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Deformation classes of real ruled manifolds

By Jean-Yves Welschinger*) at Lyon

Abstract. A complete description of the deformation classes of real ruled manifolds
is given. In particular, we prove that once the complex deformation class is fixed, the real
deformation class is prescribed by the topology of the real structure.

Introduction

A real algebraic manifold ðX ; cX Þ is a smooth complex algebraic manifold X equipped
with an antiholomorphic involution cX . The real part of X is the fixed point set of cX . One
of the main problems in real algebraic geometry nowadays is to understand the deforma-
tion classes (see §2.1 for the definition) of real algebraic manifolds. One can think of this
problem as a modern version of a question of Hilbert in his 16th problem concerning the
topology of smooth real quartics in the real projective 3-space. Several works have already
been done to solve this problem: the cases of real curves, real rational surfaces, real mini-
mal ruled surfaces and real minimal surfaces of Kodaira dimension 0 are known (see [8],
[6], [10], [4], [3] and [5] for an extension of [4] to finite group actions on K3’s). The purpose
of this paper is to extend the result of [10] to ruled manifolds of higher dimensions. Note
that the complex deformation classes of ruled manifolds were studied in [9].

A ruled manifold is a smooth algebraic manifold equipped with a proper holomorphic
submersion on a smooth compact irreducible curve B, whose fibers are projective spaces. In
dimension two, these are geometrically ruled surfaces. The aim of this paper is to prove the
following theorem:

Theorem 0.1. Two real ruled manifolds are in the same real deformation class if and

only if they are in the same complex deformation class and they are di¤eomorphic via an

equivariant di¤eomorphism.

Moreover, all the deformation classes of real ruled manifolds will be described (see
§2.2). It is necessary here to fix the complex deformation class of the manifold since as was
noticed by E. Brieskorn (see [2], Satz 3.1), there exist complex ruled manifolds which are
di¤eomorphic to each other but which are not deformation equivalent. However, once the
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complex deformation class is fixed, the topology of the involution is enough to describe the
real deformation classes of the real manifolds, which is the case in all the known examples
nowadays.

The paper is organized as follows: in the first section, we give basic facts and prelim-
inary results on ruled manifolds, real structures on these manifolds and a notion of ele-
mentary transformations that can be performed on them. The second section is devoted to
the statements of the results and the third to their proofs.

1. Real ruled manifolds and elementary transformations

1.1. Ruled manifolds. A smooth irreducible compact complex manifold X of dimen-
sion n is said to be ruled if there exists a smooth irreducible compact complex curve B and a
proper holomorphic submersion p : X ! B whose fibers are isomorphic to the projective
space CPn�1. For example, let E be a complex vector bundle of rank n over the curve B

and X ¼ PðEÞ be the associated projective bundle. Then X is a ruled manifold. Note that
when n ¼ 2, ruled manifolds are geometrically ruled surfaces. For these surfaces, it is well
known that the curve B is unique, so as the ruling p except from X ¼ CP1 � CP1 (see [1]).
The following lemma extends this result.

Lemma 1.1. Let X be a ruled manifold of dimension nf 3. Then the ruling p and the

curve B are unique.

The curve B is called the base of X .

Proof. It follows from the fact that the only divisors of X isomorphic to CPn�1 are
the fibers of p. Indeed, p would restrict otherwise to a surjective morphism from this divisor
onto B, and the generic fibers of this morphism would give smooth disjoint complex hyper-
surfaces of CPn�1. Such hypersurfaces do not exist in dimension n� 1f 2. r

The following proposition is mentioned in [9], p. 214.

Proposition 1.2. Let X be a ruled manifold of dimension n over B. Then there exists a

complex vector bundle E of rank n over B such that X is isomorphic to the projective bundle

PðEÞ. Moreover, the projective bundle PðE 0Þ is isomorphic to PðEÞ if and only if E 0 ¼ EnL

for L A PicðBÞ. r

Corollary 1.3. Ruled manifolds are all projective algebraic. r

Remark 1.4. Let L A PicðBÞ and E be a complex vector bundle of rank n over B.
Then degðEnLÞ ¼ degðEÞ þ n degðLÞ, where degðEÞ stands for the degree of E.

Let X ¼ PðEÞ be a ruled manifold of dimension n over B. We define the degree of X

to be degðEÞ reduced modulo n. It will be denoted by degðXÞ A Z=nZ. Let L be a complex
line bundle over B and L0 be the trivial line bundle. The section PðLÞ (resp. PðL0Þ) of the
ruled surface PðLlL0Þ defines a divisor on this surface denoted by DL (resp. DL0

).

Lemma 1.5. (1) Let p be the ruling PðLlL0Þ ! B and OðDLÞ, OðDL0
Þ denote the

invertible sheaves associated to the divisors DL and DL0
. Then
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OðDLÞ ¼ OðDL0
Þn p�ðL�Þ:

(2) Let F be a complex vector bundle over B, X be the ruled manifold PðLlL0 lFÞ
and N be the normal bundle of PðLlL0Þ in X. Then:

N ¼ p�ðFÞnOðDLÞ:

Proof. Let D ¼
Pk
i¼1

ni pi be a divisor associated to L, where pi A B and ni A Z

for i A f1; . . . ; kg. Denote by U0 ¼ Bnfpi j 1e ie kg and for every i A f1; . . . ; kg,
choose some holomorphic chart ðUpi ; fpiÞ such that Upi XUpj ¼ j if i3 j and
fpi : Upi ! D ¼

�
z A C

�� jzj < 1
�

is a biholomorphism satisfying fpiðpiÞ ¼ 0. For every
i A f1; . . . ; kg, denote by ci the morphism:

ðUpinpiÞ � CP1 ! U0 � CP1;�
x; ðz1 : z0Þ

�
7!
�
x;
�
fpiðxÞ

�ni z1 : z0

��
:

The morphisms ci allow to glue together the trivializations Upi � CP1, i A f0; . . . ; kg, in
order to define the ruled surface PðLlL0Þ.

Let f : p�1ðU0Þ ! C,
�
x; ðz1 : 1Þ

�
7! z1. Then f extends to a meromorphic function

on PðLlL0Þ such that f �1ð0Þ ¼ DL þ
P
nif0

ni p
�1ðpiÞ and f �1ðyÞ ¼ DL0

þ
P
nie0

ni p
�1ðpiÞ.

Hence divð f Þ ¼ DL �DL0
þ p�1ðDÞ, so that OðDLÞ ¼ OðDL0

Þn p�ðL�Þ, which proves the
first part of the lemma.

To prove the second part of the lemma, take a refinement of the covering ðUiÞ such
that the bundle F is trivial over any element of this covering. The manifold X is then
defined as the gluing of charts U0

i and U1
i isomorphic to Ui � Cn�1 with gluing maps:

U0
i XU1

i ! U1
i XU0

i , ðx; z1; f Þ 7! x;
1

z1
;

1

z1
f

� �
where f is a local trivialization of F over

Ui, and U0
i XU0

j ! U0
j XU0

i , ðx; z0; f Þ 7!
�
x; l�1

ij z0; l
�1
ij gijð f Þ

�
where lij and gij are the

changes of trivialization of L and F respectively. We deduce that the normal bundle N of
PðLlL0Þ in PðLlL0 lFÞ is defined as the gluing of the trivializations:

�
U0

i XU1
i XPðLlL0Þ

�
� Cn�2 !

