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Inference and reconstruction of the 
heimdallarchaeial ancestry of eukaryotes

Laura Eme1,2,22, Daniel Tamarit1,3,4,15,22, Eva F. Caceres1,3,22, Courtney W. Stairs1,16, 
Valerie De Anda5,17, Max E. Schön1, Kiley W. Seitz5,18, Nina Dombrowski5,19, 
William H. Lewis1,3,20, Felix Homa3, Jimmy H. Saw1,21, Jonathan Lombard1, Takuro Nunoura6, 
Wen-Jun Li7, Zheng-Shuang Hua8, Lin-Xing Chen9, Jillian F. Banfield9,10, Emily St John11, 
Anna-Louise Reysenbach11, Matthew B. Stott12, Andreas Schramm13, Kasper U. Kjeldsen13, 
Andreas P. Teske14, Brett J. Baker5,17 & Thijs J. G. Ettema1,3 ✉

In the ongoing debates about eukaryogenesis—the series of evolutionary events 
leading to the emergence of the eukaryotic cell from prokaryotic ancestors—
members of the Asgard archaea play a key part as the closest archaeal relatives of 
eukaryotes1. However, the nature and phylogenetic identity of the last common 
ancestor of Asgard archaea and eukaryotes remain unresolved2–4. Here we analyse 
distinct phylogenetic marker datasets of an expanded genomic sampling of Asgard 
archaea and evaluate competing evolutionary scenarios using state-of-the-art 
phylogenomic approaches. We find that eukaryotes are placed, with high confidence, 
as a well-nested clade within Asgard archaea and as a sister lineage to Hodarchaeales, a 
newly proposed order within Heimdallarchaeia. Using sophisticated gene tree and 
species tree reconciliation approaches, we show that analogous to the evolution of 
eukaryotic genomes, genome evolution in Asgard archaea involved significantly more 
gene duplication and fewer gene loss events compared with other archaea. Finally, we 
infer that the last common ancestor of Asgard archaea was probably a thermophilic 
chemolithotroph and that the lineage from which eukaryotes evolved adapted to 
mesophilic conditions and acquired the genetic potential to support a heterotrophic 
lifestyle. Our work provides key insights into the prokaryote-to-eukaryote transition 
and a platform for better understanding the emergence of cellular complexity in 
eukaryotic cells.

Understanding how complex eukaryotic cells emerged from prokary-
otic ancestors represents a major challenge in biology1,5. A main point 
of contention in refining eukaryogenesis scenarios revolves around the 
exact phylogenetic relationship between Archaea and eukaryotes. The 
use of phylogenomic approaches with improved models of sequence 
evolution combined with enhanced archaeal taxon sampling—pro-
gressively uncovered using metagenomics—has recently produced 
strong support for the two-domain tree of life, in which the eukaryotic 
clade branches from within Archaea6–10. The discovery of the first Loki-
archaeia genome provided additional evidence for the two-domain 

topology because this lineage was shown to represent, at the time, the 
closest relative of eukaryotes in phylogenomic analyses2. Moreover, 
Lokiarchaeia genomes specifically contain many genes that encode 
eukaryotic signature proteins (ESPs)—proteins involved in hallmark 
complex processes of the eukaryotic cell—more so than any other 
prokaryotic lineage. The subsequent identification and analyses of 
several diverse relatives of Lokiarchaeia, together forming the Asgard 
archaea superphylum, confirmed that Asgard archaea represent the 
closest archaeal relatives of eukaryotes1–3. Their exact evolutionary rela-
tionship to eukaryotes, however, remained unresolved. Specially, it has 
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been unclear whether eukaryotes evolved from within Asgard archaea 
or whether they represented a sister lineage3. Furthermore, two studies 
questioned this view of the tree of life altogether, suggesting that Asgard 
archaea represent a deep-branching Euryarchaea-related clade11,12. 
These studies suggested that, in accordance with the three-domain 
tree, eukaryotes represent a sister group to all Archaea; however, this 
view has been challenged13,14. More recently, a study that included an 
expanded taxonomic sampling of Asgard archaeal genome data failed 
to resolve the phylogenetic position of eukaryotes in the tree of life4.

Here we expand the genomic diversity of Asgard archaea by generat-
ing 63 new Asgard archaeal metagenome-assembled genomes (MAGs) 
from samples obtained from 11 locations around the world. By analysing 
the enlarged genomic sampling of Asgard archaea using state-of-the-art 
phylogenomics analyses, including recently developed gene tree and 
species tree reconciliation approaches for ancestral genome content 
reconstruction, we firmly place eukaryotes as a clade nested within the 
Asgard archaea. By revealing key features regarding the identity, nature 
and physiology of the last Asgard archaea and eukaryotes common 
ancestor (LAECA), our results represent important, thus far missing 
pieces of the eukaryogenesis puzzle.

Expanded Asgard archaea genome diversity
To increase the genomic diversity of Asgard archaea, we sampled 
aquatic sediments and hydrothermal deposits from 11 geographically 
distinct sites (Supplementary Table 1 and Supplementary Fig. 1). After 
extraction and sequencing of total environmental DNA, we assem-
bled and binned metagenomic contigs into MAGs. Of these MAGs, 63 
belonged to the Asgard archaea superphylum, with estimated median 
completeness and redundancy values of 83% and 4.2%, respectively 
(Supplementary Table 1). To assess the genomic diversity in this data-
set, we reconstructed a phylogeny of ribosomal proteins encoded in a 
conserved 15 ribosomal protein (RP15) gene cluster from these MAGs 
and in all publicly available Asgard archaea assemblies (retrieved 29 
June 2021; Fig. 1). These analyses showed that we expanded the genomic 
sampling across previously described major Asgard archaea clades 
(that is, Lokiarchaeia, Thorarchaeia, Heimdallarchaeia, Odinarchaeia, 
Hermodarchaeia, Sifarchaeia, Jordarchaeia and Baldrarchaeia2–4,15,16). 
We also recovered a previously undescribed clade of high taxonomic 
rank (Candidatus Asgardarchaeia; see Extended Data Fig. 1 and Supple-
mentary Information for a proposed uniformization of Asgard archaea 
taxonomic classification to which we will adhere throughout the cur-
rent paper). We observed that the median estimated Asgard archaeal 
genome size (3.8 Mb) is considerably larger than those of representative 
genomes from TACK archaea and Euryarchaea (median = 1.8 Mb for 
both) and DPANN archaea (median = 1.2 Mb) (Supplementary Table 1). 
Among Asgard archaea, Odinarchaeia displayed the smallest genomes 
(median = 1.4 Mb), whereas Lokiarchaeales and Helarchaeales con-
tained the largest (median = 4.3 Mb for both). Unlike other major Asgard 
archaeal clades, Heimdallarchaeia possessed a wide range of genome 
sizes, spanning from 1.6 to 7.4 Mb (median = 3.5 Mb). This large class 
contained five clades with diverse features: Njordarchaeales (median 
genome size = 2.4 Mb); Kariarchaeaceae (median genome size = 2.7 Mb); 
Gerdarchaeales (median genome size = 3.4 Mb); Heimdallarchaeaceae 
(median genome size = 3.7 Mb); and Hodarchaeales (median genome 
size = 5.1 Mb). The smallest heimdallarchaeial genome corresponded to 
the only Asgard archaeal MAG recovered from a marine surface water 
metagenome (Heimdallarchaeota archaeon RS678)17. This result is in 
agreement with the reduced genome sizes typically observed among 
prokaryotic plankton of the euphotic zone18 .

Identification of phylogenetic conflict
Inferring deep evolutionary relationships in the tree of life is consid-
ered one of the hardest problems in phylogenetics. To interrogate the 

evolutionary relationships within the current set of Asgard archaeal 
phyla, and between Asgard archaea and eukaryotes, we performed 
an exhaustive range of phylogenomic analyses. We analysed a 
pre-existing marker dataset comprising 56 concatenated ribosomal 
protein sequences (RP56)2,3 for a phylogenetically diverse set of 331 
archaeal (175 Asgard archaea, 41 DPANN archaea, 43 Euryarchaea and 
72 TACK archaea representatives) and 14 eukaryotic taxa (Supplemen-
tary Table 2). Of note, the inclusion of an expanded diversity of 12 new 
Korarchaeota MAGs among these TACK archaea considerably affected 
phylogenomic analyses (see below). Initial maximum-likelihood (ML) 
phylogenetic inference based on this RP56 dataset confirmed the  
existence of 12 major Asgard archaeal clades of high taxonomic rank 
(Supplementary Fig. 2). These included the previously described  
Lokiarchaeia, Odinarchaeia, Heimdallarchaeia and Thorarchaeia2,3, 
for which we present 36 new genomes here. The clades also included 
the recently proposed Sifarchaeia16, Hermodarchaeia15, Jordarchaeia19, 
Wukongarchaeia4 and Baldrarchaeia4, for most of which we also identi-
fied new near-complete MAGs. Finally, we identified 15 MAGs that repre-
sented the recently described Njordarchaeales20 (which we show below 
is a divergent candidate o rd er within Heimdallarchaeia, see below) and 
a                                                                                                                                                          s                                                             i              n     gle M AG t    h  a t r    e  p   r e   s  e nted a    n    e w c  a n  di  date c  l a  ss, A  sgardarchaeia 
(which will be described elsewhere) (Fig. 1). Notably, careful inspection 
of the obtained RP56 tree uncovered a potential artefact: Njordarchae-
ales, considered bona fide Asgard archaea based on the presence of 
many encoded typical Asgard archaeal ESPs3, branched outside Asgard 
archaea, at the base of the TACK superphylum and as a sister lineage to 
Korarchaeota in the RP56 tree. In addition, eukaryotes branched at the 
base of the clade formed by Korarchaeota and Njordarchaeales, albeit 
with weak support. Hereafter, we focused on disentangling the histori-
cally correct phylogenetic signal from noise and potential artefacts.

Alternative phylogenomic markers
Despite often being used in phylogenomic analyses, ribosomal proteins 
have been suggested to contribute to phylogenetic artefacts owing to 
inherent compositional sequence biases21,22. Our results revealed a place-
ment of eukaryotes inconsistent with previous analyses, the previously 
mentioned incoherent placement of Njordarchaeales and the presence 
of long branches at the base of both of these clades in the RP56 tree. 
Therefore, we sought to use an alternative phylogenetic marker set to 
obtain a stable Asgard archaeal species tree and to further investigate the 
phylogenetic position of eukaryotes. We constructed an independent 
new marker dataset comprising 57 proteins of archaeal origin in eukary-
otes (NM57 dataset;  Methods). The NM57 proteins are mostly involved 
in diverse informational, metabolic and cellular processes, but do not 
include ribosomal proteins (Supplementary Table 2). These proteins are 
longer and therefore putatively more phylogenetically informative com-
pared with the RP56 markers. Moreover, the broader functional distribu-
tion of NM57 markers is less likely to cause phylogenetic reconstruction 
artefacts induced by strong co-evolution between proteins—something 
that is to be expected for functionally and structurally cohesive ribo-
somal proteins23. If co-evolving protein sequences are compositionally 
biased, then they would violate evolutionary model assumptions of 
fixed composition across species. Consequently, their concatenation is 
expected to strengthen the artefactual, non-phylogenetic signal and the 
statistical support for incorrect relationships24. We therefore decided 
to independently evaluate the concatenated NM57 and RP56 marker 
datasets for downstream phylogenomic analyses. We observed that 
ML phylogenomic analyses of the NM57 dataset recovered Njordar-
chaeales as bona fide Asgard archaea and placed them as the closest 
relatives of eukaryotes (bootstrap support, BS = 98%; Supplementary 
Fig. 3), as was proposed in a recent analysis20. We set out to investigate 
the underlying causes for the contradictory results between the NM57 
and RP56 datasets. To that end, we first assessed the effect of taxon 
sampling on phylogenetic reconstructions by removing eukaryotic 
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and/or DPANN and/or Korarchaeota sequences from the alignments. 
This was done for two main reasons: (1) eukaryotes and DPANN archaea 
represent long-branching clades that potentially induce long-branch 
attraction artefacts; and (2) we wanted to investigate the effects of 
removing eukaryotes and Korarchaeota, which were the sister lineages 
of Njordarchaeales in the NM57 and RP56 phylogenetic analyses, respec-
tively. Following this, we recoded the alignments into four states (using 
SR4 recoding25) to ameliorate potential phylogenetic artefacts arising 
from model misspecification at mutationally saturated or composition-
ally biased sites14,26–28. Furthermore, with a similar goal, we applied a 
fast-evolving site removal (FSR) procedure to the concatenated datasets, 
as fast-evolving sites are often mutationally saturated. We performed 
phylogenetic analyses of the abovementioned datasets in both ML and 
Bayesian inference (BI) frameworks under sophisticated evolutionary 
models that account for sequence heterogeneity in the substitution 
process across sites (mixture models; Supplementary Table 2).

Phylogenomic analyses of the abovementioned combinations 
of taxon sampling, data treatments and phylogenetic frameworks 
revealed that Njordarchaeales are artefactually attracted to Korar-
chaeota in RP56 datasets (Supplementary Information). This attraction 
is likely to be caused by the high compositional similarity of njordar-
chaeal and korarchaeal RP56 ribosomal protein sequences, which is 
probably linked to their shared hyperthermophilic lifestyle (Supple-
mentary Figs. 4–6). Analyses of RP56 datasets from which Korarchaeota 
were removed recovered Njordarchaeales as an order at the base of or 
within Heimdallarchaeia (Supplementary Fig. 7). This result was con-
sistent with phylogenomic analyses of the NM57 dataset that included 
Korarchaeota (Supplementary Fig. 3). Next, in our efforts to resolve 
the phylogenetic placement of eukaryotes, we initially performed 
phylogenomic analyses on variations of the RP56 and NM57 datasets 
(Supplementary Table 2 and Discussion). However, compared with the 
RP56 dataset, the NM57 dataset is larger and less compositionally biased 

and is therefore expected to have retained a stronger historical phy-
logenetic signal. Consequently, we focused the rest of our discussion 
on this more reliable dataset.

Eukarya emerged within Heimdallarchaeia
Subsequent phylogenetic analyses of untreated NM57 datasets with 
diverse taxon sampling variations recovered eukaryotes as a sister 
clade to Njordarchaeales in ML analyses (Supplementary Fig. 3, Sup-
plementary Table 2 and Supplementary Information). However, ML 
analyses of the SR4-recoded datasets retrieved a complex phylogenetic 
signal. In some cases, eukaryotes were placed at the base of all Heim-
dallarchaeia (including Njordarchaeales) and Wukongarchaeia. This 
result strongly suggested that the previously observed phylogenetic 
affiliation between Njordarchaeales and eukaryotes could represent 
an artefact. Furthermore, when both SR4-recoding and FSR treatments 
were combined, eukaryotes were nested within Heimdallarchaeia as 
a sister group to the order Hodarchaeales (Fig. 2 and Supplementary 
Fig. 8). This position was supported by ML analyses of NM57 datasets 
across all taxon selection variations (removing DPANN archaea and/or 
Korarchaeota and/or Njordarchaeales). Congruently, the monophyly 
of eukaryotes and Hodarchaeales was systematically recovered by BI of 
recoded datasets (both with and without FSR; Fig. 2 and Supplementary 
Table 2). In addition, the position of Njordarchaeales shifted during 
these analyses, moving from a deep position at the base of Heimdal-
larchaeia and Wukongarchaeia to a more nested position, forming a 
clade with Gerdarchaeales, Kariarchaeaceae, and Heimdallarchaeaceae 
(Supplementary Discussion). This shift was observed in analyses of 
both the NM57 and the RP56 datasets when SR4 recoding and FSR was 
combined (Supplementary Figs. 9 and 10). This result provides support 
for the idea that Njordarchaeales represent a divergent order-level 
lineage of Heimdallarchaeia.
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In summary, resolving the position of eukaryotes relative to Asgard 
archaea is not trivial (Supplementary Discussion). In our efforts to 
extract the historically correct phylogenetic signal, we provide sup-
port for eukaryotes forming a well-nested clade within the Asgard 
archaea phylum, consistent with the two-domain tree of life scenario. 
Specifically, we observed that eukaryotes affiliate with the Heimdal-
larchaeia in analyses in which we systematically reduced phylogenetic 
artefacts, predominantly converging on a position of eukaryotes as 
sister to Hodarchaeales. This finding is also in line with the observed 
ESP content and genome evolution dynamics (see below).

Informational ESPs in Hodarchaeales
Most of the ESPs previously identified in a limited sampling of Asgard 
archaea2,3 are widespread across all the Asgard archaeal classes included 
in the current study (Fig. 3 and Supplementary Table 3). Notably, we 
observed the following exceptions in support of the phylogenetic 
affiliation between Hodarchaeales and eukaryotes, particularly among 
ESPs involved in information processing. (1) the ε DNA polymerase 
subunit is only found in Hodarchaeales. (2) Ribosomal protein L28e 
(including Mak16) homologues are specific to Njordarchaeales and 
Hodarchaeales members. (3) Many archaea that lack genes encoding 
proteins for the synthesis of diphthamide, a modified histidine residue 
that is specifically present in archaeal and eukaryotic elongation fac-
tor 2 (EF-2), instead encode a second EF-2 paralogue that misses key 
residues required for diphthamide modification29. Notably, we found 
that among all Asgard archaea, only MAGs of all sampled Hodarchaeales 
members have dph genes in addition to a single gene encoding canoni-
cal EF-2, which branches at the base of their eukaryotic counterparts 
in phylogenetic analyses (Supplementary Fig. 11 and Supplementary 
Information). (4) Although RPL22e and RNA polymerase subunit RPB8 

are found in several Asgard archaeal phyla, the only Heimdallarchaeia 
genomes that have these genes are members of the Hodarchaeales. 
Finally, (5) we identified amino-terminal histone tails characteristic 
of eukaryotic histones in all three Hodarchaeales MAGs and in three 
Njordarchaeales genomes (Supplementary Information). Altogether, 
the identification of these key informational ESPs, in agreement with 
results from the phylogenomic analyses described above, supports 
the idea that Hodarchaeales represent the closest archaeal relatives 
of eukaryotes.

Expanded set of translocon-linked ESPs
In our search for putative new ESPs in the expanded Asgard archaeal 
genomic diversity, we uncovered several additional homologues 
of proteins associated with the eukaryotic translocon. This protein 
complex is primarily responsible for the post-translational modifica-
tion of proteins and subsequent insertion into or transport across 
the membrane of the endoplasmic reticulum (ER)30. The eukaryotic 
translocon is composed of the core Sec61 protein-conducting channel 
and several accessory components. These include the oligosaccharyl-
transferase (OST) and translocon-associated protein (TRAP) complexes 
(Extended Data Fig. 2), both of which are involved in the biogenesis 
of N-glycosylated proteins31. The TRAP complex is composed of two 
to four subunits in eukaryotes. Using distant-homology detection 
methods, we identified homologues of three of these subunits that 
were broadly distributed across Asgard archaeal genomes, whereas 
the fourth one was detected only in a few thorarchaeial MAGs (Fig. 3). 
The eukaryotic OST complex generally comprises six to eight subunits 
organized into three subcomplexes that are collectively embedded 
in the ER membrane32 (Extended Data Fig. 2). Apart from STT3 (also 
known as AglB) (OST subcomplex-II), which represents the catalytic 
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subunit and is universally found across all three domains of life, other 
OST subcomplexes generally do not possess prokaryotic homologues 
beyond the Ost1 (also known as ribophorin I) (OST subcomplex-I) 
and Ost3 (also known as Tusc3) (OST subcomplex-II) subunits previ-
ously reported in Asgard archaea3. Here we report the identification 
of Asgard archaeal homologues of all five additional subunits: Ost2 
(also known as Dad1); Ost4; Ost5 (also known as TMEM258); SWP1 
(also known as ribophorin II); and WBP1 (also known as Ost48). We 
identified homologues of Ost4 and Ost5 (OST subcomplex-I) in most 
Asgard archaeal classes. Ost2, WBP1 and Swp1, to our knowledge, 
are the first subcomplex-III subunits described in prokaryotes. The 
distribution of these subunits was restricted to Heimdallarchaeia, 
including Njordarchaeales for WBP1, thereby further supporting their 
monophyly. Our findings indicate that Asgard archaea and, by infer-
ence, LAECA, potentially encode relatively complex machineries for 
the N-linked glycosylation and translocation of proteins (Extended  
Data Fig. 2).

Membrane-trafficking homologues
Intracellular vesicular transport represents a key process that emerged 
during eukaryogenesis. Previous studies have reported that Asgard 
archaeal genomes encode homologues of eukaryotic proteins compris-
ing various intracellular vesicular trafficking and secretion machineries. 
These include the endosomal sorting complexes required for transport 
(ESCRT), transport protein particle (TRAPP) and coat protein complex II 
(COPII) vesicle coatomer protein complexes2,3. Furthermore, as much 
as 2% of the genes of Asgard archaeal genomes encode small GTPase 
homologues. These comprise a broad family of eukaryotic proteins 
encompassing the Ras, Rab, Arf, Rho and Ran subfamilies, which are 
broadly implicated in budding, transport, docking and fusion of vesi-
cles in eukaryotic cells2,3,33. Here we report the identification of Asgard 
archaeal homologues of subunits of additional vesicular trafficking 
complexes (Fig. 3, Extended Data Fig. 3 and Supplementary Table 3). 
Notably, we found putative homologues of all four subunits comprising 
eukaryotic adaptor proteins and coatomer protein (COPI) complexes. 
In eukaryotic cells, these complexes are involved in the formation of 
clathrin-coated pits and vesicles responsible for packaging and sorting 
cargo for transport through the secretory and endocytic pathways34. 

They are composed of two large subunits, belonging to the β-family and 
γ-family, a medium μ-subunit and a small σ-subunit. We found homo-
logues of all functional domains constituting these subunits, albeit 
sparsely distributed (Extended Data Fig. 3 and Supplementary Informa-
tion). Additionally, we found homologues of several protein complexes 
involved in eukaryotic endosomal sorting such as the retromer, the 
homotypic fusion and protein sorting (HOPS), class C core vacuole/
endosome tethering (CORVET) and the Golgi-associated retrograde 
protein (GARP) complexes (Fig. 3, red shading). Retromer is a coat-like 
complex associated with endosome-to-Golgi retrograde traffic35, and 
we detected four out of its five subunits in Asgard archaeal MAGs. One 
of these subunits is Vps5-BAR, which in Thorarchaeia is often fused to 
Vps28, a subunit of the ESCRT-I subcomplex. This finding implicated 
a functional link between BAR domain proteins and the thorarchaeial 
ESCRT complex. The GARP complex is a multisubunit tethering com-
plex located at the trans-Golgi network in eukaryotic cells, where it 
also functions to tether retrograde transport vesicles derived from 
endosomes36, similar to the retromer complex. GARP comprises four 
subunits, three of which we detected in Asgard archaeal genomes, with 
a sparse and punctuated distribution. Functioning in the opposite 
direction from the retromer and GARP complexes are the CORVET and 
HOPS complexes37. Endosomal fusion and autophagy in eukaryotic 
cells depend on them and they share four core subunits, three of which 
were found in Asgard archaea in addition to one of the HOPS-specific 
subunits.

Finally, although numerous components of the ESCRT-I, ESCRT-II and 
ESCRT-III systems have been previously detected in Asgard archaea2,3,38, 
we report here the identification of Asgard archaeal homologues for 
the ESCRT-III regulators Vfa1, Vta1, Ist1 and Bro1.

Ancestral Asgard archaea proteomes
The analysis of Asgard archaeal genome data obtained through 
metagenomics, combined with the insights derived from cytological 
observations of the first two cultured Asgard archaea ‘Candidatus 
Prometheoarchaeum syntrophicum’39 and ‘Candidatus Lokiarchaeum 
ossiferum’40, have generated new hypotheses about the nature of 
the archaeal ancestor of eukaryotes39,41,42. However, these theories  
are mostly based on a limited number of features displayed by a single 
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or a few Asgard archaeal lineages. Although informative, features 
of present-day Asgard archaea do not necessarily resemble those 
of LAECA, as these are potentially separated by more than 2 billion 
years of evolution43. Furthermore, Asgard archaeal classes, and even 
orders, display a highly variable genome content with respect to ESPs 
and predicted metabolic features39,42,44–46, which indicate a complex 
evolutionary history of those traits. In light of these considerations, 
we inferred ancestral features of LAECA by using a ML evolutionary 
framework. We used a probabilistic gene-tree species-tree reconcilia-
tion approach in combination with the extended taxonomic sampling 
of Asgard archaeal genomes to reconstruct the evolutionary history of 
homologous gene families and ancestral gene content across the Asgard 
archaeal species tree. For this, we inferred ML phylogenetic trees of all 
17,200 protein families encoded across 181 archaeal genomes, including 
representatives from Asgard and TACK archaea and from Euryarchaea 
clades. Of note, missing genes and potential contaminations in MAGs 
will be regarded as recent gene loss and gain events in our ancestral 
reconstruction analyses. Therefore, the use of incomplete MAGs with 

low contamination levels is unlikely to affect the inferred gene content 
of the deep archaeal ancestors that were reconstructed in the current 
study (Supplementary Information).

