
HAL Id: hal-04289753
https://hal.science/hal-04289753

Submitted on 16 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Synchronization modulo P in dynamic networks
Louis Penet de Monterno, Bernadette Charron-Bost, Stephan Merz

To cite this version:
Louis Penet de Monterno, Bernadette Charron-Bost, Stephan Merz. Synchronization modulo P in dy-
namic networks. Theoretical Computer Science, 2023, 942, pp.200-212. �10.1016/J.TCS.2022.11.033�.
�hal-04289753�

https://hal.science/hal-04289753
https://hal.archives-ouvertes.fr

Synchronization modulo P in Dynamic Networks

Louis Penet de Monternoa,∗, Bernadette Charron-Bostb, Stephan Merzc

aÉcole polytechnique, IP Paris, 91128, Palaiseau, France
bDI ENS, École Normale Supérieure, 45 rue d'Ulm, 75005, Paris, France
cUniversity of Lorraine, CNRS, Inria, LORIA, 54000, Nancy, France

Abstract

We de�ne the modP -synchronization problem as a weakening of the �ring
squad problem, where all nodes �re not at the same round, but at rounds
that are all equal modulo P . We introduce an algorithm that achieves modP -
synchronization despite asynchronous starts in every dynamic network whose
dynamic radius is bounded by some integer ∆, that is, there always exists a
temporal path of length at most ∆ from some �xed node γ, called a central node
of the network, to all the other nodes. As opposed to the perfect synchroniza-
tion achieved in the �ring squad problem, modP -synchronization thus does not
require the network to be strongly connected. In our algorithm, nodes know ∆,
but they ignore which nodes are central in the network. We also prove that if
the bound ∆ on the radius exists but is unknown, then modP -synchronization
is impossible.

All nodes in our algorithm �re in less that 6Pn rounds, where n is the
number of nodes, after all nodes become active, but use unbounded counters.
We then present a re�nement of this algorithm so that memory usage becomes
bounded while maintaining the same time complexity. The correctness of our
�rst algorithm has been formally established in the proof assistant Isabelle.

Keywords: Distributed Computing, Dynamic Graph, Synchronization, Firing
Squad

1. Introduction

Distributed algorithms are often designed in a synchronous computing model,
in which computation is divided into communication-closed rounds: any mes-
sage sent at some round can be received only at that round. In this model, it is
usually assumed that in each run of an algorithm, all nodes start simultaneously,
i.e., at the same round, or even at round one. For instance, most synchronous
consensus algorithms (e.g., [19, 12, 21]), as well as many distributed algorithms
for dynamic networks (e.g., [15, 16]) require synchronous starts.

∗Corresponding author.

Preprint submitted to Elsevier October 6, 2022

This assumption makes the sequential composition of two distributed algo-
rithms A;B � in which each node starts executing B when it has completed the
execution of A � quite problematic. Indeed, nodes start the algorithm B asyn-
chronously when the algorithm A terminates asynchronously, and the properties
of B are no longer guaranteed in this context of asynchronous starts.

This leads to the problem of simulating synchronous starts, classically re-
ferred to as the �ring squad problem: each node is initially passive and then
becomes active at an unpredictable round. The goal is to guarantee that the
nodes, once they are all active, eventually synchronize by �ring � i.e., entering
a designated state for the �rst time � at the same round.

Unfortunately, the impossibility result in [7] demonstrates that the �ring
squad problem is not solvable without a strong connectivity property of the
network, namely, there exists some positive integer d such that the communi-
cation graph within every period of d consecutive rounds is strongly connected
and a bound ∆ on the delay d is known, in the sense that algorithms depend
on ∆. In many situations, this connectivity property is not guaranteed: as an
example, in the dynamic graphs corresponding to the Heard-Of models for be-
nign failures [9], a node that su�ers permanent and complete send omissions is
constantly a sink in the communication graph.

However, looking more closely at many distributed algorithms designed in
the round-based model, we see that these algorithms actually do not require
perfectly synchronous starts, and still work under the weaker condition that all
the nodes start executing the algorithms in rounds with numbers that are equal
modulo P , for some positive integer P . In this paper, the equality modulo
P is denoted ≡P . The corresponding synchronization problem, that we call
modP -synchronization, is formally speci�ed as follows:

Termination. If all nodes become active, then every node eventually �res.

modP-simultaneity. If two nodes �re at rounds t and t ′, then t ′ ≡P t .

Indeed, let A be an algorithm structured in regular phases consisting of a
�xed number P of consecutive rounds: the behaviour of each node (i.e., the
update rule of its state and the message it sends) at round t is determined by
the value of t modulo P . Moreover, assume that A has been proved correct with
respect to some speci�cation when all nodes start A synchronously (at round
one), but with any dynamic graph in a family G that is stable under the addition
of arbitrary �nite pre�xes. For instance, the ThreePhaseCommit algorithm
for non-blocking atomic commitment [3], as well as the consensus algorithms
in [13] or the LastVoting algorithm [9] � corresponding to the consensus core of
Paxos [17] � ful�ll all the above requirements for phases of length P = 3 and
P = 4, respectively, and the family G of dynamic graphs in which there exists
an in�nite number of �good� communication patterns (e.g., a sequence of 2P
consecutive communication graphs in which a majority of nodes is heard by all
nodes in each graph). The use of a modP -synchronization algorithm prior to
the algorithm A yields a new algorithm that executes exactly like A does, after
a �nite preliminary period during which every node becomes active and �res.

2

The above property on the set of dynamic graphs G then guarantees this variant
of A to be correct with asynchronous starts and dynamic graphs in G.

Another typical example for which the perfect synchronization requirement
in the �ring squad problem can be weakened into modP -synchronization is the
development of the basic rotating coordinator strategy for a given algorithm C

in the context of asynchronous starts. Roughly speaking, this strategy consists
in the following: each node u has unique identi�ers in {1, . . . ,n}, and maintains
a local counter cu whose current value is the number of rounds elapsed since
the node u started executing C . At each round, the coordinator of u is the
node with the identi�er that is equal to the current value of cu modulo n. Since
there may be only one coordinator per round, such a selection rule requires syn-
chronized counters. Clearly, with the use of a modn-synchronization algorithm
in a preliminary phase, the above scheme implements the rotating coordinator
strategy from the �rst round where all nodes have �red.

ThemodP -synchronization problem is clearly related to the synchronization
problem of periodic clocks that has been extensively studied (e.g., see [1, 14, 5]).
In the latter problem, only eventual synchronization is required, and nodes are
not aware of the round at which synchronization is achieved (no ��ring event�).

The de�nition of this �mod-P �ring squad� problem is one of the contribu-
tions in the paper. A natural question is then whether modP -synchronization
may be achieved without strong connectivity. In this paper, we address this
issue and show that this problem is solvable under the assumption that a bound
∆ on the radius of the network is given, that is, every node receives a message
from some central node (possibly indirectly) in every period of ∆ consecutive
rounds. By contrast, the �ring squad problem is only solvable in strongly con-
nected dynamic graphs [8]. In other words, every node must be central. In
fact, we exhibit an algorithm, denoted by SynchModP , that achieves synchro-
nization modulo P in any dynamic graph, assuming ∆ ≤ P . When ∆ > P ,
one can �nd an integer M such that ∆ ≤ PM and apply the SynchModPM al-
gorithm in order to solve the modPM -synchronization problem, and hence the
modP -synchronization problem. In this sense, the case ∆ > P can be reduced
to the case ∆ ≤ P . This reduction is presented in Section 3.4. Interestingly,
our algorithm requires no node identi�ers. In particular, nodes are not assumed
to know which nodes are central in the graph. Other than the radius of the
communication graph being at most ∆, no other assumption is made on the
dynamic graph.

The correctness proof of our algorithm relies on a series of preliminary lem-
mas that consider all the possible cases for the respective values of the variables
in the algorithm. In order to increase our con�dence in the correctness and
remove any doubts on such combinatorial proofs, we have developed a formal
proof of the correctness of our algorithm1 in the interactive theorem prover Is-

1The complete Isabelle development is available at https://github.com/louisdm31/

asynchronous_starts_HO_model/tree/master/proof/sync-mod. We provide in the appendix

the Isabelle de�nition of the SynchModP algorithm we used in our formal proof.

3

https://github.com/louisdm31/asynchronous_starts_HO_model/tree/master/proof/sync-mod
https://github.com/louisdm31/asynchronous_starts_HO_model/tree/master/proof/sync-mod

abelle/HOL [18]. The �paper and pencil� proof presented in this article closely
follows our formal proof.

This paper is a revised version of the conference paper [20]. This version
provides more detailed explanations of the algorithm, and in particular detailed
proofs of every lemma, whereas our previous publication only contained the
proofs of the main lemmas. Moreover, we now provide a constructive liveness
proof, that directly entails the time complexity. In contrast, the previous version
contains a non-constructive liveness proof, and the time complexity comes from
a separate proof. The Isabelle proof has been updated to follow the rewritten
proof.

The paper is structured as follows. Section 2 formally de�nes the compu-
tational model. Section 3.1 introduce the SynchModP algorithm. Sections 3.2
and 3.3 provide a detailed proof of correctness of the SynchModP algorithm in
the particular case P > 2 and a bound ∆ on the radius where ∆ ≤ P . Sec-
tion 3.4 generalizes the results of the preceding section and in particular shows
impossibility when ∆ is not known. Section 3.5 introduces a variation of the
SynchModP algorithm that reduces memory usage. Finally, Section 4 concludes
the paper.

2. Preliminaries

2.1. The Computational Model

We consider a networked system with a �xed set V of n nodes. We assume
a round-based computational model in the spirit of the Heard-Of model [9], in
which point-to-point communications are organized into synchronized rounds:
each node sends messages to all nodes and receives messages sent by some of
the nodes. Rounds are communication closed in the sense that no node receives
messages in round t (t = 1, 2, . . .) that are sent in a round di�erent from t . The
collection of communications (which nodes receive messages from which nodes)
at each round t is modelled by a directed graph (digraph, for short) with a set of
nodes equal to V . The digraph at round t is denoted by G(t) = (V ,Et), and is
called the communication graph at round t . The set of u's incoming neighbors
in the digraph G(t) is denoted by Inu(t).

We assume a self-loop at each node in all these digraphs since every node can
communicate with itself instantaneously. The sequence of such digraphs G =
(G(t))t≥1 is called a dynamic graph [6].

In round t , each node u successively (a) broadcasts1 messages determined
by its state at the beginning of round t , (b) receives some of the messages sent
to it, and �nally (c) performs an internal transition to a successor state. A
local algorithm for a node is given by a sending function that determines the

1The system is anonymous and nodes have no knowledge about the dynamic graph. There-

fore, the only valid way to send messages is �send to all�. The communication graph describes

which message will actually be received.

4

messages to be sent in step (a) and a transition function for state updates in
step (c). An algorithm for the set of nodes V is a collection of local algorithms,
one per node.

We also introduce the notion of start schedules, represented as collections
S = (su)u∈V , where each su is a positive integer or is equal to ∞.

The execution of an algorithm A with the dynamic graph G and the start
schedule S then proceeds as follows: Each node u is initially passive. If su =∞,
then the node u remains passive forever. Otherwise, su is a positive integer, and
u becomes active at the beginning of round su , setting up its local variables. In
round t (t = 1, 2 . . .), a passive node sends only heartbeats, corresponding to
null messages, and cannot change its state. An active node applies its sending
function in A to its current state to generate the messages to be sent, then it
receives the messages sent by its incoming neighbors in the directed graph G(t),
and �nally applies its transition function Tu in A to its current state and the
list of messages it has just received (including the null messages from passive
nodes), to compute its next state. Since each local algorithm is deterministic,
an execution of the algorithm A is entirely determined by the initial state of the
network, the dynamic graph G, and the start schedule S.

The states �passive� and �active� do not refer to any physical notion, and are
relative to the algorithm under consideration: as an example, if two algorithms
A and B are sequentially executed according to the order �A followed by B �,
then at some round, a node may be active w.r.t. A while it is passive w.r.t.
B . In such a situation, the node is integrally part of the system and can send
messages, but these messages are empty with respect to the semantics of the
algorithm B . Those messages are then interpreted as heartbeats by B .

As this paper is based on the synchronized computing model, this begs the
question of the realism of this assumption in real-world systems. In fact, syn-
chronized rounds can be emulated in any asynchronous system. A minimal
implementation would work as follows. Each node would hold a local clock
which is incremented after each state update. Each message would be tagged
by this clock, such that the communication-closure property could be enforced.
In each asynchronous execution, the set of received messages by each node be-
tween each state update would yield a dynamic graph that characterizes the
corresponding synchronous execution. This construction does not require any
assumption. The remaining question is how to guarantee that the resulting
dynamic graph satis�es a certain property, and which assumption on the un-
derlying asynchronous system is necessary. This question has been the focus of
several papers [10, 2, 9]. As an example, consider the case of a non-faulty system
for which there is an upper bound on the transit time of each message sent by
some node γ. In such a system, it it possible to construct synchronous rounds
in which the radius of dynamic graph is equal to 1, and hence, the solvability
result of this paper applies. This scenario could be re�ned by allowing some
failures.