�
U1

i XU0
i XPðLlL0Þ

�
� Cn�2;

�
ðx; z1Þ; n

�
7!
 

x;
1

z1

� �
;

1

z1
n

!

and

�
U0

i XU0
j XPðLlL0Þ

�
� Cn�2 !

�
U0

j XU0
i XPðLlL0Þ

�
� Cn�2;�

ðx; z0Þ; n
�
7!
�
ðx; l�1

ij z0Þ; l�1
ij gijðnÞ

�
:

Hence N ¼ p�ðFÞnOðDL0
Þn p�ðL�Þ ¼ p�ðFÞnOðDLÞ. r
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Proposition 1.6. Let B be a smooth irreducible compact complex curve and L be a

complex line bundle over B such that L3L� if L is non-trivial. Let E ¼ ðLlL0Þk and

X ¼ PðEÞ. Then every automorphism of X fibered over the identity of B which leaves the k

ruled surfaces PðLlL0Þ invariant lifts to an automorphism of E fibered over the identity

of B.

Proof. Let f be such an automorphism of X . From proposition 2.1 of [10], we know
that the restriction of f to the j th ruled surface PðLlL0Þ lifts to an automorphism cj of
the rank two vector bundle LlL0. Let C be the automorphism ðc1; . . . ;ckÞ of E. This
automorphism induces an automorphism c of X such that c�1 � f is the identity once
restricted to each ruled surface PðLlL0Þ. But such an automorphism lifts to a diagonal
automorphism of E of the form ðl1 Id; . . . ; lk IdÞ, where lj A C�. Hence the result. r

1.2. Real structures on ruled manifolds. A real structure on the ruled manifold X is
an antiholomorphic involution cX : X ! X . The fixed point set of cX is called the real part

of X and is denoted by RX .

Lemma 1.7. Let p : X ! B be a ruled manifold of dimension n > 2 and cX be a real

structure on X. Then there exists a real structure cB on B such that p � cX ¼ cB � p. More-

over, this real structure cB is unique.

The real structure cX will be said to be fibered over cB.

Proof. From the proof of lemma 1.1, we know that the only divisors of X isomor-
phic to CPn�1 are the fibers of p. So cX preserves these fibers and hence induces a
di¤eomorphism cB on the base. This di¤eomorphism is antiholomorphic and is an invo-
lution. r

We deduce from this lemma that the connected components of RX are RPn�1-
bundles over the circle. For odd n, such a bundle is unique whereas for even n there are
two such bundles, one which is orientable and the other one which is not. We define the
topological type of a real ruled manifold ðX ; cX Þ of even complex dimension n to be the
quintuple of integers ðt; k; g; m; eÞ where t is the number of orientable components of RX , k
is the number of non-orientable components of RX and ðg; m; eÞ is the topological type of
the real curve ðB; cBÞ, that is the genus of B, the number of connected components of RB
and the dividing or non-dividing type of ðB; cBÞ. This definition extends the one given in
[10] for n ¼ 2.

Let us present now an important example of real ruled manifold. Let ðB; cBÞ be a real
algebraic curve and L be a complex line bundle over B such that c�BðLÞ ¼ L� where c�B is
the real structure on PicðBÞ induced by cB (see [10], §1.1). Let D be a divisor associated to
L and fD be a meromorphic function on B such that divð fDÞ ¼ Dþ cBðDÞ and fD ¼ fD � cB
(it always exists, see [10], lemma 1.3). Note that the sign of fD is constant on every com-
ponent of RB. The following proposition is analogous to proposition 1.6 of [10]:

Proposition 1.8. Associated to every such couple ðD; fDÞ on ðB; cBÞ, there exists a real

structure cfD on X ¼ P
�
ðLlL0Þ

n

2

�
fibered over cB, whose real part is orientable and maps

surjectively onto the components of RB on which fD is non-negative.
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Remark 1.9. When there will not be any ambiguity on the choice of the couple
ðD; fDÞ, we will denote by cþX (resp. c�X ) the real structure cfD (resp. c�fD).

Proof. Denote D ¼
Pk
i¼1

ni pi where pi A B and ni A Z for i A f1; . . . ; kg. We can

assume that the set fpi j 1e ie kg is invariant under cB. Let U0 ¼ Bnfpi j 1e ie kg and
ðUpi ; fpiÞ, i A f1; . . . ; kg, be an atlas compatible with the divisor D and the group hcBi (see
[10], page 3).

The morphisms:

ðUpinpiÞ � CPn�1 ! U0 � CPn�1;�
x; ðz j

1 : z j
0Þ
�
7!
�
x;
�
fpiðxÞ

�ni z
j
1 : z j

0

��
(i A f1; . . . ; kg, j A f1; . . . ; n=2g) allow to glue together the trivializations Upi � CPn�1,
i A f0; . . . ; kg, in order to define the ruled manifold X .

Now, the maps

U0 � CPn�1 ! U0 � CPn�1;

�
x; ðz j

1 : z j
0Þ
�
7!
�
cBðxÞ;

�
z
j
0 : fD � cBðxÞz j

1

��
;

and for every i A f1; . . . ; kg,

Upi � CPn�1 ! UcBðpiÞ � CPn�1;

�
x; ðz j

1 : z j
0Þ
�
7!
�
cBðxÞ;

�
z
j
0 : fD � cBðxÞfpiðxÞ

�ncBð piÞ�npi z
j
1

��
;

where j A f1; . . . ; n=2g, glue together to form an antiholomorphic map cfD on X . This map
lifts cB and is an involution.

Now, the fixed point set of cfD in U0 � CPn�1 is:

�
x;
�
yj :

ffiffiffiffiffiffiffiffiffiffiffiffi
fDðxÞ

p
yj
��

A U0 � CPn�1

���� x A RB; fDðxÞf 0 and yj A C for j A 1; . . . ;
n

2

	 
	 

:

The connected components of this fixed point set are either an orientable RPn�1-bundle
over a circle or an interval depending on whether the corresponding component of RB is
completely included in U0 or not. Similarly, the fixed point set of cfD in Upi � CPn�1 is:

�
x;
�
y i
j :

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fDðxÞ�x�2ni

i

q
y i
j

��
AUpi �CPn�1

���� x ARB; fDðxÞf0 and y i
j AC; j A 1; . . . ;

n

2

	 
	 

;

where xi ¼ fpiðxÞ. This fixed point set is a cylinder if pi A RB and is empty otherwise.

The gluing maps between these cylinders are given by yj ¼
ffiffiffiffiffiffiffi
�1

p
y i
j if xi ¼ fpiðxÞ < 0
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and by yj ¼ y i
j if xi ¼ fpiðxÞ > 0. Since these two maps preserve the orientation of RPn�1,

the results of these gluings are always orientable. Thus, the real part of ðX ; cfDÞ consists
only of orientable components and these components stand exactly over the components
of RB on which fDf 0. r

Proposition 1.10. Let ðB; cBÞ be a real algebraic curve with non-empty real part and

L A PicðBÞ be such that c�BðLÞ ¼ L� and L3L� if L is non-trivial. Let n be an even inte-

ger, X ¼ P
�
ðLlL0Þ

n

2

�
and cX be a real structure on X which leaves the n=2 ruled surfaces

PðLlL0ÞHX invariant. Then cX is conjugated to one of the two real structures cGX .

