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Invariants of real symplectic four-manifolds out of reducible

and cuspidal curves

Jean-Yves Welschinger

12th January 2006

Abstract:
We construct invariants under deformation of real symplectic four-manifolds. These invariants

are obtained by counting three different kinds of real rational J-holomorphic curves which realize
a given homology class and pass through a given real configuration of (the appropriate number of)
points. These curves are cuspidal curves, reducible curves and curves with a prescribed tangent
line at some real point of the configuration. They are counted with respect to some sign defined
by the parity of their number of isolated real double points and in the case of reducible curves,
with respect to some mutiplicity. In the case of the complex projective plane equipped with its
standard symplectic form and real structure, these invariants coincide with the ones previously
constructed in [11]. This leads to a relation between the count of real rational J-holomorphic
curves done in [11] and the count of real rational reducible J-holomorphic curves presented here.

Introduction and statement of the results

Let (X, ω, cX) be a real symplectic four-manifold, that is a triple made of a smooth compact
four-manifold X, a symplectic form ω on X and an involution cX on X such that c∗Xω = −ω. The
fixed point set of cX is called the real part of X and is denoted by RX. A large source of examples
is provided by smooth projective surfaces defined by a system of polynomials with real coefficients,
the symplectic form is then the restriction of the Fubini-Study form of the ambiant projective space,
and the real structure is the restriction of its complex conjugation. Note that the real locus RX is
assumed to be non empty here so that it is a smooth lagrangian surface of (X,ω). With every such
real symplectic four-manifold comes some function χ : d ∈ H2(X;Z) 7→ χd(T ) ∈ Z[T1, . . . , TN ],
where N denotes the number of connected components of the real locus of the manifold. This
function has been constructed in [11] by exctracting integer valued invariants - the coefficients
of the polynomial χd(T ) - from the following problem of real enumerative geometry: how many
real rational curves do realize the homology class d and pass through the adequate number of
points? Remember that for this problem to make sense, we introduce an auxiliary generic almost
complex structure J , that is a complex structure on the tangent bundle TX, and we count real
rational J-holomorphic curves, that is immersed two dimensional spheres which are preserved
by the involution cX and whose tangent planes are invariant under J . The adequate number of
points is then the expected dimension of this space of real rational J-holomorphic curves, that is
c1(X)d − 1, where c1(X) is the first Chern class of the manifold (X, ω). Remember that all of
these finitely many curves are images of Z/2Z-equivariant immersions u : (CP 1, conj) → (X, cX)
and the above mentionned invariants are obtained by counting these curves with respect to some
sign ±1 determined by the parity of the number of pairs of complex conjugated points in the set
u−1(RX). For example, the cubic planar real rational curve parameterized by t ∈ C 7→ (t2, t3 + εt)
is counted positively if ε < 0 and negatively if ε > 0 since u−1(RX) then contains {±i

√
ε}, and

the pure imaginary planar conic with affine equation x2 +y2 = −1 is a real rational curve, but not
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AMS Classification : 53D45, 14N35, 14N10, 14P99.

1



the image of a Z/2Z-equivariant immersion u : (CP 1, conj) → (X, cX) since its real part is empty.
Remember finally that if we do not obtain a unique invariant as the Gromov-Witten invariant
in the complex case, it is due to the fact the integers we obtain depend on the number of pairs
of complex conjugated points in the chosen configuration of c1(X)d − 1 points as well as on the
distribution of the remaining points in the different connected components of the real part.

The existence of these invariants raises various questions. Are there analog invariants in higher
dimensions? Of which problems of real enumerative geometry is it possible to extract some integer
valued invariants? Note that such invariants then bound from below the number of real solutions
of the given problem, see Corollary 2.2 of [11]. Does some recursive formula similar to the one
obtained by M. Kontsevich for the Gromov-Witten invariants exist? The works [12] and [10]
provide some positive answer to the first question. The present paper, as well as [9] which can be
considered as a continuation of this work, is devoted to the study of the next two questions. The
problem addressed in [9] is to replace one point condition in the above problem by one tangency
condition with some given curve L in the real part RX, as in the classical problem of counting
real planar conics tangent to five generic real conics for example. It is proven in [9] that some
integer valued invariants can indeed be extracted from this problem, but this requires to take into
account other kinds of curves which appear in generic one parameter families of curves, namely
two components reducible curves, cuspidal curves and curves with some prescribed tangent line
at one point of the configuration (or equivalently from Proposition 3.4 of [11], curves having one
double point at some point of the configuration). The present paper is actually devoted to the case
where L is empty. In this case, only the three terms we have just mentionned occur and indeed
they hide some integer valued invariants, see Theorem 0.1. Moreover, these new invariants can
be compared with the ones of [11], see Proposition 0.3 below, leading to some relation between
the count of generic real rational curves of [11] with the one of real reducible curves done here.
However, this relation does not lead to some recursive formula similar to the one obtained in the
complex case by M. Kontsevich, see Remark 0.4 below. Note that since the preprint version of
this paper and of [9] have appeared, progress has been made on the questions of computation or
finding recursion formulas, see [13] and Remark 3 therein.

Let us now come to the precise formulation of the main results of this paper. We label the
connected components of the real part by (RX)1, . . . , (RX)N . Let l À 1 be an integer large enough
and Jω be the space of almost complex structures of X which are tamed by ω and of class Cl.
Let RJω be the subspace of Jω made of almost complex structures for which the involution cX is
J-antiholomorphic. These two spaces are separable Banach manifolds which are non empty and
contractible (see §1.1 of [11] for the real case). Let d ∈ H2(X;Z) be a homology class satisfying
c1(X)d > 1 and set ν = c1(X) − 2. Let x = (x1, . . . , xν) ∈ Xν be a real configuration of ν
distinct points of X, that is an ordered subset of distinct points of X which is globally invariant
under cX . For j ∈ {1, . . . , N}, we denote by rj the number of points in the configuration x that
are located in the component (RX)j and we set r = (r1, . . . , rN ), so that the N -tuple r encodes
the equivariant isotopy class of x. We will assume throughout the paper that r 6= (0, . . . , 0), see
Remark 3.5. Finally, denote by I the subset of those i ∈ {1, . . . , ν} for which xi is fixed by the
involution cX . For each i ∈ I, choose a line Ti in the tangent plane TxiRX. Then, for a generic
choice of J ∈ RJω, there are only finitely many real rational J-holomorphic curves which realize
the homology class d, pass through x and are cuspidal. Moreover, these curves are all irreducible
and have only transversal double points as well as a unique real ordinary cusp as singularities.
Denote by Cuspd(J, x) this finite set of cuspidal curves. Likewise, there are only finitely many
real rational J-holomorphic curves which realize the homology class d, pass through x and are
reducible. Moreover, these curves have only two irreducible components and only transversal
double points as singularities. Denote by Redd(J, x) this finite set of reducible curves. Note that
since I 6= ∅, both irreducible components of such curves are real. Indeed, they would otherwise be
exchanged by the involution cX and would intersect the real locus at only finitely many points.
The condition to pass through a point of I would then cost two degrees of liberty instead of one
so that generically such curves do not appear. Finally, there are only finitely many real rational
J-holomorphic curves which realize the homology class d, pass through x and whose tangent line
at some point xi, i ∈ I, is Ti. Moreover, the point xi having this property is then unique and these
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curves are all irreducible with only transversal double points as singularities. Denote by T and(J, x)
this finite set of rational curves. Note that if C ∈ Cuspd(J, x) ∪Redd(J, x) ∪ T and(J, x), then all
the singularities of C are disjoint from x. Following [11], we define the mass of C and denote by
m(C) its number of real isolated double points. Here, a real double point is said to be isolated
when it is the local intersection of two complex conjugated branches, whereas it is said to be non
isolated when it is the local intersection of two real branches. If C belongs to Redd(J, x) and C1,
C2 denote its irreducible components, then we define the multiplicity of C, and denote by mult(C),
the number of real intersection points between C1 and C2, that is the cardinality of RC1 ∩ RC2.
We then set:

Γd
r(J, x) =

∑

C∈Cuspd(J,x)∪T and(J,x)

(−1)m(C) −
∑

C∈Redd(J,x)

(−1)m(C) mult(C).

Theorem 0.1 Let (X,ω, cX) be a real symplectic 4-manifold and d ∈ H2(X;Z) be such that
c1(X)d > 1, c1(X)d 6= 4. The connected components of RX are labeled by (RX)1, . . . , (RX)N .
Let x ⊂ X be a real configuration of c1(X)d− 2 distinct points, rj be the cardinality of x∩ (RX)j

and r = (r1, . . . , rN ). Finally, let J ∈ RJω be generic enough so that the integer Γd
r(J, x) is well

defined. Then, this integer Γd
r(J, x) neither depends on the choice of J , nor on the choice of x.

(The condition c1(X)d 6= 4 is to avoid appearance of multiple curves, see Remark 1.10.)
From this theorem, the integer Γd

r(J, x) can be denoted without ambiguity by Γd
r , and when it is

not well defined, we set Γd
r = 0. We then denote by Γd(T ) the generating function

∑
r∈NN Γd

rT
r ∈

Z[T1, . . . , TN ], where T r = T r1
1 . . . T rN

N . This polynomial function is of the same parity as c1(X)d
and each of its monomial actually only depends on one indeterminate. Indeed, the real part of
any real rational curve is connected and thus it cannot interpolate points in different connected
components of RX. This in fact implies that any symplectic four-manifold having a real structure
with disconnected real locus must have even genus zero Gromov-Witten invariants as soon as the
number of point conditions is greater than one. It follows from Theorem 0.1 that the function
Γ : d ∈ H2(X;Z) 7→ Γd(T ) ∈ Z[T ] only depends of the real symplectic 4-manifold (X, ω, cX).
Moreover, it is invariant under deformation of this real symplectic 4-manifold, that is if ωt is a
continuous family of symplectic forms on X for which c∗Xωt = −ωt, then this function is the same
for all (X, ωt, cX). As an application of this invariant, we obtain the following lower bounds in
real enumerative geometry.

Corollary 0.2 Under the hypothesis of Theorem 0.1, the integer |Γd
r | provides a lower bound

for the cardinality of the weighted set Cuspd(J, x) ∪Redd(J, x) ∪ T and(J, x), independently of the
choice of a generic J ∈ RJω and x. ¤

The non triviality of the invariant Γd
r is guaranteed by the following proposition, see Corollary 1.4

of [9].

Proposition 0.3 Let (X, ω, cX) be the complex projective plane equipped with its standard
symplectic form and real structure, so that H2(X;Z) is canonically isomorphic to Z. Let r, d be
integers satisfying d ≥ 2 and 1 ≤ r ≤ 3d− 2. Then Γd

r = χd
r+1. ¤

Remark 0.4 Remember that the integer χd
r+1 has been defined in [11] by counting the number

of real rational J-holomorphic curves of degree d which pass through 3d − 1 points with respect
to the parity of their mass. Likewise, the integer Γd

r has just been defined above by counting
three kinds of curves which appear in codimension one in the space of real rational J-holomorphic
curves of degree d. In particular, one of the three kinds is reducible curves. The equality given by
Proposition 0.3 thus provides a relation between the invariant χd

r+1 and an analogous sum over
all real reducible curves passing through 3d − 2 points. That is precisely what one would need
to provide a recursion formula similar to the one obtained by Kontsevich to compute the rational
Gromov-Witten invariants of CP 2, see [4]. However, the reducible curves are counted here with
respect to some real multiplicity which is not under control, and likewise, there are two other kinds
of curves which are counted in the expression of Γd

r which we do not control.
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The paper is organized as follows. The first paragraph is devoted to the construction of
the moduli space RMd

cusp of real rational cuspidal pseudo-holomorphic curves which realize the
homology class d. This space is equipped with a projection πR : RMd

cusp → RJω × RτXν . The
critical points of πR as well as its lack of properness are discussed there. The second paragraph is
entirely devoted to the study of one particular type of critical points of πR, namely those arising
from curves having a degenerated cuspidal point. The third paragraph is devoted to the study of
the Gromov compactification RMd

cusp of RMd
cusp. Finally, the fourth paragraph is devoted to

the proof of Theorem 0.1.
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1 Moduli space of real rational cuspidal pseudo-
holomorphic curves

Let d ∈ H2(X;Z) be such that (cX)∗d = −d and c1(X)d > 1, c1(X)d 6= 4. Let τ be an
order two permutation of the set {1, . . . , ν}, where ν = c1(X)d− 2, and cτ : (x1, . . . , xν) ∈ Xν 7→
(cX(xτ(1)), . . . , cX(xτ(ν))) ∈ Xν be the associated real structure of Xν . The fixed point set of cτ

is denoted by RτXν .
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1.1 Moduli space P∗cusp of cuspidal pseudo-holomorphic maps

