo and human APE1 [156]. The activity of EndoQ is affected by the nature of the base 467 

opposite to the lesion [156]. 468 

Enzymes belonging to the EndoQ family, not related to other endonucleases, have been 469 

identified mainly in the species belonging to Euryarchaeota, such as the extremely hyperther- 470 

mophilic Thermococcus kodakarensis, growing optimally at temperatures over 100°C, and a meso- 471 

philic methanogene Methanosarcina acetivorans, which possesses three enzymes for the removal 472 

of U from DNA: EndoQ, Xth and Family 4 UNG [157].   473 
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 474 

 475 

Figure. 3.  Nucleotide flipping out of DNA helix is the conserved DNA base damage recognition mechanism among NIR AP endonucleases. 476 

(A) Enzyme–substrate complex of the Mth212 D151N mutant obtained with dsDNA (exonuclease reaction substrate with a terminal dC in the 477 

active site) (PDB: 3GA6) [153]. (B) PfuEndoQ complex with a 27 mer duplex substrate with dU at the active site (PDB: 7K30) [160]. (C) Human 478 

APE1 bound to non-cleaved THF-DNA (PDB: 1DE8) [132]. (D) E. coli Nfo H69A mutant bound to a cleaved DNA duplex containing αdA 479 

(PDB: 4K1G) [165]. (E) E. coli Nfo Y72A mutant bound to THF-DNA (PDB: 2NQ9) [166]. Yellow arrows point to the nucleotides flipped into the 480 

active sites.  481 
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Interestingly, it has been shown that EndoQ interacts with PCNA through its PIP-motif, which 482 

stimulates the endonucleolitic activity of the repair enzyme [158]. Direct interaction with 483 

PCNA, as well as activity towards duplex and ssDNA suggest that EndoQ can be a part of both 484 

DNA repair machinery and DNA replication complex. More extensive phylogenic studies per- 485 

mitted to identify members of EndoQ family in some bacteria (Bacillus pumilus and B. subtilis), 486 

where the enzymes may participate in antiviral defense mechanism beside their role in DNA 487 

repair [159]. The activity of the B. subtilis EndoQ is not inhibited by Ugi, the specific UNG in- 488 

hibitor from PBS1 phage [156].  489 

Recent X-ray crystallography studies provided insights into the molecular mechanism of 490 

EndoQ catalyzed endonucleolytic cleavage, showing that the damaged base is flipped out into 491 

an extrahelical position and placed in the catalytic pocket of the enzyme adjacent to a Zn2+- 492 

binding site [160]. The enzyme binds three Zn2+ ions; two of them reside in the PHP domain 493 

and are directly involved in the phosphodiester bond hydrolysis, while the third Zn2+ is found 494 

in a separate Zn-binding domain [160]. More recently, the crystal structures of PfuEndoQ 495 

bound to dU-, dI-, and AP site-containing DNA duplexes were solved (Figure 3B) [161]. The 496 

highest-resolution structure of PfuEndoQ with the U:G substrate revealed an active site with a 497 

single Zn2+ ion coordinated by Glu76, His84, His139, and the oxygen atom of the scissile phos- 498 

phodiester bond [161]. The E76A, H84A, and H139A single amino acid substitutions com- 499 

pletely abolish the endonucleolytic activity of EndoQ, suggesting that this Zn2+ is essential for 500 

the phosphodiester bond cleavage [160]. EndoQ binding induces a highly distorted confor- 501 

mation of the damaged DNA strand up- and downstream of the lesion. Three structural do- 502 

mains of EndoQ form a positively charged cleft that accommodates the sharply bent DNA du- 503 

plex. The damaged nucleotide is at the apex of the kink, rotated out of the duplex and inserted 504 

into a deep active site pocket formed by Zn-binding and catalytic domains of the protein (Fig- 505 

ure 3B). Interestingly, U and Hx bases are specifically recognized by different set of amino acid 506 

residues, and this mode of recognition is distinct from that of DNA glycosylases. Noteworthy, 507 

the His139, Gly169 and Ser171 residues in the catalytic pocket of EndoQ present a steric obsta- 508 

cle for the binding of regular T and A bases because of the presence of a C5-methyl group and 509 

an N6-amino group absent from U and Hx, respectively. 510 

Noteworthy, the nucleotide flipping accompanied with specific interactions in the active 511 

site pocket are universally employed by EEP superfamily AP endonucleases, TIM superfamily 512 

AP endonucleases, and archaeal EndoQ. Unlike DNA glycosylases and sequence-specific DNA 513 

methyltransferases, which have to flip out the target nucleotide in order to get access to the re- 514 

acting atoms, endonucleases, in principle, could reach the scissile bond without nucleotide 515 

eversion. Indeed, structures of substrate and product complexes of DNase I, a non-specific en- 516 

donuclease also belonging to the EEP superfamily, show no signs of nucleotide eversion 517 

[162,163]. Furthermore, closer inspection of the available Nfo/DNA and APE1/DNA structures 518 

revealed that these NIR AP endonucleases also utilize the nucleotide flipping mechanism to 519 

recognize both AP sites and 3’-terminal nucleotide residues at the DNA strand break (Figure 520 

3C-E). Structural and mutational analysis of EEP superfamily NIR-competent AP endonucle- 521 

ases revealed that amino acid residues in their active site pocket do not interact with damaged 522 

DNA bases and instead recognize DNA damage via changes in the sugar puckering and in the 523 

distance between two neighboring phosphates in the DNA backbone [164].  524 

Moreover, some residues located outside of the active site (e. g., Thr268 of APE1) can be 525 

involved in additional DNA contacts resulting in a dramatic effect on the NIR activity and Mg2+ 526 

dependence [165]. Notably, NIR-deficient E. coli Xth from the EEP superfamily is a very effi- 527 

cient AP endonuclease and has a more compact active site in comparison to NIR-proficient 528 

homologs (APE1, Mth212 and B. subtilis ExoA) [164]. Taken together, these observations sug- 529 

gest that nucleotide flipping is a common mechanism of lesion recognition employed by both 530 
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DNA glycosylases and AP endonucleases. This may be a perfect case when we can trace con- 531 

vergent evolution of various protein folds to exploit a common physicochemical feature – the 532 

inherent thermodynamic instability of damaged DNA.  533 

 534 

5. Nucleotide incision repair: an ancient and versatile mechanism to counteract spontaneous 535 

DNA decay and ionizing radiation induced DNA damage  536 

 5.1. NIR as a remnant of the pre-BER world. Generally, it is agreed that the environment of 537 

early Earth around the time of LUCA existence was characterized by high temperatures and 538 

reducing anoxic atmosphere. Under this harsh conditions the spectra of DNA damage con- 539 

sisted mainly the products of base loss and deamination, UV light-, ionizing radiation- and al- 540 

kylation agents-induced DNA lesions with no or very little oxidative DNA damage. The effi- 541 

ciency of archaeal Mth212 and EndoQ-like endonucleases in the repair of deaminated nucleo- 542 

bases without the involvement of DNA glycosylases may suggest that in early evolution, to 543 

counteract the deleterious effects of spontaneous DNA decay, the primordial organisms were 544 

endowed with universal endonucleases that dealt with both AP sites and U residues in a single 545 

step, as in the present-day NIR pathway (Figure 4). Nevertheless, today’s NIR-competent AP 546 

endonucleases remove AP sites more efficiently than modified bases. We propose that latter in 547 

course of evolution, due to a dramatic change in the spectra of DNA damage and for the sake 548 

of efficiency, uracil–DNA glycosylases substituted for endonucleases as the primary dU-recog- 549 

nizing enzymes, while the endonucleases evolved towards more stringent specificity for AP 550 

sites. Metal cofactors could had become the key limiting resource for endonucleases as life 551 

moved from the first poorly compartmentalized, easily perfused forms to tight self-contained 552 

cells; interestingly, EEP enzymes show excellent performance with many divalent metal ions 553 

(Mn2+, Co2+, Cd2+, Fe2+) but use catalytically less preferable Mg2+ due to easier availability [167]. 554 

With the separation of functions between DNA glycosylases and AP endonucleases, BER as we 555 

know it finally appeared.  556 

Another testimony for the likely existence of universal endonucleases in LUCA is the re- 557 

markable specificity of today’s NIR for radiation-induced anoxic DNA base damage. The 558 

Earth’s magnetic field protects life from ionizing radiation coming in form of solar wind and 559 

cosmic rays. Measurements from 3.3–4.2 Ga old minerals point to the weak magnetic field 560 

about 1/10th of that at present [36,37]. Consequently, life on the ancient Earth was exposed to 561 

increased levels of ionizing radiation. As mentioned above, the spectra of radiation DNA dam- 562 

age drastically depend on the amount of oxygen dissolved in water. Under anoxic conditions, 563 

ionizing radiation generated preferentially DHT, DHU and αdN in DNA [42,44], which are 564 

preferred substrates for the NIR AP endonucleases such as archaeal Mth212, E. coli Nfo and 565 

human APE1 [17,154,168,169]. It should be noted that αdN in DNA cannot be recognized by 566 

DNA glycosylases, which require the presence of deoxynucleotides in β-anomeric configura- 567 

tion in order to flip them out from the DNA helix. Based on these observations, it is tempting to 568 

speculate that the AP endonuclease-initiated NIR pathway appeared very early in evolution as 569 

an adaptation to handle both spontaneous and induced DNA damage generated under anoxic 570 

conditions. 571 

5.2. Specialized NIR: UVDE-initiated repair of UV photoproducts and RNAseH2-catalyzed 572 

ribonucleotide excision repair. Oxygen-free atmosphere of ancient Earth offered much less pro- 573 

tection from short-wavelength UVC radiation. Therefore, ancient forms of life that lived in surf- 574 

icial environments such as shallow ponds of condensed geothermal vapor were constantly ex- 575 

posed to UV light, which induces highly genotoxic CPD and 6-4PP adducts in cellular DNA. 576 

Although they are usually repaired by DR and NER pathways, strikingly, these lesions are also 577 

substrates for endonucleases. Genetic and biochemical studies identified the UV damage endo- 578 

nuclease (UVDE) that recognizes and incises duplex DNA 5’ to CPD and 6-4PP [170,171]. Simi- 579 

lar to NIR AP endonucleases, UVDE can cleave DNA duplex containing AP sites, U, DHU and 580 
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cleans single strand break termini from 3’-blocking groups to generate 3’-OH end for DNA re- 581 

pair synthesis [172,173]. This UV damage endonuclease is not universally conserved and is 582 

found only in fungi (e. g., Schizosaccharomyces pombe and Neurospora crassa), Bacteria (though 583 

not in E. coli) and in a few archaeal lineages (Sulfolobaceae, Methanomicrobia and Halobacte- 584 

ria). The crystal structure of UVDE protein from the thermophilic bacterium Thermus thermophi- 585 

lus showed essential structural features of the TIM barrel fold very similar to that of Nfo 586 

[135,174], suggesting that UVDE probably evolved from the Nfo family AP endonucleases. 587 

Later, the crystal structure of archaeal UVDE from Sulfolobus acidocaldarius (SacUVDE) in a pre- 588 

catalytic complex with DNA duplex containing a 6-4PP has been resolved [175]. It revealed a 589 

novel dual dinucleotide flip mechanism for recognition of bulky crosslinked dipyrimidines. 590 

SacUVDE flips the two purines opposite to the damaged pyrimidine bases into a dipurine-spe- 591 

cific pocket, whereas the damaged pyrimidines are also flipped into another cleft [175]. Based 592 

on these observations, we propose that earlier in evolution the ancient life forms did not pos- 593 

sess sophisticated repair systems such as NER machinery but rather employed either photoly- 594 

ases to remove UV-DNA adducts or NIR-like endonucleases to counteract spontaneous, radia- 595 

tion- and UV-induced damage.  596 

 597 

 598 

Figure 4. Putative evolutionary origin of the NIR and BER pathways for spontaneous DNA 599 

damage. In LUCA the products of spontaneous DNA decay were repaired by AP endonucle- 600 

ases in the NIR pathway in DNA glycosylase-independent manner. Mono-functional DNA gly- 601 

cosylases specific for uracil and hypoxantine appeared later in evolution. Inclusion of addi- 602 

tional base excision step into NIR pathway resulted in the appearance of modern BER pathway 603 

in three domains of life.  604 
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Ribonucleoside monophosphates (rNMPs) can be erroneously incorporated in cellular 605 

DNA during DNA replication [176,177], and this problem was likely even more acute shortly 606 

after the transition from the RNA to DNA world. These misincorporated ribonucleotides are 607 

eliminated via RNase H2-catalyzed cleavage on the 5′ side of a ribonucleotide in DNA [178,179] 608 

to initiate a NIR-like pathway referred as ribonucleotide excision repair (RER) [180]. Indeed, 609 

the mechanism of action of RNase H2 towards ribonucleotides in DNA is very similar to that of 610 

NIR AP endonucleases towards their substrates (Figure 1E and F). RNase H fold is shared by 611 

many endo- and exonucleases, including those participating in DNA repair, such as E. coli en- 612 

donuclease V (see below), RuvC resolvase, UvrC NER endonuclease, and proofreading do- 613 

mains of A and B family DNA polymerases [181,182]. Based on this mechanistic resemblance 614 

we propose that RNAse H2-mediated DNA incision is an ancient NIR pathway evolved to re- 615 

pair distinct set of endogenous DNA damage occurred in LUCA. Importantly, RNases H2 are 616 

present in all three domains of life and frequently found together with type 1 RNases H, which 617 

have the same fold and mechanism but cannot cleave single rNMPs embedded in DNA [182]. 618 

Noteworthy, many Archaea contain only type 2 RNases H [183], furthermore, catalytic subu- 619 

nits of Archaeal and eukaryotic RNaseH2s have higher similarity to each other, both structur- 620 

ally and biochemically, compared with their bacterial counterparts [182]. 621 

 622 

6. Alternative excision repair pathway: an unusual variation on the endonuclease theme  623 

Endonuclease V (Nfi/EndoV) is another enzyme performing the cleavage of lesion-contain- 624 

ing DNA. Nfi was originally isolated from E. coli in 1977 [184] and characterized as a Hx-spe- 625 

cific enzyme in 1994 [185]. Nfi homologs are present in all domains of life and show activity 626 

towards DNA and RNA substrates. In contrast to Xth, Nfo and EndoQ enodnucleases, the Nfi 627 

protein cleaves the second phosphodiester bond 3’ to a deaminated base. Further steps of the 628 

Nfi-mediated repair remain unclear, since extension of the 3’-OH terminus will not lead to 629 

damage removal. The purified E. coli Nfi protein exhibits activities towards U, Hx, Xan, urea 630 

[185] and towards regular DNA containing mismatched bases, flap and pseudo-Y structures 631 