Proof. If L is trivial, then X ¼ B� CPn�1 and cGX are the two real structures
cB � conj and cB � c0, c0 being the real structure of CPn�1 with empty real part. Now the
automorphisms of X fibered over the identity of B are just the automorphisms of CPn�1,
so every real structure of X fibered over cB is the product of cB with a real structure of
CPn�1. Hence the result follows from the well known fact that the standard complex con-
jugation conj and c0 are the only real structures of CPn�1 up to conjugation. Let us now
assume that L is non-trivial. The real structure cX can be written cþX � f, where f is an au-
tomorphism of X fibered over the identity of B and which leaves the n=2 ruled surfaces
PðLlL0ÞHX invariant. From proposition 1.6, there exists an automorphism F of the
vector bundle ðLlL0Þ

n
2 which lifts f. Since L is non-trivial, H 0ðB;LÞ ¼ H 0ðB;L�Þ ¼ 0,

so that F is diagonal of the form ða1; b1; a2; b2; . . . ; an

2
; bn

2
Þ with aj; bj A C�. Since c2

X is the

identity, a1b1 ¼ a2b2 ¼ � � � ¼ an
2
bn

2
A R�. Thus, dividing F by a real constant if necessary,

we can assume that a1b1 ¼ a2b2 ¼ � � � ¼ an

2
bn

2
¼G1. Moreover, we can assume that all the

coe‰cients aj are equal to one, replacing cX by its conjugated with the automorphism
ða�1

1 ; 1; a�1
2 ; 1; . . . ; a�1

n

2
; 1Þ otherwise. Then, either all the coe‰cients bj are equal to 1, or

they are all equal to �1. In the first case, cX is conjugated to cþX , in the second case, it is
conjugated to c�X . r

1.3. Elementary transformations. Let X be a ruled manifold of dimension n over the
curve B. Let x A B, Xx ¼ p�1ðxÞ and Hx;KxHXx be two disjoint projective subspaces of
Xx of dimensions k and n� 2 � k respectively, where 0e ke n� 2. The blowing up Y of
X along Hx creates an exceptional divisor Ex isomorphic to PðNxlL0Þ where Nx is the
normal bundle of Hx in Xx. The strict transform ~XXx of Xx in Y intersects Ex in the sub-
manifold PðNxÞHPðNxlL0Þ. Moreover, ~XXx is a ruled manifold over Kx. Indeed, for every
y A Kx consider the projective subspace of dimension k þ 1 of Xx containing Hx and pass-
ing through y. These projective subspaces form a singular pencil parametrized by Kx. This
pencil lifts on Y to a ruled manifold of base Kx and fiber CPk, which coincide with ~XXx.
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The composition of the blowing up of X along Hx and the blowing down of ~XXx on Kx

is called the elementary transformation of X along Hx. For example if n ¼ 2, then Hx and
Kx are points in Xx and the elementary transformation of X along Hx is the blowing up of
the point Hx composed with the blowing down of the strict transform of the fiber Xx. This
notion of elementary transformation thus extends the one used in [10] for ruled surfaces.

Lemma 1.11. Let D ¼
�
z A C

�� jzj < 1
�

, the elementary transformation of

D� PðCkþ1 � Cn�k�1Þ along f0g � PðCkþ1Þ is given by the following quadratic transform:

D� PðCkþ1 � Cn�k�1Þ ! D� PðCkþ1 � Cn�k�1Þ;�
x; ðy0 : � � � : yk : z0 : � � � : zn�2�kÞ

�
7!
�
x; ðt0 : � � � : tk : w0 : � � � : wn�2�kÞ

�
with ti ¼ yi for 0e ie k and xwj ¼ zj for 0e je n� k � 2.

Proof. It su‰ces to notice that the blowing up of D� PðCkþ1 � Cn�k�1Þ along
f0g � PðCkþ1Þ embeds into D� CPn�1 � CPn�1. The image of this embedding is:

Y ¼
��

x; ðy0 : � � � : yk : z0 : � � � : zn�2�kÞ; ðt0 : � � � : tk : w0 : � � � : wn�2�kÞ
�
A D� CPn�1

� CPn�1 j ðy0 : � � � : ykÞ ¼ ðt0 : � � � : tkÞ or yi ¼ ti ¼ 0

and ðxyi : z0 : � � � : zn�2�kÞ ¼ ðti : w0 : � � � : wn�2�kÞ for 0e ie k
�
:

(The equations ðxyi : z0 : � � � : zn�2�kÞ ¼ ðti : w0 : � � � : wn�2�kÞ have to be ignored when they
are not well defined.) The projection of Y onto the first factor D� CPn�1

ðy; zÞ (resp. onto the

second factor D�CPn�1
ðt;wÞ) is the blowing up of D�PðCkþ1 �Cn�k�1Þ along f0g�PðCkþ1Þ

(resp. along f0g � PðCn�k�1Þ), hence the result. r

Corollary 1.12. Let F ;G be complex vector bundles over a curve B. Let x A B and

X ¼ PðF lGÞ. The ruled manifold obtained from X after an elementary transformation

along PðFxÞ is the manifold P
�
FðxÞlG

�
where FðxÞ ¼ F nOðxÞ. r

The next corollary will be fundamental in what follows. It allows to break into pieces
or to glue together some elementary transformations.

Corollary 1.13. Let F ;G;H be complex vector bundles over a curve B, x A B and

X ¼ PðF lGlHÞ. The ruled manifold obtained from X after an elementary transforma-

tion along PðFxÞ followed by an elementary transformation along PðGxÞ is the ruled manifold

obtained from X after an elementary transformation along PðFxlGxÞ. r

2. Statements of the results

2.1. Deformation over C of ruled manifolds. Let DHC be the Poincaré’s disk
equipped with the complex conjugation conj. Remember that a deformation of complex
manifolds of dimension n is a proper holomorphic submersion p : Y ! D where Y is an
analytic manifold of dimension nþ 1. If Y is real and p satisfies p � cY ¼ conj � p, then the
deformation is said to be real. When t A ��1; 1½ A D, the fibers Yt ¼ p�1ðtÞ are invariant
under cY and are then compact real analytic manifolds. Two complex (resp. real) analytic
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manifolds X 0 and X 00 are said to be in the same deformation class or deformation equivalent

if there exists a chain X 0 ¼ X0; . . . ;Xk ¼ X 00 of compact complex (resp. real) analytic mani-
folds such that for every i A f0; . . . ; k � 1g, the manifolds Xi and Xiþ1 are isomorphic to
some complex (resp. real) fibers of a complex (resp. real) deformation.

The following result can be found in [9].

Theorem 2.1. Two complex ruled manifolds are in the same deformation class if and

only if they have same degree and bases of same genus. r

(See §1.1 for the definition of the degree.)

Remember that ruled manifolds with opposite degrees and bases of same genus are
di¤eomorphic even though they are not deformation equivalent, see [2].

2.2. Deformation over R of ruled manifolds.

Theorem 2.2. Two real ruled manifolds of odd dimension are in the same deformation

class if and only if they have same degree and bases of same topological type. Similarly, two
real ruled manifolds of even dimension are in the same deformation class if and only if they

have same degree, same topological type and homeomorphic quotients.

