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Towards relative invariants of real symplectic 4-manifolds

Jean-Yves Welschinger

1st September 2005

Abstract:

Let (X,ω, cX ) be a real symplectic 4-manifold with real part RX. Let L ⊂ RX be a
smooth curve such that [L] = 0 ∈ H1(RX; Z/2Z). We construct invariants under deformation
of the quadruple (X,ω, cX , L) by counting the number of real rational J-holomorphic curves
which realize a given homology class d, pass through an appropriate number of points and
are tangent to L. As an application, we prove a relation between the count of real rational
J-holomorphic curves done in [9] and the count of reducible real rational curves done in [10].
Finally, we show how these techniques also allow to extract an integer valued invariant from
a classical problem of real enumerative geometry, namely about counting the number of real
plane conics tangent to five given generic real conics.
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1 Statement of the results

Let (X,ω, cX ) be a real symplectic 4-manifold, that is a triple made of a smooth compact
4-manifold X, a symplectic form ω on X and an involution cX on X such that c∗Xω = −ω.
The fixed point set of cX is called the real part of X and is denoted by RX. It is assumed to
be non empty here so that it is a smooth lagrangian surface of (X,ω). We label its connected
components by (RX)1, . . . , (RX)N . Let L ⊂ RX be a smooth curve which represents 0 in
H1(RX; Z/2Z), and B ⊂ RX be a surface having L as a boundary.

1.1 Definitions

Let l ≫ 1 be an integer large enough and Jω be the space of almost complex structures
of X which are tamed by ω and of class C l. Let RJω be the subspace of Jω made of almost
complex structures J for which the involution cX is J-antiholomorphic. These two spaces
are separable Banach manifolds which are non empty and contractible (see §1.1 of [9] for
the real case). Assume that the first Chern class c1(X) of the symplectic 4-manifold (X,ω)
is not a torsion element in H2(X; Z) and let d ∈ H2(X; Z) be a homology class satisfying
c1(X)d > 1, c1(X)d 6= 4 and (cX)∗d = −d. Let x = (x1, . . . , xc1(X)d−2) ∈ Xc1(X)d−2 be a real
configuration of c1(X)d − 2 distinct points of X, that is an ordered subset of distinct points
of X which is globally invariant under cX . For j ∈ {1, . . . , N}, we set rj = #(x ∩ (RX)j)
and r = (r1, . . . , rN ) so that the N -tuple r encodes the equivariant isotopy class of x. We
will assume throughout the paper that r 6= (0, . . . , 0). Finally, denote by I the subset of
those i ∈ {1, . . . , c1(X)d − 2} for which xi is fixed by the involution cX , so that I 6= ∅. For
each i ∈ I, choose a line Ti in the tangent plane Txi

RX. Let J ∈ RJω be generic enough.
Then, as in [10], we denote by Cuspd(J, x) (resp. Redd(J, x), T and(J, x)) the finite set of
real rational cuspidal (resp. reducible, whose tangent line at some point xi, i ∈ I, is Ti)
J-holomorphic curves which realize the homology class d and pass through x. Likewise, we
denote by T and

L(J, x) the finite set of real rational J-holomorphic curves which realize the
homology class d, pass through x and are tangent to L. Note that the genericity assumption
on J ∈ RJω implies that the non-trivial point of contact of the curve with L is unique and
of order two. Also, all these curves have only transversal double points as singularities lying
outside of x, with the exception of elements of Cuspd(J, x) which have in addition a unique
real ordinary cusp. Let C ∈ T and

L(J, x) ∪ Cuspd(J, x) ∪ Redd(J, x) ∪ T and(J, x), we define
the mass of C and denote by m(C) its number of real isolated double points. Here, a real
double point is said to be isolated when it is the local intersection of two complex conjugated
branches, whereas it is said to be non isolated when it is the local intersection of two real
branches. Let C ∈ T and

L(J, x) and y be its point of contact with L. Then, either RC is
locally included in B near y, or its intersection with B is locally restricted to {y}. We define
the contact index < C,B > to be −1 in the first case and +1 in the second. Likewise, if
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C ∈ Cuspd(J, x) (resp. C ∈ T and(J, x)), then its cuspidal point (resp. its tangent line Ti,
i ∈ I) is unique and we define < C,B > to be −1 if it is outside B or +1 if it is inside.
Finally, if C belongs to Redd(J, x) and C1, C2 denote its irreducible components, then both
these components are real and we set

multB(C) =
∑

y∈RC1∩RC2

< y,B >,

where < y,B > equals −1 if y is outside B or +1 if it is inside.

1.2 Statement of the results

We set:

Γd,B
r (J, x) =

∑

C∈∪T and
L
(J,x)∪T and(J,x)∪Cuspd(J,x)

(−1)m(C) < C,B > −
∑

C∈Redd(J,x)

(−1)m(C) multB(C).

Theorem 1.1 Let (X,ω, cX ) be a real symplectic 4-manifold and B ⊂ RX be a surface
with boundary L. The connected components of RX are labelled by (RX)1, . . . , (RX)N . Let
d ∈ H2(X; Z) be such that c1(X)d > 1 and c1(X)d 6= 4, and x ⊂ X \L be a real configuration
of c1(X)d − 2 distinct points. For j ∈ {1, . . . , N}, denote by rj the cardinality of x ∩ (RX)j
and by r = (r1, . . . , rN ), which is assumed to be different from (0, . . . , 0). Finally, let J ∈ RJω

be generic enough so that the integer Γd,B
r (J, x) is well defined. Then, this integer Γd,B

r (J, x)
neither depends on the choice of J , nor on the choice of x.

From this theorem, the integer Γd,B
r (J, x) can be denoted without ambiguity by Γd,B

r , and

when it is not well defined, we set Γd,B
r = 0. Note that the condition c1(X)d 6= 4 is to avoid

appearance of multiple curves, see Remark 1.11 of [10].

Remark 1.2 1) In particular, the integer Γd,B
r (J, x) does not depend on the relative position

of x with respect to B, it only depends on r.
2) When B = ∅, Γd,B

r = −Γd
r , where Γd

r is the invariant defined in [10]. Theorem 1.1 then
follows from Theorem 0.1 of [10]. In fact, Theorem 0.1 of [10] is nothing but the particular
case B = ∅ of Theorem 1.1. Note that this case B = ∅ is however of a slightly different nature
since Γd,∅

r = −Γd
r is an absolute invariant whereas as soon as B 6= ∅, the first term in the right

hand side defining Γd,B
r makes it a relative invariant in the spirit of [4] and [2].

3) One has Γd,B
r = −Γ

d,RX\B
r .

We denote by Γd,B(T ) the generating function
∑

r∈NN Γd,B
r T r ∈ Z[T1, . . . , TN ], where

T r = T r1

1 . . . T rN

N . This polynomial function is of the same parity as c1(X)d and each of its
monomial actually only depends on one indeterminate. It follows from Theorem 1.1 that the
function ΓB : d ∈ H2(X; Z) 7→ Γd,B(T ) ∈ Z[T ] only depends on the quadruple (X,ω, cX , B).
Moreover, it is invariant under deformation of this quadruple, that is if ωt is a continuous
family of symplectic forms on X for which c∗Xωt = −ωt and Bt is an isotopy of compact
surfaces in RX, then this function is the same for all (X,ωt, cX , Bt).

Theorem 1.3 Under the hypothesis of Theorem 1.1, assume that B is a disk in RX.
Then 2χd

r+1 = Γd,B
r + Γd

r. Moreover,
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1) If (X,ω, cX ) is the complex projective plane equipped with its standard symplectic form

and real structure, then Γd,B
r = Γd

r.
2) If (X,ω, cX ) is the hyperboloid (CP 1 × CP 1, ωCP 1 ⊕ ωCP 1, conj × conj), then Γd,B

r =
2χd

r+1 + Γd
r.

(Remember that the integer χd
r+1 has been defined in [8], [9] and the integer Γd

r in [10]. Note
that when RX is connected, r ∈ N

∗.)

Corollary 1.4 Under the hypothesis of Theorem 1.3, we have χd
r+1 = Γd

r = Γd,B
r in the

case of the complex projective plane and Γd,B
r = 2χd

r+1, Γd
r = 0 in the case of the hyperboloid.

�

The first equality of this corollary has been announced in [10], Proposition 0.3. It provides a
relation between the count of real rational J-holomorphic curves done in [9] and the count of
reducible and cuspidal curves done in [10]. Does such a relation have a complex analog?

1.3 More tangency conditions, the case of conics

It is possible to extend the above results to curves having more than one tangency condi-
tion with L, at least in the case of plane conics (see also §4.3). We illustrate this phenomenon
here on the following classical problem of real enumerative geometry, solved by De Joncquières
in 1859: there are 3264 conics which are tangent to five given generic conics in the complex
projective plane. If the five given conics are real, then the number of real conics tangent to
them of course depends on the choice of the conics. We however show here how it is possible
to extract an integer valued invariant from this problem.

Let B1, . . . , B5 be five embedded disks in RP 2 which are transversal to each other and
Li = ∂Bi, i ∈ {1, . . . , 5}. Let J ∈ RJω be generic enough. We denote by Con(J) the finite set
of real conics tangent to L1, . . . , L5 and by Conred(J) the finite set of real reducible conics,
that is pairs of J-holomorphic lines, tangent to four out of these five curves L1, . . . , L5. Let
C ∈ Con(J), we set < C,B >= Π5

i=1 < C,Bi >. In the same way, let C ∈ Conred(J) and
i1, . . . , i4 ∈ {1, . . . , 5} be such that C is tangent to Li1, . . . , Li4 . We set < C,B >= Π4

j=1 <
C,Bij > and multB(C) = +1 if the singular point of C belongs to Bi5 and −1 otherwise. Set

ΓB(J) =
∑

C∈Con(J)

< C,B > −
∑

C∈Conred(J)

< C,B > multB(C) ∈ Z.

Theorem 1.5 The integer ΓB(J) does not depend on the generic choice of J ∈ RJω.
Moreover, it is invariant under isotopy of B = B1 ∪ · · · ∪B5.

In particular, during such an isotopy, the five curves L1, . . . , L5 have to remain transversal
to each other. Note that there are only finitely many isotopy classes of five real conics in the
plane. How does ΓB depend on the isotopy classes will be studied in §4.2, Proposition 4.1.
The integer ΓB is computed in the following cases.

Proposition 1.6 Let B1, . . . , B5 be five disjoint disks in RP 2, then ΓB = 272. The same
holds when B1, . . . , B5 are close to a generic configuration of five real double lines of the plane.
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Here, a disk is said to be close to a double line with equation y2 = 0 in the plane if it has an
equation of the form {y2 ≤ ǫ2x2 − δ} for small ǫ and δ’s.

Corollary 1.7 Let L1, . . . , L5 be five real generic plane conics whose isotopy class is given
by Proposition 1.6. Then, the number of real conics tangent to L1, . . . , L5 is bounded from
below by 32.

Proof:

The number of lines tangent to two different generic conics is four, they correspond to
the intersection points between the two dual conics. The number of real reducible conics
tangent to four out of the five conics L1, . . . , L5 thus does not exceed 240 = 5 ∗ 3 ∗ 4 ∗ 4. The
result follows now from the definition of ΓB and Proposition 1.6. �

Hence, this Corollary 1.7 provides lower bounds in real enumerative geometry. Note that
this number of real conics does not admit any non trivial upper bound. Indeed, F. Ronga, A.
Tognoli and T. Vust have found a configuration of five real conics close to the double edges
of some pentagon such that all the 3264 conics tangent to them are real, see [6].

The paper is organized as follows. The first paragraph is devoted to the construction
of the moduli space RMd

L of real rational pseudo-holomorphic curves which realize the
homology class d and are tangent to L. The second paragraph is devoted to the proof of the
results of §1.2 and the third paragraph to the proof of the results of §1.3.
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2 Moduli space of real rational pseudo-holomorphic curves

tangent to L

Let d ∈ H2(X; Z) be such that (cX)∗d = −d and c1(X)d > 1, c1(X)d 6= 4. Let τ be an
order two permutation of the set {1, . . . , c1(X)d − 2} having one fixed point at least. Let
cτ : (x1, . . . , xc1(X)d−2) ∈ Xc1(X)d−2 7→ (cX(xτ(1)), . . . , cX (xτ(c1(X)d−2)) ∈ Xc1(X)d−2 be the

associated real structure of Xc1(X)d−2, its fixed point set is denoted by RτX
c1(X)d−2. Let

L ⊂ RX be a smooth curve such that [L] = 0 ∈ H1(RX; Z/2Z) and B ⊂ RX be a surface
having L as a boundary. Finally, let g be a riemannian metric on X, invariant under cX and
for which L is a geodesic. We denote by ∇ the associated Levi-Civita connection on TX.

2.1 Moduli space RP∗
L of real rational pseudo-holomorphic maps tangent

to L

Let S be an oriented sphere of dimension two and conj be a smooth involution conjugated
to the complex conjugation of CP 1. Denote by RS the fixed point set of conj and by RJS the
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space of complex structures of class C l of S which are compatible with its orientation and for

which conj is J-antiholomorphic. Let ξ ∈ RS,
→
ξ∈ TξRS \ {0} and z = (z1, . . . , zc1(X)d−2) ∈

Sc1(X)d−2 be an ordered set of c1(X)d − 2 distinct points of S \ {ξ}. We assume that z is
globally invariant under conj and that the permutation of {1, . . . , c1(X)d − 2} induced by
conj is τ . We set

RPL = {(u, JS , J, x) ∈ Lk,p(S,X) × RJS × RJω × RτX
c1(X)d−2 |u∗[S] = d , u(z) = x

du+ J ◦ du ◦ JS = 0 , cX ◦ u = u ◦ conj , u(ξ) ∈ L and dξu(
→
ξ ) ∈ Tu(ξ)L},

where 1 ≪ k ≪ l is large enough and p > 2.
Let RP∗

L ⊂ RPL be the space of non multiple pseudo-holomorphic maps, that is the space
of quadruples (u, JS , J, x) for which u cannot be written u′ ◦ Φ where Φ : S → S′ is a non
trivial ramified covering and u′ : S′ → X a pseudo-holomorphic map.

Proposition 2.1 The space RP∗
L is a separable Banach manifold of class C l−k with tan-

gent bundle

T(u,JS ,J,x)RP∗
L = {(v, J̇S , J̇ ,

.
x) ∈ T(u,JS ,J,x)(L

k,p(S,X) × RJS × RJω × RτX
c1(X)d−2) |

v(z) =
.
x , dcX◦v = v◦conj , v(ξ) ∈ Tu(ξ)L , ∇→

ξ
v ∈ Tu(ξ)L and Dv+J◦du◦J̇S+J̇◦du◦JS = 0}.

Here, TuL
k,p(S,X) = {v ∈ Lk,p(S,Eu)} where Eu = u∗TX and D : v ∈ Lk,p(S,Eu) 7→

∇v+ J ◦ ∇v ◦ JS +∇vJ ◦ du ◦ JS ∈ Lk−1,p(S,Λ0,1S ⊗Eu) is the associated Gromov operator
(see [5], Proposition 3.1.1).

Proof:

If we remove the Cauchy-Riemann equation du + J ◦ du ◦ JS = 0 from the definition of
RP∗

L, then the corresponding space RA∗
L is a separable Banach manifold of class C l−k. After

differentiation, the equation dξu(
→
ξ ) = λ(u)ζ(u), where ζ is a unitary vector field tangent to

L, becomes ∇→

ξ
v = dλ(u)ζ(u) + λ(u)∇vζ(u). Since L is a geodesic for g and v is collinear

to ζ, the term ∇vζ(u) vanishes and ∇→

ξ
v ∈ Tu(ξ)L. We have to prove that the space of non

multiple pseudo-holomorphic maps is a Banach submanifold of RA∗
L. This follows from the

fact that the section σ∂ : (u, JS , J, x) 7→ du+ J ◦ du ◦ JS of the bundle Lk−1,p(S,Λ0,1S ⊗Eu)
vanishes transversely, the proof of the latter being the same as the one of Proposition 3.2.1
of [5]. �

2.2 Normal sheaf

Remember that the C-linear part of the Gromov operator D is some ∂-operator denoted
by ∂. The latter induces a holomorphic structure on the bundle Eu = u∗TX which turns
the morphism du : TS → Eu into an injective homomorphism of analytic sheaves (see [3],
Lemma 1.3.1). Likewise, the C-antilinear part of D is some order 0 operator denoted by R
and defined by the formula R(u,JS ,J,x)(v) = NJ(v, du) where NJ is the Nijenhuis tensor of
J . Denote by OS(Eu) (resp. OS(TS)) the sheaf of analytic Z/2Z-equivariant sections of Eu

(resp. TS). Also, denote by Nu the quotient sheaf OS(Eu)/du(OS(TS)) so that it fits in the
following exact sequence of analytic sheaves 0 → OS(TS) → OS(Eu) → Nu → 0. Denote
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by EL
u the sheaf of Z/2Z-equivariant analytic sections of Eu which satisfy v(ξ) ∈ Tu(ξ)L and

∇→

ξ
v ∈ Tu(ξ)L.

Lemma 2.2 Let w be a real vector field on S which vanishes at ξ. Then du(w) ∈ EL
u .

Proof:

Denote by v = du(w), then v ∈ Eu and v(ξ) = du(w(ξ)) = 0. Moreover,
∇→

ξ
v = (∇→

ξ
du)(w) + du(∇→

ξ
w). The first term vanishes since w(ξ) = 0 and the sec-

ond belongs to Tu(ξ)L. �

We denote by NL
u the quotient sheaf OS(EL

u )/du(OS(TS−ξ)), so that we have the exact

sequence 0 → OS(TS−ξ) → OS(EL
u ) → NL

u → 0. Denote by ẼL
u the sheaf of Z/2Z-equivariant

sections of Eu for which v(ξ) ∈ Tu(ξ)L, so that EL
u ⊂ ẼL

u .

Lemma 2.3 If dξu 6= 0, then the quotient of ẼL
u by du(OS(TS)) is the sheaf Nu,−ξ. If

dξu = 0, but ∇→

ξ
du(

→
ξ ) /∈ Tu(ξ)L, then this quotient is the sheaf Nu = OS(Eu)/du(OS(TS) ⊗

OS(ξ)).

Proof:

The first part follows from the fact that the condition v(ξ) ∈ Tu(ξ)L for a section v of Eu

reads in the quotient as a section of Nu which vanishes at ξ, since Tu(ξ)L ⊂ Im(dξu). In

the second case, the normal sheaf Nu splits as Nu ⊕ N sing
u , where N sing

u is the skyscrapper
part du(OS(TS) ⊗ OS(ξ))/du(OS(TS)). From the hypothesis, the cuspidal point at ξ is
non-degenerated and has a tangent line distinct from Tu(ξ)L. Thus, du(TS ⊗ OS(ξ)) 6⊂ ẼL

u

and the skyscrapper part N sing
u does not belong to the quotient ẼL

u /du(OS(TS)). The
projection ẼL

u /du(OS(TS)) ⊂ Nu onto Nu induced by Nu ⊕ N sing
u → Nu provides the

required isomorphism. �

As soon as dξu 6= 0, we deduce the exact sequence 0 → OS(TS−ξ) → ẼL
u → Nu,−ξ⊕TξL→

0, where TξL is the skyscrapper sheaf du(OS(TS))/du(OS(TS−ξ)). We deduce the inclusion
NL

u ⊂ Nu,−ξ ⊕ TξL.

Proposition 2.4 1) Assume that dξu 6= 0. Then, the skyscrapper part TξL is included in

NL
u if and only if ∇→

ξ
du(

→
ξ ) ∈ Tu(ξ)L, that is if u(ξ) is a degenerated point of contact between

u(S) and L. In this case, the projection Nu,−ξ ⊕ TξL → Nu,−ξ restricted to NL
u has image

Nu,−2ξ. Otherwise, this projection establishes an isomorphism between NL
u and Nu,−ξ.

2) Assume that dξu = 0 but ∇→

ξ
du(

→
ξ ) /∈ Tu(ξ)L. Then, the sheaf NL

u is isomorphic to Nu.

Proof:

If dξu 6= 0, the skyscrapper part TξL is generated by du(OS(TS)). Let w be a real vector
field on S, we have to see under which condition du(w) ∈ EL

u . From the relation

∇→

ξ
(du(w)) = (∇→

ξ
du)(w) + du(∇→

ξ
w), (1)
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it is necessary and sufficient that ∇→

ξ
du(

→
ξ ) ∈ Tu(ξ)L. In this case, the connection ∇ induces at

ξ a derivation ∇ξ of sections of the sheaf Nu such that the relations v(ξ) ∈ Tu(ξ)L and ∇→

ξ
v ∈

Tu(ξ)L reads in the quotient v(ξ) = 0 and ∇ξv = 0. Thus, the projection Nu,−ξ⊕TξL→ Nu,−ξ

restricted to NL
u has image Nu,−2ξ. Otherwise, it induces an isomorphism.

Assume now that dξu = 0 but ∇→

ξ
du(

→
ξ ) /∈ Tu(ξ)L. Then, if w is a real vector field on S

such that w(ξ) 6= 0, du(w) /∈ EL
u from (1). The exact sequence 0 → OS(TS) → ẼL

u → Nu → 0
restricts thus as 0 → OS(TS−ξ) → EL

u → Nu → 0, hence the result. �

Denote by OS(TS−z) (resp. OS(Eu,−z), OS(EL
u,−z), Nu,−z, NL

u,−z, Tu(ξ),−zL) the subsheaf

of sections of OS(TS) (resp. OS(Eu), OS(EL
u ), Nu, NL

u , Tu(ξ)L) which vanish at z. Remember

that the operator D : Lk,p(S,EL
u,−z) → Lk−1,p(S,Λ0,1S ⊗ Eu) induces a quotient operator

D : Lk,p(S,NL
u,−z) := Lk,p(S,EL

u,−z)/du(L
k,p(S, TS−z) → Lk−1,p(S,Λ0,1S ⊗ NL

u ). From the
short exact sequence of complexes

0 → Lk,p(S, TS−ξ−z)
du→ Lk,p(S,EL

u,−z) → Lk,p(S,NL
u,−z) → 0

↓ ∂S ↓ D ↓ D
0 → Lk−1,p(S,Λ0,1S ⊗ TS)

du→ Lk−1,p(S,Λ0,1S ⊗ EL
u ) → Lk−1,p(S,Λ0,1S ⊗NL

u ) → 0,

we deduce the long exact sequence 0 → H0(S, TS−ξ−z) → H0
D(S,EL

u,−z) → H0
D

(S,NL
u,−z) →

H1(S, TS−ξ−z) → H1
D(S,EL

u,−z) → H1
D

(S,NL
u,−z) → 0, where H0

D, H0
D

(resp. H1
D, H1

D
)

denote the kernels (resp. cokernels) of the operators D, D on the associated sheaves. In
particular,

indR(D) = indR(D) − indR(∂S)

= (c1(X)d + 2 − 2 − 2#z) − (3 − 1 − #z)

= 0.

2.3 Moduli space of real rational pseudo-holomorphic curves tangent to L

Denote by Diff+
R

(S, z, ξ) the group of diffeomorphisms of class C l+1 of S, which preserve
the orientation, fix z ∪ {ξ} and commute with conj. This group acts on RP∗

L by

φ.(u, JS , J, x) = (u ◦ φ−1, (φ−1)∗JS , J, x),

where (φ−1)∗JS = dφ ◦ JS ◦ dφ−1. Denote by RMd
L the quotient of RP∗

L by this action.
The projection π : (u, JS , J, x) ∈ RP∗

L 7→ (J, x) ∈ Jω ×Xc1(X)d−2 induces on the quotient a
projection RMd

L → RJω × RτX
c1(X)d−2 still denoted by π.

Proposition 2.5 The space RMd
L is a separable Banach manifold of class C l−k, and π is

Fredholm of vanishing index. Moreover, if [u, JS , J, x] ∈ RMd
L, then we have the isomorphisms

ker dπ|(u,JS ,J,x)
∼= H0

D(S,NL
u,−z) and coker dπ|(u,JS ,J,x)

∼= H1
D(S,NL

u,−z).

Proof:

The proof is analogous to the one of Corollary 2.2.3 of [7] and Proposition 3.2.1 of [5]. The
action of Diff+

R
(S, z) on RP∗

L is smooth, fixed point free and admits a closed supplement.
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From Proposition 2.1 thus follows that RMd
L is a separable Banach manifold of class C l−k.

Moreover,

ker dπ|[u,JS,J,x] = {(v, J̇S , 0, 0) ∈ T(u,JS ,J,x)RP∗
L | v(z) = 0}/TIdDiff+

R
(S, z, ξ)

= {v ∈ Lk,p(S,EL
u,−z) | ∃φ ∈ Lk−1,p(S,Λ0,1S ⊗ TS) , Dv = du(φ)}/du(Lk,p(S, TS−z))

= H0
D(S,NL

u,−z).

Likewise,

Imdπ|[u,JS,J,x] = {(J̇ , .
x) ∈ TJRJω × TxRτX

c1(X)d−2 | ∃(v, J̇S) ∈ Lk,p(S,EL
u,−z) × TJS

RJS,

Dv + J ◦ du ◦ J̇S = −J̇ ◦ du ◦ JS , v(z) =
.
x}, so that

coker dπ|[u,JS ,J,x]
∼= Lk−1,p(S,Λ0,1S ⊗ EL

u ) × TxRτX
c1(X)d−2/Im(D̂ × ev),

where D̂ : (v, J̇S) ∈ Lk,p(S,EL
u ) × TJS

RJS 7→ Dv + J ◦ du ◦ J̇S ∈ Lk−1,p(S,Λ0,1S ⊗ EL
u )

and ev : v ∈ Lk,p(S,EL
u ) 7→ v(z) ∈ TxRτX

c1(X)d−2. In particular, Imdπ|[u,JS ,J,x] is closed

and π is Fredholm. By definition, cokerD = H1
D(S,EL

u ). From the short exact sequence

0 → EL
u,−z → EL

u
ev→ TxRτX

c1(X)d−2 → 0, we deduce the long exact sequence → H0
D(S,EL

u ) →
H0(S, TxRτX

c1(X)d−2) → H1
D(S,EL

u,−z) → H1
D(S,EL

u ) → 0. Hence, the cokernel of D× ev in

TJRJω × TxRτX
c1(X)d−2 is isomorphic to H1

D(S,EL
u,−z). From the long exact sequence given

at the end of §2.2, we deduce that the cokernel of D̂× ev and hence the one of dπ|[u,JS ,J,x] is

isomorphic to H1
D(S,NL

u,−z). �

Corollary 2.6 The critical points [u, JS , J, x] of π are those for which u(S) has a point
of contact of order greater than two with L at u(ξ) or u has a cuspidal point outside ξ. �

2.4 Generic critical points of π are non degenerated

Theorem 2.7 Let [u, JS , J, x] ∈ RMd
L be such that u(S) has a point of contact of order

two with L at u(ξ) and a unique real ordinary cuspidal point outside ξ. Then, [u, JS , J, x] is
a non degenerated critical points of π. The same holds if u(S) is immersed but has a point of
contact of order three with L at u(ξ).

The critical points of π which appear in this Theorem 2.7 are said to be generic.

Proof:

The proof of the first part of this theorem is the same as the one of Lemma 2.13 of [9], it is
not reproduced here. Let [u, JS , J, x] ∈ RMd

L be such that u(S) is immersed but has a point of
contact of order three with L at u(ξ). We have to prove that the quadratic form ∇dπ|[u,JS ,J,x] :
ker dπ|[u,JS,J,x] × ker dπ|[u,JS ,J,x] → coker ker dπ|[u,JS ,J,x] is non degenerated. We saw in the
proof of Proposition 2.5 that the kernel and cokernel of the map dπ are the same as the ones
of the morphism −D̂R : (v, J̇S , J̇ ,

.
x) ∈ T[u,JS,J,x]RMd

L 7→ J̇ ◦ du ◦ JS ∈ Lk−1,p(S,Λ0,1S ⊗NL
u ).

From the relation Dv + J ◦ du ◦ J̇S + J̇ ◦ du ◦ JS = 0, we deduce that D̂R(v, J̇S , J̇ ,
.
x) =

Dv+ J ◦ du ◦ J̇S . We then have to prove that ∇D̂R|[u,JS,J,x] : H0
D(S,NL

u,−z)
2 → H1

D(S,NL
u,−z)

is non degenerated. Let (v, J̇S , 0, 0) be a generator of H0
D(S,NL

u,−z). From Propositions 2.4
and 2.5, v = du(w) for some real vector field w on S which does not vanish at ξ. We can
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assume that J̇S vanishes in a neighbourhood of z ∪ ξ. After differentiation of the relation
D ◦ du = du ◦ ∂S , we deduce

∇vD ◦ du+D ◦ (∇vdu) + ∇J̇S
D ◦ du = (∇vdu) ◦ ∂S mod (Im(du)).

Moreover, ∇(v,J̇S ,0,0)D̂ = ∇vD+ (∇vdu) ◦JS ◦ J̇S +∇J̇S
D mod (Im(du)). Since the relation

Dv + J ◦ du ◦ J̇S = 0 forces ∂S(w) + JS J̇S = 0, we get (compare Lemma 2.13 of [9] and
Theorem 1.8 of [10])

(∇(v,J̇S ,0,0)D̂)(v) +D(∇vdu)(w) = 0 mod (Im(du)).

From Proposition 2.4, NL
u,−z

∼= Nu,−z−2ξ. From Riemann-Roch duality, H1
D(S,Nu,−z−2ξ)

∗
+1

∼=
H0

D(S,KS ⊗Nu,−z−2ξ)−1, see [9], Lemma 1.7. Let ψ be a generator of H0
D(S,Nu,−z−2ξ)−1 so

that D∗ψ is a linear combination of Dirac sections of N∗
u at z ∪ ξ as well as of the derivative

δ′ξ of the Dirac section at ξ. Note that since H0
D(S,KS ⊗ Nu,−z−ξ) = 0, the coefficient aξ of

δ′ξ in D∗ψ does not vanish. We have:

< ψ,∇dπ((v, J̇S ), (v, J̇S)) > = − < ψ,∇D̂((v, J̇S), (v, J̇S)) >

= < ψ,D(∇vdu)(w) >

= < D∗ψ, (∇vdu)(w) >

Choose a local chart at u(ξ) such that L is conjugated to the first coordinate axis of R
2 ⊂ C

2.
Without loss of generality, we can assume that the first coordinate axis is J-holomorphic
and that the metric g is constant in this chart, so that ∇ = d. The map u writes then
z 7→ ((z−ξ)+o(|z−ξ|), (z−ξ)3 +o(|z−ξ|3)) in a neighbourhood of ξ. Thus, ∇vdu(w) = ∇wv,
considered as a section of the normal bundle of u, has a simple zero at ξ. Since w vanishes
at z, we deduce that < D∗ψ, (∇vdu)(w) >= aξ < δ′ξ, (∇vdu)(w) >. Now since the vanishing
order of ∇vdu(w) at ξ is one, < δ′ξ, (∇vdu)(w) > 6= 0, hence the result. �

2.5 Gromov compactification RMd

L of RMd
L

The projection π : RMd
L → RJω × RτX

c1(X)d−2 is not proper in general. Its lack of
properness is described by the following lemma which follows from Gromov’s compactness
Theorem (see [5], Theorem 5.5.5).

Lemma 2.8 Let [un, Jn
S , J

n, xn] be a sequence of elements of RMd
L such that (Jn, xn)

converges to (J∞, x∞). Then, after possibly extracting a subsequence, we have one of the
following:

1) This sequence [un, Jn
S , J

n, xn] converges in RMd
L.

2) The sequence un(S) converges to some irreducible curve, tangent to L, but the point of
contact belongs to x∞.

3) The sequence un(S) converges to some reducible curve. Moreover, in this case, the
reducible curve is either tangent to L, or has two of its irreducible components which intersect
on L. �

3 Proofs of Theorems 1.1 and 1.3

Let (J0, x0) and (J1, x1) be two generic elements of RJω×RτX
c1(X)d−2 so that the integers

Γd,B
r (J0, x0) and Γd,B

r (J1, x1) are well defined. We have to prove that they coincide.
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3.1 Choice of a path γ

Remember that by definition, a stratum of codimension k ≥ 0 of a separable Banach
manifold M is the image of a separable Banach manifold L under a Fredholm map Φ of index
−k such that the limits of sequences Φ(xn) where (xn)n∈N diverges in N belong to a countable
union of strata of higher codimensions. In particular, Φ is not assumed to be proper.

Proposition 3.1 The subset of elements [u, JS , J, x] of RMd
L for which u(S) has only

transversal double points as singularities, outside x ∪ L, and a unique point of contact of
order two with L, is a dense open subset of RMd

L. The four followings are substrata of
codimension one of RMd

L.
1) Curves having only transversal double points as singularities, outside x ∪ L, and a

unique point of contact with L which is of order three.
2) Curves having a unique real ordinary cusp and transversal double points as singularities,

outside x ∪ L, and a unique point of contact with L which is of order two.
3) Curves having a unique real ordinary cusp on L and transversal double points outside

x∪L as singularities. These curves are not tangent to L and the tangent line of the curve at
the cusp is distinct from the one of L.

4) Curves having a real ordinary triple point or real ordinary tacnode or a transversal
double point on x ∪ L or two points of contact with L.

The set of curves not listed above belongs to a countable union of strata of codimension
greater than one of RMd

L.

Proof:

The proof is the same as the one of Proposition 2.7 of [9]. It is left to the reader. �

Let γ : t ∈ [0, 1] 7→ (J t, xt) ∈ RJω × RτX
c1(X)d−2 be a generic path transversal to πR.

Denote by RMγ = RMd
L ×γ [0, 1], RMγ its Gromov compactification and πγ : RMγ → [0, 1]

the associated projection.

Proposition 3.2 As soon as γ is generic enough, the elements of RMγ \ RMγ are ei-
ther irreducible curves [ut, J t

S , J
t, xt] such that xt ∩ L is non empty, or reducible curves Ct

having two irreducible components Ct
1, C

t
2, both real, and only transversal double points as

singularities, outside x. Moreover, we have the following alternative:
1) Either Ct has a unique point of contact with L which is of order two and outside its

singular points.
2) Or Ct has a unique double point on L which is an intersection point of RCt

1 and RCt
2.

In this case, it is not tangent to L.
Finally, if we denote by mi = #(xt ∩ Ct

i ) and di = [Ct
i ] ∈ H2(X; Z), i ∈ {1, 2}, so that

m1 +m2 = c1(X)d− 2, then either m1 = c1(X)d1 − 1 or m1 = c1(X)d1 − 2.

Proof:

The proof is the same as the ones of Proposition 2.9, Corollary 2.10 and Proposition 2.11
of [9], as well as Corollary 1.12 of [10]. It is not reproduced here. �

Remark 3.3 Remember that to cover the case r = (0, . . . , 0), one should take into account
real reducible curves made of two complex conjugated components, see Remark 1.9 of [10].
It would then be possible to extend Theorem 1.1 to this case provided an analog of Theorem
3.2 of [10] is proved, see Remark 3.5 of [10].
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From now on, we fix a choice of γ generic enough so that RMγ consists of curves listed
in Propositions 3.1 and 3.2.

3.2 Neighbourhood of curves having an order three point of contact with

L

Proposition 3.4 Let C = [u, JS , J, x] ∈ RMγ be a curve having an order three point of
contact with L and t0 = πγ(C). Then, there exist η > 0 and a neighbourhood W of C in RMγ

such that for every t ∈]t0 − η, t0[, π
−1
γ (t) ∩W consists of two curves C+

t , C−
t having same

mass and for which < C+
t , B >= − < C−

t , B > and for every t ∈]t0, t0 + η[, π−1
γ (t) ∩W = ∅,

or vive versa.

C+
t C−

t

L

L L

C
t = t0

t < t0

Proof:

From Theorem 2.7, C is a non degenerated critical point of πγ . Since RMγ is of dimension
one, this implies that there exist η > 0 and a neighbourhood W of C in RMγ such that
for every t ∈]t0 − η, t0[, π

−1
γ (t) ∩ W consists of two curves and for every t ∈]t0, t0 + η[,

π−1
γ (t) ∩W = ∅, or vive versa. The only thing to prove is that in the first case, the two

curves C+
t , C−

t have the same mass and satisfy < C+
t , B >= − < C−

t , B >. The former is
obvious. Choose a parameterization λ ∈]−√

η,
√
η[7→ Cλ = [uλ, Jλ

S , J
λ, xλ] ∈ RMγ such that

πγ(Cλ) = t0 − λ2. Fix a local chart 0 ∈]− 1, 1[ of ξ ∈ RS and 0 ∈ R
2 of u0(ξ) ∈ RX. We can

assume that in this second chart, L is identified with the first coordinate axis and B with the
upper half plane of R

2. The one parameter family (uλ)λ∈]−√
η,
√

η[ reads as a map f : (λ, z) ∈
] − √

η,
√
η[×] − 1, 1[7→ f(λ, z) ∈ R

2. Denote by f1(λ, z) and f2(λ, z) the two coordinates
of f(λ, z). These maps of class C l−k, satisfy f1(0, z) = z + o(|z|), f2(0, z) = z3 + o(|z|3),
f2(λ, 0) = 0 and ∂

∂z
f2(λ, z)|z=0 = 0. Moreover, ∂

∂λ
Cλ|λ=0 generates the kernel of dπγ |Cλ

. It

thus follows from Proposition 2.5 that ∂
∂λ
f(λ, z)|λ=0 = ∂

∂z
f(λ, z)|λ=0 = (1+o(1), 3z2+o(|z|2)).

We deduce that the order three jet of f2 writes f2(λ, z) = z2(z + aλ) + o(||(λ, z)||3), for some
a ∈ R

∗. Hence, when λ > 0 (resp. λ < 0), the sign of f2(λ, z) in a neighbourhood of z = 0 is
the one of a (resp. its opposite). In particular, as soon as λ 6= 0, < Cλ, B >= − < C−λ, B >.
�

3.3 Neighbourhood of curves having a cuspidal point

Proposition 3.5 Let C = [u, JS , J, x] ∈ RMγ be a curve having a real ordinary cusp
outside L and t1 = πγ(C). Then, there exist η > 0 and a neighbourhood W of C in RMγ

such that for every t ∈]t1 − η, t1[, π
−1
γ (t) ∩ W consists of two curves C+

t , C−
t such that

m(C+
t ) = m(C−

t )+1 and < C+
t , B >=< C−

t , B > and for every t ∈]t1, t1+η[, π−1
γ (t)∩W = ∅,

or vive versa.

Proof:

From Theorem 2.7, C is a non degenerated critical point of πγ . Since RMγ is of dimension
one, this implies that there exist η > 0 and a neighbourhood W of C in RMγ such that
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for every t ∈]t1 − η, t1[, π
−1
γ (t) ∩ W consists of two curves and for every t ∈]t1, t1 + η[,

π−1
γ (t) ∩W = ∅, or vive versa. The only thing to prove is that m(C+

t ) = m(C−
t ) + 1. The

proof of this is readily the same as the one of Proposition 2.16 of [9]. It is not reproduced
here. �

Proposition 3.6 Let C = [u, JS , J, x] ∈ RMγ be a curve having a real ordinary cusp on
L and t2 = πγ(C). Then, there exist η > 0 and a neighbourhood W of C in RMγ such that for
every t ∈]t2−η, t2 +η[\{t2}, π−1

γ (t)∩W is reduced to one element {Ct}. Moreover, < Ct, B >
does not depend on t ∈]t2 − η, t2 + η[\{t2}. Likewise, C extends to a one parameter family
Ccusp

t of cuspidal real rational J t-holomorphic curves which pass through xt and realize d.
Assume that for t ∈]t2 − η, t2[ (resp. t ∈]t2, t2 + η[), RCcusp

t does not intersect locally L (resp.
intersects L locally in two points) near the cusp of C. Then for t ∈]t2 − η, t2[, m(Ct) = m(C)
and for t ∈]t2, t2 + η[, m(Ct) = m(C) + 1.

Note that after changing the parameterization t 7→ 2t2 − t if necessary, we can always assume
that for t ∈]t2−η, t2[ (resp. t ∈]t2, t2+η[), RCcusp

t does not intersect locally L (resp. intersects
locally L in two points) near the cusp of C.

LL L

t > t2t = t2t < t2

Ccusp
t

C

Ct

Ct

Ccusp
t

Proof:

Remember that the choice of γ implies that the tangent line of C at the cusp is distinct
from the one of L. Without loss of generality, we can assume that J , x are constant and
that L (and the metric g) moves along a one parameter family Lt which crosses the cuspidal
point of C. This indeed can be realized equivalently by fixing L and having J , x moving
along one parameter families φ∗tJ , φt(x) where φt is some Z/2Z-equivariant hamiltonian flow
of X. The family of curves Ccusp

t is then nothing but the constant family C. Moreover, from
Proposition 2.16 of [9], the curve C extends to a one parameter family Cλ, λ ∈]− ǫ, ǫ[, of real
rational J-holomorphic curves which pass through x and realize d. These curves Cλ have an
isolated real double point near the cusp of C when λ < 0 and a non isolated one when λ > 0.
Moreover, the latter form a one parameter family of loops which fill some disk of RX centered
at the cusp of C (compare [10], Lemma 3.3). This follows from the fact that the intersection
points between two curves in this family are located near their double points and at x. Since
for t ∈]t2 − η, t2[, Lt is locally disjoint from C, there does exist some curve Cλ, λ > 0, in this
family which is tangent to Lt, as soon as η is small enough. It has the same mass as C. From
Corollary 2.6, C is a regular point of πγ . The first part of the proposition is thus proved.
Now for each λ < 0 close enough to 0, there should exist some t ∈]t2 − η, t2 + η[ such that
Lt is tangent to Cλ. From what preceeds, t has to be greater than t2 and the proposition is
proved, since m(Cλ) = m(C) + 1 when λ < 0. �

3.4 Neighbourhood of reducible curves

Let C ∈ RMγ be a reducible curve and C1, C2 be its irreducible components. For
i ∈ {1, 2}, denote by di = [Ci] ∈ H2(X; Z), xi = x∩Ci and mi = #xi. From Proposition 3.2,
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m1 ∈ {c1(X)d1−2, c1(X)d1−1}. Denote by t3 = πγ(C) and assume that RC1∩RC2∩L = {y}
and that m1 = c1(X)d1−1. Then, there exists η > 0 such that the curves C deforms to a one
parameter family of real reducible J t-holomorphic curves Ct

red, t ∈]t3 − η, t3 + η[, which pass
through xt, where (J t, xt) = γ(t). The nodal point y then deforms to a one parameter family
of real non isolated double point yt of RCt

red. Without loss of generality, we can assume that
yt /∈ B if t ∈]t3 − η, t3[ and yt ∈ B if t ∈]t3, t3 + η[.

Proposition 3.7 Let Ct3 = Ct3
1 ∪Ct3

2 ∈ RMγ be a real reducible curve and t3 = πγ(Ct3).
Assume that RCt3

1 ∩ RCt3
2 ∩ L = {yt3} and that m1 = c1(X)d1 − 1 with the above notations.

Denote by Ct
red (resp. yt), t ∈]t3 − η, t3 + η[, the associated one parameter family of real

reducible J t-holomorphic curves (resp. of real double point of Ct
red). Assume that yt /∈ B if

t ∈]t3 − η, t3[ and yt ∈ B if t ∈]t3, t3 + η[. Then, as soon as η is small enough, there exists
a neighbourhood W of C in RMγ such that for every t ∈]t3 − η, t3[ (resp. t ∈]t3, t3 + η[),∑

C∈(π−1
γ (t)∩W ) < C,B >= −1 (resp.

∑
C∈(π−1

γ (t)∩W ) < C,B >= +1).

Note that all the curves Ct close to Ct3 are obtained topologically by smoothing the non
isolated real double point yt3 of Ct3 . Thus, they have the same mass as Ct3 .

LL L

B B B

Ct
red

Ct
red

Ct
red

Ct
Ct

Ct

t < t3 t = t3 t > t3

Proof:

Without loss of generality, we can assume that J t, xt are constant and that L (and
the metric g) moves along a one parameter family Lt which crosses the double point yt3 of
Ct3 . This indeed can be realized equivalently by fixing L and having J , x moving along
one parameter families φ∗tJ , φt(x) where φt is some Z/2Z-equivariant hamiltonian flow of
X. The family of curves Ct

red is then nothing but the constant family C. Moreover, from
Proposition 2.14 of [9], the curve Ct3 extends to a one parameter family Ct3

λ , λ ∈] − ǫ, ǫ[,
of real rational J-holomorphic curves which pass through x and realize d. These curves are
obtained topologically by smoothing the real double point yt3 of Ct3. The intersection points
between two different curves in this family (Ct3

λ )λ∈]−ǫ,ǫ[ are located near the double points

of Ct3 and at x. Thus, a neighbourhood U of yt3 in RX is foliated by curves Ct3
λ ∩ U and

this foliation looks like the level sets of an index one critical point of some Morse function
f : U → R.

L

C
f > 0

f < 0 f < 0

f > 0
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We can assume that L∩U belongs to the domain f ≤ 0. Let (t−, t+) ∈]t3 − η, t3[×]t3, t3 + η[,
restricting U and ǫ if necessary, we can assume that Lt− and Lt+ are transversal to all the
level sets f ≤ 0. The number of maxima minus the number of minima of f restricted to
Lt± is then equal to one, provided the latter have been chosen generic. Now each maximum
(resp. minimum) of f restricted to Lt− corresponds to a curve Ct− having contact index
< Ct− , B >= +1 (resp. < Ct− , B >= −1). Likewise, each maximum (resp. minimum) of f
restricted to Lt+ corresponds to a curve Ct+ having contact index < Ct+ , B >= −1 (resp.
< Ct+ , B >= +1), hence the result. �

Proposition 3.8 Let Ct4 = Ct4
1 ∪ Ct4

2 ∈ RMγ be a reducible curve and t4 = πγ(Ct4).
Assume that RCt4

1 ∩ RCt4
2 ∩ L = {yt4} and that m1 = c1(X)d1 − 2 with the notations of

Proposition 3.7. Then, there exist η > 0 and a neighbourhood W of Ct4 in RMγ such that
for every t ∈]t4 − η, t4 + η[\{t4},

∑
C∈(π−1

γ (t)∩W ) < C,B >= 0.

Note that once more, all the curves in W have the same mass. Note also that Ct4
1 belongs to

a one parameter family Ct4
1 (λ) of J t4-holomorphic curves which pass through xt4

1 = xt4 ∩Ct4
1

and realize d1, whereas Ct4
2 does not deform to any J t-holomorphic curve for t 6= t4.

Proof:

Without loss of generality, we can assume that xt is constant. Let U be a small neighbour-
hood of yt4 , it is foliated by the curves Ct4

1 (λ) ∩ U . Choose a transversal T to this foliation
which is disjoint from Ct4

2 ∩ U . From Proposition 2.14 of [9], as soon as η is small enough,
there is one and only one J t-holomorphic real rational curve which pass through xt and realize
d through every point of T . This produces a one parameter family of disjoint J t-holomorphic
real rational curve RCt(λ) ∩ U , λ ∈ T .

t < t4 t = t4 t > t4

Ct(λ) Ct(λ)Ct4
1 (λ)

Ct4
2

T T T

Each of these curves RCt(λ)∩U has two connected components, which produce two functions
partially defined on L to T . To get the result, it is enough to observe that the number of
maxima minus the number of minima of these functions are either +1 and −1, or 0 and 0. �

Proposition 3.9 Let Ct5 = Ct5
1 ∪ Ct5

2 ∈ RMγ be a real reducible curve tangent to L
and t5 = πγ(Ct5). Let R be the number of real intersection points between RCt5

1 and RCt5
2 .

Then, there exist η > 0 and a neighbourhood W of Ct5 in RMγ such that for every t ∈
]t5−η, t5+η[\{t5}, π−1

γ (t)∩W consists of exactly R curves each of them obtained by smoothing

a different real intersection point between RCt5
1 and RCt5

2 .

Proof:

The proof is the same as the one of Proposition 2.14 of [9], it is not reproduced here.
The only argument which slightly differs from the one in [9] is to show that for every real
intersection point between RCt5

1 and RCt5
2 , there is at most one J t-holomorphic curve in

π−1
γ (t)∩W obtained by smoothing this point. Actually, if there were two of them, they would

intersect at xt, at two points near each double point of Ct5 but the one smoothed and near
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the tangency point with L. This would produce more than d2 intersection points, which is
impossible. �

3.5 Neighbourhood of the case x ∩ L 6= ∅
Proposition 3.10 Let Ct6 ∈ RMγ be an irreducible curve tangent to L and t6 = πγ(Ct6).

Assume that xt6 ∩ L = {xt6
1 }. Assume that J t is constant and that only the point xt

1 actually
depends on t. Then, there exist η > 0 and a neighbourhood W of Ct6 in RMγ such that for
every t ∈]t6 − η, t6 + η[\{t6}, π−1

γ (t) ∩W consists of two curves having same mass and same
contact index with L if xt

1 is locally on the same side of L as Ct6, and π−1
γ (t) ∩W is empty

otherwise.

xt
1

∅
t = t6t < t6

xt6
1

t > t6

Proof:

The moduli space of real rational J t6 -holomorphic curves which pass through xt6 \ {xt6
1 }

and realize d is one dimensional, and Ct6 is a regular point in this space. Thus, all the
elements in this moduli space close to Ct6 are located on the same side of L as Ct6 itself.
If xt

1 is not on this side, we deduce that π−1
γ (t) ∩ W = ∅ as soon as W is small enough.

Denote by Ct6(λ) the curves in this moduli space and let U be a small neighbourhood of xt6
1

in RX. Then, the curves (RCt6(λ) ∩ U) \ L have two connected components, which produce
two different foliations of one side of L in U \ L if U is small enough. Thus, if xt

1 is on this
side, then #(π−1

γ (t)∩W ) = 2. In this case, the two curves in π−1
γ (t)∩W have obviously same

mass and same contact index with L. �

3.6 Proofs of Theorems 1.1 and 1.3

3.6.1 Proof of Theorem 1.1

Let (J0, x0) and (J1, x1) be two generic elements of RJω × RτX
c1(X)d−2 so that the

integers Γd,B
r (J0, x0) and Γd,B

r (J1, x1) are well defined. Let γ : t ∈ [0, 1] 7→ (J t, xt) ∈
RJω × RτX

c1(X)d−2 be a generic path chosen in §3.1 joining (J0, x0) to (J1, x1). Then,

from genericity arguments of §3.1, we know that the integer Γd,B
r (J t, xt) is well defined for

every t ∈ [0, 1] but a finite number of parameters 0 < t0 < t1 < · · · < tk < 1 corresponding to
the following phenomena.

Concerning the first term in the definition of Γd,B
r (J t, xt):

1) Appearance of a unique real ordinary triple point or a unique real ordinary tacnode on
an irreducible curve tangent to L.

2) Appearance of a transversal double point of an irreducible curve tangent to L on xt∪L.
3) Appearance of a real ordinary cusp of an irreducible curve on L.
4) Appearance of a an irreducible curve tangent to L which is a critical point of πγ given

by Theorem 2.7.
5) A sequence of curves of RMγ degenerates on a reducible curve given by Propositions

3.7, 3.8 or 3.9.
6) One has xt ∩ L 6= ∅.

Concerning the last three terms in the definition of Γd,B
r (J t, xt):
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a) One of those considered in [10].
b) A cuspidal curve has its cusp on L but with a tangent line distinct from the one of L.
c) A reducible curve has one of the intersection points between its irreducible components

on L but is not tangent to L.
d) One has xt ∩ L 6= ∅.

We have to prove that the integer Γd,B
r (J t, xt) does not change while crossing one of these

parameters 0 < t0 < t1 < · · · < tk < 1. In the cases 1, 2, a, this is proven in the same way
as in [9], [10]. In the cases 3, b, it follows from Proposition 3.6. Note that here the first

term in the definition of Γd,B
r (J t, xt) is not invariant. The term on cuspidal curves allows to

compensate for this lack of invariance. In the case 4, it follows from Propositions 3.4, 3.5. In
the cases 5, c, it follows from Propositions 3.7, 3.8 and 3.9. Note that here once more, in the
case c, the first term in the definition of Γd,B

r (J t, xt) is not invariant. The term on reducible
curves allows to compensate for this lack of invariance. In the cases 6, d, it follows from
Proposition 3.10. Here the first term in the definition of Γd,B

r (J t, xt) is not invariant, this lack
of invariance is compensated thanks to the term on T and(J, x). Indeed, using the notations of
Proposition 3.10, we can assume that for t = t6, the tangent line T1 and T

x
t6
1

L coincide. There

is then a one to one correspondance between the curves tangent to L at xt6
1 and the elements

of T and(J, xt6) having T1 as a tangent line. During the deformation t ∈]t6 − η, t6 + η[, the
latter deform continuously. Now if xt

1 is locally on the same side of L as Ct6 , the two curves
given by Proposition 3.10 are counted with respect to the sign −(−1)m(C) < xt

1, B > while the
corresponding curve in T and(J, xt) is counted with respect to the sign (−1)m(C) < xt

1, B >.

The total contribution of these curves to Γd,B
r (J t, xt) is thus −(−1)m(C) < xt

1, B > in this case
while it is just (−1)m(C) < xt

1, B > when xt
1 is locally on the opposite side of L as Ct6 . Since

the sign < xt
1, B > changes as xt

1 crosses L, these contributions are the same and Γd,B
r (J t, xt)

is invariant. �

3.6.2 Proof of Theorem 1.3

Denote by B(y, ǫ) a disk of RX centered at y ∈ X and having radius ǫ > 0. Fix a generic
(J, x) ∈ RJω ×RτX

c1(X)d−2. When ǫ converges to zero, B(y, ǫ) → y and the three last terms

in the definition of Γd,B
r (J, x) converge to −Γd

r(J, x) since all the curves do not move and all
the special points are outside B(y, ǫ). At the same time, the first term converges to a sum over
real rational J-holomorphic curves which pass through x ∪ {y} and realize d. Each of these
curves are irreducible and immersed and deforms in exactly two curves tangent to ∂B(y, ǫ)
for ǫ ≪ 1. Moreover, the latter are tangent from the outside of B(y, ǫ) and we deduce the

relation Γd,B
r = 2χd

r − Γd
r .

Likewise, when X = CP 2 and ǫ converges to +∞, the three last terms in the definition
of Γd,B

r (J, x) converge to Γd
r(J, x) since all the curves do not move and all the special points

are this time inside B(y, ǫ). At the same time, the first term converges to a sum over real
rational J-holomorphic curves which pass through x, realize d and are tangent to the line at
infinity. Each of these curves are irreducible and immersed and deforms in exactly two curves
tangent to ∂B(y, ǫ) for ǫ≫ 1. Moreover, one of these two curves is tangent from the outside

of B(y, ǫ) and one from the inside, so that we get the relation Γd,B
r = Γd

r .
Finally, when X = CP 1 × CP 1 and ǫ converges to +∞, the boundary of B(y, ǫ) accu-

mulates on the union of a section B∞ and a fibre F∞ of RP 1 × RP 1. Then, the three last
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terms in the definition of Γd,B
r (J, x) converge to Γd

r(J, x) as before. At the same time, the
first term converges to a sum over real rational J-holomorphic curves which pass through x,
realize d and are either tangent to B∞ ∪ F∞, or pass through B∞ ∩ F∞. Each of the curves
tangent to B∞ ∪F∞ are irreducible and immersed and deforms in exactly two curves tangent
to ∂B(y, ǫ) for ǫ ≫ 1, one from the outside, the other one from the inside. Likewise, each of
the curves passing through B∞ ∩ F∞ are irreducible and immersed and deforms in exactly
two curves tangent to ∂B(y, ǫ) for ǫ ≫ 1, both from the outside. We hence get the relation

Γd,B
r = 2χd

r + Γd
r . �

4 On real conics tangent to five generic real plane conics

4.1 Proofs of Theorem 1.5 and Proposition 1.6

Proof of Theorem 1.5:

The proof is similar to the one of Theorem 1.1. We construct the universal moduli
space RCL of real pseudo-holomorphic conics tangent to L1, . . . , L5. It is a separable Banach
manifold of class C l−k equipped with a Fredholm projection πR : RCL → RJω having vanishing
index. Let J0 and J1 be two generic elements of RJω so that ΓB(J0) and ΓB(J1) are well
defined and γ : t ∈ [0, 1] 7→ J t ∈ RJω be a generic path joining J0 to J1. Denote by
RCγ = RCL ×γ [0, 1], RCγ its Gromov compactification and πγ : RCγ → [0, 1] the associated
projection. Genericity arguments similar to the ones of §3.1 show that the elements of RCγ are
smooth real conics having a unique point of contact of order two with each Li, i ∈ {1, . . . , 5},
but a finite number of them which may be:

1) Smooth real conics which are bitangent to L1 ∪ · · · ∪ L5, every point of contact being
of order at most two.

2) Smooth real conics which have a point of contact of order three with one curve Li,
i ∈ {1, . . . , 5}, the other ones being non-degenerated.

3) Reducible conics made of two real lines, one of them being tangent to three curves Li,
i ∈ {1, . . . , 5}, and the other one to the two remaining ones. These points of contact are
non-degenerated and outside the singular point of the conic.

4) Reducible conics of Conred tangent to four curves Li1 , . . . , Li4 and whose singularity lie
on the fifth curve Li5 .

Likewise, the universal moduli space RCred
L of real reducible pseudo-holomorphic conics

tangent to four curves Li1, . . . , Li4 out of the five L1, . . . , L5 is a separable Banach manifold
of class C l−k. Denote by RCred

γ = RCred
L ×γ [0, 1]. It is a one dimensional compact manifold

whose elements are couples of real lines having four points of contacts with Li1, . . . , Li4 which
are of order two, but a finite number of them which may be:

a) Tangent to the five curves L1, . . . , L5, with non-degenerated points of contacts.
b) Tangent to Li1 , . . . , Li4 but with one point of contact of order three.
c) Tangent to Li1, . . . , Li4 with their singular point on Li5.
d) Tangent to Li1 , . . . , Li4 with their singular point on Li1 ∪ · · · ∪ Li4.
The only thing to check is that the value of ΓB(Jt) does not change while t crosses one

of the special values listed in 1-4 and a-d. In the cases 1, a and d, it is easy to check. In the
cases 2, b, it follows from Proposition 3.4. In the case 3, the proof is the same as the one of
Proposition 3.9. Finally, in the cases 4, c, the proof is the same as the one of Proposition 3.7. �

Proof of Proposition 1.6:
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From Theorem 1.5, we can assume that the five disjoint disks are of radius ǫ small, and
have ǫ converging to zero so that they contracts onto five distinct points y1, . . . , y5. The conics
tangent to L1, . . . , L5 degenerate onto conics passing through y1, . . . , y5. From [1], there is
only one such J-holomorphic conic. Reversing this process as in the proof of Theorem 1.3, each
conic passing through yi deforms into two conics which are tangent to Bi from the outside, for
ǫ small enough. As soon as ǫ is small enough, the first term in the definition of ΓB equals then
25 = 32. Likewise, elements of Conred degenerate onto reducible conics passing through four
out of the five points y1, . . . , y5. There are five ways to choose these four points, three couples
of lines passing through these four points and each of these couples deforms into 24 = 16
reducible conics tangent to the four associated disks Bi from the outside, as soon as ǫ is small
enough. Since the singular point of these conics is outside B = B1 ∪ · · · ∪B5, the second term
in the definition of ΓB equals −5 ∗ 3 ∗ 16 = −240. We deduce that ΓB = 32 + 240 = 272.
Likewise, if B1, . . . , B5 are close to five generic double lines of the plane we can have the
curves L1, . . . , L5 degenerate onto five couples of real lines L1

i ∪ L2
i close to the double lines

and intersecting each other at x1, . . . , x5. Every conic tangent to Li degenerates onto a conic
tangent to L1

i ∪L2
i or a conic which passes through xi. Now each conic tangent to L1

i deforms
to a conic tangent to L2

i since L1
i and L2

i are as close to each other as we wish. Hence these
conics come by pairs, one deforming to a conic tangent from the inside of Bi and the other one
from the outside. Hence, the only conics which contributes to the first term of ΓB correspond
to the ones passing through x1, . . . , x5. Their contribution is 32 as before. In the same way,
the second term of ΓB equals −240 as before, as soon as B1, . . . , B5 are close enough to
(L1

1 ∪ L2
1), . . . , (L

1
5 ∪ L2

5). Hence the result. �

4.2 How does ΓB depend on the isotopy class of B?

Let B2, . . . , B5 be four disks of RP 2 transversal to each other and (Bt
1)t∈]−ǫ,ǫ[ be a smooth

one-parameter family of disks which are transversal to B2, . . . , B5 for t ∈]−ǫ, ǫ[\{0} and which
have an order two point of contact x with B2 for t = 0. We can assume that for t ∈] − ǫ, 0[
(resp. for t ∈]0, ǫ[), the curves Lt

1 = ∂Bt
1 and L2 = ∂B2 have two intersection points (resp.

do not intersect) in a neighbourhood of x.

Lt
1

L2 L2 L2Lt
1L0

1

t < 0 t = 0 t > 0

Denote by Bt = Bt
1 ∪ B2 ∪ · · · ∪ B5, the integer ΓBt

is well defined for t ∈] − ǫ, ǫ[\{0}. We
have to compare the values of ΓBt

for t < 0 and t > 0. Denote by Con(J, x) the finite set
of real conics which are tangent to L3, L4, L5, pass through x and are tangent at x to L0

1

and L2. Likewise, denote by Conred(J, x) the finite set of real reducible conics made of the
J-holomorphic line Tx which is tangent to L0

1 and L2 at x and of a real J-holomorphic line
tangent to two curves out of the three curves L3, L4, L5.

Proposition 4.1 Let Bt = Bt
1 ∪B2 ∪ · · · ∪B5 be a one parameter family of five disks in
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RP 2 as above and (t−, t+) ∈] − ǫ, 0[×]0, ǫ[. Then,

ΓBt+
= ΓBt−

+2 < L2, B
0
1 >

( ∑

C∈Con(J,x)

Π5
j=2 < C,Bj >

)
−2 < L2, B

0
1 >

( ∑

C∈Conred(J,x)

Π5
j=2 < C,Bj >

)
.

Proof:

We can have locally L2 degenerate on a half line. The conics tangent to L2 degenerate
then on conics tangent to the half line and conics passing through the vertice s of this half
line. As in the proof of Theorem 1.3, the contribution to ΓBt

of conics tangent to the half line
vanishes. As t goes to zero, s converges to x and the conics passing through s and tangent to
Bt

1, B3, B4, B5 converge to conics passing through the vertice s and tangent to B0
1 , B3, B4, B5.

If the order two point of contact of the latter with B0
1 is outside x, they can be deformed

for t ