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Introduction

Rankings establish comparisons between individual objects (or sets of objects) that are useful for many applications. Consider, for example, the widely studied problem of college admissions [START_REF] Walczak | A comparative analysis of regression and neural networks for university admissions[END_REF]. Ranking solutions have been proposed to solve this problem [START_REF] Roth | Handbook of game theory with economic applications[END_REF] and other similar problems such as committee 5 selection [START_REF] Klamler | Committee selection with a weight constraint based on lexicographic rankings of individuals[END_REF]. Thus, they have been long investigated in the literature. Without aiming for completeness, here we highlight three different bodies of work related to rankings. Firstly, the literature has countless examples of works studying voting and ranking aggregation. A representative example of recent developments in this area include the work of Aledo et al. [START_REF] Aledo | A highly scalable algorithm for weak rankings aggregation[END_REF] on a highly scalable algorithm to aggregate general rankings, and Miebs et al. [START_REF] Miebs | Heuristic algorithms for aggregation of incomplete rankings in multiple criteria group decision making[END_REF] who study heuristic algorithms to aggregate incomplete partial rankings. Secondly, Barbera et al. [START_REF] Barberà | Ranking sets of objects[END_REF] study functions that transform rankings of individual elements into rankings of sets of these elements. Maxmin and minmax [START_REF] Arlegi | A note on bossert, pattanaik and xu's "choice under complete uncertainty: axiomatic characterization of some decision rules[END_REF] or leximin and leximax [START_REF] Prasanta | An axiomatic characterization of the lexicographic maximin extension of an ordering over a set to the power set[END_REF] are examples of such functions. Thirdly, Moretti and Ozturk [START_REF] Moretti | Some axiomatic and algorithmic perspectives on the social ranking problem[END_REF] introduce the social ranking as a mapping that transforms a ranking of sets of elements into a ranking of the individual elements of these sets. Social rankings have been extensively studied: Haret et al. [START_REF] Haret | Ceteris paribus majority for social ranking[END_REF] base their work on the ceteris paribus majority principle; Khani et al. [START_REF] Khani | An ordinal banzhaf index for social ranking[END_REF] focus on the notion of marginal contribution; and Doignon et al. [START_REF] Doignon | On the ordinal invariance of power indices on coalitional games[END_REF] study the stability of social scorings (a concept related to social rankings). We can even find the usage of social rankings in ethical decision-making [START_REF] Serramia | A qualitative approach to composing value-aligned norm systems[END_REF].

A particularly interesting social ranking is lex-cel introduced by Bernardi et al. [START_REF] Bernardi | Ranking objects from a preference relation over their subsets[END_REF] which focuses on lexicographical preferences and satisfies some desirable properties. Lex-cel has caught the attention of the social choice community, so much so that there have recently been many works, generalising it [START_REF] Algaba | Lexicographic solutions for coalitional rankings[END_REF][START_REF] Béal | Lexicographic solutions for coalitional rankings based on individual and collective performances[END_REF], proving it is not manipulable [START_REF] Allouche | Social ranking manipulability for the cp-majority, banzhaf and lexicographic excellence solutions[END_REF], applying it to coalition formation [START_REF] Konieczny | Selecting the most relevant elements from a ranking over sets[END_REF], and defining a new social choice function based on it [START_REF] Lucchetti | Coalition Formation Games and Social Ranking Solutions[END_REF].

A common assumption in the ranking literature is the existence of preferences regarding the elements or sets of elements from which to build a ranking. Indeed, this assumption is reasonable when considering a limited number of candidate elements -e.g. in a presidential election. However, when considering many candidates -e.g. in scholarship assignments -it is common practice simply to be provided with the criteria for establishing the element ranking, rather than an explicit ranking over the individual elements. Moreover, if multiple criteria are considered, we may also be provided with preferences regarding them.

For example, when designing a diet, we may consider different criteria regarding the food to choose -such as its healthiness or tastiness -and preferences over these criteria -e.g., healthiness preferred over tastiness.

Against this background, in this paper we develop novel formal tools to help decision-makers take qualitative decisions about multiple options while considering their preferences. In particular, we propose multi-criteria-based ranking (MC ranking), a method to rank individual elements based on: i) how they relate to the criteria (e.g., if the food is tasty); and ii) the preferences over these criteria. Specifically, when building MC rankings, we consider that candidate elements may relate to a given criterion to different degrees. Thus, following the example of a diet, broccoli cheddar soup can be considered to be not particularly healthy, a Caesar salad to be healthy, and steamed vegetables to be very healthy. Moreover, these qualitative relationships may even be negative -with sausages considered unhealthy and chips very unhealthy. Overall, our multicriteria-based ranking encompasses rich qualitative element-criterion relations that produce a comprehensive ranking over the individual candidate elements.

Briefly, the contributions of this paper are:

1. A formal definition of a new type of rankings: multi-criteria-based rankings (MC rankings).

2. A formal definition of dominance for MC rankings. This definition requires a non-straightforward adaptation from the desirable dominance property in social choice. [START_REF] Algaba | Lexicographic solutions for coalitional rankings[END_REF]. A definition and study of the so-called multi-criteria lex-cel, a function to create MC rankings embodying dominance. [START_REF] Allouche | Social ranking manipulability for the cp-majority, banzhaf and lexicographic excellence solutions[END_REF]. A formal analysis showing the generality of our contributions with respect to recent results in the literature. Interestingly, MC rankings generalise social rankings [START_REF] Moretti | Some axiomatic and algorithmic perspectives on the social ranking problem[END_REF], while multi-criteria lex-cel generalises the lex-cel ranking function introduced in [START_REF] Bernardi | Ranking objects from a preference relation over their subsets[END_REF]. [START_REF] Arlegi | A note on bossert, pattanaik and xu's "choice under complete uncertainty: axiomatic characterization of some decision rules[END_REF]. A case study posing an ethical decision-making problem that illustrates the use of MC rankings. This paper is organised as follows. We first introduce the necessary background to order theory in Section 2, while Section 3 formalises labels and label systems.

Next, Section 4 formalises MC rankings, as well as the property of dominance, while Section 5 introduces MC lex-cel. Subsequently, Section 6 studies the relation of our MC rankings and MC lex-cel with the literature on social choice.

Finally, Section 7 analyses a case study in ethical decision-making, while Section 8 shows an application in participatory budgets, and Section 9 discusses our conclusions.

Background: Order theory

Let X be a set of objects. A binary relation on X is said to be: reflexive, if for each x ∈ X, x x; transitive, if for each x, y, z ∈ X, (x y and y z) ⇒ x z; total, if for each x, y ∈ X, x y or y x; antisymmetric, if for each x, y ∈ X, x y and y x ⇒ x = y. We can define preferences among the elements of X by means of binary relations. Moreover, we can categorise the type of preferences depending on the properties they hold as follows.

Def. 1 (Preorder, ranking, linear order and partial order). A preorder (or quasi-ordering) is a binary relation that is reflexive and transitive. A preorder that is also total is called a total preorder or ranking. A total preorder that is also antisymmetric is called a linear order. A preorder that is antisymmetric but not total is called partial order.

We build a lexicographical order for two tuples by comparing them elementwise from left to right. While the elements in both tuples are the same, we move to the next position on the tuples. We traverse the tuples until two elements differ (one is preferred over the other). The more preferred tuple is the one containing the more preferred element. If all elements are the same, the tuples are deemed equal. Formally: The lexicographical order for tuples is used in the definition of the lex-cel ranking [START_REF] Bernardi | Ranking objects from a preference relation over their subsets[END_REF]. Let X be a set of elements, and S a ranking over the power set P(X), then lex-cel builds an element ranking e by means of assigning a tuple to each element (noted θ(x)). To build this tuple, consider the quotient set

Def. 2.
P(X)/∼ S with quotient order Σ 1 S Σ 2 S • • • S Σ q . Then, θ(x) is defined as: θ(x) = (x 1 , . . . , x q ) where x i = |S ∈ Σ i : x ∈ S| (1) 
Lex-cel ranks elements in X by comparing lexicographically their corresponding θ tuples: x e y ⇔ θ(x) ≥ lex θ(y).

Relating elements to criteria

As previously introduced, when ranking candidate elements according to given criteria, we consider those candidate elements that are related to the given criteria. Specifically, we enrich the expressivity of these relations by means of graded labels. As we assume humans will assign semantics to the labels and will specify these relations, we take inspiration from the widely-used Likert scale [START_REF] Nemoto | Likert-scale questionnaires[END_REF] 1 , and specify that graduation ranges from negative labels, which signal that an element is detrimental to a criterion, through a neutral label, to positive labels, which indicate that an element aligns with a criterion. Next, we introduce the notions of label system, the object that defines labels for relating elements and criteria and their semantics, and labelling, a function to relate elements to criteria through labels.

A label system contains a set of labels and an order over them to establish their grading. This set of labels must contain a neutral label, lying between positive and negative labels. Positive labels are those that are more preferred than the neutral label, whereas negative labels are those that are less preferred than the neutral label. In terms of label grading, the more preferred a positive label, the higher the degree of alignment between an element and the criterion it is meant to represent. Conversely, the less preferred a negative label, the higher the detrimental degree.

Def. 3 (Label system). A label system is a pair L, > L , where L is a set of labels, and > L is a linear order over L. A label system includes a neutral label2 l 0 ∈ L. Labels more preferred than l 0 are positive labels, whereas those less preferred than l 0 are negative labels.

Note that a label system does not need to have a negative label for each positive label. In fact, it might only have positive labels. However, a label system with more labels of one type than of another one hinders the task of comparing labels. For example, given

l 2 > L l 1 > L l 0 > L l -1 , it is unclear
whether the positive counterpart of l -1 is l 2 because both labels are the most extreme ones, or if it is l 1 , because they are equally separated from l 0 . To avoid these uncertainties, we focus on a particular type of label systems: the so-called symmetric label systems, for which each positive label has a negative counterpart. To ease their definition, we first introduce two auxiliary functions, namely the sign and strength of a label, which also provide a useful notation for the forthcoming sections. Given a label system, the sign function signals whether a label is positive

(1), negative (-1), or the neutral label (0).

sgn(l) =            1 if l > L l 0 0 if l = l 0 -1 if l 0 > L l (2) 
The strength function characterises the label's degree of preference in the label system order. In particular, we consider that, given a label l, the more labels between l and l 0 in the label order, the greater its strength. Formally:

stg(l) =            |{l ∈ L, l ≥ L l > L l 0 }| if l > L l 0 0 if l = l 0 |{l ∈ L, l 0 > L l ≥ L l}| if l 0 > L l (3) 
Def. 4 (Symmetric label system). A label system L, > L is symmetric if ∀l ∈ L, ∃l ∈ L, such that sgn(l) = -sgn(l ) and stg(l) = stg(l ).

Symmetric label systems have the same number of positive and negative labels. Note that, without loss of generality, any label system can be transformed into a symmetric label system by simply adding superfluous labels. Hereafter, we only consider symmetric label systems. Also, we can uniquely note each label in the label system as l sgn(l)•stg(l) (for example, we note as l -2 the label of sign -1 and strength 2).

Example 1. Consider L = {l 1 , l 0 , l -1 , l -2 } to be a label system with order

l 1 > L l 0 > L l -1 > L l -2 .
Note, for example, that l -2 is the label of sign sgn(l -2 ) = -1 and strength str(l -2 ) = 2. Moreover, as we require symmetry, we can add an additional superfluous label l 2 to transform the system into a

symmetric label system L = {l 2 , l 1 , l 0 , l -1 , l -2 } with order l 2 > L l 1 > L l 0 > L l -1 > L l -2 .
Using a label system, a decision-maker can relate an element with a criterion by means of a labelling function.

Def. 5. Given a set of elements X, a set of criteria C, and a label system L, > L , a labelling is a function λ : X × C → L that assigns a label in L to each pair of elements in X and criterion in C, thereby establishing the relation between the element and the criterion. We note as L(X, C) the set of all possible labellings over X and C.

If λ(x, c) = l, we say that element x is related to criterion c with degree l.

From equation 3, we also say that the strength of the relation is stg(l). For example, recalling the diet example, a labelling would relate steamed vegetables (sv) to the healthiness criterion (h) with a label of positive sign and very high strength (l max ), thus resulting in λ(sv, h) = l max .

Example 2. Consider the set of elements X = {x 1 , . . . , x 5 } and a set of criteria C = {c 1 , . . . , c 4 } and the label system of Example 1. An example of a labelling would be:

λ x 1 x 2 x 3 x 4 x 5 c 1 l -2 l 1 l 1 l 0 l 0 c 2 l 2 l 1 l 0 l 0 l 0 c 3 l 0 l -1 l 0 l -1 l 2 c 4 l 0 l -1 l 0 l -2 l 0

Multi-criteria-based rankings

As mentioned above, we assume that the decision maker establishes a set of criteria and knows their preferences over them. We have learnt in Section 3 how to relate elements to criteria. Our goal is to build a ranking of the single elements in X from: (i) the relationships between elements and criteria; and (ii) preferences regarding criteria. We will call such ranking a multi-criteria-based ranking (MC ranking). In this section, we formally define this ranking, as well as the fundamental notion of dominance for MC rankings.

An MC ranking considers a set of elements X, a set of criteria C, a ranking C over the criteria, and a labelling λ relating elements to criteria and builds a ranking over the single elements in X. Formally: Def. 6. Given a set of elements X, a set of criteria C, and a set of labellings L(X, C), an MC ranking is a function mcr : L(X, C) × R(C) → R(X) that associates any pair of labelling λ ∈ L(X, C) (relating elements with criteria) and ranking C ∈ R(C) (over the criteria) to another ranking mcr(λ, C ) ∈ R(X) over the elements of X.

MC rankings call for the introduction of a novel notion of dominance between the elements in X, as is common in the literature (e.g. [8] [35]). Such notion of dominance must ensure that the ranking of elements is based strictly on the ranking over criteria. However, defining dominance for MC rankings is intricate due to the richness of our labelling approach. Informally, our notion of dominance requires that an MC ranking function ranks the elements in X taking into accountthe element-criterion relations, their associated labels, and the criteria preferences. Thus, the more preferred a criterion with which an element relates positively, the more preferred the element. Conversely, the more preferred the criterion with which an element relates negatively, the less preferred the element. The higher the degree of the labels on these positive/negative relations, the more/less preferred the element will be. Furthermore, the larger the number of positive relations and the lower the number of negative relations for an element, the more preferred the element in the ranking will be.

Our notion of dominance between two elements is founded on the dominance within each equivalence class of criteria resulting from the ranking C over criteria. Thus, consider the quotient set of criteria C/∼ C with equivalence classes κ 1 , . . . , κ r , and quotient order C . Note that the criteria within each equivalence class κ ∈ C/∼ C are preferred equally. Given an equivalence class κ, our first aim is to establish whether an element x ∈ X is κ-dominant (dominant within the scope of the equivalence class κ) over another element y ∈ X.

An element will be κ-dominant over another if it relates more strongly (and positively) to the criteria in κ than another element.

To define κ-dominance, we employ an auxiliary function, the so-called net alignment function. Given an element x and a strength s, the net alignment function aggregates the positive and negative relations of x with the criteria in κ with strength s. Thus, the larger the net alignment, the more positive relations of strength s relating x and κ, and the lower the net alignment, the more negative relations of strength s relating x and κ. Formally, the net alignment function (noted na) is defined as the difference between the number of criteria positively and negatively related to x with strength s: Def. 7. Consider a criteria equivalence class κ ∈ C/∼ C and a relation strength s = 0. We define the net alignment of strength s of element x with class κ as:

na(x, κ, s) = |{c ∈ κ : λ(x, c) = l s }| -|{c ∈ κ : λ(x, c) = l -s }| (4) 
Let s max = max l∈L stg(l) be the maximum strength of the labels in the label system. Then, κ-dominance is defined as:

Def. 8. Given two elements x, y ∈ X, a set of criteria C, a ranking over these criteria C , a symmetric label system L, > L and a criteria equivalence class 

κ ∈ C/ ∼ C ,
, 2) = -1,
while for the rest of the elements in X, their net alignment of strength 2 with κ 1 is 0, which is greater than -1. Thus, we say that x 2 , x 3 , x 4 , and x 5 are

κ 1 -dominant over x 1 .
Notice that the relation over the elements in X provided by κ-dominance corresponds to a lexicographical order over the tuples of net alignment values arranged in decreasing order of label strength, from s max to 1 (see relation [START_REF] Ofer | What sustains social norms and how they evolve?: The case of tipping[END_REF] in the following section for a formal definition). In the previous example, with s max = 2, the tuples of net alignment values (na(x, κ 2 , 2), na(x, κ 2 , 1)) on the criteria equivalence class κ 2 for each element in x ∈ X are (1, 0) for x 1 and x 5 , (0, -1) for x 2 , (0, 0) for x 3 and (-1, -1) for x 4 . Therefore, the lexicographical order induced by κ 2 -dominance on the tuples of net alignment values is

(1, 0) > lex (0, 0) > lex (0, -1) > lex (-1, -1)
. This corresponds to stating that In other words, the choice of a lexicographical order over tuples of net alignment values boils down to defining a rigorous hierarchy over the labels to favour the excellence of elements over criteria in the same equivalence class. Although the choice of such a hierarchy over labels depends on the application context, the use of lexicographical orders in models of preference and choice has been widely analysed in the literature of decision theory and artificial intelligence, and its application has been studied extensively both from a mathematical and a pragmatic perspective (see for instance [START_REF] Peter C Fishburn | Exceptional paper-lexicographic orders, utilities and decision rules: A survey[END_REF][START_REF] Lang | Voting on multi-issue domains with conditionally lexicographic preferences[END_REF][START_REF] Schmitt | On the complexity of learning lexicographic strategies[END_REF]).