[186,187]. The Nfi-catalyzed activity towards Hx is ~20-fold higher than with any other DNA 632 

substrate [187]. The purified Nfi protein from hyperthermophilic bacteria Thermotoga maritima 633 

exhibits similar DNA substrate specificity with E. coli Nfi [188]. Interestingly, Nfi homologues 634 

are present in most Archaea except methanogenic species. EndoV from P. furiosus (PfuEndoV) 635 

is also similar to E. coli Nfi in its substrate preferences, but additionally recognizes and cleaves 636 

Hx-containing ssRNA, dsRNA and DNA/RNA hybrid with the same efficiency as the DNA 637 

substrates, suggesting a role in RNA editing [189]. PfuEndoV demonstrates much higher affin- 638 

ity and cleavage activity for Hx than other deaminated or mismatched bases in both ds- and 639 

ssDNA. P. furiosus also contains EndoQ (but no Hx-specific Family 6 UNG), which exhibits 640 

higher Hx cleavage catalytic efficiency and turnover rate and is apparently present in the cells 641 

at higher levels as compared to Nfi, suggesting that EndoQ-initiated NIR plays a major role in 642 

the removal of deaminated DNA bases in Archaea [190]. 643 

Despite the apparently higher specificity of Nfi towards Hx lesions, its function in E. coli 644 

remains controversial. An analysis of an E. coli nfi mutant showed an increased frequency of 645 

nitrous acids-induced mutations at A:T base pairs, suggesting a major role for Nfi in the in vivo 646 

Hx repair [191,192]. However, a later study found no increase in the level of Hx in the genomic 647 

DNA of E. coli nfi cells [193]. Indeed, the monofunctional alkylpurine DNA glycosylases AlkA 648 

in E. coli and MPG in human cells can efficiently remove Hx [194,195]. 649 

At present, the role of eukaryotic Nfi homologs in DNA repair are unclear, since these en- 650 

zymes have no or very weak activity on DNA bearing Hx residues [196-200]. Instead, further 651 

studies revealed ribonuclease activity of human endonuclease V (ENDOV) on ssRNA and, with 652 

lower efficiency, dsRNA containing a single Hx residue [199,200]. In these substrates, ENDOV 653 

cleaves the second phosphodiester on the 3’ side of Hx, similarly to prokaryotic Nfi acting on 654 
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DNA [199,200]. Importantly, E. coli Nfi is also able to cleave RNA substrates containing a Hx 655 

residue [200]. 656 

Although the Nfi-initiated “alternative excision pathway” remains on the list of minor re- 657 

pair schemes for specific lesions, Nfi after all may be not a true repair enzyme. To summarize 658 

the arguments against its role in DNA repair, (i) it is unusual among BER and NIR enzymes in 659 

the mechanism of DNA cleavage, which is not coupled to known repair cleansing activities and 660 

DNA strand displacement synthesis; (ii) it has non-specific DNA cleavage activity; (iii) it shows 661 

no DNA strand discrimination when incising duplex DNA with mismatches; (iv) both prokary- 662 

otic and eukaryotic homologs have high affinity for RNA. The specificity of Nfi-like proteins 663 

for RNA loops and Hx-containing RNA may rather suggest their role in RNA processing and 664 

editing [200,201].  665 

 666 

7. Oxygen Catastrophe: back to BER  667 

The known NIR-competent AP endonucleases can repair a wide variety of structurally dis- 668 

tinct DNA lesions including oxidized pyrimidines, but neither highly mutagenic 8oxoG, the 669 

major oxidized base occurring in DNA under normoxic conditions, nor 8oxoA [116,154]. A 670 

huge increase in the oxygen concentration ~2.4–2.0 Ga is believed to have occurred due to the 671 

emergence of photosynthesis leading to the so-called Oxygen Catastrophe, or Great Oxidation 672 

Event (GOE) [34,35]. The abundance of O2 in the atmosphere led to dramatic changes in the 673 

cellular metabolism and the appearance of oxidative phosphorylation that supplied sufficient 674 

amounts of energy for complex forms of life. However, leakage from the respiratory chain is an 675 

abundant ROS source, far exceeding the amounts produced by ionizing radiation. Moreover, 676 

oxygenated solutions produce other kinds of lesions than irradiation under anoxic conditions. 677 

Eventually, the evolution of life from oxygen-resistant to oxygen-dependent had to deal with 678 

new kinds of oxidized DNA bases, and also with complex DNA lesions such as bulky DNA 679 

adducts and inter-strand DNA crosslinks generated by the products of lipid peroxidation. GOE 680 

definitely post-dated the separation between Bacteria and Archaea. Regarding eukaryotes, it 681 

had long been held that their appearance broadly coincided with GOE; however, a recent inte- 682 

gral analysis of genomic and fossil evidence put the emergence of eukaryotes after ~1.84 Ga [2]. 683 

In fact, due to multiple sinks, accumulation of O2 in the Earth’s atmosphere cannot be described 684 

by a single oxidation event; at least two periods of O2 buildup are distinguished: a rise from 685 

nearly zero to ~0.02–0.04 atm pO2 ~2.4–2.0 Ga and a much more recent rise to the present-day 686 