We first compared the distributions of estimated ancestral proteome 
sizes and the numbers of inferred gene duplications, losses and gains 
(that is, horizontal gene transfers and originations) in all archaeal ances-
tral nodes (Supplementary Fig. 12). Heimdallarchaeia (in particular 
the ancestor of Hodarchaeales) and Lokiarchaeia ancestors displayed 
significantly higher gene duplication rates compared with TACK and 
Euryarchaea ancestors (Fig. 4a). In addition, most Asgard archaeal 
ancestors displayed gene loss rates comparable with other archaea, 
with the exception of Thorarchaeia, Lokiarchaeales and Jordarchaeia, 
which showed significantly lower rates of loss. In agreement with the 
observed evolutionary genome dynamics, predicted proteome sizes 
of most Asgard archaea ancestors were significantly larger than other 
archaeal ancestors (P < 0.001), with Lokiarchaeia ancestors displaying 
the largest estimated proteome size (Supplementary Fig. 13). Similarly, 
the Hodarchaeales ancestor had an estimated proteome size of 4,053 
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Fig. 4 | Genome dynamics, OGT predictions and metabolic reconstruction 
of Asgard ancestors. a, Duplication and loss rates inferred for Asgard archaeal 
ancestors, normalized by proteome size. P values given for each two-sided 
Wilcoxon-test against the median values of TACK and Euryarchaea (Eury-TACK) 
ancestors, where *P ≤ 0.05, **P ≤ 0.01 and ***P ≤ 0.001. No corrections were 
done for multiple comparisons. b, OGT predictions predicted by genomic 
features. Right, OGTs within Heimdallarchaeia. Actual values are available in 
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denoting the median value, a coloured box containing the first and third 
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values within 1.5 times the interquartile range, and sample sizes are shown 
within parentheses on the axis labels. c, We predict that the LAsCA transitioned 
from a hyperthermophilic fermentative lifestyle to a mesophilic mixotroph 
lifestyle. The LAsCA probably encoded gluconeogenic (Gluconeo.) pathways 
through the reverse EMP gluconeogenic pathway and through fructose 

1,6-bisphosphate aldolase/phosphatase (FBP A/P). The major energy- 
conserving step in the early Asgard ancestors could have been the ATP 
synthesis by fermentation of small organic molecules (acetate, formate or 
formaldehyde). The reverse ribulose monophosphate pathway (rRuMP) was  
a key pathway in the LAsCA for the generation of reducing power. The WLP 
appeared only present in the LAsCA. The tricarboxylic acid (TCA) cycle is 
predicted complete in all three ancestors, the Hodarchaeales common 
ancestor encoding the most complete ETC, and probably used nitrate as a 
terminal electron acceptor. Membrane-associated ATP biosynthesis coupled 
to the oxidation of NADH and succinate and reduction of nitrate could have 
been present in the LAECA. c, cupredoxin; NR, nitrate reductase; OPPP, 
oxidative pentose phosphate pathway; PEP, phosphoenolpyruvate; PRK: 
phosphoribulokinase; Q, quinone; RHP, reductive hexulose-phosphate; 
RuBisCO, ribulose-1,5-bisphosphate carboxylase/oxygenase; TMA, 
trimethylamine.
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proteins compared with 3,134 for the last Asgard archaea common 
ancestor (LAsCA), which reflected the high duplication and low loss 
rates in that clade. The streamlined genome content of the Odinar-
chaeia ancestor represents an exception to the general trend of genome 
expansion across Asgard archaea and possibly reflects an adaptation 
to high temperatures (Fig. 4b)47.

Ancestral features of the LAECA
Using the above-described approach, we reconstructed the ancestral 
metabolic and physiological properties across the Asgard archaeal 
species tree, including the proposed closest archaeal relatives of 
eukaryotes, the Hodarchaeales. We inferred that the LAsCA was 
a chemolithotroph that required the synthesis of organic building 
blocks through the Wood–Ljungdahl pathway (WLP) (Fig. 4c and Sup-
plementary Information), for which we inferred the presence of key 
enzymes, including carbon monoxide dehydrogenase/acetyl-CoA 
synthase and the formylmethanofuran dehydrogenase. In addition, 
our analyses revealed that the last common ancestors of individual 
Asgard archaeal classes either had the genetic potential to switch 
between autotrophy and heterotrophy (Lokiarchaeia, Thorarchaeia, 
Jordarchaeia and Baldrarchaeia) or a predominantly heterotrophic 
fermentative (Odinarchaeia and Heimdallarchaeia) lifestyle (Fig. 4c 
and Supplementary Information). Specifically, we observed that the 
WLP was lost before the last common ancestor of Heimdallarchaeia 
(and therefore before the emergence of LAECA), which indicated that 
the LAECA was a heterotrophic fermenter (Supplementary Table 4).

Furthermore, we inferred that the central carbon metabolism of 
Heimdallarchaeia (including Hodarchaeales) included the Embden–
Meyerhof–Parnas (EMP) pathway and a partial oxidative pentose 
phosphate pathway—both considered core modules of present-day 
eukaryotic central carbon metabolism. Although the enzymes of these 
pathways in Asgard archaea do not share a common evolutionary origin 
with those of eukaryotes, this inference suggests that the LAECA had a 
similar central carbon metabolism compared to modern eukaryotes 
(Supplementary Figs. 14 and 15).

In addition, our analyses support the idea that the last common 
ancestor of Heimdallarchaeia contained several components of the 
electron transport chain (ETC)42. We inferred that the last common 
ancestor of Hodarchaeales probably contained CI, CII, CIV and a nitrate 
reductase complex (NarGHIJ), which indicated that nitrate might have 
been used as a terminal electron acceptor to perform anaerobic res-
piration. As such, the last Hodarchaeales common ancestor probably 
generated ATP using an ETC whereby electrons from NADH and suc-
cinate were transferred through a series of membrane-associated com-
plexes with quinones and cupredoxins as electron carriers to ultimately 
reduce nitrate48.

As indicated above, a substantial fraction of the currently sampled 
Asgard archaea diversity originated from geothermal or hydrothermal 
environments. Using an algorithm based on genome-derived features, 
we confirmed that (most) Njordarchaeales, Baldrarchaeia and Jordar-
chaeia are hyperthermophiles, Odinarchaeia are thermophiles, and 
Lokiarchaeia and Thorarchaeia are mesophiles (Fig. 4b and Supple-
mentary Table 5). Whereas Heimdallarchaeia seemed to contain both 
mesophiles and thermophiles, we inferred a mesophilic physiology 
for Hodarchaeales, obtaining the lowest predicted optimal growth 
temperatures (OGTs) among all Asgard archaea (median = 36.7 °C). 
Asgard archaeal hyperthermophiles contained reverse gyrase, a topoi-
somerase that is typically encoded by hyperthermophilic prokaryotes. 
We inferred that a reverse gyrase was possibly present in the LAsCA and 
that it was subsequently lost in all heimdallarchaeial orders except for 
Njordarchaeales. This observation would be compatible with a scenario 
in which Asgard archaea have a hyperthermophilic ancestry, but in 
which eukaryotes evolved from an Asgard archaea lineage that had 
adapted to mesophilic growth temperatures.

Discussion
Beyond genomic exploration, several studies have started to uncover 
important physiological, cytological and ecological aspects of Asgard 
archaea38,39,49–51. Yet, although such insights are relevant, the cellular 
and physiological characteristics of present-day Asgard archaea will 
probably not resemble those of the LAECA. Therefore, inferences about 
the identity and nature of the LAECA and the process of eukaryogenesis 
should be made within an evolutionary context. We used an evolution-
ary framework to analyse an expanded Asgard archaeal genomic diver-
sity comprising 11 clades of high taxonomic rank. We also performed 
comprehensive phylogenomic analyses involving the evaluation of 
distinct marker protein datasets and systematic assessments of sus-
pected phylogenetic artefacts and state-of-the-art models of evolution. 
As a result, we identified Hodarchaeales, an order-level clade within 
the Heimdallarchaeia, as the closest relatives of eukaryotes. Evidently, 
phylogenomic analyses that aim to pinpoint the phylogenetic position 
of eukaryotes in the tree of life are challenging, and our results stress 
the importance of testing for possible sources of bias that affect phylog-
enomic reconstructions, as was recently reviewed52. The implementa-
tion of a probabilistic gene tree or species tree reconciliation approach 
enabled us to infer the evolutionary dynamics and ancestral content 
across the archaeal species tree, providing several new insights into the 
Asgard archaeal roots of eukaryotes. Altogether, our results revealed 
a picture in which the Asgard archaeal ancestor of eukaryotes had, 
compared with other archaea, a relatively large genome that resulted 
mainly from more numerous gene duplication and fewer gene loss 
events. It is tempting to speculate that the increased gene duplication 
rates observed in our analyses represent an ancestral feature of the 
LAECA and that it remained the predominant mode of genome evolu-
tion during the early stages of eukaryogenesis. We also inferred that the 
duplicated gene content of the LAECA included several protein families 
involved in cytoskeletal and membrane-trafficking functions, includ-
ing, among others, actin homologues, ESCRT complex subunits and 
small GTPase homologues. Our findings complement those of another 
study53 reporting that eukaryotic proteins with an Asgard archaeal 
provenance, as opposed to those inherited from the mitochondrial 
symbiont, duplicated the most during eukaryogenesis, particularly 
proteins of cytoskeletal and membrane-trafficking families.