Using the concept of κ-dominance, we define dominance considering all equivalence classes in C/ ∼ C (and their quotient order C ). We say that x is dominant over y if for a given criteria equivalence class x is κ-dominant over y, while for more preferred equivalence classes they are κ-indifferent.

Def. 9. Given two elements x, y ∈ X with criteria in C and a ranking over criteria C , we say that x is dominant over y if there is a criteria equivalence Dominance is a natural extension of the κ-dominance notion to a multi-criteria framework where a preference ranking C over criteria is given. As we will explain in detail in Section 5.2, the dominance relation over elements represents a lexicographical order aimed at rewarding the elements having excellent labelling degrees in the most preferred criteria equivalence classes.

class κ ∈ C/∼ C , such that: (i) x is κ-dominant over y; and (ii) ∀κ ∈ C/∼ C , such that κ C κ, x
Example 4. From κ-dominance in Example 2, we conclude that x 2 , x 3 , x 4 and

x 5 are dominant over x 1 because they are κ 1 -dominant and that κ 1 is the most preferred class.

Multi-criteria lex-cel

Next, we introduce multi-criteria lex-cel (MC lex-cel), which is an MC ranking function. For each element in X, MC lex-cel builds a tuple, the so-called multi-criteria profile (MC profile), which summarises the relations between the element and the criteria. Then, MC lex-cel ranks the elements in X by comparing their MC profiles lexicographically. In Section 5.1, we describe how to build MC profiles, whereas Section 5.2 defines MC lex-cel and proves that it embodies the dominance property in Definition 9.

Building MC profiles for elements

We will build the MC profile of an element x ∈ X as a tuple µ(x) that is meant to summarise the relations of that particular element with all the criteria at hand.

In general terms, we build an MC profile for an element through a nested process: (1) we start considering criteria preferences, from more preferred to less preferred; (2) thereafter, we delve into each equivalence class to consider the strengths of the relations, from stronger to weaker.

Formally, we build an MC profile by considering the quotient set C/ ∼ C , where κ 1 , . . . , κ q ∈ C/∼ C are criteria equivalence classes with quotient order

κ 1 C • • • C κ q . Each κ i contains the i-th most preferred criteria.
We compose the MC profile µ(x) of an element x, from its equivalence class profiles µ(x, κ 1 ), . . . , µ(x, κ q ). An equivalence class profile µ(x, κ i ) summarises the relations between x and the equivalence class κ i . We want to ensure that criteria preferences are satisfied according to C . Thus, we compose the MC profile µ(x) by considering that the relationships with more preferred criteria are positioned further to the left 3 of µ(x) as follows:

µ(x) = (µ(x, κ 1 ), . . . , µ(x, κ q )) (5) 
Within an equivalence class κ, all criteria are preferred indifferently. Thus, what distinguishes the relations between x and κ here is their strength and sign.

Recall that for each strength s, the net alignment function na aggregates the number of positive relations of strength s with the number of negative relations of strength s. Hence, we build the equivalence class profile of x for class κ out of the net alignments between x and κ for all non-zero 4 strengths, namely from na(x, κ, 1), . . . , na(x, κ, s max ). Since we prefer strong relations over weak ones, the net alignments representing greater strengths, are positioned further to the left 3 . Therefore, the equivalence class profile is a tuple containing the net alignments of x and κ arranged from left to right in descending order of strength:

µ(x, κ) = (na(x, κ, s max ), . . . , na(x, κ, 1)), [START_REF] Ofer | What sustains social norms and how they evolve?: The case of tipping[END_REF] where, as for Definition 8, s max = max l∈L stg(l) is the maximum strength of the label system. For the sake of understanding, we will now illustrate how to build the MC profiles for the elements in our running example.

Example 5. Following our running example, note that the criteria preferences

c 1 C c 2 ∼ C c 3 ∼ C c 4 imply that C/ ∼ C = {κ 1 , κ 2 }, with κ 1 = {c 1 }, κ 2 = {c 2 , c 3 , c 4 }, and κ 1 C κ 2 . Thus, ∀x ∈ X, µ(x) = (µ(x, κ 1 ), µ(x, κ 2 )
). Now, the label system that we have considered contains labels of strength 2, 1 (and 0).

Hence, since the maximum strength is 2, µ(x, κ) = (na(x, κ, 2), na(x, κ, 1)) for 3 Recall that the MC lex-cel function in Section 5.2 applies a lexicographical order over µ(x), and thus the left indicates greater preference. 4 A strength zero relation (labelled l 0 ) represents that the element is neutral to the criterion.

In other words, the element does not affect the criterion (the element neither aligns with nor is detrimental to the criterion). Hence, we should not take into account these relations in the MC profile.

each element x. In particular, regarding x 1 , we have that na(x 1 , κ 1 , 2) = -1, because there is one label l -2 relating x 1 to κ 1 , whereas na(x 1 , κ 1 , 1) = 0, because there are no labels of strength 1 relating x 1 to κ 1 . By applying equation 6 above, we have that µ(x 1 , κ 1 ) = (-1, 0). On the other hand, we have it that na(x 1 , κ 2 , 2) = 1 because there is one label l 2 relating x 1 to κ 2 , while na(x 1 , κ 2 , 1) = 0, because there are no labels of strength 1 relating

x 1 to κ 2 .
Again, by means of equation 6, we have that µ(x 1 , κ 2 ) = (1, 0). With these two equivalence class profiles, we can now apply equation 5 to build the MC profile of

x 1 as µ(x 1 ) = ((-1, 0), (1, 0)). By following an analogous procedure, we obtain the MC profiles for the rest of elements of X: µ(x 2 ) = ((0, 1), (0, -1)) µ(x 3 ) = ((0, 1), (0, 0)) µ(x 4 ) = ((0, 0), (-1, -1)) µ(x 5 ) = ((0, 0), (1, 0))

The multi-criteria lex-cel ranking function

Since the MC profile of an element x ∈ X encodes its alignment with the criteria in C, we propose comparing elements in X by comparing their MC profiles by means of their lexicographical order. This is precisely what our multi-criteria lex-cel function captures as follows:

x y ⇔ µ(x) ≥ lex µ(y).

Def. 10. Given a set of elements X, a set of criteria C and a set of labellings L(X, C), the multi-criteria lex-cel (MC lex-cel) function mclex : L(X, C) × R(C) → R(X) associates to any labelling λ ∈ L(X, C) and any ranking C ∈ R(C), another ranking = mclex(λ, C ) ∈ R(X) such that for any two elements x, y ∈ X:

x y ⇔ µ(x) ≥ lex µ(y), (7) 
where > lex the lexicographical order in Definition 2.

Notice that µ(x) > lex µ(y) ⇔ ∃κ ∈ C/∼ C , such that ∀κ c κ µ(x, κ ) = µ(y, κ ) and µ(x, κ) > lex µ(y, κ).

Example 6. After applying MC lex-cel to the MC profiles obtained in Example 5, we obtain the following element ranking: x 3 x 2 x 5 x 4 x 1 .

Our purpose now is to prove that MC lex-cel embodies dominance according to Definition 9. Before doing that, we need an intermediary result showing that the lexicographical ordering of criteria profile captures κ-dominance within criteria equivalence classes. Proof. Suppose that µ(x, κ) > lex µ(y, κ). Since µ(x, κ) = (na(x, κ, s max ), . . . , na(x, κ, 1)) and µ(y, κ) = (na(y, κ, s max ), . . . , na(y, κ, 1)), with µ(x, κ) being lexicographically greater than µ(y, κ) means that ∃s ∈ {1, . . . , s max }, such that na(x, κ, s) > na(y, κ, s), and ∀s > s, na(x, κ, s ) = na(y, κ, s ). Notice that this is precisely the definition of x κ-dominant over y (Definition 8). Now, if µ(x, κ) = µ(y, κ), then ∀s ∈ {1, . . . , s max }, na(x, κ, s) = na(y, κ, s), which is the definition of x and y being κ-indifferent. Consider now the other direction of the implication, and then suppose that x is κ-dominant over y. In this case, neither µ(y, κ) > lex µ(x, κ) nor µ(x, κ) = µ(y, κ) can be true because, by the already proved implication, it would contradict our assumption. Therefore, the only possibility is that µ(x, κ) > lex µ(y, κ). The same reasoning applies if we suppose y is κ-dominant over x, or x and y are κ-indifferent.

With the help of Lemma 1, we are now ready to prove that multi-criteria lex-cel embodies dominance.

Theorem 1. MC lex-cel embodies dominance, that is, if mclex( C ) = , then for x, y ∈ X, we have that x y ⇔ x is dominant over y.

Proof. Suppose that x y. Since has been obtained through MC lexcel, we know that µ(x) > lex µ(y). This means that ∃κ ∈ C/ ∼ C , such that µ(x, κ) > lex µ(y, κ) and ∀κ C κ, µ(x, κ ) = µ(y, κ ). Thanks to Lemma 1, we have seen that this means that x is κ-dominant over y and ∀κ C κ, x and y are κ -indifferent, which is the definition of dominance of x over y. Similarly, if µ(x) = µ(y), then ∀κ, µ(x, κ) = µ(y, κ), and thus x and y are κ-indifferent, meaning that they are indifferent. As to the other direction of the proof, say that x is dominant over y. If µ(x) < lex µ(y), it would imply that y is dominant over x, which contradicts our assumption. Similarly, if µ(x) = µ(y), x and y should be indifferent, again contradicting our assumption. Therefore, the only possibility is that µ(x) > lex µ(y). The same reasoning applies if we suppose that y is dominant over x or x and y are indifferent.