~0.2 atm pO2 starting ~0.7–0.8 Ga [34,35]. This complex profile might leave its footprint in late 687 

diversification of DNA repair pathways such as the existence of multiple H2tH DNA glycosyl- 688 

ases for oxidative lesions in multicellular eukaryotes. 689 

Since LUCA existed long before GOE, solutions to combat the oxidative stress burden 690 

should have evolved in Bacteria and Archea/Eukaryota independently, yet they had to be 691 

rooted in already existing pathways. An instructive census of archaeal BER/NIR glycosylases 692 

and endonucleases by Ishino and colleagues [157] shows that the most conserved and diverse 693 

DNA repair enzyme in Archaea is endonuclease III (Nth), an HhH, FeS-containing bifunctional 694 

DNA glycosylase that excises a wide variety of oxidized pyrimidines. Nth is also universally 695 

found in Bacteria, making it a good candidate for a possible ancestor of the HhH glycosylases 696 

(Figure 5). Nth can excise ionizing radiation-induced anoxic nucleobase lesions (DHT, DHU) 697 

and UV-induced pyrimidine hydrates [32,202,203], and might had been the primary enzymes 698 

for the repair of the latter damage type. Alternatively, or additionally, Nth-like HhH enzymes 699 

could be responsible for AP site repair using their AP lyase activity. AlkA, which is present in 700 

bacteria and many archaeal species, probably specialized in alkylation damage repair before 701 

the separation of these two domains. However, other oxidative damage HhH DNA glycosyl- 702 

ases seem to evolve after this split. MutY, which is uniquely suited for post-replicative repair of 703 
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8oxoG, is found only in bacteria and eukaryotes. On the other hand, 8oxoG-specific DNA gly- 704 

cosylases OGG1 and OGG2 are restricted to Eukaryota and Archaea (with rare findings of 705 

OGG1 in Firmicutes, possibly due to lateral gene transfer), while bacteria employ Fpg, an H2tH 706 

8oxoG DNA glycosylase. 707 

 708 

 709 

Figure 5. Unrooted tree of selected HhH DNA glycosylases. The species are: Afu, Archaeo- 710 

globus fulgidus; Ath, Arabidopsis thaliana; Bha, Alkalihalobacillus (formerly Bacillus) halodurans; Bst, 711 

Geobacillus (formerly Bacillus) stearothermophilus; Cac, Clostridium acetobutylicum; Cel, Caer- 712 

norhabditis elegans; Csu, Caldanaerobacter subterraneus (formerly Thermoanaerobacter tengcongen- 713 

sis); Dme, Drosophila melanogaster; Dra, Deinococcus radiodurans; Eco, Escherichia coli; Hpy, Helico- 714 

bacter pylori; Hsa, Homo sapiens; Mja, Methanocaldococcus jannaschii; Mlu, Micrococcus luteus; Mth, 715 

Methanothermobacter thermautotrophicus (formerly Methanobacterium thermoformicicum); Sce, Sac- 716 

caromyces cerevisiae; Spo, Schizosaccharomyces pombe; Sso, Saccharolobus (Sulfolobus) solfataricus; 717 

Tma, Thermotoga maritima. The selected proteins are HhH DNA gycosylases characterized ei- 718 

ther biochemically or structurally. The phylogenetic tree was produced by Clustal Omega [204] 719 

and visualized using iTOL [205]. 720 

 721 

So, if primordial DNA repair was probably performed by NIR-like endonucleases, why was 722 

it eventually supplanted by BER? One possible driving force could be the widened repertoire of 723 

lesions due to GOE. Since deaminated, alkylated and oxidative lesions are non-bulky and do 724 

not greatly distort DNA structure, there is no common mode of their recognition, as in NER. 725 

Ultimately, specialization or repair enzymes towards their cognate lesions had to occur. A criti- 726 

cal consideration in favor of specialized DNA glycosylases rather than 5’-endonucleases is that 727 

all glycosylases produce a common product whatever the initial lesion was. In effect, today’s 728 

BER has to deal with only three type of intermediates downstream of DNA glycosylases: AP 729 

sites (products of monofunctional glycosylases), 3’-terminal α,β-unsaturated aldehydes (prod- 730 

ucts of β-elimination), and 3’-terminal phosphates (products of β,δ-elimination). On the con- 731 

trary, specialized 5’-endonucleases would still leave the lesion in DNA, necessitating its re- 732 

moval by a 5’→3’ exonuclease or displacement during DNA repair synthesis. Many today’s 733 
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exonucleases and polymerases have problems encountering certain kinds of damage in the de- 734 

graded or displaced strand, so in effect the specialized 5’-endonucleases would probably re- 735 

quire specialized downstream repair enzymes to accommodate all kinds of DNA damage. Ulti- 736 

mately, the BER scheme with specialized DNA glycosylases followed by an AP endonuclease 737 

or a 3’-phosphodiesterase or a 3’-phosphatase turned out more streamlined and better suited 738 

for removal of the most frequently occurring genome lesions.  739 

 740 

8. Direct repair as a primordial mechanism to counteract alkylation and UV damage  741 

Direct repair is a highly efficient and energy-saving mechanism that can remove a limited 742 

range of DNA lesions induced by alkylating agents and UV light. As compared to other more 743 