Remark 2.3. For real ruled manifolds of even dimension, as soon as the real part
of the base is non-empty, the condition on the quotients can be removed. However, when
the real part of the base is empty, there are two di¤erent deformation classes of real ruled
manifolds with same degree and same topological type, see proposition 3.7. Note that when
n ¼ 2, this theorem 2.2 has already been obtained in [10], theorem 3.7.

Note that when n is odd, the ruled manifolds P
�
L
�
xþ cBðxÞ

�d
lLn�d

0

�
, where

d A f0; . . . ; n� 1g, x A BnRB and ðB; cBÞ is of any topological type, are all real. Hence there
do exist odd-dimensional real ruled manifolds of any degree and any topological type (real-
ized by a real algebraic curve). This together with theorem 2.2 completely describes the
deformation classes of real ruled manifolds of odd dimension. A quintuple ðt; k; g; m; eÞ of
integers is called allowable if t; kf 0, tþ ke m and ðg; m; eÞ is the topological type of a real
curve. Obviously, the topological types of real ruled manifolds (see §1.2 for the definition)
of even dimensions are allowable.

Proposition 2.4. Any allowable quintuple ðt; k; g; m; eÞ is realized as the topological

type of a real ruled manifold of any even dimension and any degree d satisfying d ¼ k modð2Þ.
There does not exist such real ruled manifold of degree d3 k modð2Þ.

Note that in dimension two, this proposition has already been obtained in [10], prop-
osition 3.4. Together with theorem 2.2 and remark 2.3, it completely describes the defor-
mation classes of real ruled manifolds of even dimension.

Proof. Let ðt; k; g; m; eÞ be an allowable quintuple. There exists a smooth compact
connected real algebraic curve ðB; cBÞ whose topological type is ðg; m; eÞ (see [8] for in-
stance). If m ¼ 0, the ruled manifold ðB� CPn�1; cB � conjÞ, where conj is the standard real
structure on CPn�1, is of topological type ð0; 0; g; 0; 0Þ. If m3 0, choose a partition P of RB
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in two elements such that one of them contains tþ k components of RB and the other one
m� t� k. It follows from [10], lemma 3.2, that there exists a line bundle L over B such that
c�BðLÞ ¼ L� and the partition associated to L is P (see [10], §3.1 for a definition). Thus, it
follows from proposition 1.8 that there exists a real structure cþX on the ruled manifold

X ¼ P
�
ðLlL0Þ

n

2
�

such that the real part of X consists of tþ k orientable RPn�1 bundles.
Choose k of these orientable bundles and make an elementary transformation on a point
of each of them. The result is a real ruled manifold of degree k and topological type
ðt; k; g; m; eÞ. To get any other ruled manifold of degree congruent to k modulo 2 and same
topological type, it su‰ces to perform the suitable number of elementary transformations
along complex conjugated points. The fact that the condition d ¼ k modð2Þ is necessary
will follow from the proof of theorem 2.2. Indeed, we will see that every real ruled manifold
is deformation equivalent to a manifold obtained from a degree 0 real ruled manifold with
orientable real part after a finite number of elementary transformations performed on real
or complex conjugated points. Thus the degree modulo two of X is encoded by the topo-
logy of the real part, which finishes the proof. r

3. Proof of theorem 2.2

Since the case of real ruled manifolds having bases with empty real parts requires
special attention, the proof of theorem 2.2 in this case is postponed to §3.2.

3.1. When the base has non-empty real part. The next two propositions will allow us
to reduce the study of real ruled manifolds to the study of some particular ones. Note that
even if this paragraph is devoted to real ruled manifolds having bases with non-empty real
parts, the assumption RB3j won’t be made in proposition 3.1 and lemma 3.3.

Proposition 3.1. Let ðX ; cX Þ be a real ruled manifold over ðB; cBÞ. Then there exist

complex line bundles L1; . . . ;Lk over B, complex vector bundles F1; . . . ;Fl of rank two over B

and a real structure cY on Y ¼ PðL1 l � � �lLk lF1 l � � �lFlÞ such that:

– The sections PðLiÞ, i A f1; . . . ; kg, and the ruled surfaces PðFjÞ, j A f1; . . . ; lg, of

ðY ; cY Þ are all real.

– The real ruled surfaces PðFjÞHY , j A f1; . . . ; lg, do not have any real holomorphic

section.

– The real ruled manifolds ðX ; cX Þ and ðY ; cY Þ are in the same deformation class.

The proof of this proposition is similar to the proof of proposition 3.8 in [10].

Proof. Let E be a complex vector bundle of rank n over B such that X ¼ PðEÞ (it
exists from proposition 1.2). If X has a real holomorphic section, denote by M the sub-line
bundle of E associated to such a section. Otherwise, let S be a holomorphic section of
X . Then cX ðSÞ3S, so these two sections intersect in a finite number of points over the
points x1; . . . ; xk of B say. Let RHX be the ruled surface generated by S and cX ðSÞ, that
is the closure of the surface whose fiber over x A Bnfx1; . . . ; xkg is the line joining SðxÞ to
cX ðSÞðxÞ in Xx. By construction, R is a real ruled surface of X . Denote in this case by M

the rank two sub-bundle of E associated to R. Now, let N be the quotient bundle E=M so
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that E is an extension of N by M. Let m A H 1
�
B;HomðN;MÞ

�
be the extension class of

this bundle and let m1 be a 1-cocycle with coe‰cients in the sheaf HomðN;MÞ, defined on
a covering U ¼ ðUiÞi A I of B, realizing the cohomology class m A H 1

�
B;HomðN;MÞ

�
. The

bundle E is then obtained as the gluing of the bundles ðMlNÞjUi
by the gluing maps:

ðMlNÞjUiXUj
! ðMlNÞjUjXUi

;

ðm; nÞ 7! 1 mij
0 1

� �
m

n

� �
¼ ðmþ mijn; nÞ:

We can assume that for every open set Ui of U, there exists i A I such that Ui ¼ cBðUiÞ (add
these open sets to U if not). We can also assume that there exists JH I such that the open
sets ðUiÞi A J cover B and such that the real structure cX : X jUi

! X jU
i

lifts to an antiholo-
morphic map EjUi

! EjU
i

(take a refinement of U if not). Since by hypothesis the section or
ruled surface of X associated to M is real, these antiholomorphic maps are of the form:

ðMlNÞjUi
! ðMlNÞjU

i

;

�
x; ðm; nÞ

�
7!
�
cBðxÞ;

ai bi

0 di

� �
m

n

� ��
;

where ai (resp. bi, resp. di) is an antiholomorphic morphism MjUi
! MjU

i

(resp.
NjUi

! MjU
i

, resp. NjUi
! NjU

i

) which lifts cB. Since cX is an involution, we have for

every i A J, ai � ai ¼ di � di A O�
BjUi

and ai � bi þ bi � di ¼ 0 A HomðN;MÞjUi
. Moreover, for

i; j A J such that Ui XUj 3j, the gluing conditions are the following: ai ¼ laj, di ¼ ldj
and bi þ m

ij
� di ¼ lðaj � mij þ bjÞ where l A O�

BjUiXUj
.