Let S be an oriented sphere of dimension two and JS be the space of complex structures of
class Cl of S which are compatible with its orientation. Let z = (z1, . . . , zν) ∈ Sν be an ordered
set of ν distinct points of S. Let ∇ be a torsion free connection on TX which is invariant under
cX . We set

P = {(u, JS , J, x) ∈ Lk,p(S, X)× JS × Jω ×Xν |u∗[S] = d , u(z) = x , du + J ◦ du ◦ JS = 0},
where 1 ¿ k ¿ l is large enough and p > 2. Let P∗ ⊂ P be the space of non multiple pseudo-
holomorphic maps, that is the space of quadruples (u, JS , J, x) for which u cannot be written u′◦Φ
where Φ : S → S′ is a non trivial ramified covering and u′ : S′ → X a pseudo-holomorphic map.
Remember that P∗ is a separable Banach manifold of class Cl−k (see [5], Proposition 3.2.1) with
tangent bundle

T(u,JS ,J,x)P∗ = {(v, J̇S , J̇ ,
.
x) ∈ T(u,JS ,J,x)(Lk,p(S, X)× JS × Jω ×Xν) | v(z) =

.
x

and Dv + J ◦ du ◦ J̇S + J̇ ◦ du ◦ JS = 0}.
Here, TuLk,p(S, X) = {v ∈ Lk,p(S,Eu)} where Eu = u∗TX and D : v ∈ Lk,p(S, Eu) 7→ ∇v +
J ◦ ∇v ◦ JS +∇vJ ◦ du ◦ JS ∈ Lk−1,p(S, Λ0,1S ⊗ Eu) is the associated Gromov operator (see [5],
Proposition 3.1.1). Let

P∗cusp = {((u, JS , J, x), zc) ∈ P∗ × S | dzcu = 0}, and

P∗hocusp = {((u, JS , J, x), zc) ∈ P∗cusp |∇du|zc = 0}
be the subspace of maps having a higher order cuspidal point at zc.

Proposition 1.1 The space P∗cusp is a separable Banach manifold of class Cl−k with tangent
bundle T((u,JS ,J,x),zc)P∗cusp = {(v, J̇S , J̇ ,

.
x,

.
zc) ∈ T(u,JS ,J,x)P∗ × TzcS | ∇v|zc + ∇ .

zc
du = 0}. The

space P∗hocusp is a separable Banach submanifold of P∗cusp of class Cl−k and real codimension four.

Proof:
The proof is analogous to the one of Proposition 2.7 of [11], we just recall a sketch of it.

Denote by F the vector bundle over P∗ × S whose fibre over ((u, JS , J, x), zc) is the vector
space T ∗zc

S ⊗ Tu(zc)X. In particular, the restriction of F over {(u, JS , J, x)} × S is the bundle
T ∗S ⊗C u∗TX. From Proposition 3.2.1 of [5], the bundle F is of class Cl−k since trivialization
maps depend Cl−k-smoothly on u and Cl−2-smoothly on zc, u being of class Cl from [5], Theorem
B.4.1. The section dzcu of F is of class Cl−k and vanishes transversely from Lemma 2.6 of [11].
The first part of the proposition follows and the second part can be proved along the same lines. ¤

Remember that if o(zc) denotes the vanishing order of du at zc, then the jet of u at the order
2o(zc) + 1 is a well defined complex polynomial (see [8], Proposition 3). The subspace P∗hocusp is
precisely made of maps u for which o(zc) > 1. When o(zc) = 1, this complex polynomial can be
written j2(u)(z − zc)2 + j3(u)(z − zc)3 where j2(u), j3(u) ∈ Tu(zc)X, z is a complex coordinate of
(S, JS) in a neighbourhood of zc and j2(u) 6= 0 generates the tangent line of u at the cuspidal
point u(zc). The cuspidal points for which j3(u) is colinear to j2(u) are said to be degenerated.
They will be studied in detail in §2.

1.2 Normal sheaf

Remember that the C-linear part of the Gromov operator D is some ∂-operator denoted by ∂.
The latter induces a holomorphic structure on the bundle Eu = u∗TX which turns the morphism
du : TS → Eu into an injective homomorphism of analytic sheaves (see [3], Lemma 1.3.1). Like-
wise, the C-antilinear part of D is some order 0 operator denoted by R and defined by the formula
R(u,JS ,J,x)(v) = NJ(v, du) where NJ is the Nijenhuis tensor of J . Denote by Nu the quotient
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sheaf OS(Eu)/du(OS(TS)) so that it fits in the following exact sequence of analytic sheaves 0 →
OS(TS) → OS(Eu) → Nu → 0. As soon as ((u, JS , J, x), zc) belongs to P∗cusp, this exact sequence
extends to 0 → OS(TS) ⊗ OS(zc) → OS(Eu) → N zc

u → 0, where N zc
u is a quotient of the sheaf

Nu. We denote in this case by Czc
the skyscraper subsheaf du(OS(TS) ⊗ OS(zc))/du(OS(TS))

of Nu. Also, in this case, we denote by Ecusp
u the subsheaf {v ∈ OS(Eu) | ∇v|zc ∈ Im(∇du|zc)} of

Eu and by N cusp
u the quotient sheaf OS(Ecusp

u )/du(OS(TS)). We hence obtain the exact sequence
0 → OS(TS) → OS(Ecusp

u ) → N cusp
u → 0. Note that from the inclusion OS(Ecusp

u ) ⊂ OS(Eu) fol-
lows the inclusionN cusp

u ⊂ N zc
u ⊕Czc

. Finally, denote by OS(TS−z) (resp. OS(Eu,−z), OS(Ecusp
u,−z),

Nu,−z, N zc
u,−z, N cusp

u,−z , Czc,−z) the subsheaf of sections of OS(TS) (resp. OS(Eu), OS(Ecusp
u ), Nu,

N zc
u , N cusp

u , Czc) which vanish at z.

Proposition 1.2 Let ((u, JS , J, x), zc) ∈ P∗cusp\P∗hocusp. Then, we have the inclusion Czc,−z ⊂
N cusp

u,−z if and only if zc ∈ z or zc is a degenerated cuspidal point of u. In both cases, ∇ induces at zc

a derivation ∇zc of sections of N zc
u,−z such that the image of N cusp

u,−z in N zc
u,−z under the projection

Nu,−z → N zc
u,−z with kernel Czc,−z is the subsheaf {v ∈ N zc

u,−z |∇zcv = 0}.
Note that if ((u, JS , J, x), zc) ∈ P∗cusp \ P∗hocusp does not satisfy Czc,−z ⊂ N cusp

u,−z , then the
projection Nu,−z → N zc

u,−z with kernel Czc,−z establishes an isomorphism between the sheaves
N cusp

u,−z and N zc
u,−z.

Proof:
There exist a complex coordinate z of (S, JS) in a neighbourhood U of zc as

well as a local chart of X in a neighbourhood of u(zc) such that the map u writes
z ∈ U 7→ ((z − zc)2, a(z − zc)3) + (z − zc)3ε1(z − zc) ∈ C2, where a ∈ C and
ε1 ∈ Lk,p(U,C2), ε1(zc) = 0 (see [8], Proposition 3). We can assume that the connec-
tion ∇ is the standard connection given by this chart. Then, the image Im(∇du|zc)
is carried by the first coordinate axis of C2. Now, if zc /∈ z (resp. zc ∈ z), a lo-
cal section of Czc,−z writes vzc = du( 1

z−zc
) = (2, 3a(z − zc)) + (z − zc)ε2(z − zc) (resp.

vzc = du(1) = (2(z − zc), 3a(z − zc)2) + (z − zc)2ε2(z − zc)), where ε2 ∈ Lk−1,p(U,C2), ε2(zc) = 0.
We deduce that ∇vzc |zc ∈ Im(∇du|zc) if and only if a = 0 or zc ∈ z. The first part of the
proposition is proved. In both cases, the evaluation of ∇vzc at the point zc vanishes in N zc

u,−z.
Thus, for every local section v of N zc

u,−z, the evaluation of ∇v at the point zc does not depend
on the choice of a lift of v in OS(Eu,−z). We denote by ∇zcv ∈ Tu(zc)X/Im(∇du|zc) this value.
A section v of OS(Eu,−z) satisfies then ∇v|zc ∈ Im(∇du|zc) if and only if the quotient section
satisfies ∇zcv = 0. ¤

Remember that the operator D : Lk,p(S, Ecusp
u,−z) → Lk−1,p(S, Λ0,1S⊗Ecusp

u ) induces a quotient
operator D : Lk,p(S,N cusp

u,−z) := Lk,p(S,Ecusp
u,−z)/du(Lk,p(S, TS−z) → Lk−1,p(S, Λ0,1S ⊗Nu). Here,

Nu denotes the normal bundle of u and Nu,−z = Nu⊗OS(−z). From the short exact sequence of
complexes

0 → Lk,p(S, TS−z)
du→ Lk,p(S, Ecusp

u,−z) → Lk,p(S,N cusp
u,−z) → 0

↓ ∂S ↓ D ↓ D

0 → Lk−1,p(S, Λ0,1S ⊗ TS) du→ Lk−1,p(S, Λ0,1S ⊗ Ecusp
u ) → Lk−1,p(S, Λ0,1S ⊗Nu) → 0,

we deduce the long exact sequence 0 → H0(S, TS−z) → H0
D(S, Ecusp

u,−z) → H0
D

(S,N cusp
u,−z) →

H1(S, TS−z) → H1
D(S,Ecusp

u,−z) → H1
D

(S,N cusp
u,−z) → 0, where H0

D, H0
D

(resp. H1
D, H1

D
) denote

the kernels (resp. cokernels) of the operators D, D on the associated sheaves. In particular,

indR(D) = indR(D)− indR(∂S)
= 2(c1(X)d + 1− 2#z)− 2(3−#z)
= 0.
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1.3 Moduli space of real rational cuspidal pseudo-holomorphic curves

1.3.1 Gauge action of Diff(S, z) on P∗cusp

Denote by Diff(S, z) the group of diffeomorphisms of class Cl+1 of S, which either preserve the
orientation and fix z, or reverse the orientation and induce the permutation on z associated to τ .
Let Diff+(S, z) (resp. Diff−(S, z)) be the subgroup of Diff(S, z) made of orientation preserving
diffeomorphisms (resp. its complement in Diff(S, z)). Let s∗ be the morphism Diff(S, z) →
Z/2Z having kernel Diff+(S, z). The group Diff(S, z) acts on the pair (P∗cusp,P∗hocusp) by

φ.((u, JS , J, x), zc) =
{

((u ◦ φ−1, (φ−1)∗JS , J, x), φ(zc)) if s∗(φ) = +1,
((cX ◦ u ◦ φ−1, (φ−1)∗JS , cX

∗(J), cX(x)), φ(zc)) if s∗(φ) = −1,

where (φ−1)∗JS = s∗(φ)dφ ◦ JS ◦ dφ−1 and cX
∗(J) = −dcX ◦ J ◦ dcX . With the exception

of the identity, only the order two elements of Diff−(S, z) may have non empty fixed point
set in P∗cusp. In particular, two such involutions have disjoint fixed point sets (compare [11],
Lemma 1.3). Moreover, the operators D and D are Diff(S, z) equivariants (compare [11], Lemma
1.5). Now, if ((u, JS , J, x), zc) is fixed by some order two element cS of Diff−(S, z), we denote
by H0

D(S, Ecusp
u,−z)±1, H1

D(S, Ecusp
u,−z)±1 (resp. H0

D(S,N cusp
u,−z)±1, H1

D(S,N cusp
u,−z)±1) the eigenspaces

associated to the eigenvalue ±1 of the action of cS on the kernel and the cokernel of D (resp. of
D).

1.3.2 Moduli spaces Md
cusp, RMd

cusp and the projections π, πR

Denote by Md
cusp (resp. Md

hocusp) the quotient of P∗cusp (resp. P∗hocusp) by the action of
Diff+(S, z). This space Md

cusp is the moduli space of rational pseudo-holomorphic curves which
realize the homology class d and are not immersed, whereas Md

hocusp is the moduli space of such
curves which have a cuspidal point of order greater than one, that is of the form z 7→ (za, zb+o(zb))
with 2 < a < b. The projection π : ((u, JS , J, x), zc) ∈ P∗cusp 7→ (J, x) ∈ Jω ×Xν induces on the
quotient a projection Md

cusp → Jω ×Xν still denoted by π.