sophisticated DNA repair systems such as BER and NER, the DR pathway employs a single 744 

protein and does not require multi-protein machinery, or excision of damaged nucleotides, or 745 

de novo DNA synthesis. Why this simple scheme does not apply to more types of lesions? We 746 

hypothesize that the reducing conditions on the primordial Earth limited induced DNA dam- 747 

age to only two types of bulky UV lesions and several DNA bases modifications induced by 748 

alkylation agents and ionizing radiation. Therefore, it is reasonable to presume that at the be- 749 

ginning LUCA evolved the easiest mechanism to counteract just a few DNA base modifica- 750 

tions. Moreover, since DR does not depend on template synthesis, the pathway may even pre- 751 

date the DNA world. 752 

Alkylation damage of DNA induced by SAM radicals or nitrosamines at acidic pH was 753 

probably a major challenge to genome maintenance of ancient life. Metabolically activated ni- 754 

trosamines react predominantly by an SN1 mechanism and generate preferentially 7meG, 3meA 755 

and O6meG residues. Due to their positive charge, 7meG and 3meA have weak glycosidic 756 

bonds and undergo accelerated depurination to AP sites, which can be efficiently repaired by 757 

AP endonucleases. On the contrary, O6meG, a highly mutagenic base, is quite stable even at 758 

elevated temperatures, and therefore presented a higher risk than other alkylated DNA bases. 759 

O6-alkylguanine DNA alkyltransferases (AGTs) that revert O6meG and O4meT back to guanine 760 

and thymine, respectively, belong to a family of highly conserved proteins that are widely rep- 761 

resented in the three domains of life, but are apparently absent from plants. AGTs recognize 762 

the damaged nucleobase in DNA and irreversibly transfer the alkyl group to a Cys residue in 763 

their active site [206]. Since after the methyl transfer AGTs are inactivated, they are not true 764 

enzymes but rather suicidal proteins. Although removal of a single lesion by AGTs requires 765 

one protein molecule at a time, this repair mechanism is highly conserved in evolution and pre- 766 

sent in higher eukaryotes suggesting that AGTs are essential to preserve the genome stability. 767 

Moreover, today’s FeS-dependent radical SAM enzymes include methyltransferases that use 768 

their Cys residues to transfer methyl groups [56], and they were also present in the LUCA ge- 769 

nome [5], so it is quite possible that early AGTs were not suicidal. 770 

N1-methyladenine (m1A) and N3-methylcytosine (m3C) are major toxic and mutagenic le- 771 

sions induced by SN2 type of alkylating agents in single-stranded DNA. In bacteria and eukary- 772 

otes, m1A and m3C are removed by oxidative demethylation catalyzed by α-ketoglutarate-de- 773 

pendent dioxygenases: AlkB and AlkB-like (ABH) proteins, respectively [207-209]. To repair 774 

these lesions, AlkB and ABH use Fe2+ to activate O2 and oxidize the methyl group, producing 775 

an unstable hydroxymethylated intermediate that spontaneously decays to yield formaldehyde 776 

and the original DNA base [210,211]. Another atom of the O2 molecule is consumed during the 777 

conversion of the α-ketoglutarate co-substrate to CO2 and succinate. The requirement of oxy- 778 

gen in AlkB-mediated direct repair suggests that oxidative DNA demethylation appeared later 779 

in evolution after oxygen catastrophe. Indeed, no AlkB homologues have been identified in Ar- 780 

chaea, instead, as shown for Archaeoglobus fulgidus, m1A and m3C are removed through the 781 

BER pathway initiated by an AlkA-like DNA glycosylase [212]. This observation may suggest 782 
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that the need for removal of some alkylated bases from DNA could be one of the factors driv- 783 

ing the evolution of early BER. 784 

Photoreactivation is the visible light-dependent recovery from cytotoxic DNA damage 785 

caused by UVC and UVB. It was proposed that DNA photolyase-mediated photoreactivation 786 

was one of the first DNA repair pathway to evolve [213] and the most effective one in the re- 787 

pair of UV induced CPD adducts [214]. DNA photolyases catalyze conversion of UV pyrimi- 788 

dine dimers into a normal pair of pyrimidine bases driven by absorption of photons with 789 

wavelengths 319–490 nm (reviewed in [215]). Photolyases belong to the large family of crypto- 790 

chrome/photolyase proteins that are implicated in DNA repair, circadian photoreceptor, and 791 

transcriptional regulation. Members of the family are widely distributed in all three domains of 792 

life and can be divided in three classes according to their function: CPD-photolyases that repair 793 

CPD lesions, 6-4PP-photolyases that repair 6-4PP photoproducts, and cryptochromes. Crypto- 794 

chromes do not participate in DNA repair, although they have probably evolved from photoly- 795 

ases, and instead employ their blue-light harvesting apparatus to mediate light-dependent 796 

growth in plants [216] and regulate the circadian clock in animals [217]. Photolyases are flavo- 797 

proteins composed of two structural domains, an α/β HUP (HIGH-signature proteins, UspA, 798 

and PP-ATPase) domain and a helical domain [218,219]. They contain two light-absorbing 799 

chromophores: the catalytic two-electron-reduced deprotonated flavine adenine dinucleotide 800 