Now let Y be the complex analytic manifold of dimension nþ 1 defined as the gluing
of the charts C� PðMlNÞjUi

, i A J, with change of charts given by the maps:

C� PðMlNÞjUi
! C� PðMlNÞjUj

;

�
t; x; ðm : nÞ

�
7! ðt; x; 1 tmij

0 1

� �
m

n

� �
Þ ¼

�
t; x; ðmþ tmijn : nÞ

�
:

The projection on the first coordinate defines a holomorphic submersion p : Y ! C. The
surface p�1ð0Þ is isomorphic to the ruled manifold PðMlNÞ, whereas, as soon as t A C�,
the fiber Yt ¼ p�1ðtÞ is isomorphic to the ruled manifold X ¼ PðEÞ. Such an isomorphism
ct : Yt ! X is given in the charts PðMlNÞjUi

, i A J, by:

PðMlNÞjUi
! PðMlNÞjUi

;�
x; ðm : nÞ

�
7!
�
x; ðm : tnÞ

�
:

Denote by cY the real structure on Y defined on charts C� PðMlNÞjUi
by:

C� PðMlNÞjUi
! C� PðMlNÞjU

i

;

�
t; x; ðm : nÞ

�
7!
�
t; cBðxÞ;

ai tbi

0 di

� �
m

n

� ��
:
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This real structure satisfies p � cY ¼ conj � p where conj is the complex conjugation on
C. Moreover, when t A R�, ct gives an isomorphism between the real ruled manifolds
ðYt; cY jYt

Þ and ðX ; cX Þ. Hence, the restriction of p : Y ! C over DHC defines a real de-
formation and the real ruled manifold PðMlNÞ is thus deformation equivalent to ðX ; cX Þ.
By iteration of this process to PðNÞHPðMlNÞ, we obtain the desired result. r

From now on, we will assume that X ¼ PðL1 l � � �lLk lF1 l � � �lFlÞ and that
cX satisfies the conditions of proposition 3.1. It follows from proposition 3.1 that this can
be done without changing the deformation class of ðX ; cX Þ.

Proposition 3.2. Let X ¼ PðL1 l � � �lLk lF1 l � � �lFlÞ be a ruled manifold over

B and cX be a real structure satisfying the conditions of proposition 3.1. Assume that the real

part of B is non-empty, then:

(1) If kf 1, without changing the deformation class of ðX ; cX Þ, we can assume that

l ¼ 0.

(2) If k ¼ 0, without changing the deformation class of ðX ; cX Þ, we can assume that the

real ruled surfaces PðFjÞHX , j A f1; . . . ; lg, are obtained from a same real decomposable

ruled surface after at most one elementary transformation on each component of its real part

if RX 3j and after at most one couple of elementary transformations on complex conjugated

points if RX ¼ j.

Lemma 3.3. Let L A JacðBÞ be a complex line bundle belonging to the same compo-

nent of the real part of
�
JacðBÞ;�c�B

�
as the trivial line bundle. Then there exists a divisor D

associated to L such that cBðDÞ ¼ �D. The same conclusion holds for any line bundle in the

real part of
�
JacðBÞ;�c�B

�
when RB is empty.

(In this lemma, the Jacobian JacðBÞ is identified with the degree zero part of the
Picard manifold of B.)

Proof. Let L be a line bundle belonging to the same component of the real part of�
JacðBÞ;�c�B

�
as the trivial line bundle. Then there exists a line bundle ~LL in this component

such that ~LLn ~LL ¼ L. Let ~DD be a divisor associated to ~LL. Then �cBð ~DDÞ is also associated
to ~LL and D ¼ ~DD� cBð ~DDÞ is suitable. Now assume that RB is empty. Remember that if the
genus of B is even (resp. is odd), then the real part of

�
JacðBÞ;�c�B

�
is connected (resp. has

two connected components), see [7], proposition 3.3. Assume thus that the genus of B is
odd and pick up a point x in B. The line bundle L

�
x� cBðxÞ

�
associated to the divisor

x� cBðxÞ does not belong to the same component of the real part of
�
JacðBÞ;�c�B

�
as L0.

Indeed the quotients of the real ruled surfaces
�
P
�
L
�
x� cBðxÞ

�
lL0

�
; cGX

�
by the real

structures cGX are not spin whereas they are for any real ruled surfaces
�
PðLlL0Þ; cGX

�
for

L in the same component as L0, see proposition 3.7. Making the tensor product with the
line bundle L

�
x� cBðxÞ

�
if necessary, we get the result for any line bundle of the real part

of
�
JacðBÞ;�c�B

�
in this case. r

Proof of proposition 3.2. To begin with, let us prove the first part of proposition 3.2.
For this, we suppose that the integer l given by proposition 3.1 is non-zero. Since kf 1, X
admits some real sections and so the projection RX ! RB is surjective. It follows that
every real fiber of X has a non-empty real part and thus is isomorphic to CPn�1 equipped
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with the standard complex conjugation. Let j A f1; . . . ; lg, the ruled surface PðFjÞ in X is
real and has no holomorphic section. Every real fiber of this surface is a real line in a real
fiber of X , it thus has real points and so the real part of PðFjÞ has as many components as
RB. It follows then from [10], proposition 3.10, that PðFjÞ can be obtained from a decom-
posable ruled surface after a finite number of elementary transformations on real or com-
plex conjugated points. This decomposable ruled surface is of the form

�
PðMlL0Þ; cGX

�
,

where M A PicðBÞ and c�BðMÞ ¼ M � (see [10]). Since the real part of PðFjÞ has as many
components as RB, it follows from [10], lemma 3.2, that M belongs to the same compo-
nent of the real part of

�
JacðBÞ;�c�B

�
as L0. From lemma 3.3, we deduce that there exists

a divisor D associated to M such that cBðDÞ ¼ �D. So there exist some points xi A B

and integers ni such that D ¼
P
i

ni
�
xi � cBðxiÞ

�
. From corollary 1.12 then follows that�

PðMlL0Þ; cGX
�

is obtained from ðB� CP1; cB � conjÞ after a finite number of elemen-
tary transformations in complex conjugated points. It su‰ces indeed to make elementary
transformations on the section PðMÞ over the points cBðxiÞ and on the section PðL0Þ over
the points xi to pass from

�
PðMlL0Þ; cGX

�
to ðB� CP1; cB � conjÞ, since cB � conj is the

only real structure on B� CP1 fibered over cB and with non-empty real part. In conclusion,
the real ruled manifold ðX ; cX Þ is obtained from a manifold

�
Y ¼ PðL1 l � � �lLk lNlNlF2 l � � �lFlÞ; cY

�
where cY satisfies the conditions of proposition 3.1, after a finite number of elementary
transformations on real and complex conjugated points. Using a real deformation, these
points can be brought to the real section PðL1ÞHY . This gives a new real ruled manifold
in the same deformation class as ðX ; cX Þ but with a lower l. After an iteration of this pro-
cess, we get the result.