MC ranking and social ranking

In this section we explore the relation between our MC ranking and the social ranking introduced by Moretti et al. in [START_REF] Moretti | Some axiomatic and algorithmic perspectives on the social ranking problem[END_REF]. We show that any social ranking can be encoded as an MC ranking, but that is not true the other way around. Therefore, the MC ranking is more general. Furthermore, we also show that our MC lex-cel generalises the lex-cel social ranking solution introduced by Bernardi et al. in [START_REF] Bernardi | Ranking objects from a preference relation over their subsets[END_REF].

The social ranking [START_REF] Moretti | Some axiomatic and algorithmic perspectives on the social ranking problem[END_REF] considers a set of elements X, and a ranking over coalitions of these elements, namely a ranking over P(X). The purpose of a social ranking is to transform or ground this power set ranking into a ranking over X. Formally:

Def. 11. A social ranking is a function sr : R(P(X)) → R(X) which transforms a ranking over P(X) into a ranking over the elements of X.

The goal of a social ranking and of an MC ranking is the same: to obtain a ranking over X. Nonetheless, the starting points for the computation of the two rankings are different. While a social ranking considers a ranking over the power set of X, an MC ranking considers criteria, a ranking over criteria and a labelling relating elements to criteria. Note though that it is possible to define a function that transforms a social ranking into an MC ranking. Since the input of sr is in R(P(X)) and the input of mcr is in R(C) × L(X, C), we propose a function t : R(P(X)) → R(C) × L(X, C) to transform the input of a social ranking into an input for MC ranking. Therefore, this transformation function is such that t( P ) = (λ, C ). Let X be a set of elements and P a ranking over P(X), we build function t as follows:

1. We transform the sets in P(X) into criteria: C = {c S , ∀S ∈ P(X)}.

2. We obtain the ranking over criteria as a direct translation of the ranking over sets: c S C c S ⇔ S P S .

3. Finally, to define a labelling function, note that a social ranking does not consider gradings. However, we can consider one label to indicate that an element aligns with criterion c S (the element appears in set S),

and another label to indicate that the element is neutral with regard to this criterion (the element does not appear in S). To do so, we define labels l 1 and l 0 respectively (along with the unused l -1 to make the label system symmetric). Hence, we define the label system LS = L, ≥ L , with L = {l 1 , l 0 , l -1 }, and order l 1 ≥ L l 0 ≥ L l -1 . Then, we build a labelling λ that specifies whether an element x is related to c S with label

l 1 if x ∈ S,
or with label l 0 if x / ∈ S:

λ(x, c S ) =      l 1 , if x ∈ S l 0 , if x / ∈ S (8) 
The t function allows us to transform any social ranking input into an MC ranking input. In fact, in what follows we prove that MC rankings generalise social rankings. Before that, we need an auxiliary result regarding the properties of function t as shown by the following lemma.

Lemma 2. The t function is injective, but not exhaustive.

Proof. Suppose that t is not injective. Thus, for a given power set P(X), there are two different rankings , ∈ R(P(X)), such that t( ) = t( ). Since , are different rankings, ∃Y, Z ∈ P(X), such that Z Y , while Z Y .

Note though that in these cases when applying t, we would have that c Z C c Y and c Z C c Y , which contradicts the assumption that t( ) = t( ). Thus, t is injective. In terms of exhaustivity, t is not exhaustive because labellings using labels other than l 1 and l 0 can never be the image of a social ranking.

Thanks to lemma 2, we prove our first general result.

Theorem 2. MC rankings generalise social rankings. That is, given a set of elements X, a power set P(X), a ranking over the power set P , and a social ranking sr : R(P(X)) → R(X), there exists an MC ranking mcr, such that sr( P ) = mcr(t( P )), but the reverse does not hold in general.

Proof. To prove the theorem we have to find a mcr function such that sr( P ) = mcr(t( P )). Consider mcr = sr • t -1 . In this case, we would have that mcr(t( P )) = sr(t -1 (t( P ))) = sr( P ). In the previous lemma we have seen that t is injective but not exhaustive in general, meaning that in general it is not invertible. Note though that t is invertible when restricted to the domain t(R(X)). In this case, since we start in this domain, t -1 exists, meaning that mcr = sr • t -1 is a valid function which proves the theorem.

This last theorem proves that all social rankings can be cast as an equivalent MC ranking. Also, since t is not exhaustive there are many MC rankings that cannot be cast as social rankings, meaning that the MC ranking is more general.

Regarding this last result, an interesting question we have to address is the relation between MC lex-cel and lex-cel (see Section 2). The next theorem shows that MC lex-cel generalises lex-cel.

Theorem 3. MC lex-cel generalises lex-cel, that is, given a set X and a ranking P over P(X), mclex(t( P )) = lex( P ).

Proof. Suppose that lex( P ) = e and mclex(t( P )) = e . We will see that given x, y ∈ X, x e y ⇔ x e y. We start with x e y ⇒ x e y. First, suppose that x e y (x e y and x e y). Then, from the definition of lex-cel, we would have that θ(x) > lex θ(y). Now, suppose that P(x)/∼ P = {Σ 1 , . . .

Σ k } with quotient order Σ 1 P . . . Σ k . Then, θ(x) = (|S ∈ Σ 1 : x ∈ S|, . . . , |S ∈ Σ k : x ∈ S|) and θ(y) = (|S ∈ Σ 1 : y ∈ S|, . . . , |S ∈ Σ k : y ∈ S|). Hence, θ(x) > lex θ(y) means that ∃ Σ i such that |S ∈ Σ i : x ∈ S| > |S ∈ Σ i : y ∈ S|, and ∀ Σ j P Σ i , |S ∈ Σ i : x ∈ S| = |S ∈ Σ i : y ∈ S|.
By applying t to P , we obtain that C , such that any sets S, S ∈ P(X) are transformed into criteria c S , c S ∈ C, and P is transformed into C following S P S ⇔ c S C c S . Hence, the image for t of each equivalence class Σ i ∈ P(x)/ ∼ P is a criterion equivalence class κ i ∈ C/∼ C , and the quotient order then satisfies that Σ i P Σ j ⇔ κ i C κ j .

Recall that the labelling obtained by t is built following λ(x, c S ) = l 1 ⇔ x ∈ S.

Thus, |S ∈ Σ i : x ∈ S| > |S ∈ Σ i : y ∈ S| implies that |c ∈ κ i : λ(x, c) = l 1 | > |c ∈ κ i : λ(y, c) = l 1 |. Similarly, ∀ Σ j P Σ i , |S ∈ Σ i : x ∈ S| = |S ∈ Σ i : y ∈ S| implies that ∀κ j C κ i , |c ∈ κ j : λ(x, c) = l 1 | = |c ∈ κ j : λ(y, c) = l 1 |. Note
that, in this case, since the label system only contains l 1 , l 0 , and l -1 , we have that s max = 1, and hence ∀κ ∈ C/∼ C , µ(x, κ) = (na(x, κ, 1)). Moreover, from the definition of t, the labelling does not assign l -1 . Therefore, we have that

na(x, κ, 1) = |c ∈ κ : λ(x, c) = l 1 |, and overall µ(x, κ) = (|c ∈ κ : λ(x, c) = l 1 |). Now, we have that |c ∈ κ i : λ(x, c) = l 1 | > |c ∈ κ i : λ(y, c) = l 1 |,
implying that µ(x, κ i ) > lex µ(y, κ i ), and ∀κ j C κ i , |c ∈ κ j : λ(x, c) = l 1 | = |c ∈ κ j : λ(y, c) = l 1 |, which implies that µ(x, κ j ) = µ(y, κ j ). This is precisely the definition of µ(x) lex µ(y), which means that x e y. Similarly, if x ∼ e y, θ(x) = θ(y).

Therefore, ∀i, |S ∈ Σ i : x ∈ S| = |S ∈ Σ i : x ∈ S|. If we apply t, this means that ∀i, |c ∈ κ i : λ(x, c) = l 1 | = |c ∈ κ i : λ(y, c) = l 1 |, and then µ(x) = µ(y), hence following that x ∼ e y.

When it comes to the reverse implication, x e y ⇒ x e y, suppose that x e y. In this case, x e y cannot happen because we have seen above that it would imply that x e y, which is not true. Then, the only possibility is that x e y. We can follow the same reasoning to prove that x ≺ e y ⇒ x ≺ e y and

x ∼ e y ⇒ x ∼ e y.

Case study: a value alignment problem

The purpose of this section is to illustrate how MC-lexcel can be used to solve a value alignment problem, that is, a decision-making problem where elements have to be chosen by considering their alignment with multiple moral values.