5

2.2. Network Model and Start Model

Let us �rst recall the notion of product of two digraphs G1 = (V ,E1) and
G2 = (V ,G2), denoted by G1 ◦G2 and de�ned as follows [8]: G1 ◦G2 has V as
its set of nodes, and (u, v) is an edge if there exists w ∈ V such that (u,w) ∈ G1

and (w , v) ∈ G2. For any dynamic graph G and any integer t ′ > t ≥ 1, we let

G(t : t ′)
def
= G(t) ◦G(t + 1) ◦ · · · ◦G(t ′).

By extension, we let G(t : t) = G(t). The set of incoming neighbors of u in
G(t : t ′) is noted as Inu(t : t

′).
Each edge (u, v) in the digraph G(t : t ′) corresponds to a path u ▷ v in the

interval [t , t ′], i.e., a �nite sequence of nodes u = wt−1,wt , . . . ,wt′ = v such
that each pair (wi−1,wi) is an edge of G(i). This path is said to be active if
each node wt−1,wt , . . . ,wt′ is active in rounds t − 1, t , . . . t ′, respectively.

The eccentricity of a node u in a dynamic graph G is de�ned as

eG(u)
def
= inf{d ∈ N+ | ∀t ∈ N+,∀v ∈ V : (u, v) is an edge in G(t : t + d − 1)}.

The node u is central in G if its eccentricity is �nite. The radius of G is then
de�ned as:

rad(G)
def
= inf

i∈V
eG(i).

A network model is any non-empty set of dynamic graphs. We will focus
on those network models G∗∆ of dynamic graphs G satisfying 0 < rad(G) ≤ ∆,
namely,

∃γ ∈ V , ∀t ∈ N, ∀u ∈ V , γ ∈ Inu(t + 1 : t +∆).

In particular, the network model G∗∆ contains some dynamic graphs which are
partitioned during less than∆ consecutive rounds. We can easily check that, be-
cause of self-loops, any dynamic graph G that permanently contains a spanning
tree rooted in some node γ satis�es

rad(G) ≤ eG(γ) ≤ |V | − 1.

Any dynamic graph which is permanently strongly connected also satis�es rad(G) ≤
|V | − 1, a fortiori.

We also de�ne a start model as a non-empty set of start schedules. A start
schedule S = (su)u∈V is complete if every su is �nite, i.e., no node is passive
forever. Synchronous starts correspond to complete start schedules where all su
are �nite and equal. The point of this paper is to simulate modP-synchronous
starts de�ned by su ≡P sv for every pair of nodes u and v , with any complete
start schedule.

3. The Algorithm

3.1. De�nition and Informal Description of the Algorithm

We �x some P > 2. The SynchModP algorithm appears as Algorithm 1.
Each node holds a level variable. When it becomes active, it moves from passive

6

Algorithm 1: The SynchModP algorithm.

1 Initialization:

2 cu ∈ N, initially 0
3 synchu ← false
4 readyu ← false
5 forceu ∈ {0, 1, 2}, initially 0
6 levelu ∈ {0, 1, 2}, initially 0

7 At each round:

8 send ⟨cu , synchu , forceu , readyu⟩ to all
9 receive incoming messages: let Ina be the set of nodes from which a

non-null message is received.

10 if all received messages are non-null then

11 synchu ←
∧

v∈Ina

synchv ∧ cv ≡P cu

12 end

13 else

14 synchu ← false
15 end

16 readyu ←
∧

v∈Ina

readyv

17 forceu ← max
v∈Ina

forcev

18 cu ← 1 + min
v∈Ina

forcev=forceu

cv

19 if cu ≡P 0 then
20 if levelu = 0 ∧ synchu then

21 levelu ← 1
22 if forceu < 2 then
23 forceu ← 1
24 cu ← 0

25 end

26 end

27 else if levelu = 1 ∧ readyu ∧ synchu then

28 levelu ← 2 /* the node u fires */

29 forceu ← 2
30 cu ← 0

31 end

32 synchu ← true
33 readyu ← levelu > 0

34 end

7

Figure 1: Impact of the state of incoming neighbors of v between round t − P and t on the

decision of v in round t : case where every cu is congruent to 0 in round t − P .

sync = true

γ

sync = true sync = true sync = true

sync = true

v

Inv(t)Inv(t− 1 : t)Inv(t− P + 1 : t)

c ≡P 0 c ≡P 1 c ≡P P − 2 c ≡P P − 1

c ≡P 0

state to level 0. It later moves to level 1, then to level 2. Each time a node
moves from some level to the next, this constitutes a level-up event. From now
on, the level reached during a given level-up event will be called the strength of
this event. Reaching level 2 means �ring. The conditional statements at lines
20 and 27 of Algorithm 1 are executed when the node reaches level 1 and 2
respectively. The intuition of the algorithm can be summarized by two simple
ideas.

Firstly, each node keeps track of the most recent strongest level-up event.

Only the strongest level-up events are considered: if some node �knows� about
a level-up event from level 1 to level 2, it will not record any level-up event from
level 0 to level 1, nor any level-up event from passive state to level 0. Among
the strongest level-up events, the nodes keep track of the age of the most recent
one. This de�nes an ordering on the set of level-up events. For that purpose,
they hold two variables cu and forceu . At any round, node u knows that cu
rounds ago, some node reached a level equal to forceu from the previous level
(as will be proved in Lemma 6). If zu(t) denotes the level-up event that node
u �remembers� in round t , then Lemma 7 shows that u only remembers the
strongest most recent level-up event.

Secondly, let γ denote any central node, whose eccentricity is less or equal
to P . A node may level up in round t only if its counter cu is congruent to zero,

and the counter of γ was also congruent to zero, P rounds ago.

Since the nodes do not know a �xed central node, they conservatively level up
only if all of their incoming neighbors v ∈ Inu(t − P + 1 : t) were congruent to
zero P rounds ago. By de�nition, γ is one of these incoming neighbors. For that
purpose, they use a Boolean variable synch. When the counter of some node
v becomes congruent to zero in some round t − P , it sets its synchv variable

8

Figure 2: Impact of the state of incoming neighbors of v between round t − P and t on the

decision of v in round t : case where some cu are not congruent to 0 in round t − P .