(FADH−) bound by the helical domain and a second chromophore bound by the HUP domain 801 

and acting as a light-harvesting antenna, which, in different species, can be either 8-hydroxy- 802 

7,8-didemethyl-5-deazariboflavin (8-HDF) [220,221] or methenyltetrahydrofolate (MTHF) 803 

[222,223]. The HUP domain has a very old ancestry pre-dating LUCA and rooted in a common 804 

nucleotide-binding precursor of photolyases, electron transfer flavoproteins, class I aminoacyl– 805 

tRNA synthetases, and nucleotidyl transferases [224]. Both flavins and MTHF were in the rep- 806 

ertoire of cofactors likely used by LUCA [5], and it is possible that photolyases first appeared as 807 

RNA- or DNA-binding proteins that stabilized photoactive dimer-splitting molecules near 808 

DNA and later evolved into highly efficient two-chromophore enzymes. Within the crypto- 809 

chrome/photolyase family, it has been suggested that its common ancestor might have been a 810 

flavoprotein involved in the both UV damage repair and light-dependent regulation of gene 811 

expression [225]. 812 

Unexpectedly, a recently discovered 6-4PP photolyase, PhrB from Agrobacterium tumefa- 813 

ciens, defines a new class of photolyases that lack 8-HDF and MTHF and seem to use a FeS clus- 814 

ter as a primary light-harvesting antenna [226]. This mechanistically connects photolyases with 815 

another group of UV damage DR proteins, so-called “spore product lyases”, which repair 5- 816 

thyminyl-5,6-dihydrothymine, a pyrimidine dimer that arises upon UV irradiation of dehy- 817 

drated, A-form DNA [227]. These enzymes are typical FeS/radical SAM proteins, currently nar- 818 

rowly restricted to spore-forming bacteria, mostly Firmicutes [228]. While it is unclear whether 819 

spore product lyases are remnants of an early repair pathway or appeared later in evolution, 820 

their ancient protein fold is consistent with the idea that LUCA could already possess several 821 

ways to directly reverse UV damage.  822 

 823 

9. Putative origins of NER  824 

Photolyases very likely appeared in evolution before the occurrence of more sophisticated 825 

NER pathways [213]. Although the NER machinery has the advantage over photolyases be- 826 

cause of its broader repertoire and the ability for dark repair of UV lesions, bacterial taxa nearly 827 

universally contain both UvrABC proteins and DNA photolyases. This suggests that the main 828 

biological role of the NER pathway is not to repair CPDs, but rather to deal with other bulky 829 

helix-distorting DNA adducts induced by other factors than UV. 830 



Cells 2021, 10, x FOR PEER REVIEW 9 of 38 
 

 

NER by its nature is lesion-unspecific, repairing almost any lesion that strongly distorts the 831 

double helix. Strikingly, the NER machinery in eukaryotes has evolved completely inde- 832 

pendently from the bacterial and archaeal one. In eukaryotes, the central NER sensor, 833 

XPC/Rad4, descends from bacteriophage anti-restriction ArdC proteins fused with an archaeal- 834 

derived papain-like peptidase domain [229]. In bacteria, the same role is played by UvrA2B 835 

complex, with both UvrA and UvrB belonging to a large and diverse family of P-loop NTPases 836 

that also includes MutS mismatch repair protein, RecA and many helicases [230]. In Archaea, 837 

only a few groups possess the UvrABC system, likely acquired from Bacteria via horizontal 838 

transfer, and some archaeal groups possess homologs of several eukaryotic NER proteins but 839 

no XPC or XPA [231]. Nucleases involved in 5′- and 3′-incisions in NER can be reliably traced to 840 

other nuclease families. Eukaryotic Rad2/XPG/ERCC5, the 3′-incision nuclease, is closely re- 841 

lated to FEN1 flap endonuclease, exonuclease I and 5′→3′ exonuclease domains of Family A 842 

DNA polymerases [232,233]. Both subunits of the 5′-nuclease, comprised of ERCC1 and 843 

ERCC4/XPF proteins, share a common fold with many proteins grouped together as PD- 844 

(D/E)XK family nucleases, including the MMR endonuclease MutH, specialized mismatch en- 845 

donuclease Vsr, RecB and RecC components of RecBCD exonuclease, eukaryotic, archeal and 846 

phage Holliday junction resolvases and a variety of restriction endonucleases [234,235]. Bacte- 847 

rial UvrC proteins use two domains to nick DNA: the 5′ incision domain is related to Nfi, 848 

RNases H, DNA polymerase A and B family 3′→5′ exonucleases, RuvC and phage transposases 849 

[236], whereas the 3′ incision GIY-YIG nuclease domain comes from a diverse group of proteins 850 

that comprises class I homing endonucleases, some II restriction enzymes and retrotransposon 851 

endonucleases [237]. It seems that eukaryotes and bacteria have independently adapted exist- 852 

ing convenient nuclease modules to be guided by conformation-recognizing modules, also in- 853 

dependently evolved in these two domains of life, and that in today’s Archaea we can see 854 

traces of these pre-existing nucleases as they were before the appearance of NER. 855 

What new lesions could drive NER appearance and evolution? Oxidative damage may not 856 

had been the primary cause since 8,5′-cyclopurine lesions – the only class of oxidative lesions 857 

repaired predominantly by NER – are generated under anoxic rather than normoxic conditions. 858 

An interesting possibility is that NER could have emerged as a response to ever more complex 859 

biogenic chemosphere. Today’s NER is critical to cope with DNA damage due to metabolically 860 

activated xenobiotics, such as benz[a]pyrene, aminofluorenes, aflatoxins, etc. Characteristically, 861 

even today specialized varieties of NER exist to counteract metabolically related DNA damage. 862 

For example, the genomes of Streptomycetes that produce doxorubicin and daunorubicin, two 863 

anthracycline intercalating antibiotics, encode the DrrC protein, a homolog of UvrA involved in 864 

the NER of lesions caused by these compounds [238]. In E. coli, Cho endonuclease is a homolog 865 

of UvrC 3′-incision domain with a specificity for a subset of bulky adducts (cholesterol, men- 866 

thol) and psoralen-induced interstrand cross-links [239,240]. The ability of NER to fight a wide 867 

range of lesions could become its critical advantage in a world full of more and more diverse 868 

genotoxic compounds. 869 

 870 

6. Conclusion: “Nothing in biology makes sense except in the light of evolution” 871 

Modern molecular biology took its origin after Watson and Crick’s discovery of the double 872 

helix structure of DNA and since then made great achievements in the understanding what life 873 

is. Molecular biology is inherently reductionist, trying to understand biological systems in 874 

terms of their components and ultimately reduce the complexity and diversity of living matter 875 

to universal physical and chemical principles. However, many questions in biology remain dif- 876 

ficult to address solely in a reductionist way. For example, solving the atomic structure of a 877 

protein provides critical information on its functions, but offers little insight into its origins. We 878 

know that this protein fold can catalyze this reaction, but how was it selected from many other 879 
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folds that could buttress the same arrangement of the reacting groups? On the other hand, evo- 880 

lutionary theory is inherently non-reductionist because of the randomness of variation and the 881 

principle of natural selection, which acts on the whole organisms and populations. We can use 882 

sequences of genes and whole genomes to interpret large-scale patterns of the evolution, per- 883 

haps up to the earliest steps of life, but cannot see with this information how the parts interact 884 

with each other in the cell and the body. Only combining Darwinian principles of evolution 885 

with molecular biology we can arrive to a holistic approach to address the most interesting 886 

questions. 887 

DNA repair field had its start even before Watson and Crick, from the seminal works of 888 

Albert Kelner and Renato Dulbecco who independently discovered photoreactivation in the 889 

late 1940s. A wealth of molecular biology information accumulated since then allowed us to 890 

decipher mechanisms of DNA repair in the three domains of life and even in viruses. Now we 891 

have enough reductionist tiles to start the assembly of the evolutionary puzzle and understand 892 

the origins of repair pathways starting from (and maybe even before) LUCA. The analysis of 893 

the repair pathways in Archaea lead us to propose that AP endonucleases and DNA damage 894 

reversal enzymes were the earliest DNA repair players that counteracted genotoxic effects of 895 

spontaneous decay of DNA (deamination and base loss) and high-energy electromagnetic radi- 896 

ation (UV pyrimidine dimers and α-anomeric 2’-deoxynucleotides). Thus, AP endonucleases 897 

entered the repair field before monofunctional uracil-DNA glycosylases, and photolyases, be- 898 

fore sophisticated NER machinery. Yet bifunctional DNA glycosylases exemplified by the Nth- 899 

like proteins probably appeared very early, together with AP endonucleases, but their activities 900 

were not directly coupled to NIR AP endonucleases and the modern BER pathway described in 901 

bacteria and eukaryotes appeared much later. 902 

Primordial DNA excision repair mechanisms most likely appeared with the separation of 903 

functions between RNA and DNA, which in all probability pre-dated cellular forms of life. The 904 

primeval AP endonucleases and DNA glycosylases might have evolved with the appearance of 905 

DNA genomes not only to protect them from spurious damage but also to eliminate non-stand- 906 

ard bases, including U, Hx, pseudouridine, N6-methyladenine, 5meC and other base modifica- 907 

tions, from the genome carrier. 908 

We propose that the Great Oxidation Event played a crucial role in the origin of modern 909 

BER and NER pathways. Appearance of oxidative phosphorylation provided energy for devel- 910 

opment of complex multicellular forms of life, but on the other side, extended the spectra of 911 

genotoxic DNA base damage. Increased structural variety of DNA damage resulted in the spe- 912 

cialization of DNA repair enzymes towards their cognate lesions. This specialization resulted in 913 

the appearance of multiple DNA glycosylases which converted every distinct base modification 914 

into only three type of DNA repair intermediates, which are then taken care of by more special- 915 

ized AP endonucleases/3’-repair phosphodiesterases, rather than by a single universal NIR AP 916 

endonuclease.  917 
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