Now, let us prove the second part of proposition 3.2. As in the first part, we can
prove that every real ruled surface PðFjÞ is obtained from a decomposable real ruled sur-
face

�
PðMj lL0Þ; cGX

�
after a finite number of elementary transformations on real or com-

plex conjugated points. Moreover, the line bundle Mj satisfies c�BðMjÞ ¼ M �
j . Also, using

the same trick as in the beginning, we deduce that the real parts of these surfaces project
exactly on the same subset of RB. Thus, using the terminology of [10], we obtain that the
partition of RB in two elements associated to the bundles Mj are the same. From [10],
lemma 3.2, it follows that the bundles Mj are in the same component of the real part of�
JacðBÞ;�c�B

�
and thus are of the form Ln ~MMj with L; ~MMj A JacðBÞ, c�BðLÞ ¼ L� and ~MMj

in the same real component of
�
JacðBÞ;�c�B

�
as L0. Hence we deduce as before that every

surface PðFjÞ is obtained from a same decomposable real ruled surface
�
PðLlL0Þ; cGX

�
after a finite number of elementary transformations on real or complex conjugated points.
Now if RX is non-empty, from corollary 1.12 every couple of complex conjugated points
can be deformed into a double real point and then into two real points. Moreover, every
couple of real points lying in a same real component of PðLlL0Þ can be removed, making
the elementary transformation at the first point and bringing the second on the image of
the contracted fiber. This gives the result if RX is non-empty, and otherwise the result is
deduced from the fact that every pair of elementary transformations done on couples of
complex conjugated points of PðLlL0Þ can be similarly removed. r

Remark 3.4. From this proof follows that the common decomposable real ruled
surface can be chosen of the form

�
PðLlL0Þ; cGX

�
with L3L� if L is non-trivial.
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We can now prove theorem 2.2 when the bases of the manifolds have non-empty real
parts (the case of empty real part is postponed to next subparagraph). We separate the
cases of odd and even dimensions.

Proof of theorem 2.2 in odd dimension. Let ðX ; cX Þ be a real ruled manifold of
odd dimension n and base ðB; cBÞ with non-empty real part. Since the integer k given by
proposition 3.1 has the same parity as n, it is non-zero. From proposition 3.2, we can
thus assume that k ¼ n and X ¼ PðL1 l � � �lLnÞ, every section PðLiÞ being real. We
can assume that L1 is trivial, making the tensor product by L�

1 otherwise. For every
i A f2; . . . ; ng, the ruled surface Xi ¼ PðL1 lLiÞ is real. The normal bundle of PðL1Þ in Xi

is real and isomorphic to Li. There thus exists a divisor Di on B such that cBðDiÞ ¼ Di

and Li ¼ LðDiÞ. Hence, from corollary 1.12, the real ruled manifold ðX ; cX Þ is obtained
from ðB� CPn�1; cB � conjÞ after a finite number of elementary transformations on real or
complex conjugated points (remember that cB � conj is the only real structure on B� CPn�1

fibered over cB, since n is odd). We can assume that on every component of RB� RPn�1,
the number of such points is even. Indeed, we can add n to this number otherwise, making
an elementary transformation on every section PðLiÞ over a same point of RB, which does
not a¤ect the isomorphism class of X from corollary 1.13 and proposition 1.2. So from
corollary 1.12 we can assume that all these points are complex conjugated, deforming every
couple of real points on a same component to a double real point and then to two complex
conjugated points. Finally, from corollary 1.13, the number of elementary transformations
done on complex conjugated points can be reduced modulo 2n to an even number in be-
tween zero and 2n� 2. Indeed, n couples of elementary transformations done on complex
conjugated points can be removed bringing these points to the n sections PðLiÞ over a same
pair of complex conjugated points of B. Note that the ruled manifold obtained from
B� CPn�1 after 2d elementary transformations has degree 2d, so when d ranges from 0 to
n� 1, this gives ruled manifolds non deformation equivalent to each other.

The proof of theorem 2.2 is now clear. Let ðX1; cX1
Þ and ðX2; cX2

Þ be two real
ruled manifolds of odd dimension n with same degree d A Z=nZ and bases ðB1; cB1

Þ and
ðB2; cB2

Þ of same topological type. We know that ðX1; cX1
Þ (resp. ðX2; cX2

Þ) is in the
same deformation class as the manifold obtained from ðB1 � CPn�1; cB1

� conjÞ (resp.
ðB2 � CPn�1; cB2

� conjÞ) after d elementary transformations done on complex conjugated
points. Since ðB1; cB1

Þ and ðB2; cB2
Þ have same topological type, from [8] follows that they

are deformation equivalent and there exists a path ðBt; cBt
Þ joining these curves. The path

ðXt; cXt
Þ, where ðXt; cXt

Þ is obtained from ðBt � CPn�1; cBt
� conjÞ after making d elemen-

tary transformations on complex conjugated points, gives a real deformation in between
ðX1; cX1

Þ and ðX2; cX2
Þ. r

Proof of theorem 2.2 in even dimension. Let ðX ; cX Þ be a real ruled manifold of even
dimension n and base ðB; cBÞ with non-empty real part. Without changing the deformation
class of ðX ; cX Þ, we can assume that X ¼ PðL1 l � � �lLk lF1 l � � �lFlÞ and that cX
satisfies the conditions of proposition 3.1. From proposition 3.2, either k or l vanishes.

First case: l ¼ 0. In this case, we proceed as in the proof of theorem 2.2 in odd
dimension. It follows that the manifold ðX ; cX Þ is obtained from ðB� CPn�1; cB � conjÞ
after a finite number of elementary transformations done on real or complex conjugated
points. As in the proof of proposition 3.2, the number of elementary transformations can
be reduced to zero or one on every component of RB� RPn�1. As in the proof of theo-
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rem 2.2 in odd dimension, the number of elementary transformations done on complex
conjugated points can be reduced modulo 2n to an even number between 0 and 2n� 2
and even between 0 and n� 2 since RB3j and so complex conjugated points can be
brought to a same real fiber of X and reduced modulo n. Let ðX1; cX1

Þ and ðX2; cX2
Þ be

two real ruled manifolds of even dimension n with same degree d A Z=nZ and same to-
pological type. Then the number of components of RB1 � RPn�1 (resp. RB2 � RPn�1) on
which is done one elementary transformation is given by the number of non-orientable
components of RX1 (resp. RX2), so it is the same for X1 and X2. Since ðB1; cB1

Þ and
ðB2; cB2

Þ have same topological type, from [8] follows that there exists a path ðBt; cBt
Þ

joining these curves. Moreover, this path can be chosen so that the component of RB1 over
which are the non-orientable components of RX1 are mapped to the components of RB2

over which are the non-orientable components of RX2. This follows from the presentation
in [8] of a real algebraic curve as the gluing of a Riemann surface with boundary with its
conjugate, the gluing maps being either identity or antipodal. Hence, we can assume that
ðX1; cX1

Þ and ðX2; cX2
Þ are obtained from a same real ruled manifold ðY ; cY Þ after making

an even number of elementary transformations on complex conjugated points, these num-
bers being less than n� 1. Since by hypothesis these manifolds have same degree, these
numbers are the same for ðX1; cX1

Þ and ðX2; cX2
Þ and these two manifolds are deformation

equivalent.