Beyond genome dynamics, our analyses of inferred ancestral 
genome content across the Asgard archaeal species tree indicated 
that although Asgard archaea probably had a thermophilic ancestry, 
the lineage from which eukaryotes evolved was adapted to meso-
philic conditions. This finding is compatible with a generally assumed 
mesophilic ancestry of eukaryotes. Furthermore, we inferred that the 
LAECA had the genetic potential to support a heterotrophic lifestyle 
and may have been able to conserve energy through nitrate respira-
tion. In addition, on the basis of taxonomic distribution and evolu-
tionary history of ESPs, we showed that complex pathways involved 
in protein targeting and membrane trafficking and in genome mainte-
nance and expression in eukaryotes were inherited from their Asgard 
archaeal ancestor. Of note, we identified additional Asgard archaeal 
homologues of components of eukaryotic vesicular trafficking com-
plexes. Of these, some Asgard archaeal proteins displayed sequence 
similarity to proteins that, in eukaryotes, are part of the clathrin adap-
tor protein complexes and of the COPI complex. These complexes are 
particularly interesting because they are involved in the biogenesis 
of vesicles responsible for sorting cargo and subsequent transport 
through the secretory and endocytic pathways34. Altogether, these 
results further suggest the potential for membrane deformation, 
and possibly trafficking, in Asgard archaea. The ability to deform 
membranes was recently shown in two papers reporting the first 
cultivated Lokiarchaeia lineages, ‘Ca. Prometheoarchaeum syntrophi-
cum strain MK-D1’39 and ‘Ca. Lokiarchaeum ossiferum’40, the cells of 
which both displayed distinct morphological complexity, including 
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long and often branching protrusions facilitated by a dynamic actin 
cytoskeleton. Thus far no39, or only limited40, visible endomembrane 
structures have been observed in these first cultured representatives 
of Asgard archaea. However, it is important to restate here that, being 
separated by some 2 billion years of evolution, the cellular features 
of present-day Asgard archaeal lineages do not necessarily resemble 
those of the LAECA. Furthermore, given the disparity of the distribu-
tion patterns of membrane-trafficking homologues in Asgard archaea, 
it will be crucial to isolate representatives of classes other than Loki-
archaeia and to study their cell biology features and potential for 
endomembrane biogenesis. Of particular interest would be members 
of the Heimdallarchaeia and specifically Hodarchaeales, as the cur-
rently identified closest relatives of eukaryotes, as well as Thorar-
chaeia lineages, which seem to generally contain a particularly rich 
suite of homologues of eukaryotic membrane-trafficking proteins.

Our work phylogenetically places eukaryotes as a nested clade within 
the currently identified Asgard archaeal diversity, and we inferred 
ancestral genomic content across the Asgard archaea. These results 
provide insights into the identity and nature of the Asgard archaeal 
ancestor of eukaryotes, guiding future studies that aim to uncover 
new pieces of the eukaryogenesis puzzle.
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Article
Methods

Sample collection, sequencing, assembly and binning
We sampled aquatic sediments from 11 geographically distant sites: 
Guaymas Basin (Mexico); Lau Basin (Eastern Lau Spreading Center 
and Valu Fa Ridge, south-west Pacific Ocean); Hydrate Ridge (offshore 
of Oregon, USA); Aarhus Bay (Denmark); Radiata Pool (New Zealand); 
Taketomi Island Vent ( Japan); the White Oak River estuary (USA); and 
Tibet Plateau and Tengchong (China) (Supplementary Table 1).

Sampling permissions. The following sampling permits were used: 
Guaymas Basin (DAPA/2/251108, DAPA/2/131109/3958 and CONAPES-
CA); ABE and Mariner field (TN-002-2015, Kingdom of Tonga); and Ra-
diata pool (77982-RES, Department of Conservation (New Zealand)). No 
permits were needed for obtaining any of the other samples described 
in this study. Additional information regarding sampling years and 
responsible scientists are available in Supplementary Table 1.

Tibet Plateau and Yunnan Province. For Jordarchaeia JZB50, QC4B49, 
QZMA23B3, QZMA2B5 and QZMA3B5, samples from hot spring sedi-
ment were collected from Tibet Plateau and Yunnan Province (China) 
in 2016. The microbial community compositions have been described 
and previously reported54,55. Samples were collected from the hot 
spring pools using a sterile iron spoon into 50 ml sterile plastic tubes, 
then transported to the laboratory on dry ice and stored at –80 °C 
until DNA extraction. The genomic DNA of the sediment samples was 
extracted using a FastDNA Spin Kit for Soil (MP Biomedicals) accord-
ing to the manufacturer’s instructions. The obtained genomic DNA 
was purified for library construction and sequenced on an Illumina 
HiSeq2500 platform (2× 150 bp). The raw reads were filtered to remove 
Illumina adapters, PhiX and other Illumina trace contaminants using 
BBTools (v.38.79), and low-quality bases and reads were removed using 
Sickle (v.1.33; https://github.com/najoshi/sickle). The filtered reads 
were assembled using metaSPAdes (v.3.10.1) with a kmer set of “21, 
33, 55, 77, 99, 127”. The filtered reads were mapped to the correspond-
ing assembled scaffolds using bowtie2 (v.2.3.5.1)56. The coverage of 
a given scaffold was calculated using the command of jgi_summa-
rize_bam_contig_depths in MetaBAT (v.2.12.1)57. For each sample, scaf-
folds with a minimum length of 2.5 kbp were binned into genome bins 
using MetaBAT (v.2.12.1), with both tetranucleotide frequencies and 
scaffold coverage information considered. The clustering of scaffolds 
from the bins and the unbinned scaffolds was visualized using ESOM 
with a minimum window length of 2.5 kbp and a maximum window 
length of 5 kbp, as previously described58. Misplaced scaffolds were 
removed from bins, and unbinned scaffolds for which segments were 
placed within the bin areas of ESOMs were added to the correspond-
ing bins. Scaffolds with a minimum length of 1 kbp were uploaded 
to ggKbase (http://ggkbase.berkeley.edu/). The ESOM-curated bins 
were further evaluated based on consistency of GC content, coverage 
and taxonomic information, and scaffolds identified with abnormal 
information were removed. The ggKbase genome bins were individu-
ally curated to fix local assembly errors using ra2.py59.

ABE and Mariner hydrothermal vent fields. For Heimdallarchaeia 
A173, A3132 and M288, and Thorarchaeia A361, A381 and A399, hydro-
thermal vent deposits were collected from ABE (ABE 1, 176° 15.48′ W, 21° 
26.68′ S, 2,142 m; ABE 3, 176° 15.59′ W, 21° 26.95′ S, 2,131 m) and Mariner 
(176° 36.07′ W, 22° 10.81′ S, 1,914 m) vent fields along the Eastern Lau 
Spreading Center in April and May of 2015 during the RR1507 Expedi-
tion on the RV Roger Revelle. Sample collection and processing were 
done as previously described60. DNA was extracted from homogenized 
rock slurries using a DNeasy PowerSoil kit (Qiagen) as per the manu-
facturer’s instructions. Samples were prepared for sequencing on an 
Illumina HiSeq 3000 using Nextera DNA Library Prep kits (Illumina), 
and metagenomes (2× 150 bp) were sequenced at the Oregon State 

University Center for Genome Research and Computing. Trimmomatic 
(v.0.36)61 was used to trim low-quality regions and adapter sequences 
from raw reads (parameters: ILLUMINACLIP:TruSeq3-PE-2.fa:2:30:10, 
LEADING:20, SLIDINGWINDOW:4:20, MINLEN:50). Clean paired reads 
were then interleaved using the khmer software package62. Interleaved 
and unpaired reads were assembled using MEGAHIT (v.1.1.1-2-g02102e1) 
(--k-min 31, --k-max 151, --k-step 20, --min-contig-len 1000)63,64. Trimmed 
reads were mapped back to the contigs to determine read coverage 
using Bowtie 2 (v.2.2.9)56,65 and SAMtools (v.1.3.1)66. Binning was per-
formed using MetaBAT (v.0.32.4)57 and tetranucleotide frequency and 
read coverage. Bin completion and contamination were estimated 
using CheckM (v.1.0.7)67.