Proposition 1.3 The space Md
cusp is a separable Banach manifold of class Cl−k, and π is

Fredholm of vanishing index. Moreover, the space Md
hocusp is a separable Banach submanifold of

class Cl−k and complex codimension two of Md
cusp. Finally, if [(u, JS , J, x), zc] ∈Md

cusp\Md
hocusp,

then we have the isomorphisms ker dπ|((u,JS ,J,x),zc)
∼= H0

D(S,N cusp
u,−z) and coker dπ|((u,JS ,J,x),zc)

∼=
H1

D(S,N cusp
u,−z).

Proof:
The proof is analogous to the one of Corollary 2.2.3 of [6]. The action of Diff+(S, z) on P∗cusp

and P∗hocusp is smooth, fixed point free and admits a closed supplement. From Proposition 1.1 thus
follows that Md

cusp and Md
hocusp are separable Banach manifolds, the latter being of codimension

four in the former. Moreover, since ∇du|zc 6= 0, we have

ker dπ|[(u,JS ,J,x),zc] = {(v, J̇S , 0, 0,
.
zc) ∈ T(u,JS ,J,x)P∗ × TzcS |∇v|zc +∇ .

zc
du = 0}/TIdDiff+(S, z)

= {(v, J̇S) ∈ Lk,p(S, Ecusp
u,−z)× TJSJS |Dv = −J ◦ du ◦ J̇S}/TIdDiff+(S, z)

= {v ∈ Lk,p(S,Ecusp
u,−z) | ∃φ ∈ Lk−1,p(S, Λ0,1S ⊗ TS) , Dv = du(φ)}/du(Lk,p(S, TS−z))

= H0
D(S,N cusp

u,−z),

from the long exact sequence given at the end of §1.2. Likewise,

Imdπ|[(u,JS ,J,x),zc] = {(J̇ ,
.
x) ∈ TJJω × TxXν | ∃(v, J̇S ,

.
zc) ∈ Lk,p(S,Eu,−z)× TJSJS

×TzcS , Dv + J ◦ du ◦ J̇S = −J̇ ◦ du ◦ JS , ∇v|zc +∇ .
zc

du = 0, v(z) =
.
x}
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so that coker dπ|[(u,JS ,J,x),zc] = Lk−1,p(S,Λ0,1S ⊗ Eu)× TxXc1(X)d−2/Im(D̂ × ev),

where D̂ : (v, J̇S) ∈ Lk,p(S, Ecusp
u ) × TJS

JS 7→ Dv + J ◦ du ◦ J̇S ∈ Lk−1,p(S, Λ0,1S ⊗ Eu) and
ev : v ∈ Lk,p(S,Ecusp

u ) 7→ v(z) ∈ TxXc1(X)d−2. By definition, cokerD = H1
D(S, Ecusp

u ). From
the short exact sequence 0 → Ecusp

u,−z → Ecusp
u

ev→ TxXc1(X)d−2 → 0, we deduce the long exact
sequence → H0

D(S,Ecusp
u ) → H0(S, TxXc1(X)d−2) → H1

D(S, Ecusp
u,−z) → H1

D(S,Ecusp
u ) → 0. Hence,

the cokernel of D × ev in Lk−1,p(S, Λ0,1S ⊗ Eu) × TxXc1(X)d−2 is isomorphic to H1
D(S,Ecusp

u,−z).
From the long exact sequence given at the end of §1.2, we deduce that the cokernel of D̂× ev and
hence the one of dπ|[(u,JS ,J,x),zc] is isomorphic to H1

D(S,N cusp
u,−z). ¤

The manifolds Md
cusp and Md

hocusp are equipped with an action of the group
Diff(S, z)/Diff+(S, z) ∼= Z/2Z. We denote by RMd

cusp and RMd
hocusp the fixed point sets

of these actions. This space RMd
cusp is the moduli space of real rational pseudo-holomorphic

curves which realize the homology class d and have a real cuspidal point, whereas RMd
hocusp

is the moduli space of such real curves which have a real cuspidal point of order greater than
one, that is of the form z 7→ (za, zb + o(zb)) with 2 < a < b. The projection π is then
Z/2Z-equivariant as soon as Jω × Xc1(X)d−2 is equipped with the action cX

∗ × cτ , where
cX

∗ : J ∈ Jω 7→ −dcX ◦ J ◦ dcX ∈ Jω and cτ has been defined at the beginning of §1. De-
note by πR the induced projection RMd

cusp → RJω × RτXc1(X)d−2.

Proposition 1.4 The spaces RMd
cusp and RMd

hocusp are separable Banach manifolds of class
Cl−k, the latter being of codimension two in the former. Moreover, πR is Fredholm of vanish-
ing index. Finally, if [(u, JS , J, x), zc] ∈ RMd

cusp \ RMd
hocusp, then we have the isomorphisms

ker dπR|((u,JS ,J,x),zc)
∼= H0

D(S,N cusp
u,−z)+1 and coker dπR|((u,JS ,J,x),zc)

∼= H1
D(S,N cusp

u,−z)+1. ¤

1.4 Critical points of πR

Lemma 1.5 The point [(u, JS , J, x), zc] ∈ RMd
cusp \RMd

hocusp is critical for πR if and only if
one of the following:

1) The differential du vanishes outside zc.
2) The cuspidal point zc is degenerated.
3) One has zc ∈ z.

Proof:
From Proposition 1.4, [(u, JS , J, x), zc] is a critical point of πR if and only if

H0
D(S,N cusp

u,−z)+1
∼= H1

D(S,N cusp
u,−z)+1 6= {0}. We deduce from Proposition 1.2 that

2) and 3) are indeed critical points of πR, since in these cases Czc,−z ⊂ N cusp
u,−z and

{0} 6= H0(S,Czc,−z)+1 ⊂ H0
D(S,N cusp

u,−z)+1. In the same way, if zc is a real ordinary cusp
of u distinct from z, then from Proposition 1.2, N cusp

u,−z = N zc
u,−z. If du does not vanish outside

zc, then N zc
u,−z

∼= OS(Nu,−z) so that H1
D(S,N cusp

u,−z)+1 = {0}. Otherwise, the sheaf N cusp
u,−z carries

some skyscraper part and H0
D(S,N cusp

u,−z)+1 6= {0}, hence the result. ¤

A detailed study of critical points of type 2) will be carried out in §2. In particular, we will
prove in Lemma 2.4 that if z is a local coordinate in a neighbourhood of zc which is adapted to u,
that is for which the order three jet of u reads j2(zc)(z− zc)2 + o(|z− zc|3), then the homogeneous
part of order 5 of its jet is a complex monomial denoted by j5(zc)(z − zc)5. Also, note that if
u has two distinct ordinary cusps, then H1

D(S,N cusp
u,−z)+1

∼= H1
D(S,N zc

u,−z)+1 is of dimension one
and from Riemann-Roch duality, it is isomorphic to H0

D∗(S,KS⊗N zc
u,−z)−1 (see [11], Lemma 1.7).

Finally, remember that a stratum of codimension m ∈ N of a separable Banach manifold N is
by definition the image of a separable Banach manifold M under a smooth Fredholm map f of
Fredholm index −m such that all the limits of sequences φ(xn), where xn is a diverging sequence
in M , belong to a countable union of strata of higher codimensions.
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Lemma 1.6 1) The set of points [(u, JS , J, x), zc] ∈ RMd
cusp for which u has two distinct real

ordinary cusps and ordinary double points as singularities, all of which being outside x and for
which any generator ψ of H0

D∗(S, KS ⊗N zc
u,−z)−1 = H1

D(S,N cusp
u,−z)∗+1 does not vanish at the cusps,

is a stratum of codimension one of RMd
cusp.

2) The set of points [(u, JS , J, x), zc] ∈ RMd
cusp for which u has a degenerated cusp and

transversal double points as singularities, all of which being outside x, and for which j5(zc) is
not colinear to j2(zc) in an adapted coordinate, is a stratum of codimension one of RMd

cusp.
3) The set of points [(u, JS , J, x), zc] ∈ RMd

cusp for which u has a real ordinary cusp at zc ∈ z
and only ordinary double points as other singularities, all of which being outside x, is a stratum
of codimension one of RMd

cusp.
The union of all critical points of πR not listed above belong to a countable union of strata of

codimension at least two in RMd
cusp.

Proof:
The case 2 follows from Proposition 2.6. All the other cases can be proved in the same way as

Propositions 2.7 and 2.8 of [11]. For the sake of concision, these proofs are not reproduced here.
¤

Remark 1.7 There are actually only finitely many strata occuring in Lemma 1.6, since a pseudo-
holomorphic curve which realize the given homology class d may have only finitely many different
types of singularities. Moreover, as soon as k and l are large enough, all these strata are images
of Banach manifolds of class C2 at least. We will use only the following fact: a generic path
γ : [0, 1] → RJω × RτXc1(X)d−2 avoids the image under πR of every stratum of codimension at
least two.

The critical points of πR listed in Lemma 1.6 are said to be generic.

Theorem 1.8 The generic critical points of πR are non degenerated.

Proof:
In the case of critical points of type 1 given by Lemmas 1.5 and 1.6, the proof is readily

the same as the one of Lemma 2.13 of [11]. It is not reproduced here. Let [(u, JS , J, x), zc] ∈
RMd

cusp be a generic critical point of type 2 or 3 given by Lemma 1.6. We have to
prove that the quadratic form ∇dπR|[(u,JS ,J,x),zc] : ker dπR|[(u,JS ,J,x),zc] × ker dπR|[(u,JS ,J,x),zc] →
coker dπR|[(u,JS ,J,x),zc] is non degenerated. Write πR = (π1

R, π
2
R), RMd

cusp(x) = (π2
R)
−1(x) and

πJ
R : [(u, JS , J, x), zc] ∈ RMd

cusp(x) 7→ J ∈ RJω the restriction of π1
R to RMd

cusp(x). The
quadratic forms ∇dπR|[(u,JS ,J,x),zc] and ∇dπJ

R |[(u,JS ,J),zc] are of the same nature. Moreover,
the kernel and cokernel of the map dπJ

R are the same as the ones of the operator −D̂R :
(v, J̇S , J̇ ,

.
zc) ∈ T[(u,JS ,J),zc]RMd

cusp(x) 7→ J̇ ◦ du ◦ JS ∈ Lk−1,p(S, Λ0,1S ⊗ Nu). From the rela-
tion Dv + J ◦ du ◦ J̇S + J̇ ◦ du ◦ JS = 0, we deduce that D̂R(v, J̇S , J̇ ,

.
zc) = Dv + J ◦ du ◦ J̇S . We

then have to prove that ∇D̂R|[(u,JS ,J),zc] : H0
D(S,N cusp

u,−z)2+1 → H1
D(S,N cusp

u,−z)+1 is non degener-

ated. Let (v1, J̇
1
S , 0,

.
z
1
c) be a generator of H0

D(S,N cusp
u,−z)+1, then from Proposition 1.2, v1 = du(ṽ1)

where ṽ1 ∈ Lk,p(S, TS−z ⊗OS(zc))+1, that is ṽ1 is a meromorphic vector field on S either having
a simple pole at zc if zc /∈ z or which does not vanish at zc otherwise. In the same way, let
(v2, J̇

2
S , 0,

.
z
2
c) ∈ T[u,JS ,J,zc]RMd

cusp(x), then

(∇
(v2,J̇2

S ,0,
.
z
2
c)

D̂R)(v1, J̇
1
S , 0,

.
z
1
c) =

(∇
(v2,J̇2

S ,0,
.
z
2
c)

DR
)
(v1) + (∇v2du) ◦ JS ◦ J̇1

S mod (Im(du)).

Moreover, after differentiation of the relation D ◦ du = du ◦ ∂S , we deduce
(∇

(v2,J̇2
S ,0,

.
z
2
c)

DR
)
(du(ṽ1)) + DR ◦ (∇v2du)(ṽ1) = ∇v2du ◦ ∂S(ṽ1) mod (Im(du)).
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Since the relation 0 = Dv1 +J ◦du◦ J̇1
S = du(∂S(ṽ1)+JS J̇1

S) forces ∂S(ṽ1)+JS J̇1
S = 0, we deduce

(∇
(v2,J̇2

S ,0,
.
z
2
c)

D̂R)(v1, J̇
1
S , 0,

.
z
1
c) = −DR(∇v2du)(ṽ1) mod (Im(du)).