Second case: k ¼ 0. Then, from proposition 3.2, without changing the defor-
mation class of ðX ; cX Þ and making a finite number of elementary transformations on
real points if necessary, we can assume that there exists L A PicðBÞ such that c�BðLÞ ¼ L�

and for 1e je n=2, PðFjÞ ¼ PðLlL0Þ. Denote by Mj the line bundle such that
Fj ¼ ðMj nLÞlMj. We can assume that M1 is trivial and we denote by c1 the real struc-
ture on PðF1Þ induced by cX . The real structure cX induces a real structure on the normal
bundle Nj of PðF1Þ in PðF1 lFjÞ. Thus c�1ðNjÞ ¼ Nj. But from lemma 1.5, we know that

Nj ¼ p�ðFjÞnOðDLÞ ¼ p�
�
ðMj nLÞlMj

�
nOðDLÞ ¼

�
OðDLÞlOðDL0

Þ
�
n p�ðMjÞ:

So c�1ðNjÞ ¼ Nj implies that c�BðMjÞ ¼ Mj. Since RB3j, this implies that there exists a di-
visor Dj on B associated to Mj such that cBðDjÞ ¼ Dj. We then deduce from corollary 1.12
and proposition 1.10 that ðX ; cX Þ is obtained from

�
Y ¼ P

�
ðLlL0Þ

n

2

�
; cGY

�
after a finite

number of elementary transformations on real or complex conjugated points (we can in-
deed assume that L3L� if L is non-trivial, see remark 3.4). As in the first case, the number
of elementary transformations done on real points can be reduced to 0 or 1 for each com-
ponent of RY and on complex conjugated points, they can be reduced modulo n to an even
number between 0 and n� 2. We conclude exactly as in the first case. r

3.2. When the base has empty real part. The aim of this paragraph is to prove the-
orem 2.2 assuming the bases of the manifolds have empty real parts. This is the only re-
maining case to consider, after §3.1.

Lemma 3.5. Let
�
X ¼ PðL0 lLlLÞ; cX

�
be a real ruled manifold having a base

ðB; cBÞ with empty real part. Assume that the real structure cX fixes the section PðL0ÞHX

and exchanges the two sections PðLÞHX . Then X is obtained from ðB� CP3; cB � conjÞ
after a finite number of elementary transformations done on real or complex conjugated

points.
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Proof. Denote by DL the divisor PðLÞHPðLlLÞ, where PðLÞ is one of the two
sections of PðLlLÞ, and by c1 the real structure of PðLlLÞ induced by cX . The normal
bundle of PðLlLÞ in X is real and isomorphic to p�ðL�ÞnOðDLÞ from lemma 1.5. Thus,
c�1
�
p�ðL�ÞnOðDLÞ

�
¼ p�ðL�ÞnOðDLÞ. Now c�1

�
p�ðL�ÞnOðDLÞ

�
¼ p�

�
c�BðL�Þ

�
nOðDLÞ,

so that c�BðLÞ ¼ L. Let D be a divisor associated to L. Then cBðDÞ is also associated to
L and one can write

�
X ¼ P

�
L0 lLðDÞlL

�
cBðDÞ

���
. Making elementary transforma-

tions on PðL0Þ over the points of Dþ cBðDÞ, on P
�
LðDÞ

�
over the points of cBðDÞ and on

P
�
L
�
cBðDÞ

��
over the points of D, we obtain the real ruled manifold ðB� CP3; cB � conjÞ.

Hence the result. r

Proposition 3.6. Let X ¼ PðL1 l � � �lLk lF1 l � � �lFlÞ be a ruled manifold over

B and cX be a real structure satisfying the conditions of proposition 3.1. Assume that the real

part of B is empty, then:

(1) If kf 1, without changing the deformation class of ðX ; cX Þ, we can assume that

l ¼ 0.

(2) If k ¼ 0, without changing the deformation class of ðX ; cX Þ, we can assume that the

real ruled surfaces PðFjÞHX , j A f1; . . . ; lg, are obtained from the trivial ruled surface after

at most one couple of elementary transformations done on complex conjugated points.

Proof. Thanks to lemma 3.3, we can proceed as in the proof of proposition 3.2 to
get that all the real ruled surfaces PðFjÞ are obtained from the trivial ruled surface after
some elementary transformations done on complex conjugated points. If kf 1, all the ele-
mentary transformations can be brought to the section PðL1Þ without changing the real
deformation class of X . If k ¼ 0, every two such couples can be cancelled, making the first
two elementary transformations and bringing the two remaining ones on the images of the
contracted fibers. This already proves the second part of proposition 3.6. Now if k; lf 1,
we can assume that L1 is the trivial line bundle L0. From what has just be done, we know
that Fj ¼ Mj lMj for some line bundle Mj over B. From lemma 3.5, we deduce that the
real ruled surfaces PðFjÞ ¼ PðMj lMjÞ have a real section, which contradicts the hypo-
thesis (see proposition 3.1). r

Proposition 3.7. Let nf 2 be an even integer and ðB; cBÞ be a real compact irreduc-

ible algebraic curve with empty real part. Let c0 be the real structure with empty real part on

CPn�1.

(1) If gðBÞ is odd, then the real ruled manifolds ðB� CPn�1; cB � conjÞ and

ðB� CPn�1; cB � c0Þ are deformation equivalent.

(2) Let ðX ; cX Þ be the real ruled manifold obtained from ðB� CPn�1; cB � conjÞ
after a couple of elementary transformations done along two projective subspaces of dimen-

sion n=2 � 1 belonging to two complex conjugated fibers. Then the quotients X=cX and

B� CPn�1=cB � conj are not homeomorphic to each other.

Corollary 3.8. Let nf 2 be an even integer and ðB; cBÞ be a real compact irreducible

algebraic curve with empty real part and even genus. Then the quotients B�CPn�1=cB � conj
and B� CPn�1=cB � c0 are not homeomorphic to each other.
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Proof. From proposition 3.7, we know that the real ruled manifold ðX ; cX Þ obtained
from ðB� CPn�1; cB � conjÞ after a couple of elementary transformations done along two
projective subspaces of dimension n=2 � 1 of two complex conjugated fibers has a quotient

non homeomorphic to B� CPn�1=cB � conj. Let us write B� CPn�1 ¼ PðL
n

2

0 lL
n

2

0Þ, where

the two sub-ruled manifolds PðL
n

2

0Þ are exchanged by cB � conj. We can perform the ele-
mentary transformations along these subspaces over two complex conjugated points x and
cBðxÞ of B. From corollary 1.12 we then deduce that X ¼ P

��
L
�
x� cBðxÞ

�
lL0

�n
2
�

and
from proposition 1.10, we deduce that cX is one of the two real structures cGX . Now since
the genus of B is even, the real part of

�
JacðBÞ;�c�B

�
is connected and hence ðX ; cX Þ de-

forms onto B� CPn�1 equipped with a real structure having a quotient homeomorphic to
X=cX . From proposition 3.7 it cannot be cB � conj, hence the result. r

Proof of proposition 3.7. The proof of the first part of this proposition is analogous
to the one of proposition 2.8 of [10], so we will give only a sketch of it. Without chang-
ing the deformation class of the manifolds, we can assume that the base ðB; cBÞ is the curve
constructed in corollary 2.8 of [10]. Let L be the line bundle given by this corollary, it sat-
isfies c�BðLÞ ¼ L ¼ L�. Moreover, there exist a divisor D associated to L, an automorphism
j of B, a meromorphic function fD on B such that f � cB ¼ f , divð f Þ ¼ Dþ cBðDÞ and
f � j ¼ f , as well as a meromorphic function g on B such that divðgÞ ¼ jðDÞ �D and
gðg � cBÞ ¼ �1 (see [10]). We define, as in the proof of proposition 2.6 of [10], an auto-
morphism F of P