γ

sync = false sync = false
sync = false

v

Inv(t)Inv(t− 1 : t)

c ̸≡P 0

c ≡P 0

c ≡P 0

Inv(t− P + 1 : t)

to true in line 32. During the next P − 1 rounds, it will check whether the
counters of its incoming neighbors are all congruent to its own counter (line 11).
In case they are not, the node will set its synchu variable to false. This false
value will disseminate to its outgoing neighbors (also line 11). Any node whose
synch variable is false cannot move to the next level during the next P rounds.
In contrast, if in round t , the synchu variable is still true, node u knows that
no non-congruence was detected between round t −P and round t . This means
that every central node was congruent with zero in round t − P (as will be
proved in Lemma 3.b). In that case, a level-up event will take place (see Fig. 1).
In contrast, if some node v ∈ Inu(t − P + 1 : t) is not congruent to zero in
round t −P , then the line 11 guarantees that synchu will ultimately be false at
the beginning of round t (see Fig. 2). In addition to synch, the ready variable
makes sure that a node u can move to level 2 only if, P rounds ago, γ was
already in level 1 (as will be proved in Lemma 4). Intuitively, the round tγ in
which γ reaches level 1 is used as a landmark for the modP -synchronization:
Lemma 8 shows that nodes �re in rounds which are congruent to tγ modulo P .

Observe that the presence of self-loops in each communication graph implies
that, in the pseudo-code of Algorithm 1, the minima and maxima are well-
de�ned.

3.2. Notation and Preliminary Lemmas

In the rest of this section, we �x an execution ρ of the SynchModP algorithm
for a complete activation schedule S and a dynamic graph G ∈ G∗∆ with ∆ ≤ P .

Let smax def
= maxu∈V su (note that smax < ∞) and let γ denote some central

node of G satisfying eG(γ) ≤ ∆.

9

If the node u is active in round t , for every variable x of the algorithm, we
denote the value of xu just before u executes line 19 at round t and at the very
end of round t by xpreu (t) and xu(t) respectively. By extension, xu(t) refers to
the initial state if t = su − 1. We now prove that this execution satis�es both
properties of the modP -synchronization problem.

We denote Inau(t) the subset of nodes in Inu(t) which are active in round t−1
in this execution. Some simple claims follow immediately from the de�nition
of the transition function, regardless of the connectivity properties of G. We
consider some node u ∈ V and some round t in which u is active (i.e., t ≥ su).

Lemma 1.

(a) levelu(t + 1) ∈ {levelu(t), levelu(t) + 1}
(b) If cu(t) ̸= 0, then forceu(t) = forcepreu (t) and cu(t) = cpreu (t).

(c) cu(t) ≡P cpreu (t).

(d) If synchpreu (t) = true holds, then each node v ∈ Inu(t) is active at round

t − 1 with: cprev (t − 1) + 1 ≡P cpreu (t).

(e) If cpreu (t) ̸≡P 1 and synchpreu (t) holds, then each node v ∈ Inu(t) is active
in round t − 1 with synchprev (t − 1).

(f) If cpreu (t) ̸≡P 1 and synchpreu (t) = readypreu (t) = true, then for every node

v ∈ Inau(t), it holds that ready
pre
v (t − 1) = true.

(g) For every v ∈ Inau(t), we have
forceprev (t − 1) ≤ forcev (t − 1) ≤ forcepreu (t) ≤ forceu(t).

(h) For every v ∈ Inau(t), if force
pre
v (t − 1) = forcepreu (t) then

cpreu (t) ≤ 1 + cv (t − 1) ≤ 1 + cprev (t − 1).

(i) levelu(t) ≤ forceu(t).

Proof.

(a) The value of levelu(t + 1) is equal to levelu(t), unless line 21 or 28 is
executed in round t + 1. In that case, levelu(t + 1) = levelu(t) + 1.

(b) If cu is nonzero at the end of round t , then lines 24 and 30 cannot be
executed during round t . Therefore, lines 23 and 29 are not executed
either. Since no other lines starting at line 19 modify the variables forceu
or cu , it follows that forceu(t) = forcepreu (t) and cu(t) = cpreu (t).

(c) The assignments in lines 22 and 27 ensure that cu(t) is 0, and they are
executed only if cpreu (t) ≡P 0.

(d) Firstly, cprev (t − 1) is well-de�ned because Inu(t) = Inau(t) (see line 10).
Moreover, the set {cv (t − 1), v ∈ Inu(t)} contains integers which are
mutually congruent modulo P (see line 11). Using claim 1.c and line 18

cprev (t − 1) + 1 ≡P cv (t − 1) + 1 ≡P cpreu (t).

10

(e) By claim 1.d, every incoming neighbor v of u is active in round t − 1
and satis�es cprev (t − 1) ̸≡P cpreu (t) − 1 ≡P 0. Then the conditional
statement starting in line 19 is not executed by v in round t − 1. Then,
both synchv (t − 1) and synchprev (t − 1) hold.

(f) Assume that cu(t) ̸≡P 1 ∧ readypreu (t) ∧ synchpreu (t). Using the previous
proof, every incoming neighbor v is active in round t−1 and the conditional
statement starting in line 19 is not executed by v in round t − 1. Finally,
by line 16, v satis�es readyprev (t − 1).

(g) This property follows directly from lines 17, 23 and 29.

(h) If forceprev (t) = forceprev (t−1), then forcev (t) = forcepreu (t−1) by Lemma 1.g.
Then cpreu (t) ≤ 1 + cv (t − 1) ≤ 1 + cprev (t − 1) by line 18.

(i) We prove by induction on t ≥ su−1 that ∀t ≥ su−1, levelu(t) ≤ forceu(t).

(a) If t = su−1, then u is in the initial state in round t . Then levelu(t) =
forceu(t) = 0.

(b) Assume now that levelu(t) ≤ forceu(t). If u levels up in round t +1,
then levelu(t + 1) ≤ forceu(t + 1) by lines 21, 23, 28. Otherwise, by
Lemma 1.g and by induction hypothesis, levelu(t + 1) = levelu(t) ≤
forceu(t) ≤ forceu(t + 1).

Lemma 2. No node can perform a level-up event action in round P − 1 or

earlier.

Proof. We prove by induction on t that:

∀t < P ,∀u ∈ V , t ≥ su − 1⇒ cu(t) ≤ t ∧ forceu(t) = 0 ∧ ¬synchu(t).

1. For the base case, any node active from the �rst round is in initial state
in round 0:

cu(0) = 0 ∧ forceu(0) = 0 ∧ ¬synchu(0).