In particular, we focus on the problem tackled by a decision maker (e.g. a policy maker) when tasked with selecting the collection of regulatory norms that are most closely aligned with the moral values of a society. In Section 7.1, we introduce the decision-making problem. In Section 7.2 we discuss how to exploit MC-lexcel to solve the decision-making problem computationally.

Finally, in Section 7.3 we discuss a case study in a healthcare context, concerned with selecting norms related to hospital admission. Furthermore, we compare the qualitative solving method detailed in Section 7.2 with existing methods in the literature.

Defining the value alignment problem

Within societies, norms have long been used as a coordination mechanism [START_REF] Ofer | What sustains social norms and how they evolve?: The case of tipping[END_REF]. On the one hand, the literature on Normative multi-agent systems has traditionally focused on establishing norms to regulate agents' behaviour by means of: emergence [START_REF] Tony | Mechanisms for norm emergence in multiagent societies[END_REF][START_REF] Sugawara | Emergence and stability of social conventions in conflict situations[END_REF] , an empirical bottom-up approach; off-line norm synthesis [START_REF] Ågotnes | On the logic of normative systems[END_REF], a formal top-down approach; and on-line norm synthesis [START_REF] Morales | On-line automated synthesis of compact normative systems[END_REF][START_REF] Morales | Automated synthesis of normative systems[END_REF], which is empirical and top-down. We refer to the set of norms enacted in a society as a norm system. On the other hand, norms have also been related to moral values5 [START_REF] Ove | The structure of values and norms[END_REF], which are used as a guiding criteria for the selection [START_REF] Serramia | Moral values in norm decision making[END_REF][START_REF] Serramia | Exploiting moral values to choose the right norms[END_REF] or synthesis [START_REF] Montes | Synthesis and properties of optimally value-aligned normative systems[END_REF] of the norm system to be enacted. Indeed, composing a set of norms that promote ethical behaviour (i.e., moral values) naturally induces this ethical behaviour in the society. Moreover, if different moral values can be promoted, then it seems reasonable to prioritise the most preferred ones.

Consider, for example, a government that enacts norms limiting pollution. In this case, we can confidently infer that this government prioritises sustainability over other values such as development.

However, the problem of selecting the regulatory norms that align best with the ethical principles of a society (or, in other words, the most value-aligned norm system) is not straightforward. In addition to the different values and preferences over them that a society may have, we must also consider whether norms actually promote or demote those values, as well as the degree of promotion/demotion. Some of the literature in Philosophy discusses a number of these aspects [START_REF] Ove | Formal Investigations of Value[END_REF]. Nonetheless, in the Artificial Intelligence literature, while value promotion and demotion are commonly considered, the degrees of such relations are not typically considered (e.g. [START_REF] Luo | Reasoning about opportunistic propensity in multi-agent systems[END_REF], [START_REF] Trevor | Abstract argumentation and values[END_REF], [START_REF] Serramia | A qualitative approach to composing value-aligned norm systems[END_REF]). In fact, to the best of our knowledge such aspects have only been considered in legal cases [START_REF] Bench-Capon | Argument schemes for reasoning with legal cases using values[END_REF].

Against this background, we introduce our value alignment problem while considering promotion and demotion relationships between norms and values as first-class citizens. Thus, we first introduce the formal objects required for the problem, namely: norms, value system, and the relationships between norms and values.

We define the core notion of our problem, the norm, as a simplification of the one proposed by Lopez et al. in [START_REF] López Y López | Constraining autonomy through norms[END_REF]. We start by considering a MAS (multiagent system) with a set of agents Ag that can perform actions in a finite set A.

Furthermore, we consider a propositional language PL (with propositions in P and the logical operator "and"), a set of states S, and a state transition function that changes the state of the world when agents perform actions (following the multi-agent system model introduced by Morales et al. in [START_REF] Morales | On-line automated synthesis of compact normative systems[END_REF][START_REF] Morales | Synthesising liberal normative systems[END_REF]). Then, a norm is composed of a precondition ϕ ⊆ P (with an "and" semantic between propositions), an action in A, and a deontic operator θ to establish Obligations (Obl), Permissions (P er), and Prohibitions (P rh). With these definitions in place, we define a norm as: Def. 12 (Norm). A norm is a pair ϕ, θ(a) , where ϕ is a precondition in the language PL; a ∈ A is the regulated action, and θ ∈ {Obl, P er, P rh} is a deontic operator.

Example 7. Within a healthcare context, we may have a norm permitting the hospital admission of incoming patients: patient in, Per(admit) .

Let N be a set of candidate norms; the norms in N might have relationships between them [START_REF] Serramia | Moral values in norm decision making[END_REF]. We consider two types of such norm relations, namely norm exclusivity and norm generalisation and note them as R x , and R g respectively (we assume the decision-maker has sufficient knowledge of the domain to detect and provide these norm relations). On the one hand, we say n, n are exclusive norms, noted as (n, n ) ∈ R x , when we cannot enact both of them simultaneously. On the other hand, we say they have a direct generalisation relation, noted (n, n ) ∈ R g , meaning n is more general than n . With regards to generalisation relations, we note as S(n) and A(n), the successors and ancestors of n respectively. Formally: Def. 13. Given a norm n ∈ N , its ancestors are the norms that (directly or indirectly) generalise it: A(n) = {n ∈ N : ∃n 1 , . . . , n k , and (n , n 1 ), . . . , (n k , n) ∈ R g }. Conversely, successors are the norms that are (directly or indirectly) generalised by n: S(n) = {n ∈ N : ∃n 1 , . . . , n k , and (n, n 1 ), . . . ,

(n k , n ) ∈ R g }.
Norms and their relations form a structure called a norm net.

Def. 14. Let N be a set of norms and R = {R x , R g } the set of norm relations (exclusivity and generalisation), we call norm net the tuple N, R .

Def. 15. We apply the term norm system to any subset Ω ⊆ N . Not all norm systems are of our interest; note that norm systems may have conflicts (if they contain exclusive norms) or redundancy (if they contain norms related through generalisation). Thus, we focus on sound norm systems, i.e. those that are conflict-free and non-redundant [START_REF] Serramia | Moral values in norm decision making[END_REF]. Def. 16. Let N, R be a norm net, then we consider a norm system Ω ⊆ N to be sound iff it is:

• Conflict-free: ∀n i , n j ∈ Ω, (n i , n j ) / ∈ R x • Non-redundant: ∀n, with | S(n)| > 1, then S(n) Ω.
Where S(n) = {n ∈ N, (n, n ) ∈ R g } stands for the set of direct successors.

Moral values are principles deemed valuable by a society [START_REF] Van De Poel | Ethics, Technology, and Engineering: An Introduction[END_REF]. Ethical choice typically implies a set of moral values [START_REF] Cooper | Value pluralism and ethical choice[END_REF] and preferences regarding them.

Indeed, some values are preferred over others [START_REF] Trevor | Abstract argumentation and values[END_REF], and these preferences must impact the decision-making process. For that reason, we consider the value system to be a structure formed by moral values and their preferences [START_REF] Trevor | Abstract argumentation and values[END_REF][START_REF] Luo | Reasoning about opportunistic propensity in multi-agent systems[END_REF][START_REF] Serramia | Moral values in norm decision making[END_REF]. Thus, we say that the value system guides ethical reasoning. While several types of preferences have been used to formalise this structure, we favour rankings because they are the least restrictive preference structures satisfying totality. In this manner, given any pair of values, we can assert a preference between them (which may not be possible with non-total preferences such as partial orders). Therefore, we define the value system as follows.

Def. 17. Let V be a non-empty set of moral values, and v a ranking over V , we call value system the tuple V, v .

Now we are ready to formalise how norms and values relate. To do so, we can leverage the notion of the label system L, > l , λ , introduced by Definition 3, with each label corresponding to either a certain degree of promotion or demotion, and with function λ : N × V → L assigning a label to each normvalue pair. We impose a neutral label l 0 in L to indicate that a norm and a value are unrelated. This label also sets the boundary between promoting and demoting labels: labels more preferred than l 0 are promoting labels, while those less preferred than l 0 are demoting labels. Notice that the sign function in equation 2 signals whether a label represents promotion (1), demotion (-1), or if it is neutral (0). Moreover, the strength function in equation 3 characterises the degree of promotion/demotion of labels. Thus, given a label l ∈ L, the more labels between l and l 0 , the larger its promotion/demotion degree (i.e., the stronger l is).

Thanks to the objects formally introduced so far, we are ready to introduce our decision-making problem, the so-called generalised value-aligned norm se-lection problem (GVANS) 6 . The input of the GVANS problem is: (i) a norm net N, R ; (ii) a value system V, v ; and (iii) a symmetric label system L, > l , λ that sets the relation between norms and values. Solving a GVANS problem consists in composing the sound norm system which best aligns with the value system, taking into account the degree of promotion/demotion of norm-value relations as expressed by the label system.