Aarhus Bay. For Lokiarchaeia ABR01, ABR02, ABR03, ABR04, ABR05, 
ABR06, ABR08, ABR11, ABR13 and ABR15, Thorarchaeia ABR09 and 
ABR10 and Heimdallarchaeia ABR14 and ABR16, MAGs were obtained 
as previously described29.

White Oak River. For Sifarchaeia WORA1, Hermodarchaeia WORB2, 
Heimdallarchaeia WORE3, Lokiarchaeia WORB4 and WORC5, and 
Thorarchaeia WORH6, sampling, DNA extraction, sequencing library 
preparation and sequencing methods were performed as previous-
ly described68. Published assemblies and raw reads for the samples 
WOR-1-36_30 (National Center for Biotechnology Information (NCBI) 
BioSample identifier SAMN06268458; Joint Genome Institute ( JGI) 
identifier Gp0056175), WOR-1-52-54 (SAMN06268416; Gp0059784), 
WOR-3-24_28 (SAMN06268417; Gp0059785) were downloaded from 
the JGI. Short reads were trimmed using Trimmomatic (v.0.33)61 (PE 
ILLUMINACLIP:2:30:10 SLIDINGWINDOW:4:15 MILEN:100). Contigs 
shorter than 1,000 bp were excluded from the assembly using SeqTK 
(v.1.0r75) (https://github.com/lh3/seqtk). Each assembly was binned 
using CONCOCT (v.0.4.1)69 and coverage information from the three 
datasets, and Asgard bins were subsequently identified based on phy-
logenies of concatenated ribosomal proteins3. Identified Asgard MAGs 
were used together with publicly available Asgard genomes to recruit 
trimmed reads originated from Asgard genomes using CLARK (v.1.2.3) 
with the -m 0 option70. For each dataset, recruited Asgard reads were 
independently assembled using SPAdes71 and IDBA-UD72 and further 
binned using CONCOCT, using a minimum contig length of 1,000 bp. 
Bins with higher completeness and lower contamination values as 
predicted by miComplete (v.1.00)73 were selected and manually cu-
rated using mmgenome (v.0.7.1)74,75 using the coverage information, 
paired-reads linkage, composition and marker genes information. The 
samples and assembly method used for each final MAG were as follows: 
Sifarchaeia WORA1 (WOR-1-52-54; spades); Hermodarchaeia WORB2 
(WOR-1-52-54; IDBA-UD); Heimdallarchaeia WORE3 (WOR-3-24_28; 
spades); Lokiarchaeia WORB4 and WORC5 (WOR-1-36_30; IDBA-UD); 
and Thorarchaeia WORH6 (WOR-1-36_30; spades).

Radiata Pool hot springs. For Jordarchaeia RPD1 and RPF2, and Odinar-
chaeia RPA3, information about the location of the hot spring sediments 
from Radiata Pool, sampling and DNA extraction procedures has been 
previously reported3. Short paired-end Illumina reads were generated 
and preprocessed using Scythe (https://github.com/vsbuffalo/scythe) 
and Sickle (https://github.com/najoshi/sickle) to remove adapters and 
low-quality reads. Reads were subsequently assembled with IDBA-UD 
1.1.3 (--maxk 124). The Jordarchaeia RPF2 MAG was generated by bin-
ning contigs according to their tetranucleotide frequencies using  
esomWrapper.pl (https://github.com/tetramerFreqs/Binning) with a 
minimum contig length of 5,000 bp and a window size of 10 kbp. ESOM 
maps were manually delineated using the Databionic ESOM viewer 
(http://databionic-esom.sourceforge.net/). Jordarchaeia RPD1 and 
Odinarchaeia RPA3 were binned following the previously described29 
methodology, but re-assembling the recruited reads only with IDBA-UD 
(--maxk 124)72.
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Guaymas Basin. For Asgardarchaeia GBS01, Baldrarchaeia GBS02, 
GBS03, and GBS04, Jordarchaeia GBS05, GBS06 and GBS07, Heim-
dallarchaeia GBS08, GBS09, GBS10, GBS11, GBS15, GBS16, GBS17, 
GBS18, GBS19, GBS20, GBS21, GBS22, GBS23, GBS24, GBS25, GBS26 
and TNS08, Lokiarchaeia GBS14, and Thorarchaeia GBS28, GBS29, 
GBS33 and GBS34, MAGs were obtained as previously described76. 
For Heimdallarchaeia GBS09, the MAG was obtained as previously 
described77.

South Hydrate Ridge. For Heimdallarchaeia GBS11, samples were 
made available by the Gulf Coast Repository (GCR) and were collected 
on the Ocean drilling Program (ODP) Leg 204 at site 1244 (44° 35.17 N, 
125° 7.19 W) on 14 July 2002 (hole C and core 2). The ODP site is found at 
a water depth of 890 m on the eastern side of the South Hydrate Ridge 
on the Cascadia Margin. This site has been well characterized physi-
cally and geochemically78. Furthermore, the microbial community 
structure has been surveyed using 16S rRNA gene sequencing79,80. Two 
sediment samples, designated DCO-2-5 (sample identifier 1489929) 
and DCO-2-7 (sample identifier 1489924), were collected at a sedi-
ment depth of 12.40 and 14.96 m below the seafloor, respectively, and 
stored at –80 °C at GCR. A total of 10 g of each of the two sediment sam-
ples was used to extract DNA using a MoBio DNA PowerSoil Total kit.  
A total of 100 ng DNA was used to prepare sequencing libraries that 
were 150 bp paired-end sequenced at the Marine Biological Labora-
tory (Woods Hole, MA, USA) on an Illumina MiSeq sequencer. Adap-
tors and DNA spike-ins were removed from the forward and reverse 
reads using cutadapt (v.1.12)81. Afterwards, reads were interleaved 
using interleave_fasta.py (https://github.com/jorvis/biocode/blob/
master/fasta/interleave_fasta.py) and further trimmed using Sickle 
with default settings (Fass JN) (https://github.com/najoshi/sickle). 
Metagenomic reads from both samples were co-assembled using 
IDBA-UD with the following parameters: --pre_correction, --mink 75, 
--maxk 105, --step 10, --seed_kmer 55 (ref. 72). Metagenomic binning 
was performed on scaffolds with a length of >3,000 bp using ESOM, 
including a total of 4,939 scaffolds with a length of 30,693,002 bp58,72. 
CheckM (v.1.0.5) was used to evaluate the accuracy of the binning 
approach by determining the percentage of completeness and  
contamination67.

Exploration of phylogenetic diversity in Asgard archaeal assem-
blies and MAGs
To assess the presence of potential Asgard-related lineages in our assem-
blies, we reconstructed a phylogeny of ribosomal proteins encoded in 
a conserved RP15 gene cluster82. As the in-group, we used all MAGs pre-
sented in this study, plus all genomes classified as Asgard archaea in the 
NCBI database as of 25 June 2021, plus those classified as ‘archaeon’ cor-
responding to Hermodarchaeia (GCA_016550385.1, GCA_016550395.1, 
GCA_016550405.1,  GCA_01655041 5.1,  GCA_016550425.1, 
GCA_016550485.1, GCA_016550495.1 and GCA_016550505.1), and all 
Asgard archaeal MAGs released in previous study19. To obtain an ade-
quate outgroup dataset, we downloaded all archaeal genomes from the 
Genome Taxonomy Database83, release 89, and selected one genome 
sequence per species-level cluster as previously defined (https://data.
gtdb.ecogenomic.org/releases/release89/89.0/sp_clusters_r89.tsv). We 
then selected a set of 216 genomes classified as Bathyarchaeia, Nitro-
sosphaeria and Thermoprotei, and used them as the outgroup. Genes 
were detected and individually aligned and trimmed as previously 
described3. Ribosomal protein sequences were selected if they were 
encoded in a contig containing at least 5 out of the 15 ribosomal protein 
genes. ModelFinder84 was run as implemented in IQ-TREE (v.2.0-rc2) 
to identify the best model among all combinations of the LG, WAG, JTT 
and Q.pfam models, as well as their corresponding mixture models 
by adding +C20, +C40 and +C60, and the additional mixture models 
LG4M, LG4X, UL2 and UL3, with rate heterogeneity (none, +R4 and +G4) 
and frequency parameters (none, +F). A PMSF approximation85 of the 

chosen model (WAG+C60+R4+F) was then used for a final reconstruc-
tion using 100 nonparametric bootstrap pseudoreplicates for branch 
statistical support. The obtained tree revealed a broad genomic diver-
sity of Asgard lineages (Fig. 1).

Gene prediction
Gene prediction was performed using Prokka (v.1.12)86 (prokka 
--kingdom Archaea --norrna --notrna). rRNA genes and tRNA genes 
were predicted using Barrnap (https://github.com/tseemann/barrnap) 
and tRNAscan-SE87,88, respectively.

OGT prediction
OGT values were predicted for the genomes presented here based on 
genomic and proteomic features89 (Supplementary Information). As 
rRNA nucleotide compositions are used in this method, only genomes 
with predicted rRNAs were analysed.

Identification of homologous protein families
All-versus-all similarity searches of all predicted proteins from the 
A64 taxon selection (64 Asgard, 76 TACK, 43 Euryarchaea and 41 
DPANN archaea; Supplementary Table 2) were performed using  
diamond90 BLASTp (--more-sensitive --evalue 0.0001 --max-target-seqs 
0 --outfmt 6). The file generated was used to cluster protein sequences 
into homologous families using SiLiX (v.1.2.10)91 followed by Hifix 
(v.1.0.6)92. The identity and overlap parameters required by Silix were 
set to 0.2 and 0.7, respectively, after inspecting a wide range of values 
(--ident [0.15,0.4] and --overlap [0.55–0.9], with increments of 0.05) and 
selecting the values that maximized the number of clusters containing 
at least 80% of the taxa.

Functional annotation of homologous protein families
Protein families, excluding singletons, were aligned using mafft-linsi 
(v.7.402)93 and converted into HHsearch format (.hhm) profiles using 
HHblits (v.3.0.3)94. Profile–profile searches were subsequently per-
formed against a database containing profiles from EggNOG (v.4.5)95, 
arCOGs96 and Pfam databases97 that had been previously converted to 
the hhm format using HHblits (v.3.0.3)94.

Detailed analysis of ESPs
In-depth analysis of potential ESPs involved a combination of automatic 
screens and manual curation. We first manually searched for homo-
logues of previously described ESPs2,3,38 by using a variety of sequence 
similarity approaches such as BLAST, HMMer tools, profile–profile 
searches using HHblits, combined with phylogenetic inferences, and, 
in some cases, the Phyre2 structure homology search engine94,98,99. We 
did not use fixed cutoffs, as the e-value between homologues will vary 
depending on the protein investigated, hence the need for manual 
examination of potential homologues and a combination of lines of 
evidence.

In addition, to identify potential new ESPs, we first used our profile–
profile searches against EggNOG and manually investigated Asgard 
orthologous groups that had a best hit to a eukaryotic-specific EggNOG 
cluster. We also extracted Pfam domains for which the taxonomic distri-
bution are exclusive to eukaryotes as per Pfam (v.32), and investigated 
cases in which they represented the best domain hit in Asgard archaea 
sequences identified by HMMscan. Finally, we manually investigated 
dozens of proteins known to be involved in key eukaryotic functions 
based on our knowledge and literature searches. In Fig. 2, we are only 
reporting cases based on the strict cutoff that the diagnostic HMM 
profile had the best score among all profiles detected for a protein. 
An exception was made for the ESCRT domain Vps28, Steadiness box, 
UEV, Vps25, NZF, GLUE and Vps22 domains, which are usually found in 
combination with other protein domains and thus do not necessarily 
represent the best scoring domain in a protein even if they represent 
true homologues.

https://github.com/jorvis/biocode/blob/master/fasta/interleave_fasta.py
https://github.com/jorvis/biocode/blob/master/fasta/interleave_fasta.py
https://github.com/najoshi/sickle
https://www.ncbi.nlm.nih.gov/assembly/GCA_016550385.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_016550395.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_016550405.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_016550415.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_016550425.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_016550485.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_016550495.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_016550505.1
https://data.gtdb.ecogenomic.org/releases/release89/89.0/sp_clusters_r89.tsv
https://data.gtdb.ecogenomic.org/releases/release89/89.0/sp_clusters_r89.tsv
https://github.com/tseemann/barrnap
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Phylogenetic analyses of concatenated proteins for species tree 
inference
Two sets of phylogenetic markers were used to infer the species tree. 
The first one (RP56) is based on a previously published dataset of 56 
ribosomal proteins used to place the first assembled Asgard genomes3. 
The second one (NM57, for new markers) corresponds to 57 proteins 
extracted from a set of 200 markers previously identified as core 
archaeal proteins that can be used to confidently infer the tree of 
archaea100. These 57 markers were selected because they were found 
in at least one-third of representatives of each of the 11 Asgard clades, 
as well as in 10 out of 14 eukaryotes, and were inherited from archaea 
in eukaryotes.

We initially assembled a RP56 dataset for a phylogenetically diverse 
set of 222 archaeal and 14 eukaryotic taxa. These included all 11 Asgard 
archaea MAGs and genomes available at the NCBI as of 12 May 2017, 
as well as the 53 most diverse new MAGs from this work (out of 63). 
We gathered orthologues of these genes from all proteomes by using 
sequences from the previously published alignment3,100 as queries for 
BLASTp. For each marker, the best BLAST hit from each proteome was 
added to the dataset. For the first iteration, each dataset was aligned 
using mafft-linsi101 and ambiguously aligned positions were trimmed 
using BMGE (-m BLOSUM30)102. All 56 trimmed ribosomal protein 
alignments were concatenated into a RP56-A64 supermatrix (236 taxa 
including 64 Asgard archaea, 6,332 amino acid positions). Once this 
taxon set was gathered, we identified homologues of the NM57 gene 
set as described above, thus generating supermatrix NM57-A64 (236 
taxa, 14,847 amino acid positions).

We carried out a large number of phylogenomic analyses on vari-
ations of these two RP56-A64 and NM57-A64 datasets with different 
phylogenetic algorithms. Notably, preparing these datasets must be 
done with great care and is therefore time-consuming, and subsequent 
phylogenomic analyses generally require an enormous amount of 
computational running time. However, the rapid expansion of available 
Asgard archaeal MAGs, notably in a previous publication4, urged us to 
update and re-run many of the computationally demanding analyses. As 
some of the work that was based on a more restrained taxon sampling 
is still deemed valuable, such as some of the Bayesian phylogenomic 
analyses and ancestral genome content reconstructions, we retained 
these in the current study.

An updated Asgard archaeal genomic sequence dataset was con-
structed by including all 230 Asgard archaeal MAGs and genomes 
available at the NCBI database as of 12 May 2021, as well as 63 new 
MAGs described in the current work. All 56 trimmed ribosomal pro-
tein alignments were concatenated into an RP56-A293 supermatrix 
(465 taxa including 293 Asgard archaea, 7,112 amino acid positions), 
which was used to infer a preliminary phylogeny using FastTree (v.2)103 
(Supplementary Fig. 16). Given the high computational demands of 
the subsequent analyses, we then used this phylogeny to select a sub-
sample of Asgard archaea representatives. For this, we first removed 
the most incomplete MAGs encoding fewer than 19 ribosomal proteins 
(that is, one-third of the markers) in the matrix. We also used the pre-
liminary phylogeny to subselect among closely related taxa: among 
taxa that were separated by branch lengths of <0.1, we only kept one 
representative. This led to a selection of 331 genomes, including 175 
Asgard archaea, 41 DPANN, 43 Euryarchaea and 72 TACK representatives 
(RP56-A175 dataset). Out of these 175 Asgard archaea, 41 correspond 
to MAGs newly reported here. Once this taxon set was gathered, we 
identified homologues of the NM57 gene set as described above, thus 
generating supermatrix NM57-A175 (15,733 amino acid positions). All 
datasets and their composition are summarized in Supplementary 
Table 2.

To test for potential phylogenetic reconstruction artefacts, our data-
sets were subjected to several treatments. Supermatrices were recoded 
into four categories using the SR4 scheme25. The corresponding 

phylogenies were reconstructed using IQ-TREE (using a user-defined 
previously described model referred to as C60SR4 based on the imple-
mented C60 model and modified to analyse the recoded data3) and 
Phylobayes (under the CAT+GTR model). We also used the estimated 
site rate output generated by IQ-TREE (-wsr) to classify sites into 10 
categories, from the fastest to the slowest evolving, and we removed 
them in a stepwise fashion, removing from 10% to 90% of the data. 
Finally, we combined both approaches by applying SR4 recoding to 
the alignments obtained after each fast-site removal step. All phyloge-
netic analyses performed are summarized in Supplementary Table 2. 
See Supplementary Information for details and discussion.