2. Let t be some integer in {0, . . . ,P − 2}. Let u be some node which is
active in round t + 2. Either u is in its initial state in round t + 1, and
then clearly cu(t + 1) = 0 ∧ forceu(t + 1) = 0 ∧ ¬synchu(t + 1). Or u
is active in round t + 1. By induction hypothesis, every active incoming
neighbor v of u in round t + 1 has forcev (t) = 0 ∧ ¬synchv (t). Then
forcepreu (t+1) = 0∧¬synchpreu (t+1). Using the induction hypothesis and
line 18, we have t + 1 ≥ cu(t) + 1 ≥ cpreu (t + 1).

Then cpreu (t + 1) ∈ {1, . . . ,P − 1}. By line 19, the variables of u are not
modi�ed in round t + 1 after line 19. From previous claims, we obtain
that cu(t + 1) ≤ t + 1 ∧ forceu(t + 1) = 0 ∧ ¬synchu(t + 1).

Using ¬synchu(t) and line 32, we obtain that a level-up event is impossible for
any u, for t < P .

11

We now show a few properties on the incoming neighbors of nodes that reach
level 1 or 2. This situation is illustrated by Fig. 1.

Lemma 3. Let i be an integer, 0 ≤ i < P, and let u and v be two nodes such

that u ∈ Inv (t −P + i +1 : t). If v is active and moves to level 1 or 2 in round

t, then

(a) u is active in round t − P + i .

(b) cpreu (t − P + i) ≡P i .

(c) If readyprev (t) is true and i > 0, then readypreu (t − P + i) is true as well.

Proof. By Lemma 2, t ≥ P . Let u = wt−P+i , . . . ,wt = v denote some u ▷ v
path in the interval [t − P + i + 1, t]. By a backward induction, we show that,
for any j ∈ {i , . . . ,P}, the node wt−P+j is active at round t − P + j and

cprewt−P+j
(t − P + j) ≡P j

∧ j > 0⇒ synchprewt−P+j
(t − P + j)

∧ j > 0 ∧ readyprev (t)⇒ readyprewt−P+j
(t − P + j).

1. The base case (i.e., j = P and wt−P+j = v) comes from lines 19, 20,
and 27.

2. For the inductive case, we assume that cprewt−P+j+1
(t−P+ j +1) ≡P j +1 as

well as synchprewt−P+j+1
(t−P + j +1), and that whenever readyprev (t) holds,

then readyprewt−P+j+1
(t−P + j +1) holds as well. By Lemma 1.d, wt−P+j is

active in round t −P + j and cprewt−P+j
(t −P + j) ≡P j . If j > 0, we obtain

synchprewt−P+j
(t − P + j) by Lemma 1.e, and by Lemma 1.f, readyprev (t)

implies readyprewt−P+j
(t − P + j).

Lemma 4. If some node u reaches level 2 in round tu , then γ is already in level

1 in round tu .

Proof. Let v be some node which reaches level 2 in round tv . By Lemma 2,
tv ≥ P . By line 27, we have cprev (t) ≡P 0 ∧ synchprev (t) ∧ readyprev (t). We
consider a γ▷u path in the interval [tv−P+1, tv], noted wtv−P ,wtv−P+1, · · ·wtv .
Applying Lemma 3 with i = 1 and u = wtv−P+1, we obtain that wtv−P+1 is
active in round tv − P + 1 and readyprewtv−P+1

(tv − P + 1). Then readyγ(tv − P)
is true using line 16. Applying Lemma 3 with i = 0 and u = γ, we obtain that
γ is active in round tv − P and cpreγ (tv − P) ≡P 0. Finally, levelγ(tv − P) > 0
using line 19 and 33.

Lemma 5. If γ reaches level 1 in round tγ , no node can reach level 1 or 2 in

any of the rounds tγ + 1, . . . , tγ + P − 1.

Proof. By Lemma 2, tγ ≥ P . We assume that some node u levels up in round
tγ + i where j ∈ {1, . . . ,P − 1}. Using G ∈ G∗∆ ⊆ G∗P , we have

γ ∈ Inu(tγ − P + j + 1 : tγ + j).

12

Applying Lemma 3.b with i = 0, we get cpreγ (tγ −P + j) ≡P 0. The presence of
the self-loops implies the existence of a γ▷γ path in the interval [tγ−P+j+1, tγ].
Applying Lemma 3.b with i = j , we get cpreγ (tγ − P + j) ≡P j . We get a
contradiction from j ≡P 0.

Lemma 6. Let u be some node, and t be some round in which u is active. There

exists some node w which reached a level equal to forcepreu (t) in round t−cpreu (t).
Moreover, an active w ▷ u path exists in the interval [t − cpreu (t) + 1, t].

Proof. We show this lemma by induction on cpreu (t).

1. As cpreu (t) ≥ 1 by line 18, the induction begins at cpreu (t) = 1. In that case,
u received a message ⟨0, ∗, forcepreu (t), ∗⟩ from some node v (see lines 17
and 18). Then v reached a level equal to forcepreu (t) in round t−1. Because
v ∈ Inu(t), an active v ▷ u path exists in the interval [t , t].

2. Let us �x some cpreu (t) > 1. Then, u received a message ⟨cpreu (t) − 1, ∗,
forcepreu (t), ∗⟩ from some node v . From Lemma 1.b, cpreu (t)−1 = cprev (t−1)
and forcepreu (t) = forceprev (t − 1). Applying the induction hypothesis to v

in round t − 1, we obtain some node w which reaches a level equal to
forcepreu (t) in round t − cpreu (t). We also obtain an active w ▷ u path in
the interval [t − cpreu (t) + 1, t].

We de�ne the set

Z
def
= {(f , t),∃u ∈ V , levelu(t) = f ∧ levelu(t − 1) ̸= f }. (1)

This set represents the �nite set of level-up events. Using Lemma 6, any node u
satis�es zu(t) = (forcepreu (t), t − cpreu (t)) ∈ Z in every round t ≥ su in which u

is active. We order Z lexicographically. The following lemma proves that u

records the most recent strongest level-up event of its view.

Lemma 7. If there exists an active u ▷ v path between two nodes u and v in

the interval [t + 1, t ′], then zu(t) ≤ zv (t
′). Moreover, if u reached a level equal

to f in round t, then (f , t) ≤ zv (t
′).

Proof. Using claims 1.g and 1.h, we have, for any integer t and any node w :

zw (t + 1) ≥ max
w ′∈Inaw (t+1)

zw ′(t). (2)

Given an active u ▷ v path between u and v in the interval [t + 1, t ′], the main
claim of the lemma follows from Eq. 2, applied to each node in this path. In
the special case where u reached a level equal to f in round t , any outgoing
neighbor w of u satis�es

zw (t + 1) ≥ (f , t).