Solving the value alignment problem

When deciding on the most value-aligned norm system, we follow the following proposition: the more preferred the values promoted by a norm system, the more preferred the norm system, or, in other words, the more value-aligned. To obtain the most value-aligned norm system (i.e., to solve a GVANS problem)

we will proceed in two steps.

First, we exploit MC-lexcel to obtain a ranking over individual norms from a ranking over values in a value system. This is straightforward if we consider that the values in V act like criteria (i.e. C = V ), and value preferences are cast over the elements of the decision (i.e. the norms in N ). Importantly, our aim is to use the norm ranking to later select the set of norms that best aligns with the value system. Since norms can both promote and demote values, there might be norms which, overall, demote more preferred values than those they promote. We call these norms non-beneficial norms. In contrast, beneficial norms are those that promote more preferred values than those they demote. A simple informal way to differentiate between beneficial and non-beneficial norms is to compare them to a neutral norm n 0 . We define n 0 as an artificial norm that is neutral with regards to all the moral values in the value system. Thus, informally:

Def. 18. A beneficial norm is a norm that is more preferred than n 0 . Norms less preferred than or indifferently preferred to n 0 are non-beneficial norms. We note as N ben ⊆ N the subset of beneficial norms in N .

When selecting a set of norms, we want to select only beneficial norms and avoid non-beneficial norms. In other words, the solution to the GVANS problem is a set of norms in N ben . With MC-lexcel we can obtain a ranking that allows us to compare norms, but we must also know which norms are beneficial and which are not. In line with Definition 18 above, we exploit MC profiles to differentiate between them. Thus, in the case of MC profiles:

Def. [START_REF] Haret | Ceteris paribus majority for social ranking[END_REF]. We say that a norm n ∈ N is beneficial if µ(n) > lex µ(n 0 ). On the other hand, a norm is non-beneficial if µ(n 0 ) ≥ lex µ(n). Thus, in this case,

N ben = {n ∈ N : µ(n) > lex µ(n 0 )}.
Indeed, since we build the ranking from the MC profiles of norms, a norm that is less preferred than n 0 will be a norm whose MC-profile is worse than that of a totally neutral norm. This is the case when an MC profile contains more demotion labels than promotion labels, or contains demotion labels associated to more preferred values. Thus, by applying MC-lexcel considering N ∪{n 0 }, we obtain a ranking mclex( v ) = n in which not only we can compare norms, but also n 0 partitions norms between beneficial (when n n n 0 ) and non-beneficial

(when n 0 n n) norms.
The next step is to use the norm ranking to compose the desired set of valuealigned norms. Since only beneficial norms should be taken into account when composing the norm set, we discard the non-beneficial norms hereafter. Hence, we now consider the ranking only over beneficial norms ben n obtained from the MC ranking over all norms. We formalise this using the following restriction:

Def. 20. The restriction function ben is a function ben : R(N ) → R(N ben ),

such that ∀ n ∈ R(N ) and ∀n 1 , n 2 ∈ N ben , ben( n ) = ben n is such that ben n = {(n 1 , n 2 ) ∈ n : n 1 , n 2 ∈ N ben }.
Our final step consists in transforming the ranking over beneficial norms into a ranking over norm systems. For that, we utilise the anti-lexcel operator introduced in [START_REF] Serramia | A qualitative approach to composing value-aligned norm systems[END_REF]. Let N ben be a set of beneficial norms, and ben n a ranking over these norms, the anti-lex-cel function ale : R(N ben ) → R(P(N ben )) is a lifting function which generates a ranking over subsets of beneficial norms, namely over the norm systems in P(N ben ). Therefore, the composition of MC-lexcel, the restriction to beneficial norms, and anti-lex-cel, transforms preferences over values into a value system for preferences over beneficial norm systems. We formally define this composition as follows:

Def. 21. We call nsr : R(V ) → R(P(N ben )) (nsr for norm system ranking)

the function nsr = ale • ben • mclex. Thus, for a value ranking v ∈ R(V ),

nsr( v ) = ale(ben(mclex( v )))
= is a ranking over norm systems (introduced in Definition 15) composed of beneficial norms.

The solution to the GVANS problem at hand will be the most preferred sound norm system produced by a norm system ranking. Unfortunately, although a norm systems ranking helps us obtain the solution to a GVANS problem, the cost of building a whole ranking over norm systems (elements in P(N ben )) turns out to be rather costly. As discussed in [START_REF] Serramia | A qualitative approach to composing value-aligned norm systems[END_REF], building the ranking using anti-lex-cel takes O(2 2|N | ) in the worst case (and when all norms are beneficial). Nonetheless, in [START_REF] Serramia | A qualitative approach to composing value-aligned norm systems[END_REF] we show that it is possible to avoid the explicit computation of a whole ranking over norm systems. Indeed, in [START_REF] Serramia | A qualitative approach to composing value-aligned norm systems[END_REF] we show how to cast the problem of selecting the most preferred norm system as an optimisation problem that can be encoded as a BIP (Binary Integer Program).

This BIP only employs |N | decision variables and can be solved with the aid of standard BIP solvers (e.g. CPLEX 7 or Gurobi8 ). We propose following the same approach here. Figure 1 shows the steps of our computational approach to compute the most value-aligned norm system. First, given a set of norms and a value system as input, we apply MC-lexcel to obtain a norm ranking. After that, we restrict the norm ranking to beneficial norms, and then we use this beneficial norm ranking to do the encoding of the GVANS problem as a BIP.

Finally, we solve the BIP with the aid of standard BIP solvers. Appendix A provides more details on this approach. We refer the reader to that appendix for details on encoding a GVANS problem.

Henceforth, we refer to the method outlined in Figure 1 as the qualitative approach with graded value promotion and demotion. The next section illustrates and compares it to previous approaches. 

Comparing solving methods

Following Example 7 on healthcare, here we introduce a simple example that illustrates the qualitative approach with graded value promotion and demotion described in Section 7.2. Furthermore, we use it to compare our approach to those in the literature. On the one hand, [START_REF] Serramia | Moral values in norm decision making[END_REF] proposes a numerical approach that first assigns a utility to each norm -which represents their value alignment-and then selects norms by maximising their cumulative utility. Here, we show that asserting norm utilities may introduce biases that our qualitative approach avoids. On the other hand, although the work in [START_REF] Serramia | A qualitative approach to composing value-aligned norm systems[END_REF] is also qualitative, it has limited expressiveness, since it does not allow for demotion, nor for different degrees of promotion/demotion. Overall, we show that, for specific cases, these other methods in the literature fail to produce a norm system that is the most closely aligned with the given moral values.

As previously mentioned, our case study focuses on selecting norms related to hospital admission. In particular, as Figure 2 shows, we consider four norms:

• AE = patient in, Per(admit) : Allow admission to Everybody;

• DE = patient in, Prh(admit) : Deny admission to Everybody; As for values, in this setting, we consider two moral values V ={RTL, AUS}:

"Right To Life/medical care" (RTL) and "Austerity" (AUS), and a preference of RTL v AUS. Figure 2 depicts how norms allowing admission promote RTL and demote AUS, whereas the norms denying it behave conversely. However, to express promotion/demotion degrees we consider a label system L, > l , λ with the following labels: high promotion (HP ), promotion (P ), neutral (l 0 ), demotion (D) and high demotion (HD) (L = {HP, P, l 0 , D, HD}) and linear order HP > l P > l l 0 > l D > l HD. Note that, e.g., stg(HP ) = 2 and sgn(HP ) = 1, whereas stg(HD) = 2, and sgn(HD) = -1. The λ columns in Table 1 detail the λ function that completes our label system. Overall, general norms that apply to everybody are strongly related to the values. This is also the case for elders, since they are most likely to require admission. Alternatively, we consider the relationship with young people to be less strong, since they are less likely to require admission.

From here, we apply our qualitative approach with graded value promotion and demotion to compute the norm ranking as AE n AY n n 0 n DL n DE. This is because using Equation 5, we have µ(AE) = ((1, 0), (-1, 0)) , µ(AY ) = ((0, 1), (0, -1)), µ(DL) = ((-1, 0), (1, 0)), and µ(DE) = ((-1, 0), ( 1: Value-norm relationships for the three methods: λ (our method); U (utilitarian [START_REF] Serramia | Moral values in norm decision making[END_REF]); and B (binary [START_REF] Serramia | A qualitative approach to composing value-aligned norm systems[END_REF]).

we take the random ∈ (0, 1] to be 0.5 -as: u(AE) = 0.5, u(DE) = -1.5, u(AY) = 0.6, u(DL) = -1, 2 so that the sound norm system with the highest utility is {AY}. This means that the quantitative utilitarian method selects a norm system that fails to regulate admissions of elder people. This is because AE strongly demotes the AUS value, and this diminishes its utility.

If we now consider the binary qualitative approach used by [START_REF] Serramia | A qualitative approach to composing value-aligned norm systems[END_REF], the B columns in demotes the most preferred value, namely the right to life (RTL). The reason for considering such a undesirable norm is a direct consequence of its failure to capture demotion. In fact, it only selects norms based on their merits without considering their detrimental effects.