Analyses of individual proteins
For individual proteins of interest, we gathered homologues using 
various approaches depending on the level of conservation across 
taxa. To detect putative Asgard homologues of eukaryotic proteins, 
we used a combination of tools, including BLASTp104 and the HMMer 
toolkit (http://hmmer.org/) if HMM profiles were available, and queried 
a local database containing our 240 archaeal representatives (includ-
ing all Asgard predicted proteomes). We then investigated the Asgard 
candidates as following: (1) using them as seed for BLASTp searches 
against the nr database; (2) 3D modelling using Phyre2 and SwissModel 
when sequence similarity was low; (3) annotating them using Interpro-
scan (v.5.25-64.0)105, EggNOG mapper (v.0.12.7)106, against the NOG 
database106, and GhostKoala annotation server107; (4) annotating the 
archaeal orthologous cluster they belonged to using profile–profile 
annotation as described above. Eukaryotic homologues were gathered 
from the UniRef50 database108. Depending on the divergence between 
homologues, they were aligned using mafft-linsi and trimmed using 
TrimAl109 (--automated1) or BMGE102, or, in cases where we investigated a 
specific functional domain, we used the hmmalign tool from the HMMer 
package with the --trim flag to only keep and align the region corre-
sponding to this domain. When divergence levels allowed, phylogenetic 
analyses were performed using IQ-TREE with model testing including 
the C-series mixture models (-mset option)110. Statistical support was 
evaluated using 1,000 ultrafast bootstrap replicates (for IQ-TREE)109.

Ancestral reconstruction
For the ancestral reconstruction analyses, only a subset of 181 taxa were 
included (64 Asgard, 74 TACK and 43 Euryarchaea; see Supplementary 
Table 2 for details). Protein families with more than three members 
were aligned and trimmed using mafft-linsi (v.7.402)101 and trimAl 
(v.1.4.rev15) with the --gappyout option109. Tree distributions for indi-
vidual protein families were estimated using IQ-TREE (v.1.6.5) (-bb 1000 
-bnni -m TESTNEW -mset LG -madd LG+C10,LG+C20 -seed 12345 -wbtl 
-keep-ident)111. The species phylogeny together with the gene tree dis-
tributions were subsequently used to compute 100 gene–tree species 
tree reconciliations using ALEobserve (v.0.4) and ALEml_undated112,113, 
including the fraction_missing option that accounts for incomplete 
genomes. The genome copy number was corrected to account for the 
extinction probability per cluster (https://github.com/maxemil/ALE/
commit/136b78e). The missing fraction of the genome was calculated as 
1 minus the completeness values (in fraction) as estimated by CheckM 
(v.1.0.5) for each of the 181 taxa67. Protein families containing only one 
protein (singletons) were considered as originations at the correspond-
ing leaf. The ancestral reconstruction of 5 protein families that included 
more than 2,000 proteins raised errors and could not be computed. 
The minimum threshold of the raw reconciliation frequencies for an 
event to be considered was set to 0.3 as commonly done114–117 and recom-
mended by the authors of ALE (G. Szölősi, personal communication).

Ancestral metabolic inferences
Metabolic reconstruction of the Asgard ancestors was based on the 
inference, annotation and copy number of genes in ancestral nodes. The 
presence of a given gene was scored if its copy number in the ancestral 

http://hmmer.org/
https://github.com/maxemil/ALE/commit/136b78e
https://github.com/maxemil/ALE/commit/136b78e


nodes was above 0.3. A protein family was scored as ‘maybe present’ if 
the inferred copy number was between 0.1 and 0.3. The protein annota-
tion of each of the clusters containing the ancestral nodes was manually 
verified for each of the enzymatic steps involved in the pathways, as 
detailed in Supplementary Table 4.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The MAGs reported in this study have been deposited at the DNA 
Data Bank of Japan, the European Molecular Biology Laboratory and 
GenBank. BioProject identifiers, BioSample identifiers and GenBank 
assembly accession numbers are provided in Supplementary Table 1. 
All raw data underlying phylogenomic analyses (raw and processed 
alignments and corresponding phylogenetic trees), and all predicted 
proteomes have been deposited into Figshare (https://doi.org/10.6084/
m9.figshare.22678789).

Code availability
Custom code used for data analysis is available at GitHub: https://
github.com/laurajjeme/phylogenetics.
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Extended Data Fig. 1 | Cladogram of proposed taxonomic scheme for the ranks of family, order and class for Asgard archaeal lineages employed in this study. 
Equivalent names in GTDB are shown in parentheses. Cases with differing or new names have been highlighted in colored bold italics.
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Extended Data Fig. 2 | Asgard archaea encode homologs of eukaryotic 
protein complexes involved in N-glycosylation. The Sec61, the OST and 
TRAP complexes are depicted according to their eukaryotic composition and 
localization. On the right-hand side of the panel, dark-colored subunits 

represent eukaryotic proteins which have prokaryotic homologs in Asgard 
archaea newly identified as part of this work; Light-colored subunit homologs 
have been described previously3. Figure generated using BioRender (https://
www.biorender.com).

https://www.biorender.com/
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Identification of previously undetected vesicular 
trafficking ESPs in Asgard archaea. Schematic representation of a eukaryotic 
cell in which ESPs involved in membrane trafficking and endosomal sorting 
that have been identified in Asgard archaea are highlighted. Colored subunits 
have been detected in some Asgard archaea while grey ones seem to be absent 
from all current representatives. Only major protein complexes are depicted. 
Additional components can be found in Fig. 2. From left to right, top to bottom: 
RC, Retromer complex. Retromer is a coat-like complex associated with 
endosome-to-Golgi retrograde traffic35. It is formed by Vacuolar protein 
sorting-associated protein 35, Vps5, Vps17, Vps26 and Vps29118. During cargo 
recycling, retromer is recruited to the endosomal membrane via the 
Vps5-Vps17 dimer. Cargo recognition is thought to be mediated primarily 
through Vps26 and possibly by Vps35. Finally, the BAR domains of Vps5-Vps17 
deform the endosomal membrane to form cargo-containing recycling vesicles. 
Their distribution is sparse, but we have detected Asgard archaeal homologs  
of all subunits except for Vps17. Interestingly, the Thorarchaeia Vps5-BAR 
domain is often fused to Vps28, a subunit of the ESCRT machinery complex I, 
suggesting a functional link between BAR domain proteins and the thorarchaeial 
ESCRT complex. The best-characterized retromer cargo is Vps10. This 
transmembrane protein receptor is known in yeast and mammal cells to be 
involved in the sorting and transport of lipoproteins between the Golgi and  
the endosome. The Vps10 receptor releases its cargo to the endosome and is 
recycled back to the Golgi via the retromer complex119. CORVET: Class C core 
vacuole/endosome tethering complex; HOPS: Homotypic fusion and protein 
sorting complex. Endosomal fusion and autophagy depend on the CORVET and 
HOPS hexameric complexes37; they share the core subunits Vps11, Vps16, Vps18, 

and Vps33120. In addition, HOPS is composed of Vps41 and Vps39121. Vps39, 
found associated to late endosomes and lysosomes, promotes endosomes/
lysosomes clustering and their fusion with autophagosomes122. AP, Adaptor 
Proteins. Asgard archaea genomes from diverse phyla encode key functional 
domains of the AP complexes. The eukaryotic AP tetraheteromeric structure is 
depicted, each color corresponding to a PFAM functional domain (Medium 
green: Adaptin, N terminal region; Dark green: Alpha adaptin, C-terminal 
domain; Light green: Beta2-adaptin appendage, C-terminal sub-domain; Dark 
pink/clear outline: Clathrin adaptor complex small chain; Light pink/dark 
outline: C-ter domain of the mu subunit); all five domains were detected in 
Asgard archaea, although not fused to each other. GARP: Golgi-associated 
retrograde protein complex. The GARP complex is a multisubunit tethering 
complex located at the trans-Golgi network where it functions to tether 
retrograde transport vesicles derived from endosomes36,123. GARP comprises 
four subunits, VPS51, VPS52, VPS53, and VPS54. ESCRT: Endosomal Sorting 
Complex Required for Transport system. This complex machinery performs a 
topologically unique membrane bending and scission reaction away from the 
cytoplasm. While numerous components of the ESCRT-I, II and III systems have 
been previously detected in Asgard archaea2,3,38, we here report Asgard 
homologs for several ESCRT-III regulators Vfa1, Vta1, Ist1, and Bro1. The bottom 
panel shows where these complexes mainly act in eukaryotic cells. Ub: 
Ubiquitin; Vps: vacuolar protein sorting. Subunit names in grey indicate that no 
homologs were detected in Asgard archaea. Domains newly identified as part 
of this study are indicated with an asterisk. Figure created using BioRender 
(https://www.biorender.com).
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