We thus have to prove that the projection DR(∇ṽ1du(ṽ1)) ∈ H1
D(S;N cusp

u,−z)+1
∼= R does not vanish

as soon as ṽ1 6= 0. Now the operator DR : Lk,p(S,Nu,−z)+1 → Lk−1,p(S, Λ0,1 ⊗ Nu)+1 is an
isomorphism, and Lk,p(S,N cusp

u,−z)+1 = {v ∈ Lk,p(S,Nu,−z)+1 |∇zcv = 0} (see Proposition 1.2) is
a closed hyperplane of Lk,p(S,Nu,−z)+1. We hence have to prove that v = ∇ṽ1du(ṽ1) does not
satisfy ∇zcv = 0.

The map u can be written in an adapted local chart at zc as u(z) = j2(zc)(z − zc)2 + · · · +
j5(zc)(z − zc)5 + o(|z − zc|5) where (j2(zc), j5(zc)) does form a basis of R2 if zc /∈ z or u(z) =
j2(zc)(z−zc)2 +j3(zc)(z−zc)3 +o(|z−zc|3) where (j2(zc), j3(zc)) does form a basis of R2 if zc ∈ z.
We can assume that the connection∇ is the standard one given by this chart. Then in the first case,
ṽ1 = 1

z−zc
and v = (∇ṽ1du)(ṽ1) = 2j2(zc)

(z−zc)2
+20j5(zc)(z−zc)+o(|z−zc|) = 15j5(zc)(z−zc)+o(|z−zc|)

mod (Im(du)). And in the second case, ṽ1 = 1 and v = (∇ṽ1du)(ṽ1) = 2j2(zc) + 6j3(zc)(z− zc) +
o(|z − zc|). In the first case, ∇v|zc

= 15j5(zc)dz while in the second case ∇v|zc
= 6j3(zc)dz. In

both cases, the projection ∇zcv of ∇v|zc
in the normal bundle does not satisfy ∇zcv = 0, hence

the result. ¤

1.5 Gromov compactification RMd

cusp of RMd
cusp

The projection πR : RMd
cusp → RJω × RτXν is not proper in general. The reason for this

is that there might exist some sequence ([un, Jn
S , Jn, xn, zn

c ])n∈N of RMd
cusp such that (Jn, xn)

converges to (J∞, x∞) ∈ RJω × RτXν , but the image un(S) converges to some reducible J∞-
holomorphic curve. From Gromov compactness theorem (see [5], Theorem 5.5.5), this is the only
obstruction to the properness of πR. More precisely, this theorem describes how the sequence
of maps (un)n∈N does converge. There exist smooth disjoint loops α1, . . . , αk in S and a map
u∞ : S → X which contracts the loops α1, . . . , αk and whose image is the reducible curve in
the limit. Moreover, after may be changing the parameterization of un, this sequence converges
to u∞ in C0 norm on the whole S and in norm Lk,p on every compact subset of S \ (∪k

i=1αi).
In particular, we have the following alternative. Either the limit z∞c of (zn

c )n∈N does not belong
to ∪k

i=1αi, and then the curve in the limit has a cuspidal point at u∞(z∞c ). Or the limit z∞c of
(zn

c )n∈N does belong to ∪k
i=1αi, say α1, and then the two irreducible components adjacent to α1

intersect each other with multiplicity at least two at u∞(z∞c ). The latter can be obtained from
adjunction formula for example, since the total sum of multiplicies of the singularities of the curve
is controled by this formula. The end of this paragraph is devoted to the proof that over a generic
path γ : t ∈ [0, 1] 7→ (J t, xt) ∈ RJω × RτXν , the only reducible curves which satisfy one of these
two conditions have two irreducible components, both real, and only transversal double points as
singularities with the exception of a unique real ordinary cusp or a unique real ordinary tacnode at
some intersection point between the two irreducible components. Moreover, all these singularities
are outside xt.

Let m1 ∈ N, d1 ∈ H2(X;Z) and z1 = (z1
1 , . . . , z1

m1
) ∈ Sm1 be an m1-tuple of distinct points of

S. Denote by

RM(d1,m1) = {(u1, J1
S , J1, x1) ∈ Lk,p(S, X)× JS × Jω ×Xm1 | du1 + J1 ◦ du1 ◦ J1

S = 0

and u(z1) = x1}/Diff+(S, z1).

Let m2 ∈ N, d2 ∈ H2(X;Z) and z2 = (z2
1 , . . . , z2

m2
) ∈ Sm2 be an m2-tuple of distinct points of S.

We denote by
RM(d1,m1),(d2,m2) =

(
RM(d1,m1) ×Jω RM(d2,m2)

) \Diag,

where Diag = {((u1, J1
S , J, x1), (u2, J2

S , J, x2)) ∈ RM(d1,m1) ×Jω RM(d2,m2) |u1(S) = u2(S)}. We
recall the following proposition (see [11], Proposition 2.9 and Corollary 2.10).
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Proposition 1.9 The space RM(d1,m1),(d2,m2) is a separable Banach manifold of class Cl−k.
Moreover, the projection π

(d1,m1),(d2,m2)
R : RM(d1,m1),(d2,m2) → RJω × Rτ1X

m1 × Rτ2X
m2 is

Fredholm of index ν − m1 − m2 where d = d1 + d2. Finally, the cokernel of π
(d1,m1),(d2,m2)
R

at ((u1, J1
S , J, x1), (u2, J2

S , J, x2)) is isomorphic to H1
D(S, Nu1,−z1)+1 ⊕H1

D(S,Nu2,−z2)+1. ¤

Remark 1.10 Over a generic path γ : t ∈ [0, 1] 7→ (J t, xt) ∈ RJω × RτXν , no J t-holomorphic
curve which realize d and pass through xt can be multiple or come from the diagonal Diag. Indeed,
the condition for a J-holomorphic curve which realize the homology class 1

2d to pass through ν
distinct points is of codimension 1

2c1(X)d − 1, that is of codimension greater than one as soon
as c1(X)d > 4. Moreover, a generic immersed rational J-holomorphic curve which realize the
homology class 1

2d has 1
2

(
(d
2 )2 − 1

2c1(X)d + 2
)

transversal double points. Each of these double
points is responsible for four double points of the doubled curve. The number of double points of
the doubled curve would then be at least 2

(
(d
2 )2 − 1

2c1(X)d + 2
)− 1, which is impossible as soon

as c1(X)d < 4.

Proposition 1.11 The subspace of RM(d1,m1),(d2,m2) made of couples
((u1, J1

S , J, x1), (u2, J2
S , J, x2)) for which u1 or u2 has a unique cuspidal point which is ordi-

nary, or for which u1(S) and u2(S) have a unique point of contact which is of order two, all the
singularities of u1(S)∪u2(S) being outside x1∪x2 is a stratum of codimension one. The subspace
of curves having degenerated cuspidal points or higher order cuspidal points, or points of contact
of higher order is a stratum of codimension at least two. ¤

We denote by RM(d1,m1),(d2,m2)
cusp (resp. RM(d1,m1),(d2,m2)

tac ) the codimension one stratum of
RM(d1,m1),(d2,m2) given by Proposition 1.11 made of curves having a real ordinary cusp (resp.
an ordinary point of contact between u1(S) and u2(S)).

Corollary 1.12 Let γ : t ∈ [0, 1] 7→ (J t, xt) ∈ RJω × RτXν be a generic path. Assume that
a sequence of elements of RMd

cusp over γ converges to some reducible curve. Then this reducible

J t-holomorphic curve is given by an element ([u1, J1
S , J, x1], [u2, J2

S , J, x2]) ∈ RM(d1,m1),(d2,m2)
cusp ∪

RM(d1,m1),(d2,m2)
tac such that d1 + d2 = d, m1 + m2 = ν and t ∈]0, 1[. Moreover, either m1 =

c1(X)d1 − 1, or m1 = c1(X)d1 − 2 and then the cuspidal point, if it exists, belongs to u1(S).

Proof:
From Proposition 1.11 follows that the curve in the limit must belong to RM(d1,m1),(d2,m2)

cusp ∪
RM(d1,m1),(d2,m2)

tac as soon as γ is generic enough. Now, from Proposition 1.9, the cokernel of
dπ

(d1,m1),(d2,m2)
R |([u1,J1

S ,J,x1],[u2,J2
S ,J,x2]) is isomorphic to H1

D(S, Nu1,−z1)+1 ⊕ H1
D(S, Nu2,−z2)+1.

Since this cokernel is of dimension less than two, we have mi ≤ c1(X)di for 1 ≤ i ≤ 2. Moreover,
in case m2 = c1(X)d2, we have dim H1

D(S, Nu2,−z2)+1 ≥ 1 with equality if and only if the map u2

is an immersion (see [2]). Finally, the relation m1 + m2 = ν forces each irreducible component in
the limit to be simply covered, unless c1(X)di ≤ 1 for some i ∈ {1, 2}. Now, when c1(X)di ≤ 1
for some i ∈ {1, 2}, it suffices to count the number of double points of these rational curves as in
Remark 1.10 to see that these irreducible components cannot be multiply covered. ¤

Remark 1.13 If we would not have excluded the case r = (0, . . . , 0), then a sequence of real
rational cuspidal J-holomorphic curves could converge to a reducible curve having two irreducible
components which are complex conjugated and transversal to each other except at one point which
is of order two, that is an ordinary tacnode.

2 Study of degenerated order two cuspidal points

2.1 Local study of degenerated order two cuspidal points

Let B4 be the unit ball of C2 and cX be the restriction of the complex conjugation to B4.
Denote by RB4 the fixed point set of cX , it is the unit ball of R2 ⊂ C2. Denote by RJωst the space
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of almost complex structures J of B4 which are tamed by the standard symplectic form ωst and
for which cX is J-antiholomorphic. Let B

2
be the closed unit ball of C and conj the restriction

of the complex conjugation to B
2
. Its fixed point set is ] − 1, 1[⊂ B

2
. Finally, denote by Jst the

restriction of the complex structure of C2 to B4, so that Jst ∈ RJωst
. Let η > 0 and

RP ′cusp(η) = {(u, J, zc) ∈ Lk,p(B
2
, B4)× RJωst×]− 1, 1[ | ||J − Jst||C1 < η , du + J ◦ du ◦ i = 0 ,

cX ◦ u = u ◦ conj , dzc
u = 0 but ∇du|zc

6= 0 and u(B
2
) has smooth boundary}.

In particular, u is not multiple. Note that RP ′cusp(η) is not connected. Indeed, two disks which
do not have the same number of double points cannot be in the same connected component. We
are in fact interested here in a connected component for which general elements are disks with one
ordinary cusp at zc and one transversal double point.

Lemma 2.1 As soon as η is small enough, RP ′cusp(η) is a separable Banach manifold of class
Cl−k whose tangent space at (u, J, zc) is

T(u,J,zc)RP ′cusp(η) = {(v, J̇ ,
.
zc) ∈ Lk,p(B

2
,C2)× TJRJωst × R |Dv + J̇ ◦ du ◦ i = 0 ,

v = dcX ◦ v ◦ conj , ∇v|zc +∇ .
zc

du = 0}. ¤

Let (u, J, zc) ∈ RP ′cusp(η), then the order three jet of u at the point zc is a complex polynomial
which can be written u(zc) + j2(zc)(z − zc)2 + j3(zc)(z − zc)3 with 0 6= j2(zc) = 1

2
∂2u
∂z2 ∈ R2

and j3(zc) = 1
6

∂3u
∂z3 ∈ R2 (see [8], Proposition 3). The cuspidal point zc is degenerated when

j3(zc) is colinear to j2(zc). Let Fdeg : (u, J, zc) ∈ RP ′cusp(η) 7→ det(j2(zc), j3(zc)) ∈ R, and
RP ′dcusp(η) = F−1

deg(0) be the locus of curves (u, J, zc) having a degenerated cuspidal point at zc.