In conclusion, despite its simplicity, this example illustrates how our method overcomes the shortcomings of the aforementioned methods [START_REF] Serramia | Moral values in norm decision making[END_REF] and [START_REF] Serramia | A qualitative approach to composing value-aligned norm systems[END_REF] in producing a norm system that is most closely aligned with the value system at hand. In fact, [START_REF] Serramia | A qualitative approach to composing value-aligned norm systems[END_REF] already reported a flaw in [START_REF] Serramia | Moral values in norm decision making[END_REF] that can cause that a number of norms slightly promoting least preferred values to end up having more utility -and thus being chosen -than a single really useful norm if they are exclusive.

Indeed, although most preferred values should prevail, the quantitative method also fails to capture the absolute preferences of the value system.

The advantages of our method are two-fold. First, its graded qualitative labels for promotion and demotion are much simpler to define -and less prone to biases -than numerical degrees, and it also provides far more expressive-ness than binary promotion alone. Second, its ranking method captures the preferences of the value system in the selection of the norm system to enact.

Discussion regarding applicability

Although the main contribution of this work is theoretical, the previous section presented a norm selection case study with the aim of illustrating its application. However, this should not preclude the reader from understanding that our method can be applied in other scenarios. Indeed, we already mentioned some of these potential scenarios in the introduction section (college admissions, committee selections, scholarship assignments, or diet design). Here we aim to go a step further and discuss in some detail how an alternative domain in the context of participatory democracy [START_REF] Nylen | Participatory democracy versus elitist democracy[END_REF] may benefit from our approach.

As pointed out by the European Commission [START_REF] Scharfbillig | Values and Identities-a policymaker's guide[END_REF], democracy aims at the greater good of society, where good cannot only be measured in monetary terms, but also requires considering what citizens perceive to be valuable. As a consequence, the European Joint Research Centre has elaborated a policymaker's guide for the 21 st century 9 stressing that policies need to take into account and reflect the values and concerns of citizens. Here we also follow this stance and focus on the scenario of participatory budgeting -a mechanism enacted by policymakers to implement projects proposed by citizens-and enrich it by explicitly using citizens' values as selection criteria.

Participatory budgeting constitutes a democratic approach to deciding the funding of public projects [START_REF] Aziz | Participatory budgeting: Models and approaches[END_REF]. Recently, it has attracted a lot of attention because of its ability to encourage citizens' participation in politics and to promote open democracy. Participatory budgeting processes have been mostly, though not exclusively, adopted in cities across the world, including New York [START_REF]European values study[END_REF]and then aggregated by means of the state-of-the art method proposed by Lera-Leri et al. [START_REF] Lera-Leri | Towards pluralistic value alignment: Aggregating value systems through lp-regression[END_REF].

Here, we develop an alternative case study for our work by considering a participatory budgeting process in which citizens submit a set of project proposals to which we then apply our selection process based on citizens' values.

We illustrate this by taking real data from the participatory budgeting process held by the Barcelona city council in 2021 16 . This participatory budget is a process with the number of votes they received, the strategic area they affect, and their cost (the projects are ordered by number of votes).

Typically, the decision selection process that is applied is the rank and select method [START_REF] Serramia | Optimising participatory budget allocation: The decidim use case[END_REF]. This method is based solely on the number of votes cast as it first ranks the projects in decreasing order of the number of votes received (as presented in Table 2) and then selects projects until the budget is spent. As an example, imagine Barcelona had only received these 10 project proposals and they had to decide which to select if the available budget was 2.5 million euros.

In this case, we would select projects p 1 and p 2 , with a cost of 2.45 million euros, and since the cost of the next project is greater than the remaining budget, we would stop selecting projects (note that this means that we would not even select project p 4 , which could be funded with the remaining budget).

Unfortunately, participation in this process was around 4%, and we may therefore consider citizens' to be more appropriate for selecting which projects to fund. Thus, we can consider that strategic areas represent different values and we can imagine that the city council of Barcelona carries out opinion polls to learn about citizens' preferences with regard to these strategic areas. Now, say that, in this hypothetical case, we conclude that citizens prefer Green spaces above all, followed by Pacification, Culture, Mobility, Monuments, and, finally, Sports. In particular, this means that project 2 has received a lot of support thanks to the bias of the participant base, but this would not be the case if the preferences of the whole population were considered.

From this, we can apply MC-lex-cel to obtain a ranking of proposals considering the preferences expressed regarding strategic areas (our criteria here).

In this case, since Table 2 links each project to a single area, the ranking of projects obtained through MC-lex-cel would rank highly those projects that are related to more preferred areas (and equally those that are within the same area), hence p 1 ∼ p 3 ∼ p 4 ∼ p 6 p 5 ∼ p 8 p 9 p 10 p 7 p 2 .

Appendix B provides the encoding for participatory budgeting, which in turn applies the norm selection encoding in Appendix A. The solution results

in the selection of projects p 1 , p 3 , p 4 , p 5 , p 6 , p 7 , p 8 , and p 9 . Therefore, although p 2 has a large amount of votes, it is related to the least preferred area, and since it is the most expensive project, it is optimal to select the more closely aligned (and less expensive) projects.

Finally, note that Barcelona's Participatory Budget related each project to only one strategic area. Nonetheless, in reality, these projects will probably be related to more than one area to various degrees (e.g. p 1 is concerned with improving a park, therefore it is highly related to the area of Green Spaces, but it may also be related to Pacification to a lesser degree). If this information was available, MC lex-cel could consider it to build the ranking of proposals.

Conclusions

In this paper, we have tried to make headway in supporting decision-makers that are challenged with comparing, and ultimately ranking, elements with re-L. As explained in [START_REF] Serramia | A qualitative approach to composing value-aligned norm systems[END_REF], we solve the GVANS problem by transforming it into an optimisation problem. This allows us to have an optimal solution without the cost of applying anti-lex-cel. To do so, we first apply MC-lex-cel to obtain a ranking over single norms. Suppose mclex( v ) = is the ranking over N based on the relations between norms and values, their labels, and the value preferences. Using this ranking we can produce a BIP encoding. In particular, we adapt the work in [START_REF] Serramia | A qualitative approach to composing value-aligned norm systems[END_REF] To ensure that we select a sound norm system, the BIP encoding must also consider the following constraints:

-Mutually exclusive (incompatible) norms cannot be selected at once: 

d i + d j ≤

x 1 and x 5

 5 are κ 2 -indifferent and κ 2 -dominant over the other elements, x 3 is κ 2dominant over x 2 and x 4 and, finally, x 2 is κ 2 -dominant over x 4 . The reason for assuming lexicographical orders over the tuples of net alignments rests on a principle aimed at preventing any kind of trade-off or compensation between labels of different strengths (for instance, a relation of the highest grade between an element and a single criterion cannot be balanced by many relations of moderate degree between the element and other criteria in the same equivalence class).

  and y are κ -indifferent. If neither element dominates the other (they are κ-indifferent ∀κ ∈ C/∼ C ), we say that they are indifferent.

Lemma 1 .

 1 Consider two elements x, y ∈ X, and a criteria equivalence class κ ∈ C/∼ C , then µ(x, κ) > lex µ(y, κ) ⇔ x κ-dominant over y. Otherwise, we have that µ(x, κ) = µ(y, κ) ⇔ x and y are κ-indifferent.

Figure 1 :

 1 Figure 1: Steps for the computational approach to maximise the value-alignment of norm systems.

Figure 2 :

 2 Figure 2: Representation of the relationships between norms and norms and values in our healthcare case study.• AY = young patient in, Per(admit) : Allow admission to the Young;

  and compute the equivalence classes in Ξ 1 , . . . , Ξ r ∈ N/ (with Ξ 1 • • • Ξ r ) to numerically compute the value alignment of any set of norms S ⊆ N with the so-called preference function p. This function consists of the sum of the preference over the equivalence class each norm is in. Therefore, the more norms and the more preferred they are, the greater the value-alignment (p) of subset S. Formally , the value alignment of S is j ) + 1 , where p(Ξ r ) = |Ξ r |. (A.1)To find the set of norms S that maximises value-alignment,[START_REF] Serramia | A qualitative approach to composing value-aligned norm systems[END_REF] proves that we can use a BIP encoding that uses |N | binary decision variables, one per norm. Decision variable d i associated to norm n i ∈ N is used for deciding whether the norm is selected or not. The objective function of the BIP is a weighted combination of the decision variables of norms. Each decision variable d i is weighted by a factor that depends on the preference p of the equivalence class of the norm. Then, the objective function to maximise is:

  we say that x is κ-dominant over y if ∃s ∈ {1, . . . , s max }, s.t. C c 3 ∼ C c 4 . The quotient set is C/ ∼ C = {κ 1 , κ 2 }, with κ 1 = {c 1 } and κ 2 = {c 2 , c 3 , c 4 }, and quotient order κ 1 C κ 2 . Note that na(x 1 , κ 1

	na(x, κ, s) > na(y, κ, s) and ∀s > s, we have na(x, κ, s ) = na(y, κ, s ). If
	∀s ∈ {1, . . . , s max }, na(x, κ, s) = na(y, κ, s), we say x and y are κ-indifferent.
	Example 3. Following Example 2, consider the criteria preferences c 1 C
	c 2 ∼

Table

  1, 0)). Note that DE and DL are non-beneficial norms because they are less preferred than n 0 (due to their demotion of the most preferred value). Therefore, by restricting the ranking to beneficial norms, we have that AE ben n AY. Next, we obtain the norm system ranking {AE, AY} {AE} {AY}. However, {AE, AY} is not sound (see Definition 16) because AE generalises AY and, hence, the method will choose {AE} as the most value aligned norm system to be enacted. Indeed, considering that AE is the most general norm with the highest promotion of RTL -the most preferred value -then, {AE} stands for the expected solution.

			AE			DE			AY			DL
		λ	U	B λ	U	B	λ	U	B	λ	U	B
	RTL	HP	1	1	HD	-1 0	P	0.7	1	HD	-0.8 0
	AUS HD	-1 0	HP	1	1	D	-0.2 0	HP	0.8	1

  Table 1 are limited to representing promotion (1) and no-promotion (0). This method produces a norm ranking of AE ∼ n AY n DE ∼ n DL. Notice that AE ∼ n AY because both norms promote RTL and the method is not expressive enough to capture different grades of promotion, even though admitting everybody (AE) is clearly a better norm (i.e., it is far more inclusive) than only admitting the young (AY). Consequently, this norm ranking leads to the following ranking of sound norm systems: {AY, DL} {AE} ∼ {AY} {DE} ∼ {DL}, where {AY, DL} supports both RTL and AUS values. Hence, the binary qualitative method selects the enactment of {AY, DL}, which fails to be aligned with the value system because denying admission to elders (DL)

  10 , Toronto11 , Buenos Aires 12 , Paris13 , Madrid14 , and Seoul15 . may be affected by the digital divide. This would lead to a bias in the selection process towards the preferences of the population segment that actively participates in the process. Our method can help to tackle this problem if project proposals are selected by consideringas a criterion the common values shared by the population. This requires gathering citizens' values and then evaluating the alignment of the project proposals with those values. Although we consider the gathering of citizens' values to lie outside the scope of this paper,

	Despite empowering citizens, current implementations of participatory bud-
	geting processes suffer from a major practical caveat related to their limited
	convening capacity [29]. As a consequence, their representativeness may be
	compromised if, for instance, educated younger citizens are more inclined to
	participate in online processes than other population segments, such as the el-
	derly, who
	9 https://publications.jrc.ec.europa.eu/repository/handle/JRC126150 (last visited
	on 5th Oct 2022).
	10 https://www.participatorybudgeting.org (last visited on 28th Sept 2022).

it is worth mentioning that the work of Liscio et al.

[START_REF] Liscio | Axies: Identifying and evaluating context-specific values[END_REF][START_REF] Liscio | What values should an agent align with? an empirical comparison of general and context-specific values[END_REF] 

can be used to detect context-specific values, and preferences over these values can be gathered through surveys such as the European Values Study

Table 2 :

 2 relevant example because the process had an overall budget of 30 million euros, attracted the participation of more than 64000 citizens, and resulted in the selection of 76 (out of 184) projects being funded. Table2lists the names, number of votes, strategic areas, and the costs of 10 of the projects that were finally selected. As we can observe, they are related to different strategic areas such as sports, mobility, and culture which, if prioritised, can be used as criteria. Example of 10 projects that were selected in the Barcelona Participatory Budgeting

	11 https://www.torontohousing.ca/residents/getting-involved/
	participatory-budgeting (last visited on 28th Sept 2022).
	12 https://www.buenosaires.gob.ar/areas/hacienda/pp/introduccion.php?menu_id=
	6784 (last visited on 28th Sept 2022).
	13 https://budgetparticipatif.paris.fr/bp/jsp/site/Portal.jsp (last visited on 28th
	Sept 2022).
	14 https://decide.madrid.es/presupuestos (last visited on 28th Sept 2022).
	15 https://yesan.seoul.go.kr/intro/index.do (last visited on 28th Sept 2022)
	16 https://www.decidim.barcelona/processes/PressupostosParticipatius?locale=es
	(last visited on 28th Sept 2022)

  1 for each (n i , n j ) ∈ R x (A.3) 48d 1 + 1d 2 + 48d 3 + 48d 4 + 16d 5 + 48d 6 + 2d 7 + 16d 8 + 8d 9 + 4d 10In this case, we have to consider the constraint of the budget, thus the sum of the costs of the selected proposals cannot surpass 2.5 million euros, meaning that we have to consider the constraint: 850000d 1 +1600000d 2 +500000d 3 +50000d 4 +200000d 5 +350000d 6 +65000d 7 + 150000d 8 + 50000d 9 + 1100000d 10 <= 2500000We solve this problem by using CPLEX and obtain the solution {p 1 , p 3 , p 4 , p 5 , p 6 , p 7 , p 8 , p 9 }.

The Likert scale is a psychometric scale[START_REF] Nemoto | Likert-scale questionnaires[END_REF] ubiquitous in survey research. It is recognised as universally applicable as attitudes towards any object or on any issue can vary along the same underlying negative-to-positive dimension .

l 0 is unique because > L is a linear order. Thus, if there were two neutral labels, one would be necessarily preferred over the other.

According to the Ethics literature, moral values express the moral objectives worth striving for[START_REF] Van De Poel | Ethics, Technology, and Engineering: An Introduction[END_REF] 

The GVANS problem is a generalisation of the VANS problem introduced in[START_REF] Serramia | A qualitative approach to composing value-aligned norm systems[END_REF], which disregarded demotions and promotion relations with different degrees.

IBM CPLEX optimizer: https://www.ibm.com/de-de/analytics/cplex-optimizer, last accessed Feb 2023

.[START_REF] Barberà | Ranking sets of objects[END_REF] Gurobi: https://www.gurobi.com/, last accessed Feb 2023.
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Alternatively, when considering the quantitative utilitarian approach in [START_REF] Serramia | Moral values in norm decision making[END_REF], the task of assigning (and justifying) numerical degrees of promotion/demotion turns out to be more difficult. U columns in Table 1 detail the grades we use in this comparison. Extreme grades now become 1 and -1 respectively. AY promotes RTL with 0.7 and demotes AUS with -0.2 because the young are only a small portion of the admitted patients and the cost of their medical care is relatively low. DL demotes RTL with -0.8 and promotes AUS with 0.8 since most people at risk of dying are elders and they usually require the most expensive medical care.

Subsequently, the procedure in [START_REF] Serramia | Moral values in norm decision making[END_REF] computes norm utilities -for simplicity, gard to how such elements satisfy multiple criteria and how such criteria are preferred. This calls for a new decision-making framework, which we have formally introduced here. Our framework is based on a novel method for ranking single elements.

Ranking functions have been widely used to transform rankings. For instance, the social ranking function transforms a ranking over sets of elements into a ranking over the elements themselves. This paper contributes to the state of the art by proposing a novel ranking -the multi-criteria (MC) ranking lrev -and the function that creates them -the MC lex-cel -to transform complex preference (criteria) information into a neat and clear ranking of individual elements. Furthermore, we have positioned our findings with respect to the current literature by showing that our MC ranking generalises the social ranking and MC lex-cel generalises the lex-cel social ranking function and embodies dominance.

Finally, the paper also illustrates how they can be employed to help a decision-maker to tackle an ethical decision-making problem. Specifically, we define the Generalised Value-Aligned Norm Selection (GVANS) problem and solve it with a qualitative approach with graded value promotion and demotion.

Overall, this method overcomes the shortcomings of previous methods, resulting in a norm system that is most closely aligned with the value system at hand.

In future work, we plan to study in more detail the properties of MC rankings and provide an axiomatisation for MC lex-cel. Indeed, a full axiomatisation is not straightforward, since the use of labels requires the definition of new properties outside of classic social choice ones.

Appendix A. A BIP encoding to solve the GVANS problem

Consider a set of norms N ; a value system with a set of values V and value preferences v ; a (symmetric) label system with set of labels L and linear order ≥ L ; and a labelling function λ relating norms to values with labels in -All successors of a norm ( S(n) = {n ∈ N, (n, n ) ∈ R g }) cannot be jointly selected:

(A.4)

Appendix B. BIP encoding to solve the selection of participatory budget projects

To select participatory budget projects, we apply the BIP encoding in Appendix A to consider preferences regarding projects. Consider a set of projects X and preferences over the projects as a ranking, with Ξ 1 , . . . Ξ r ∈ X/ and

We want to maximise the preferences of the selected projects.

The BIP encoding uses decision variables d i ∈ {0, 1} (0 for not selected, 1

for selected) for each x i ∈ X. The target function is the same formula as in Appendix A, which is the sum of decision variables d i each multiplied by a parameter related to the equivalence class x i is in (see equation A.2).

The BIP would maximise this target function and if there are exclusivity or generalisation relationships between projects, this BIP encoding will also include the corresponding constraints. Similarly, budget constraints may also be added.