�
ðLlL0Þ

n

2
�

defined over the open set U0 ¼ BnD, by:

U0 � CPn�1 ! U0 � CPn�1;�
x; ðz j

1 : z j
0Þ
�
7!
�
jðxÞ;

�
g � jðxÞz j

1 : z j
0

��
;

where j A f1; . . . ; n=2g. This automorphism conjugates the two real structures cþX and c�X on
X . Now if L is in the same component of the real part of

�
JacðBÞ;�c�B

�
as the trivial line

bundle, the real ruled manifolds ðB� CPn�1; cB � conjÞ and ðB� CPn�1; cB � c0Þ are in
the same deformation class as

�
P
�
ðLlL0Þ

n

2
�
; cGX

�
and we are done. Otherwise, we perform

an elementary transformation along the subspace PðLn

2ÞHP
�
ðLlL0Þ

n

2

�
over a point x of

B, and an elementary transformation along the subspace cþX
�
PðLn

2Þ
�
¼ c�X

�
PðLn

2Þ
�

over the
point cBðxÞ. The ruled manifold obtained is of the form P

�
ðMlL0Þ

n

2
�

with M in the same
component of the real part of

�
JacðBÞ;�c�B

�
as L0. The real structures cGX lift to the real

structures cGY , and the automorphism F lifts to an automorphism of Y which conjugates
them (see [10], lemma 3.14). Hence we conclude as before.

Now let us prove the second part of the proposition. We will prove that there is
no Z=2Z-equivariant di¤eomorphism between ðB� CPn�1; cB � conjÞ and ðX ; cX Þ. Let
H be a real hyperplane of ðCPn�1; conjÞ and s ¼ B�H. Then s is a real divisor of
ðB� CPn�1; cB � conjÞ and ½s�n ¼ 0 A H0ðB� CPn�1;ZÞ. If s 0 is any other real ð2n� 2Þ-
cycle of ðB� CPn�1; cB � conjÞ, then ½s 0 � ¼ ½s� þ 2k½ f � where ½ f � is the homology class
of a fiber. Hence ½s 0 �n ¼ ½s�n þ 2kn½ f �½s�n�1 ¼G2kn ¼ 0 modð2nÞ. Now, without chang-
ing the di¤eomorphism class of X=cX , we can assume that the blown up projective sub-
spaces of dimension n=2 � 1 are real once projected onto the second factor ðCPn�1; conjÞ,
so that X ¼ P

�
L
�
xþ cBðxÞ

�n
2 lL

n

2

0

�
and cX is the standard real structure on this manifold.

Denote by sX the real divisor on X associated to the dual of the tautological line bundle

Oð�1ÞH p�
�
L
�
xþ cBðxÞ

�n
2 lL

n

2

0

�
. From [9], p. 215, we see that
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½sX �n ¼ �deg
�
L
�
xþ cBðxÞ

�n
2 lL

n

2

0

�
¼ �n3 0 modð2nÞ;

hence the result. r

Proof of theorem 2.2 when the base has empty real part. Let ðX ; cX Þ be a real ruled
manifold of dimension n and base ðB; cBÞ with empty real part. If n is odd, from proposi-
tions 3.1 and 3.6, we know that without changing the deformation class of ðX ; cX Þ, we can
assume that X ¼ PðL1 l � � �lLnÞ, all the sections PðLjÞ being real. We can also assume
that L1 is the trivial line bundle. Then, for 2e je n, the normal bundle of PðL0Þ in
PðL0 lLjÞ is real and isomorphic to Lj. Thus there exists a real divisor Dj associated to
Lj and from corollary 1.12, ðX ; cX Þ is obtained from ðB� CPn�1; cB � conjÞ after a finite
number of elementary transformations done on complex conjugated points. Note that since
n is odd, cB � conj is the only real structure on B� CPn�1 fibered over cB. Now from cor-
ollary 1.12, without changing the deformation class of ðX ; cX Þ, n couples of elementary
transformations done on complex conjugated points can be removed, bringing these points
on the n sections over a same couple

�
x; cBðxÞ

�
of B� B. Hence we can assume that ðX ; cX Þ

is obtained from ðB� CPn�1; cB � conjÞ after an even number of elementary transforma-
tions between 0 and 2n� 2. Since n is odd, this number is prescribed by the degree of X ,
and since there is only one deformation class of smooth real irreducible compact algebraic
curve with empty real part (see [8]), the result is proved in odd dimension.

Now if n is even and the integer k given by proposition 3.6 is non-zero, the same
proof shows that without changing the deformation class of ðX ; cX Þ, we can assume that it is
obtained from B� CPn�1 equipped with one of its real structures after an even number of
elementary transformations done on complex conjugated points, between 0 and 2n� 2.
In particular, the degree of X is even. If gðBÞ is even, then from corollary 3.8, the two real
structures on B� CPn�1 have non-di¤eomorphic quotients, and from proposition 3.7, one
passes from the deformation class of one of these real structures to the deformation class
of the other one making n elementary transformations on complex conjugated points. Thus
we can assume that the number of elementary transformations necessary to obtain ðX ; cX Þ
from B� CPn�1 with one of its real structures is even, between 0 and n� 2. This number
is then prescribed by the degree of X , and the real structure on B� CPn�1 by the topology
of the quotient X=cX . If gðBÞ is odd, then from proposition 3.7, the two real structures on
B� CPn�1 are in the same deformation class, hence the number modulo n of elementary
transformations necessary to obtain ðX ; cX Þ from B� CPn�1 is prescribed by the degree of
X , and then the total number by the topology of the quotient X=cX . We can then conclude
as before.

It thus only remains to consider the case when n is even, but the integer k given by
proposition 3.6 vanishes. From proposition 3.6, we can assume that ðX ; cX Þ is obtained
from a real ruled manifold PðF1 l � � �lFlÞ after some elementary transformations done
on complex conjugated points. Moreover, all the ruled surfaces PðFjÞ are real, and every
bundle Fj is of the form Mj lMj for some Mj A PicðBÞ. We can then assume that M1 is
trivial and since the normal bundle of PðF1Þ in PðF1 lFjÞ is real, we deduce from lemma
1.5 that c�BðMjÞ ¼ Mj, as in the proof of lemma 3.5. Let Dj be a divisor associated to Mj.
Then cBðDjÞ is also associated to Mj and we can write

PðF1 l � � �lFlÞ ¼ P
�
L0 lL0 lLðD2ÞlL

�
cBðD2Þ

�
l � � �lLðDlÞlL

�
cBðDlÞ

��
:
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Making elementary transformations on PðL0 lL0Þ over the points of

D2 þ cBðD2Þ þ � � � þDl þ cBðDlÞ;

on P
�
LðDjÞ

�
over the points of cBðDjÞ and on P

�
L
�
cBðDjÞ

��
over the points of Dj (with

appropriate multiplicities), we obtain the real ruled manifold B� CPn�1 with one of its real
structures. Hence once more, ðX ; cX Þ is in the same deformation class as a manifold ob-
tained from B� CPn�1 with one of its real structures after a finite number of elementary
transformations done on complex conjugated points and we conclude as before. r
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