This inequality also comes from claims 1.g and 1.h. By Eq. 2, we obtain that
(f , t) ≤ zv (t

′), as required.

13

Lemma 8. If γ reaches level 1 in some round tγ , whereas some u reaches level

1 or 2 in some round tu ≥ tγ , then tu ≡P tγ .

Proof. By contradiction, we consider the earliest node u which levels up in some
round tu ≥ tγ with tu ̸≡P tγ . By Lemma 5, tu ≥ tγ + P . There exists a γ ▷ u
path in the interval [tu −P+1, tu], and this path is active by Lemma 3.a. Using
Lemma 7, the self-loop of γ, and this active path, we obtain

(1, tγ) ≤ zγ(tu − P) ≤ zu(tu). (3)

Lemma 6 implies the existence of a node v which reached a level equal to
forcepreu (tu) in some round tv = tu − cpreu (tu). In the case forcepreu (tu) = 2, from
Lemma 4, we obtain tv ≥ tγ . Otherwise, using (1, tγ) ≤ zu(tu), we also have
tv ≥ tγ .

By line 19, we have cpreu (tu) ≡P 0. Recalling tv = tu − cpreu (tu), we obtain
tv ≡P tu ̸≡P tγ . This contradicts the fact that u was the earliest node satisfying
tu ≥ tγ and tu ̸≡P tγ .

Lemma 9. If every node is active in round t, and zγ(t) = zγ(t + 3P), then γ
is in level 1 in round t + 3P.

Proof. Let t0 be a round in which every node is active. By Lemma 7, the
sequence (zγ(t))t>s(γ) is non-decreasing. By assumption, it remains constant
between the rounds t and t + 3P . Then, there exists some round t1 ∈ {t0, t0 +
1, . . . t0 +P − 1} such that cpreγ (t1) ≡P 0. Then we prove by induction on i the
following invariant:

∀i < P ,∀u ∈ Inγ(t
1 + P + i + 1 : t1 + 2P), cu(t

1 + P + i) ≡P i

and synchu(t
1 + P + i) holds

1. Base case: we �x some node u ∈ Inγ(t
1 +P + 1 : t1 + 2P). By Lemma 7,

zγ(t
1) ≥ zu(t

1 + P) ≥ zγ(t
1 + 2P). Moreover, by assumption, zγ(t

1) =
zγ(t

1+2P). Using successively Claim 1.c, the equality zγ(t
1) = zγ(t

1+2P)
and the de�nition of t1, we obtain

cu(t
1 + P) ≡P cpreu (t1 + P) ≡P cpreγ (t1) ≡P 0. (4)

Moreover, synchu(t
1 + P) holds by line 32.

2. Induction case: we �x some integer i < P − 1 and some node u such that
u ∈ Inγ(t

1 +P + i +2 : t1 +2P). In round t1 +P + i +1, every incoming
neighbor v of u belongs to Inγ(t

1 + P + i + 1 : t1 + 2P), and hence, by
induction hypothesis, satis�es cv ≡P i and synchv in round t1 + P + i .
By lines 18 and 11, cu(t

1+P + i +1) ≡P i +1 and synchu(t
1+P + i +1)

holds, as required.

Finally, by choosing i = P − 1, the previous invariant, lines 18 and 11 imply
that cpreγ (t1 + 2P) ≡P 0 and synchpreγ (t1 + 2P) is true. By lines 19 and 20,
γ moves to level 1 in round t1 + 2P at the latest.

14

3.3. Correctness Proof

Lemma 10. Assuming a dynamic graph satisfying rad(G) ≤ P, any execution

of the SynchModP algorithm satis�es modP-simultaneity.

Proof. We �x some node u, and we assume that u reaches level 2 in round tu .
Let γ be a central node whose eccentricity is at most P . From Lemma 4, we
obtain tu ≥ tγ , where tγ is the round in which γ reaches level 1. By Lemma 8,
tu ≡P tγ . That proves modP -simultaneity.

Lemma 11. Under the assumptions of a complete activation schedule and of

a dynamic graph satisfying rad(G) ≤ P, any execution of the SynchModP algo-

rithm terminates. Moreover, every node �res 6nP rounds after the activation

of all nodes, at the latest, where n is the cardinality of V .

Proof. Recall that smax denotes the round from which every node is active.
Let γ be a central node whose eccentricity is at most P . Let tγ be the round,
if any, in which γ moves to level 1. The proof consists in two parts: First, we
show that tγ exists and is bounded by tmax = smax + 3P(2n − 1). Then we
deduce the termination property of the SynchModP algorithm.

We assume by contradiction that γ is still at level 0 in round tmax . By
Lemma 4, each node other than γ is at most at level 1 in round tmax . Then,
at most 2n − 1 level-up events occurred in round tmax and beforehand. We
consider the sequence (ẑi)i∈N where ẑi = zγ(s

max + 3P × i). This sequence is
non-decreasing by Lemma 7. In addition, by Lemma 9, this sequence is strictly
increasing as long as γ is at level 0. We obtain a contradiction by the pigeonhole
principle: the �rst 2n elements of the sequence (ẑi)i∈N are distinct, whereas only
2n − 1 level-up events happened before round tmax . This ends the �rst part of
the proof.

We achieve the second part of the proof using two invariants. First, we prove
the following invariant by induction over i .

∀i ∈ N,∀u ∈ V , cu(tγ + P + i) ≡P i and synchu(tγ + P + i) holds (5)

1. Base case. By Claim 1.c and Lemma 8, as zu(tγ + P) ≥ zγ(tγ), we obtain

cu(tγ + P) ≡P cpreu (tγ + P) ≡P cpreγ (tγ) ≡P 0.

Moreover, synchu(tγ + P) holds by line 32.

2. The inductive case holds by lines 18 and 11, using the induction hypoth-
esis.

Given a node u, we apply Eq. 5 to each of u's incoming neighbors in round
tγ + 2P . We obtain cpreu (tγ + 2P) ≡P 0 and synchpreu (tγ + 2P), and hence u

reaches level 1 in round tγ + 2P at the latest. We prove another invariant by
induction over i .

∀i ∈ N,∀u ∈ V , readyu(tγ + 2P + i) holds (6)

15

The base case holds by line 33, and the inductive case holds by line 16. Finally,
using Eq. 5 and 6, every node �res in round tγ + 3P ≤ smax + 6Pn at the
latest.