Lemma 2.2 As soon as η is small enough, RP ′dcusp(η) is a separable Banach submanifold of
class Cl−k of RP ′cusp(η) whose tangent space at (u, J, zc) is

T(u,J,zc)RP ′dcusp(η) = {(v, J̇ ,
.
zc) ∈ Lk,p(B

2
,C2)× TJRJωst × R | det(d(v,J̇,

.
zc)

j2(zc), j3(zc))

+det(j2(zc), d(v,J̇,
.
zc)

j3(zc)) = 0}.
Proof:
The function Fdeg is of class Cl−k as soon as k ≥ 3 since u is of class Cl. It suffices to prove

that d(u,J,zc)Fdeg is surjective at each point (u, J, zc) of RP ′dcusp(η). Let (u0, J0, zc) be such a
point. From Lemma 2.5 of [11], there exists a smooth family of J0-holomorphic maps (ũλ)λ∈]−ε,ε[

defined in a neighbourhood U of zc by ũλ(z) = u0(z)+ (z− zc)3(λw +wλ(z)), where w can be any
vector in R2 and wλ ∈ Lk,p(B

2
,C2) is real and satisfies w0 = 0, d

dλwλ|λ=0 = 0. This family can
be extended to a smooth family (uλ, Jλ, zc)λ∈]−ε,ε[ ∈ RP ′cusp(η) such that Jλ = J0 if λ = 0 and Jλ

differs from J0 only in a neighbourhood of u0(∂U). Indeed, it suffices to glue the map ũλ|U to the
map u0|B2\U with the help of an annulus embedded in a neighbourhood of u0(∂U). The obtained
map can be made Jλ-holomorphic for some Jλ which equals J0 outside a neighbourhood of u0(∂U).
We have then d

dλj2(uλ, zc) = 0 and d
dλj3(uλ, zc) = w. Hence, d

(
.
ũλ,J̇λ,zc)

Fdeg = det(j2(zc), w) does
not vanish as soon as w is not chosen colinear to j2(zc). ¤

Remark 2.3 1) The group of real biholomorphisms of (B
2
, i) acts on RP ′cusp(η) by φ.(u, J, zc) =

(u ◦ φ−1, J, φ(zc)). Since it is transitive on ]− 1, 1[, we can always assume that zc = 0.
2) Let (u, J, 0) ∈ RP ′dcusp(η) and a ∈ R be such that j3(u, 0) = aj2(u, 0). Let z = w − a

2w2,
the order three jet of u writes

u(z) = j2(u, 0)(w − a

2
w2)2 + j3(u, 0)(w − a

2
w2)3 + o(|w|3)

= j2(u, 0)w2 + o(|w|3).
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Lemma 2.4 Let (u, J, 0) ∈ RP ′dcusp(η) and a ∈ R be such that j3(u, 0) = aj2(u, 0). Let

z = w− a
2w2, the order five germ of u writes u(z) = j2w

2+jw
4 w4+j

|w|
4 |w|4+jw

4 w4+j5w
5+o(|w|5),

where j2, j
w
4 , j

|w|
4 , jw

4 , j5 ∈ R2.

Proof:
This is deduced after expanding the relation 0 = J |u ◦ du− du ◦ i. ¤

A degenerated cuspidal curve (u, J, zc) ∈ RP ′dcusp(η) as in Lemma 2.4 is said to be generic if
the vectors j2 and j5 are linearly independant.

Proposition 2.5 Let (u, J, 0) ∈ RP ′dcusp(η) be a generic cuspidal curve and v(z) = dzu( 1
z ).

Then (v, 0, 0) ∈ T(u,J,0)RP ′cusp(η) \ TRP ′dcusp(η). Moreover, if (uλ, Jλ, zλ
c )λ∈]−ε,ε[ is a path of

RP ′cusp(η) transversal to RP ′dcusp at λ = 0, then for λ < 0 (resp. λ > 0) close enough to 0, uλ has
an isolated (resp. non isolated) real double point in a neighbourhood of the cusp uλ(zλ

c ), or vice
versa.

Proof:
With the notations of Lemma 2.4, we make the local change of coordinates z = φ(w) with

φ(w) = w − a
2w2. The order five germ of u writes u ◦ φ(w) = j2w

2 + jw
4 w4 + j

|w|
4 |w|4 + jw

4 w4 +
j5w

5 + o(|w|5), where j2, j
w
4 , j

|w|
4 , jw

4 , j5 ∈ R2. Equip C2 with the complex structure J(0) and
the frame (u0(0), j2, j5). After composition with the local diffeomorphism of C2 tangent to the
identity given by Φ(z1, z2) = (z1, z2) − jw

4 z2
1 − j

|w|
4 |z1|2 − jw

4 z2
1, we can assume that the jet of u

writes j2w
2 + j5w

5 + o(|w|5). It suffices to prove that ṽ = dw(Φ ◦u ◦φ)( 1
w ) ∈ T(u◦φ,J,0)RP ′cusp(η) \

TRP ′dcusp(η). Indeed, dw(u ◦ φ)( 1
w ) = dzu( 1

z + b(z)) for some holomorphic b, and dzu(b(z)) ∈
TRP ′dcusp(η). Moreover, the composition by Φ does not affect the transversality condition. Now
ṽ(w) = 2j2 + 5j5w

3 + o(|w|3). From Lemma 2.1, (ṽ, 0, 0) ∈ T(u◦φ,J,0)RP ′cusp(η) and from Lemma
2.2, (ṽ, 0, 0) /∈ T(u◦φ,J,0)RP ′dcusp(η), since dj3(ṽ, 0, 0) = 5j5 and det(j2, 5j5) 6= 0. The first part of
the proposition is proved.

Now, without loss of generality, we can assume that d
dλ (uλ, Jλ, zλ

c ) = (v, 0, 0) and zλ
c ≡ 0. From

what precedes, the expansion of uλ(w − a
2w2) writes

uλ(w − a

2
w2) = f(λ) + (w2, w5) + O(|w|6)

+λ(0, 5w3) + O(λ|w|4)
+O(λ2|w|2)

The function f(λ)+(w2, 5λw3+w5) has an isolated real double point at the parameters w = ±i
√

5λ
when λ > 0. Let us prove that when λ > 0 is close enough to 0, the function uλ(w − a

2w2) also
has an isolated real double point at parameters close to ±i

√
5λ. Set w = i

√
5λ + w̃, we have:

uλ ◦ φ(i
√

5λ + w̃) = f(λ) + (−5λ, 0) +
(
2i
√

5λw̃ + w̃2 + λ2O(|w̃|+ |λ|), 50λ2w̃

+|λ| 32 w̃2O(|w̃|+ |λ|) + λ3O(|w̃|+ |λ|)),

as soon as |w̃| ¿
√

λ. Set w̃ = |λ| 34 (cos(θ) + i sin(θ)), we get Im(uλ ◦ φ(i
√

5λ + w̃)) =(
2
√

5|λ| 54 cos(θ) + |λ| 32 O(|λ|), 50|λ| 114 sin(θ) + |λ|3O(|λ|)). The linking number between the ori-
gin of R2 and the ellipse parameterized by θ 7→ (2

√
5|λ| 54 cos(θ), 50|λ| 114 sin(θ)) is equal to one.

The same result holds for the linking number between the origin of R2 and the curve parameterized
by θ 7→ Im

(
uλ ◦ φ(i

√
5λ + |λ| 34 (cos(θ) + i sin(θ)))

)
as soon as λ > 0 is close enough to 0. Hence,

Im(uλ ◦φ) vanishes once in the disk centered at i
√

5λ and whose radius is |λ| 34 . It follows that uλ

has an isolated real double point close to its cuspidal point uλ(0) as soon as λ > 0 is close enough
to 0.

In the same way, the function f(λ) + (w2, 5λw3 + w5) has a non isolated real double point at
the parameters w = ±√−5λ when λ < 0. Let us prove that when λ < 0 is close enough to 0, the
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function uλ(w − a
2w2) also has a non isolated real double point at parameters close to ±√−5λ.

Set w = η
√−5λ + w̃, where η = ±1, we have:

uλ ◦ φ(η
√
−5λ + w̃) = f(λ) + (−5λ, 0) +

(
2η
√
−5λw̃ + w̃2 + |λ|2O(|w̃|+ |λ|), 50λ2w̃

+|λ| 32 w̃2O(|w̃|+ |λ|) + λ3O(|w̃|+ |λ|)),

as soon as |w̃| ¿
√
|λ|. When w̃ ∈ [−|λ| 34 , |λ| 34 ], the segment (2η

√−5λw̃, 50λ2w̃) joins the
two points (−2

√
5η|λ| 54 ,−50|λ| 114 ) and (2

√
5η|λ| 54 , 50|λ| 114 ). When η = ±1, these two segments

intersect transversely at the origin. The same is true for the segments uλ◦φ(η
√−5λ+[−|λ| 34 , |λ| 34 ])

as soon as λ < 0 is close enough to 0, hence the result. ¤

2.2 Global study of degenerated order two cuspidal points

Denote by RMd
dcusp the subset of elements [u, JS , J, x, zc] of RMd

cusp for which u has a degen-
erated cuspidal point at zc.

Proposition 2.6 The space RMd
dcusp is a codimension one submanifold of RMd

cusp of class
Cl−k. Moreover, the subspace of RMd

dcusp made of curves [u, JS , J, x, zc] which have a non generic
degenerated cuspidal point at zc is a substratum of codimension two and class Cl−k of RMd

cusp.
¤

(This is a particular case of Theorem 3.4.5 of [6], see also Proposition 7 of [1])

Let γ : [0, 1] → RJω ×RτXc1(X)d−2 be a path transversal to πR. From Proposition 2.6, if it is
chosen generic enough, it avoids the image under πR of curves having a non generic degenerated
cuspidal point. Denote by RMγ = RMd

cusp ×γ [0, 1] and by πγ : RMγ → [0, 1] the associated
projection.

Proposition 2.7 Let Ct0 = [u, JS , J t0 , xt0 , zc] ∈ RMγ be a curve having a degenerated cus-
pidal point at zc. Then, there exists a neighbourhood W of [u, JS , J t0 , xt0 , zc] in RMγ and
ε > 0 such that for every t ∈]t0 − ε, t0[, π−1

γ (t) ∩ W is made of two curves C+
t , C−t such that

m(C+
t ) = m(C−t ) + 1 and for every t ∈]t0, t0 + ε[, π−1

γ (t) ∩W = ∅, or vice versa.

Proof:
From Proposition 2.6, the degenerated cuspidal point of Ct0 is generic. From Theorem 1.8,

Ct0 is a non-degenerated critical point of πγ . Thus, as soon as ε and W are small enough, for
every t ∈]t0 − ε, t0[, π−1

γ (t) ∩ W = {C±t } and for every t ∈]t0, t0 + ε[, π−1
γ (t) ∩ W = ∅, or vice

versa. The only thing to prove is that m(C+
t ) = m(C−t ) + 1. The double points of C±t are

close to the ones of Ct0 with the exception of one which is close to the cusp of Ct0 . We have
to prove that the nature of the latter is not the same for C+

t and C−t . Note that d
dt |t=t0Ct is

the generator of ker dπR = H0(S,N cusp
u,−z)+1

∼= H0(S,Czc,−z)+1, see Proposition 1.2. Choose a
neighbourhood V of u(zc) invariant under cX , diffeomorphic to the 4-ball B4 and small enough in
order that ||J t − J t0(u(zc))||C1 < η. We deduce a restriction map rest : W ⊂ RMγ → RP ′cusp(η)
such that rest(Ct0) ∈ RP ′dcusp(η). Now dCt0

rest( d
dt |t=t0Ct) is exactly the vector (v, 0, 0) given by

Proposition 2.5. The result thus follows from Proposition 2.5. ¤

3 Study of the compactification RMd
cusp

3.1 Neighbourhood of RM(d1,m1),(d2,m2)
tac in RMd

cusp when mi = c1(X)di − 1

Lemma 3.1 Let d1, d2 ∈ H2(X;Z) be such that d1 +d2 = d and mi = c1(X)di−1, i ∈ {1, 2}.
Then, RM(d1,m1),(d2,m2)

tac has a canonical coorientation in RM(d1,m1),(d2,m2). A path (Ct)t∈]−ε,ε[
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in RM(d1,m1),(d2,m2) transversal to RM(d1,m1),(d2,m2)
tac at t = 0 is positive on this coorientation if

for every t ∈]− ε, 0[ (resp. t ∈]0, ε[), Ct has two real ( resp. complex conjugated) double points in
a neighbourhood of the tacnode of C0. ¤

(See §1.5 for the definition of the space RM(d1,m1),(d2,m2)
tac )

C0 Ct, t > 0Ct, t < 0

Remember that under the conditions of Lemma 3.1, the projection π
(d1,m1),(d2,m2)
R :

RM(d1,m1),(d2,m2) → RJω × Rτ1X
m1 × Rτ2X

m2 is Fredholm with vanishing index. More-
over, from Proposition 1.9, RM(d1,m1),(d2,m2)

tac is made of regular points of this projection. Let
γ : t ∈ [0, 1] 7→ (J t, xt) ∈ RJω × Rτ1X

m1 × Rτ2X
m2 be a path transversal to π

(d1,m1),(d2,m2)
R , so

that the fibre product RMred
γ = RM(d1,m1),(d2,m2) ×πR [0, 1] is a smooth one dimensional mani-

fold equipped with a projection πred
γ : RMred

γ → [0, 1]. As soon as γ is chosen generic enough,

this submanifold intersects RM(d1,m1),(d2,m2)
tac transversely at finitely many points over distinct

parameters of [0, 1]. Let Ct0 ∈ RMred
γ be such a point, t0 ∈]0, 1[. The path γ is said to inter-

sect π
(d1,m1),(d2,m2)
R (RM(d1,m1),(d2,m2)

tac ) positively (resp. negatively) at γ(t0) if RMred
γ intersects

RM(d1,m1),(d2,m2)
tac positively (resp. negatively) at Ct0 once endowed with the local orientation

induced by [0, 1].
Assume that γ is transversal to πR and denote by RMγ = RMd

cusp ×γ [0, 1]. Denote by RMγ

the Gromov compactification of RMγ and by πγ : RMγ → [0, 1] the associated projection. The
aim of this subparagraph is to prove the following theorem.