The previous two lemmas yield the following correctness theorem:

Theorem 12. Under the assumptions of a complete activation schedule and of

a dynamic graph satisfying rad(G) ≤ P, the SynchModP algorithm solves the

modP-synchronization problem for any integer P greater than 2. Moreover,

every node �res 6nP rounds after the activation of all nodes, at the latest.

3.4. Solvability Results

We show that the modP -synchronization problem is always solvable, re-
gardless of the value of P , if the bound ∆ on the delay is known: for each
possible ∆, we can exhibit an algorithm which solves modP -synchronization in
any dynamic graph satisfying rad(G) ≤ ∆.

Corollary 13. For any positive integer P, the modP-synchronization problem

is solvable in each network model G∗∆ in any complete activation schedule.

Proof. Depending on the relative values of P and ∆, we consider the following
cases:

1. P = 1. The modP -simultaneity property is a tautology in this case. The
problem is trivially solvable in any network model, in particular G∗∆.

2. ∆ ≤ P and P > 2. By Theorem 12, the SynchModP algorithm solves the
modP -synchronization problem in G∗∆.

3. ∆ ≤ P = 2. Theorem 12 shows that the SynchMod4 algorithm achieves
mod4-synchronization in G∗2 , and hence achieves mod2-synchronization
in G∗2 .

4. ∆ > P . We have ∆ ≤ ⌈∆
P
⌉ · P . By Theorem 12, the mod ⌈∆

P
⌉ · P -

synchronization problem is solvable in G∗∆ using SynchMod ⌈∆
P
⌉·P . The

modP -synchronization problem is also solvable in G∗∆, a fortiori.

In contrast, we show that the modP -synchronization problem is not solvable
if the delay ∆ is unknown to the nodes.

Theorem 14. If P > 1, then the modP-synchronization problem is not solvable

in the network model
⋃
i∈N
G∗i .

Proof. By contradiction, assume that an algorithm A solves the problem in
the above-mentioned network model. We consider any system and we �x two
nodes u and v in this system. We denote I the digraph only containing self-
loops. We denote Cu and Cv the digraphs only containing self-loops and a star
centered in u and v respectively. We construct four executions of A:

16

1. Every node starts in round 1. The dynamic graph is equal to Cu at each
round. This dynamic graph belongs to G∗1 . Using the termination of A,
u �res in some round fu .

2. Every node starts in round 1. The dynamic graph is equal to Cv at each
round. This dynamic graph belongs to G∗1 . Using the termination of A,
v �res in some round fv .

3. Every node starts in round 1. During the �rst fu+fv rounds, the communi-
cation graph is equal to I . In every subsequent round, the communication
graph is equal to Cu . This dynamic graph belongs to G∗1+fu+fv .

4. The node u starts in round 1, whereas every other node starts in round 2.
During the �rst fu + fv rounds, the communication graph is equal to I . In
every subsequent round, the communication graph is equal to Cu . This
dynamic graph belongs to G∗1+fu+fv .

From the point of view of u, the third execution is indistinguishable from
the �rst execution. Therefore, u �res in round fu in the third execution. From
the point of view of v , the third execution is indistinguishable from the second
execution during the �rst fv rounds. Thus, v �res in round fv in the third
execution. Using the modP -simultaneity of A in the third execution, we obtain:

fu ≡P fv .

Similarly, u �res in round fu and v �res in round 1+ fv in the fourth execution.
Using the modP -simultaneity of A in the fourth execution, we obtain:

fu ≡P fv + 1.

Since we assumed P > 1, a contradiction is reached.

3.5. Reducing Memory Usage

For all nodes u and all rounds t , we have (forcepreu (t), t − cpreu (t)) ∈ Z by
Lemma 6. Since Z is �nite, cpreu (t) tends to in�nity as t tends to in�nity. We
present below an idea (inspired by [4]) which can alleviate this issue: in each
execution of Algorithm 1, total memory usage increases forever, whereas in each
execution of Algorithm 2, total memory usage grows during some arbitrarily long
initial period, and then drops and remains bounded forever.

The idea is as follows: as soon as forceu(t) = 2, the node u knows that some
node v �red in round t − cu(t) (see Lemma 6). Then u may �re in any round
t ′ ≡P t − cu(t). At this point, the transition function can thus be simpli�ed as
in Algorithm 2.

Theorem 15. Under the assumptions of a complete activation schedule and of a

dynamic graph satisfying rad(G) ≤ P, Algorithm 2 solves the modP-synchroni-
zation problem. Moreover, in each execution of Algorithm 2, the memory usage

of each node is bounded.

17

Algorithm 2: The OptSynchModP algorithm

1 Initialization:

2 initialize with SynchModP 's initial state

3 At each round:

4 if forceu = 2 then
5 send ⟨cu , true, 2, true⟩ to all
6 cu ← 1 + cu mod P

7 if levelu < 2 ∧ cu = 0 then
8 levelu ← 2
9 end

10 end

11 else

12 apply SynchModP 's transition function
13 end

However, it is not possible to provide a bound on the memory usage that
would hold for all executions of Algorithm 2. Indeed, the synchronization is
guaranteed to happen only once all nodes have become active. Before this
point, the memory usage of active nodes will steadily grow.

4. Conclusion and Future Work

In this paper, we introduced the modP -synchronization problem, and we
presented an algorithm for solving this problem. We provided a detailed proof
of correctness of this algorithm, and we showed that the time complexity is
bounded by 6Pn, where n is the number of nodes in the system. We did not
prove the tightness of this bound, but we believe that an execution whose time
complexity is close to 6Pn exists. This could be part of a future work. This
time complexity seems problematic when n is large. Typically, IoT networks
can contain a few hundred nodes. However, keep in mind that 6Pn is the time
complexity of the worst-case scenario. We believe that, in the average case, the
time complexity is much better, including in large networks. This issue could
also be further studied in the future.

References

[1] Arora, A., Dolev, S., Gouda, M.G.: Maintaining digital clocks in step.
Parallel Processing Letters 1, 11�18 (1991)

[2] Awerbuch, B., Kutten, S., Mansour, Y., Patt-Shamir, B., Varghese, G.: A
time-optimal self-stabilizing synchronizer using a phase clock. IEEE Trans-
actions on Dependable and Secure Computing 4(3), 180�190 (2007)

18

[3] Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and
Recovery in Database Systems. Addison-Wesley (1987)

[4] Boldi, P., Vigna, S.: Universal dynamic synchronous self�stabilization. Dis-
tributed Computing 15(3), 137�153 (2002)

[5] Boulinier, C., Petit, F., Villain, V.: Synchronous vs. asynchronous unison.
Algorithmica 51(1), 61�80 (2008)

[6] Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying
graphs and dynamic networks. In: International Conference on Ad-Hoc
Networks and Wireless. Lecture Notes in Computer Science, vol. 6811, pp.
346�359. Springer (2011)

[7] Charron-Bost, B., Moran, S.: The �ring squad problem revisited. Theoret-
ical Computer Science 793, 100�112 (2019)

[8] Charron-Bost, B., Moran, S.: MinMax algorithms for stabilizing consensus.
Distributed Computing 34, 195�206 (2021)

[9] Charron-Bost, B., Schiper, A.: The Heard-Of model: computing in dis-
tributed systems with benign faults. Distributed Computing 22(1), 49�71
(2009)

[10] Couvreur, J.M., Francez, N., Gouda, M.G.: Asynchronous unison. In:
ICDCS. vol. 92, pp. 486�493 (1992)

[11] Debrat, H., Merz, S.: Verifying fault-tolerant distributed algorithms in the
heard-of model. Archive of Formal Proofs (2012), http://isa-afp.org/
entries/Heard_Of.html, Formal proof development

[12] Dolev, D., Strong, H.R.: Authenticated algorithms for Byzantine agree-
ment. SIAM J. Comput. 12(4), 656�666 (1983)

[13] Dwork, C., Lynch, N.A., Stockmeyer, L.: Consensus in the presence of
partial synchrony. J. ACM 35(2), 288�323 (1988)

[14] Herman, T., Ghosh, S.: Stabilizing phase-clocks. Inf. Process. Lett. 54(5),
259�265 (1995)

[15] Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic
networks. In: Proceedings of the 42nd ACM Symposium on Theory of
Computing. pp. 513�522 (2010)

[16] Kuhn, F., Moses, Y., Oshman, R.: Coordinated consensus in dynamic
networks. In: Proceedings 30th ACM Symposium Principles of Distributed
Computing. pp. 1�10. ACM (2011)

[17] Lamport, L.: The part-time parliament. ACM Transactions on Computer
Systems 16(2), 133�169 (May 1998)

19

http://isa-afp.org/entries/Heard_Of.html
http://isa-afp.org/entries/Heard_Of.html

[18] Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL. A Proof Assistant for
Higher-Order Logic, Lecture Notes in Computer Science, vol. 2283. Springer
(2002)

[19] Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence
of faults. J. ACM 27(2), 228�234 (1980)

[20] Penet de Monterno, L., Charron-Bost, B., Merz, S.: Synchronization mod-
ulo k in dynamic networks. In: 23rd International Symposium on Stabi-
lization, Safety, and Security of Distributed Systems, SSS. Lecture Notes
on Computer Science, vol. 13046, pp. 425�439. Springer (2021)

[21] Srikanth, T.K., Toueg, S.: Simulating authenticated broadcasts to derive
simple fault-tolerant algorithms. Distributed Computing 2(2), 80�94 (1987)

Appendix A. Some Extra Formal De�nition

Below are the formal de�nitions of the state space and the initial state of
the SynchModP algorithm in the syntax of Isabelle/HOL.

record locState =
x :: nat
synch :: bool
ready :: bool
force :: nat � force ∈ {0, 1, 2}
level :: nat � level ∈ {0, 1, 2}

de�nition initState where

initState ≡ L x = 0, synch = False, ready = False, force = 0, level = 0 M

We de�ne a datatype for messages sent between two nodes u and v : messages
either carry a value of some type ′msg , or are equal to Null if u is passive, or
to Void if u is not an incoming neighbor of v .
datatype ′msg message = Content ′msg | Null | Void

Then we provide the transition function of the SynchModP algorithm. The
argument msgs is a function that maps each node to the message received from
this node.

de�nition nextState :: nat ⇒ locState ⇒ (Proc ⇒ locState message) ⇒ locState

where

nextState P s msgs ≡
let synch_pre = (∀ p. msgs p ̸= Void −→
(∃ m. msgs p = Content m ∧ synch m ∧ c m mod P = c s mod P)) in

let ready_pre = (∀ p m. msgs p = Content m −→ ready m) in

let force_pre = (Max (P_mod.forceMsgs ` range msgs)) in

let c_pre = Suc (LEAST v. ∃ m p. msgs p = Content m ∧ force m = force_pre

∧ c m = v) in

if c_pre mod P = 0 then

if level s = 0 ∧ synch_pre then

if force_pre ≤ 1 then

20

L c = 0, synch = True, ready = True,

force = 1, level = 1 M
else

L c = c_pre, synch = True, ready = True,

force = force_pre, level = 1 M
else

if level s = 1 ∧ synch_pre ∧ ready_pre then

L c = 0, synch = True, ready = True,

force = 2, level = 2 M
else

L c = c_pre, synch = True, ready = level s > 0,

force = force_pre, level = level s M
else

L c = c_pre, synch = synch_pre, ready = ready_pre,

force = force_pre, level = level s M

The following two de�nitions state the correctness properties of the algo-
rithm. In these de�nitions, rho denotes an execution, modeled as a sequence of
global states, i.e. functions from nodes u to either Asleep (representing the fact
that node u is still passive) or Active s for some local state s.

de�nition liveness where � termination
liveness rho ≡ ∀ u. ∃ t s. rho t u = Active s ∧ level s = 2

de�nition safety where � mod P-simultaneity

safety rho ≡ ∃ c. ∀ u t s ss.

rho t u = Active s −→ level s < 2 −→
rho (Suc t) u = Active ss −→ level ss = 2 −→ t mod P = c

The correctness of the SynchModP algorithm is proved under the following
assumptions:

assumes ∀ u t. path In gamma u t P � gamma's eccentricity is at most P
and ∀ u t. u ∈ In t u � the graph contains self-loops
and HORun (HOMachine P) rho In � rho is an execution
and ∀ p. ∃ t. rho t p ̸= Asleep � the schedule is complete
and P > 2

The predicate HORun above is de�ned in [11] and characterizes executions
of an algorithm as described above. Since this de�nition was originally written
for synchronous starts, we adapted it to describe asynchronous starts.

21

	Introduction
	Preliminaries
	The Computational Model
	Network Model and Start Model

	The Algorithm
	Definition and Informal Description of the Algorithm
	Notation and Preliminary Lemmas
	Correctness Proof
	Solvability Results
	Reducing Memory Usage

	Conclusion and Future Work
	Some Extra Formal Definition