Theorem 3.2 Let γ : t ∈ [0, 1] 7→ (J t, xt) ∈ RJω × RτXν be a generic path chosen as above
and Ct0 ∈ RMγ ∩RM(d1,m1),(d2,m2)

tac . Assume that m1 = c1(X)d1− 1, m2 = c1(X)d2− 1 and that
γ is positive at t0 = πγ(Ct0). Then, there exist a neighbourhood W of Ct0 in RMγ and ε > 0 such
that for every t ∈]t0 − ε, t0[, π−1

γ (t) ∩W is made of two curves having the same mass, the one of
Ct0 , and for every t ∈]t0, t0 + ε[, π−1

γ (t) ∩W = ∅.
Note that reversing the orientation of [0, 1] if necessary, we can always assume that γ is positive
at t0.

Let Ct be a real rational cuspidal J t-holomorphic curve close to Ct0 which passes through xt,
t ∈]t0 − ε, t0 + ε[\{t0}. Then, from Proposition 2.16 of [11], Ct extends to a one parameter family
of J t-holomorphic curves Ct(η), η ∈ [0, ηt[ such that Ct(0) = Ct, Ct(η) passes through xt for
every η ∈]0, ηt[ and RCt(η) has a non isolated real double point in the neighbourhood of the cusp
of Ct as soon as η 6= 0.

RCt(η)

RCt

Lemma 3.3 If ε is small enough, the family Ct(η) converges to a reducible J t-holomorphic
curve when η → ηt.
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Note that Lemma 3.3 already implies the second part of Theorem 3.2, since for t > 0, there are
no reducible J t-holomorphic curve which pass through xt and have a real double point in the
neighbourhood of the tacnode of Ct0 .

Proof:
Let U be a compact neighbourhood of Ct0 in X such that for every t ∈]t0 − ε, t0 + ε[, the only

reducible J t-holomorphic curve which pass through xt are the ones close to Ct0 . Note that as soon
as η is close enough to zero, the real parts RCt(η) form a loop around the cusp of RCt in RX.
Moreover, the intersections between two curves of this family Ct(η) are located at xt and in the
neighbourhood of their double points. Thus, as η grows, the loops grow in order to fill a disk of RX
centered at the cusp of RCt. The following alternative now follows from Gromov’s compactness
Theorem. Either Ct(η) converges to a reducible J t-holomorphic curve in U as η → ηt, or one curve
Ct(η) intersects the boundary of U . Assume that there exists a sequence tn ∈]t0 − ε, t0 + ε[\{t0},
n ∈ N∗, which converges to t0 when n →∞ and ηn > 0 such that Ctn(ηn) touches the boundary
of U . Then, when n →∞, Ctn(ηn) converges to a J t0 -holomorphic curve C∞ which is contained
in U , intersects the boundary of U and passes through xt0 . The latter cannot be reducible from
the definition of U . Moreover, for every n ∈ N∗, the loop of RCtn(ηn) surounds the cusp of RCtn

in RX. It follows that in the limit, RC∞ forms a loop which surounds the tacnode of RCt0 . Thus,
C∞ intersects Ct0 with multiplicity four at least near the tacnode of Ct0 , with multiplicity two at
least near every double point of Ct0 and with multiplicity one at xt0 . The total intersection index
between C∞ and Ct0 is then at least d2 + 2, which is impossible. ¤

Lemma 3.4 Assume that ε is small enough and that t ∈]t0 − ε, t0[. Then, the number of
cuspidal J t-holomorphic curves which pass through xt and are close to Ct0 is at most 2.

Proof:
Denote by Ct

red the unique reducible real rational J t-holomorphic curve which passes through xt

and is close to Ct0 . This curve has two non isolated real double points yt
1, yt

2 in a neighbourhood of
the tacnode of Ct0 . Let Ct

1 be a real rational cuspidal J t-holomorphic curve which passes through
xt and is close to Ct0 and Ct

1(η), η ∈ [0, ηt
1], the one parameter family of J t-holomorphic curves

given by Lemma 3.3. In particular, Ct
1(η

t
1) = Ct

red. For every η ∈]0, ηt
1[, denote by yt

1(η) the real
double point of Ct

1(η) close to the tacnode of Ct0 . The latter converges to the cusp of Ct
1 when

η → 0 and to one of the points yt
1, yt

2, say yt
1, when η → ηt

1. Assume that there were two families
Ct

1(η), Ct
2(δ) of curves having this property. Then, for η, δ close to ηt

1, δt
1, the curves Ct

1(η), Ct
2(δ)

would have all their intersections at xt and in the neighbourhood of the double points of Ct
red

different from yt
2. Moreover, if η is close enough to ηt

1, we can assume that the loop formed by
RCt

2(δ) close to the cusp of Ct
1 is in the interior of the one formed by RCt

1(η).

RCt
2(δ)

RCt
1(η) Ct

red

Then, RCt
1(η) intersects RCt

2(δ) at two points belonging to the two local branches of RCt
2(δ)

near yt
1. As η decreases, there is some parameter η′ for which RCt

1(η
′) passes through the double

point of RCt
2(δ) belonging to its loop. For this parameter η′, the two curves Ct

1(η
′) and Ct

2(δ)
would have at least 3 intersection points in the neighbourhood of the tacnode of Ct0 and thus a
total intersection at least equal to d2 + 1, which is impossible. We deduce that the number of real
rational cuspidal J t-holomorphic curves close to Ct0 is bounded by the number of real double
points of Ct

red close to the tacnode of Ct0 , that is two. ¤

Proof of the Theorem 3.2:
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It follows from Lemmas 3.3 and 3.4 that there exist a neighbourhood W of Ct0 in RMγ

and ε > 0 such that for every t ∈]t0 − ε, t0[, #(π−1
γ (t) ∩ W ) ≤ 2 and for every t ∈]t0, t0 + ε[,

π−1
γ (t) ∩W = ∅. Since the parity of the number of real rational cuspidal J-holomorphic curves

which pass through x does not depend on the generic choice of (J, x), it suffices to prove that
π−1

γ (t) ∩ W cannot be empty when t ∈]t0 − ε, t0[, that is there exists at least one real rational
cuspidal J-holomorphic curves which passes through x for some J close to J t0 . Now such a curve
can be constructed by reversing the construction of Lemma 3.3. One starts with a reducible real
J-holomorphic curve having two real non isolated double points close to the tacnode of Ct0 . Then,
from Proposition 2.14 of [11], one can smooth one of these double points to obtain a one parameter
family RC(η) of curves which forms a loop. As η decreases, it has to degenerate onto a cuspidal
curve by some argument similar to the one used in the proof of Lemma 3.3. ¤

Remark 3.5 When r = (0, . . . , 0), a sequence of real rational cuspidal J-holomorphic curves can
converge to a reducible curve C having two irreducible components which are complex conjugated
and transversal to each other except at one point which is of order two, that is an ordinary
tacnode. To extend Theorem 0.1, one should take into account these reducible curves. This would
be possible provided an analog of Theorem 3.2 holds in this case. Namely, assume that over a
path γ, the curve deforms to a reducible curve having two real (resp. complex conjugated) double
points in a neighbourhood of the tacnode for t ∈]t0 − ε, t0[ (resp. t ∈]t0, t0 + ε[). Then, one
can suspect that for t ∈]t0, t0 + ε[, there are no real rational cuspidal J t-holomorphic curve close
to C whereas there are two of them for t ∈]t0 − ε, t0[. Moreover, the latter come from the two
degenerations of the figure eight. However, I have no proof of this fact and thus leave this case
open.

3.2 Neighbourhood of RM(d1,m1),(d2,m2)
tac in RMd

cusp when m2 = c1(X)d2

Let γ : t ∈ [0, 1] 7→ (J t, xt) ∈ RJω × RτXν be a generic path transversal to πR and RMγ =
RMd

cusp×γ [0, 1]. Denote by RMγ the Gromov compactification of RMγ and by πγ : RMγ → [0, 1]
the associated projection.

Theorem 3.6 Let γ : t ∈ [0, 1] 7→ (J t, xt) ∈ RJω × RτXν be a generic path chosen as above
and Ct0 ∈ RMγ ∩ RM(d1,m1),(d2,m2)

tac . Assume that m1 = c1(X)d1 − 2 and m2 = c1(X)d2. Then,
there exist a neighbourhood W of Ct0 in RMγ and ε > 0 such that for every t ∈]t0 − ε, t0 + ε[,
π−1

γ (t) ∩W = {Ct}. Moreover, the mass of Ct does not depend on t ∈]t0 − ε, t0 + ε[.

(See §1.5 for the definition of the space RM(d1,m1),(d2,m2)
tac )

Without loss of generality, we can assume that xt ∈ RτXν does not depend on t ∈ [0, 1].
Denote by Ct0

1 (resp Ct0
2 ) the irreducible component of Ct0 which has homology class d1 (resp.

d2). Let xt
1 = xt ∩ Ct0

1 , xt
2 = xt ∩ Ct0

2 and U be a compact neighbourhood of Ct0 in X. If U
is small enough, the curve Ct0

1 extends to a one parameter family Ct0
1 (η), η ∈ [−1, 1], of real

J t0 -holomorphic curves which pass through xt
1, are contained in U and such that Ct0

1 (0) = Ct0
1 ,

Ct0
1 (±1) ∩ ∂U 6= ∅ whereas Ct0

1 (η) ⊂ ◦
U for η ∈] − 1, 1[. We can assume that the curves RCt0

1 (η)
and RCt0

2 have two real intersection points in a neighbourhood of the tacnode of Ct0 when η > 0.
Let Ct be a real rational cuspidal J t-holomorphic curve close to Ct0 and which passes through xt,
t ∈]t0 − ε, t0 + ε[\{t0}. Then, from Proposition 2.16 of [11], Ct extends to a one parameter family
of J t-holomorphic curves Ct(η), η ∈ [0, 1] such that Ct(0) = Ct, Ct(η) passes through xt for every
η ∈ [0, 1] and RCt(η) has a non isolated real double point in the neighbourhood of the cusp of Ct

as soon as η 6= 0. Note that in contrast with §3.1, as soon as U is small enough, this family cannot
break into a reducible curve as long as it stays in U . We can thus assume that Ct(1) ∩ ∂U 6= ∅.

Lemma 3.7 As soon as U is small enough, Ct(1) converges to Ct0(1) as t converges to t0.

Proof:
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It suffices to prove that as t converges to t0, the curve Ct(1) converges to a reducible
curve. Indeed, since this curve in the limit is contained in U , touches ∂U and passes through
xt0 , it has to coincide with Ct0(1). Remember that when t ∈]t0 − ε, t0 + ε[\{t0}, the curve
RCt(1) forms a loop which surrounds the cusp of RCt. Hence, if the curve in the limit
were irreducible, its real part would form a loop which would surround the tacnode of Ct0 .
As soon as U is small enough, the latter would then intersect Ct0 with multiplicity four near
the tacnode, with multiplicity two near every double point of Ct0 and at xt0 , which is impossible. ¤

Hence, the family Ct(η), η ∈]0, 1], is obtained after smoothing one of the two real double points
of Ct0(η) close to the tacnode of Ct0 .

Lemma 3.8 Let Ct(η) and Ct(η)′, t ∈]t0 − ε, t0 + ε[\{t0}, η ∈ [0, 1], be two families of real
rational J t-holomorphic curves which pass through xt and such that Ct(0), Ct(0)′ are cuspidal.
Then, these families are obtained after smoothing the same real double point of the family Ct0(η).

Proof:
Assume the converse. Then, the curves Ct(1) and Ct( 1

2 )′ would intersect at xt and with
multiplicity two near every double point of Ct0 . Moreover, the loops formed by RCt(1) and
RCt(1

2 )′ would intersect at two points at least. Finally, since Ct( 1
2 )′ is not obtained after smoothing

the same real double point of the family Ct0(η) as Ct(1), the local real branch in this smoothing
which is not included in the loop of RCt(1

2 )′ would also intersect RCt(1) near the tacnode of Ct0 .
This would provide a total intersection index at least equal to ν + d2 − c1(X)d + 3 > d2, hence
the contradiction. ¤

RCt(1)

RCt( 1
2 )′

Remark 3.9 It also follows from the proof of Lemma 3.8 that if the families Ct(η) and Ct(η)′ are
obtained after smoothing the same real double point of the family Ct0(η), η ∈ [0, 1], then the loop
formed by RCt(1

2 )′ is included in the one formed by RCt(1). Indeed, these curves would otherwise
also intersect with multiplicity at least three near the tacnode of Ct0 , which is impossible.

Proof of Theorem 3.6:
There exist a neighbourhood W of Ct0 in RMγ and ε > 0 such that for every t ∈]t0− ε, t0 + ε[,

#(π−1
γ (t)∩W ) ≤ 1. Indeed, if this set would contain two curves, they would generate two families

Ct(η) and Ct(η)′ as in Lemmas 3.7 and 3.8. From Lemma 3.8, these two families would be
obtained after smoothing the same real double point of the family Ct0(η). From Remark 3.9, the
loop formed by RCt( 1

2 )′ and hence by RCt(η)′ for every η ∈]0, 1] would be included in the one of
RCt(1). We then obtain a contradiction repeating the proof of Lemma 3.4. Moreover, as in the
proof of Theorem 3.2, π−1

γ (t) ∩W cannot be empty for every t ∈]t0 − ε, t0 + ε[, ε small enough.
Since the parity of the cardinality of π−1

γ (t)∩W does not depend on t and the masses of cuspidal
curves close to Ct0 are obviously the ones of Ct0 , the theorem is proved. ¤

3.3 Neighbourhood of RM(d1,m1),(d2,m2)
cusp in RMd

cusp

Proposition 3.10 Let (C0, J0) ∈ RM(d1,m1),(d2,m2)
cusp . Then, there exists a path (Ct, J t) ∈

RM(d1,m1),(d2,m2)
cusp , t ∈ [0, 1], of class Cl−k, such that J1 is integrable in a neighbourhood of C1 in

X.

(See §1.5 for the definition of the space RM(d1,m1),(d2,m2)
cusp )
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Lemma 3.11 Under the hypothesis of Proposition 3.10, there exists a neighbourhood V of the
singular points of C0 in X and a path (Ct, J t) ∈ RM(d1,m1),(d2,m2)

cusp , t ∈ [0, 1], of class Cl−k, such
that J1|V is integrable.

Proof:
Let y0 be a double point of C0. Then, there exists a neighbourhood V0 of y0 in

X, invariant under cX , as well as a diffeomorphism Φ : V0 → B4 which is Z/2Z-
equivariant such that Φ(C0 ∩ V0) = {(w1, w2) ∈ B4 ⊂ C2 |w1w2 = 0}. Denote by J
the almost complex structure Φ∗(J0|V0) of B4, and for δ ∈]0, 1], by hδ the homothety
(w1, w2) ∈ B4 7→ (δw1, δw2) ∈ B4. Set then J1−δ = h∗δ(J), so that for ξ ∈ R4 = T(w1,w2)B

4,
J1−δ|(w1,w2)(ξ) = dh−1

δ ◦ J(δw1,δw2) ◦ dhδ(ξ) = J(δw1,δw2)(ξ). Hence, the family (J1−δ)δ∈]0,1],
extend to a C∞-family (Jδ)δ∈[0,1], by setting J1 ≡ J(0,0). Now, Φ(C0 ∩ V0) is invariant under hδ

and thus Jδ-holomorphic for every δ ∈ [0, 1]. The family (Φ∗Jδ)δ∈[0,1] is then a path of almost
complex structures of class Cl of V0 such that Φ∗J0 = J0|V0 , C0 ∩ V0 is Φ∗Jδ-holomorphic
for every δ ∈ [0, 1] and Φ∗J1 is integrable. There is no obstruction to extend (Φ∗Jδ)δ∈[0,1] to
a path of almost complex structures of class Cl on the whole X for which C0 is holomorphic
and which coincide with J0 outside a neighbourhood of V0. Now, if y0 is the unique real
ordinary cusp of C0, we can proceed in the same way, making use of the weighted homothety
h̃δ : (w1, w2) ∈ B4 7→ (δ2w1, δ

3w2) ∈ B4 instead of hδ. The proof is then the same as the one of
Lemma 2.6 of [11] and is not reproduced here. ¤

Proof of Proposition 3.10:
From Lemma 3.11, we can assume that J0 is integrable in a neighbourhood V0 of the singular

points of C0. Let C0 ⊂ C0 be a smooth compact curve with boundary such that C0 \C0 ⊂ V0. A
tubular neighbourhood N of C0 in X is identified with a neighbourhood of the zero section in the
normal bundle of C0 in X. Denote by p : N → C0 the projection induced by this identification
and equip N with the almost complex structure J |N . This identification can be chosen such that
the fibres of p are J |N -holomorphic. Now as in Lemma 5.1 of [7], there is a map w : N → C which
is holomorphic and injective once restricted to each fibre of p. Such a map can be constructed as
follows. Extend J |N to an almost complex structure on the whole compactified normal bundle
N over C0, such that p : N → C0 is a sphere bundle with J-holomorphic fibres, the section C∞

at infinity is J-holomorphic and a third section C1 distinct from C0 and C∞ is J-holomorphic.
The function w : N → CP 1 is then the unique one given by Riemann’s uniformization theorem
which is holomorphic once restricted to each fibre and sends C0, C∞ and C1 to 0,∞ and 1
respectively. Let z : C0 → C be an injective holomorphic map, the composition with p will also
be denoted by z : N → C. The antiholomorphic tangent bundle T 0,1

N,J|N is then generated by ∂w

and ∂z + a∂z + b∂w. Moreover, J |N is integrable if and only if ∂wa = 0 = ∂wb (see [7], Lemma
1.3). This is in particular the case on N ∩ V0. Let f : C0 → R be a C∞ function which is
equal to one in a neighbourhood of the boundary of C0 and to zero on C0 \ V0. For δ ∈ [0, 1],
denote by Jδ the almost complex structure on N whose antiholomorphic tangent bundle T 0,1

N,Jδ|N
is generated by ∂w and ∂z +

(
(1− δ) + δf ◦ p

)(
a∂z + b∂w

)
. Then, J0 = J |N and J1 is integrable

since ∂w(f ◦ pa) = f ◦ p∂wa = 0 and ∂w(f ◦ pb) = f ◦ p∂wb = 0. Hence the result. ¤

Let γ : t ∈ [0, 1] 7→ (J t, xt) ∈ RJω × RτXν be a path transversal to πR and π
(d1,m1),(d2,m2)
R :

RM(d1,m1),(d2,m2)
cusp → RJω ×Rτ1X

m1 ×Rτ2X
m2 . Let RMγ = RMd

cusp×γ [0, 1], RMγ its Gromov
compactification and πγ : RMγ → [0, 1] the associated projection.

Theorem 3.12 Let γ : t ∈ [0, 1] 7→ (J t, xt) ∈ RJω × RτXν be a generic path chosen as above
and Ct0 ∈ RMγ ∩ RM(d1,m1),(d2,m2)

cusp . Then, there exist a neighbourhood W of Ct0 in RMγ and
ε > 0 such that #π−1

γ (t) ∩W does not depend on the choice of t ∈]t0 − ε, t0 + ε[\{t0}.
Note that as soon as W is small enough, all the curves of W have the same mass, the one of Ct0 .
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Lemma 3.13 Under the hypothesis of Theorem 3.12, we can assume that xt does not depend
on t ∈]t0−ε, t0 +ε[ and that (J t)t∈]t0−ε,t0+ε[ is an analytic path of almost complex structures which
are integrable in a neighbourhood of Ct0 in X.

Proof:
From Proposition 3.10, we can assume that J t0 is integrable in a neighbourhood of Ct0 . Indeed,

let J t0(λ), λ ∈ [0, 1], be the path in RM(d1,m1),(d2,m2)
cusp given by this proposition, such that J t0(0) =

J t0 and J t0(1) is integrable in a neighbourhood of Ct0 . There is no obstruction to extend this
path in a two parameters family J t(λ), λ ∈ [0, 1], t ∈]t0 − ε, t0 + ε[, such that J t(0) = J t and
(J t(λ), xt) satisfies the hypothesis of Theorem 3.12 for every λ ∈ [0, 1]. From Lemma 1.5 and the
definition of RM(d1,m1),(d2,m2)

cusp , none of the elements of π−1
γ (t) can degenerate onto a critical point

of πR or a reducible curve over J t(λ). Thus, the cardinality of π−1
R (J t(λ), xt)∩W (λ), where W (λ)

is a neighbourhood of Ct0(λ) in RMd

cusp, does not depend on λ ∈ [0, 1].

Now we have to prove that a transversal path (J t)t∈]t0−ε,t0+ε[ to RM(d1,m1),(d2,m2)
cusp can be

chosen analytic and made of almost complex structures which are integrable in a neighbourhood
of Ct0 in X. Assume that m1 = c1(X)d1−1, and denote by Ct0

1 = [u1, J
1
S , J t0 , x1, zc] the cuspidal

component of Ct0 , so that x1 = xt0 ∩ Ct0
1 is of cardinality m1. Then, from Proposition 1.9, the

path (J t)t∈]t0−ε,t0+ε[ is transversal to RM(d1,m1),(d2,m2)
cusp at J t0 if and only if J̇ t0 = d

dtJ
t|t=t0

is such that the J1
S antilinear form J̇ t0 ◦ du1 ◦ J1

S projects onto a generator of the cokernel
H1

D(S;N cusp
u1,−z1

)+1
∼= R. Let α be a generator of H1

D(S;N cusp
u1,−z1

)+1 having support in a small

ball U of S. Let V be an open subset of (X, J t0) biholomorphic to the bidisc B
2 × B

2 ⊂ C2

and such that V ∩ Ct0 = u1(U). We choose this biholomorphism such that it sends V ∩ Ct0

onto the disc {w = 0} ⊂ B
2 × B

2
, where the latter is equipped with complex coordinates (z, w).

In this chart, the generator α writes f(z, z)dz ⊗ w, where f : B
2 → C is Z/2Z-equivariant,

with compact support and can be assumed to be smooth. For every t ∈]t0 − ε, t0 + ε[, define

then J t|V to be the endomorphism given by the matrix
[

i 0
(t− t0)fdz i

]
. Since f is with

compact support, J t|V = J t0 |V in a neighbourhood of the boundary of V . We can then extend
J t on the whole X by setting J t ≡ J t0 outside V . The path t ∈]t0 − ε, t0 + ε[ 7→ J t is analytic.
Moreover, the antiholomorphic complexified tangent bundle of (X, J t) is generated by the vectors
< ∂z + 1

2 (t − t0)f∂w, ∂w >. Since 1
2 (t − t0)f does not depend on w, it follows from Lemma 1.3

of [7] that J t is integrable on V for every t ∈]t0 − ε, t0 + ε[. The Lemma is proved in the case
m1 = c1(X)d1 − 1 and can be proved along the same lines when m1 = c1(X)d1 − 2. ¤

Proof of Theorem 3.12:
Denote by B2(t0, ε) = {t ∈ C | |t − t0| < ε}. The path γ : t ∈]t0 − ε, t0 + ε[ 7→ J t ∈ RJω

given by Lemma 3.13 is complexified to an analytic path γC : t ∈ B2(t0, ε) 7→ J t ∈ Jω which is
Z/2Z-equivariant and made of almost complex structures which are integrable in a neighbourhood
of Ct0 . Equip the product Y = B2(t0, ε)×X with the almost complex structure JY defined by the

matrix
[

i 0
0 J t

]
. It is integrable in a neighbourhood of {t0}×Ct0 . Moreover, the sections (t, xt)

are JY -holomorphic. Note that the complexified moduli spaceMγC is then a smooth curve which is
equipped with a holomorphic projection π : MγC → B2(t0, ε)\{t0}. The complex structure ofMγC
extends in a unique way on the compactification MγC and the projection π : MγC → B2(t0, ε)
is holomorphic. We will prove that once restricted to any irreducible component of MγC , this
projection is a biholomorphism. From now on, we can assume that MγC is irreducible. Let
U →MγC be the universal curve and U be the stable map compactification of U . The latter is a
complex surface and the projection U → MγC is a projective line bundle having a singular fibre
over Ct0 ∈ MγC . Denote by σ1, . . . , σc1(X)d−2 : MγC → U the sections associated to the marked
points z1, . . . , zc1(X)d−2 of S and by eval : U → Y the evaluation map, so that for every C ∈MγC ,

eval(σj(C)) = (πγC(C), x
πγC (C)

j ) ∈ Y . Denote by S1, S2 the two irreducible components of the
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singular fibre of U , in such a way that eval(S1) is the cuspidal component Ct0
1 of Ct0 . Note that

since the two components of Ct0 intersect transversely, dyeval is injective at the intersection point
y of S1 ∩ S2. The normal bundle of S1 in U is isomorphic to OS1(−1) and the evaluation map
induces a non vanishing morphism from this bundle to the normal bundle of Ct0

1 in Y , which
is isomorphic to OS1(c1(X)d1 − 3) ⊕ OS1 . Would the projection π : MγC → B2(t0, ε) not be
biholomorphic, this morphism would vanish on z1 = z ∩ S1 which is of cardinality m1. Assume
that m1 = c1(X)d1 − 1. The image of OS1(−1) would then be a subline bundle of degree at least
c1(X)d1−2 of OS1(c1(X)d1−3)⊕OS1 . This is impossible. In the same way, if m1 = c1(X)d1−2,
then the normal bundle of Ct0

2 in Y (resp. U) is isomorphic to OS2(c1(X)d1 − 2) ⊕ OS2 (resp.
OS2(−1)). Would the projection π : MγC → B2(t0, ε) not be biholomorphic, the morphism
OS2(−1) → OS2(c1(X)d1−2)⊕OS2 would vanish on z2 = z∩S2 which is of cardinality m2. Since
the latter is equal to c1(X)d2, we conclude as before. ¤

4 Proof of Theorem 0.1

Let (J0, x0) and (J1, x1) be two regular values of πR : RMd
cusp → RJω × RτXν which do not

belong to πR(RMd

cusp \RMd
cusp). We can assume that every real rational cuspidal J i-holomorphic

curve which pass through xi, i ∈ {0, 1}, and realize the homology class d has a unique real ordinary
cusp and transversal double points as singularities, all of them being outside xi. We have to prove
that Γd

r(J0, x0) = Γd
r(J1, x1).

4.1 Choice of the path γ

Let γ : t ∈ [0, 1] 7→ (J t, xt) ∈ RJω × RτXν be a generic path transversal to πR joining
(J0, x0) to (J1, x1). Denote by RMγ = RMd

cusp ×γ [0, 1], RMγ its Gromov compactification and
πγ : RMγ → [0, 1] the associated projection. From Lemma 1.6 and Corollary 1.12, the path γ
can be chosen such that all elements of RMγ are irreducible real rational curves having a unique
real ordinary cusp and only transversal double points as singularities, all of them being outside
xt, with the exception of finitely many of them which may have:

1) A unique real ordinary triple point or a unique real ordinary tacnode.
2) A real branch which crosses the real ordinary cusp transversely to its tangent line.
3) A unique real double point belonging to xt.
4) The unique real ordinary cusp belonging to xt.
5) A second real ordinary cusp outside xt. In this case, any generator ψ of H0(S,KS ⊗

N∗
u,−z)−1

∼= H1(S,Nu,−z)∗+1 does not vanish at cusps (compare Proposition 2.8 of [11]).
6) A unique cuspidal point, which is a generic order two degenerated cusp, see §2.1 for a

definition.
7) Two irreducible components.
8) Two irreducible components which intersect transversely except at one point which is a real

ordinary tacnode. These curves are not cuspidal.
In the same way, the path γ can be chosen such that every real rational reducible J t-

holomorphic curves which pass through xt and realize the homology class d have only two irre-
ducible components, both real, and transversal double points as singularities, with the exception
of finitely many of them which may have:

α) A unique real ordinary triple point.
β) A unique real ordinary tacnode.
γ) A unique real ordinary cusp. In this case, any generator ψ of H0(S1,KS ⊗ N∗

u1,−z1
)−1

∼=
H1(S1, Nu1,−z1

)∗+1 does not vanish at the cusp, where u1 : S1 → X parameterize the cuspidal
component (compare Proposition 2.8 of [11]).

δ) A unique real double point belonging to xt.
ε) Three irreducible components.
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Finally, the path γ can be chosen such that every real rational J t-holomorphic curve which
pass through xt, realize the homology class d, and have one of the lines Ti, i ∈ I, as a tangent
line at xt

i, have only transversal double points as singularities, with the exception of finitely many
which may have:

a) A unique real ordinary triple point.
b) A unique real ordinary tacnode.
c) A unique real ordinary cusp outside xt. In this case, any generator ψ of H0(S, KS ⊗

N∗
u,−z)−1

∼= H1(S,Nu,−z)∗+1 does not vanish at the cusp (compare Proposition 2.8 of [11]).
d) A unique real ordinary cusp at one point xt

i, i ∈ I. In this case, the curve is not tangent to
any line Tj , j ∈ I. Moreover, any generator ψ of H0(S, KS ⊗ N∗

u,−z)−1
∼= H1(S,Nu,−z)∗+1 does

not vanish at the cusp (compare Proposition 2.8 of [11]).
e) A unique real double point belonging to xt, none of the branches being tangent to Ti.
f) Two irreducible components.
g) Two irreducible components which intersect at one point xt

i, i ∈ I. In this case, the curve
is not tangent to any line Tj , j ∈ I.

4.2 The case zc ∈ z

Let (J, x) ∈ RJω ×RτXν be a generic critical value of πR of type 3 given by Lemmas 1.5 and
1.6. Let C be a real rational J-holomorphic curve which pass through x, realize the homology
class d and has a unique real ordinary cusp in x, say at x1. Then, the space of real rational
cuspidal J-holomorphic curves which pass through x\{x1} and realize d is a one parameter family
generated by any non zero element of H0(S, Nu,−z+z1)+1

∼= R. In particular, the cuspidal point
moves along a smooth curve lc ⊂ RX transversal to the tangent line of RC at the cusp x1. Let
U be a neighbourhood of x1 in RX diffeomorphic to a ball and small enough so that lc divides it
in two components. Denote by U− (resp. U+) the connected component of U \ lc defined by the
relation U− ∩ RC 6= ∅ (resp. U+ ∩ RC = ∅).

lc
RC

U+

RC−

U−
RC+

Proposition 4.1 Let y ∈ U− (resp. y ∈ U+). Then, as soon as U is small enough,
1) There are exactly 2 (resp. 0) real rational cuspidal J-holomorphic curves which pass through

x ∪ {y} \ {x1} and are close to C.
2) There is exactly one real rational J-holomorphic curves close to C which pass through

x∪{y}\{x1} and has a real double point at y. Moreover, this double point is real and non isolated
(resp. isolated).

Proof:
As soon as U is small enough, the intersection of RC with U− is made of two arcs denoted by

RC+ and RC−. The one parameter family of real rational cuspidal J-holomorphic curves which
pass through x \ {x1} and realize d produces one parameter families of arcs RC+ and RC−. As
soon as U is small enough, these two families provide two foliations of U−. If y ∈ U−, there is
exactly one leaf of each foliation which pass through y, hence the first part of the proposition in
this case. If y ∈ U+, the first part of the proposition follows from the relation U+ ∩ RC = ∅. Let
us prove now the second part of the proposition. First, if such a curve exists, it has to be unique.
Indeed, two such curves would intersect twice near each double point of C, with multiplicity one
at each point of x \ {x1} and with multiplicity four at y. Then, their intersection index would
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be at least d2 − c1(X)d + c1(X)d − 3 + 4 = d2 + 1, which is impossible. Let x′1 ∈ RC ∩ U−.
From Proposition 2.16 of [11], the curve RC extends to a one parameter family of real rational
J-holomorphic curves RC(η), η ∈ [−1, 1], which pass through x ∪ {x′1} \ {x1} and have a non
isolated (resp. isolated) real ordinary double point close to the cusp of RC when η > 0 (resp.
η < 0). In the same way as in §3.1, the curves RC(η), η > 0, form a loop in a neighbourhood of
the cusp of RC. Moreover, this one parameter family of loops foliates some disk of RX centered
at x1. The curve lc intersects transversely these loops. Then, the non isolated real double point
of RC(η), η > 0, has to be in the same connected component of U \ lc as the branches RC+ and
RC−, that is U−. Thus, there exists at least one point y ∈ U− for which there is a real rational
J-holomorphic curve close to C which passes through x ∪ {y} \ {x1} and has a non isolated real
double point at y. By deforming y ∈ U−, we get the same result for all y ∈ U− as soon as U is
small enough. The curves RC(η), η < 0, must then have their isolated real double point in U+,
which proves the result. ¤

Let us assume now that (J, x) = γ(t0), where γ is the path chosen in §4.1 and t0 ∈]0, 1[. Without
loss of generality, we can assume that there exists ε > 0 such that for every t ∈]t0 − ε, t0 + ε[,
J t ≡ J t0 and xt \ {xt

1} ≡ x \ {x1}. The path (xt
1)t∈]t0−ε,t0+ε[ is then transverse to lc in RX at

t = t0.

Proposition 4.2 The integer Γd
r(J

t, xt) does not depend on t ∈]t0 − ε, t0 + ε[\{t0}.
Proof:
We can assume that for t ∈]t0− ε, t0[ (resp. t ∈]t0, t0 + ε[), xt

1 ∈ U− (resp. xt
1 ∈ U+). From the

first part of Proposition 4.1, the first term in the expression of Γd
r(J

t, xt) decreases of 2(−1)m(Ct0 )

as t crosses the value t0. Let us prove that at the same time, the third term in the expression of
Γd

r(J t, xt) increases of 2(−1)m(Ct0 ) as t crosses the value t0. From Proposition 3.4 of [11], we have

χd
r+2 =

∑

C∈T and(Jt,xt) |Txt
1
RC=T1

(−1)m(C) + 2
δ∑

m=0

(−1)mn̂+
d (m),

χd
r =

∑

C∈T and(Jt,xt) |Txt
1
RC=T1

(−1)m(C) + 2
δ∑

m=0

(−1)mn̂−d (m),

where χd
r+2, χd

r are invariants and n̂+
d (m) (resp. n̂−d (m)) is the number of real rational J t-

holomorphic curves of mass m which pass through xt, realize the homology class d and have
a non isolated (resp. isolated) real double point at xt

1. From the second part of Proposition
4.1, the term

∑δ
m=0(−1)mn̂+

d (m) decreases of (−1)m(Ct0 ) as t crosses the value t0, while the
term

∑δ
m=0(−1)mn̂−d (m) increases of (−1)m(Ct0 )+1. Since χd

r+2, χd
r are constant, we deduce that∑

C∈T and(Jt,xt) |Txt
1
RC=T1

(−1)m(C) increases of 2(−1)m(Ct0 ) as t crosses the value t0, hence the

result. ¤

4.3 Proof of Theorem 0.1

Choose a path γ : t ∈ [0, 1] 7→ (J t, xt) ∈ RJω × RτXν given by §4.1. The integer Γd
r(J

t, xt)
is then well defined for every t ∈ [0, 1] but a finite number of parameters 0 < t0 < · · · < tk < 1
corresponding to accidents listed in §4.1. It is obviously constant between these parameters tj ,
j ∈ {0, . . . , k}, and we have to prove that is also does not change while crossing these parameters.
This is easy to check in cases 1, 2, 3, α, a, b, e listed in §4.1. In cases 4, d, it follows from Proposition
4.2. The cases 5, γ, c correspond to critical points which can be treated as in Proposition 2.16 of
[11]. The case 6 follows from Proposition 2.7, the case 7 from Theorem 3.12 and cases 8, β from
Theorems 3.2 and 3.6. Note that in this last case, the loss of two real cuspidal curves described
by Theorem 3.2 is compensated by the decrease of the multiplicity of the corresponding reducible
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curve. Cases f and ε can be treated as in Proposition 2.14 of [11]. It only remains to prove
the invariance in cases δ, g. While crossing such a value tk, the second term in the definition
of Γd

r(J
t, xt) remains clearly unchanged. Note that the number of real rational J t-holomorphic

curves which pass through xt, t ∈]tk−ε, tk +ε[\{tk}, have Ti as a tangent line at xt
i and degenerate

onto a reducible curve Ctk having a double point at xtk
i is at most one. Indeed, two such curves

would intersect with multiplicity two at xtk
i , one at the other points of the configuration xt and

two near every double point of Ctk but xtk
i . This provides a total intersection index at least equal

to d2 − c1(X)d + 2 + c1(X)d− 3 + 2 = d2 + 1, which is impossible. Since the mass of such a real
rational curve which degenerate onto such a reducible curve Ctk is the one of Ctk and the parity
of the number of real rational J t-holomorphic curves which pass through xt, t ∈]tk− ε, tk + ε[\{tk}
and have Ti as a tangent line at xt

i is independant of t, the result follows. ¤
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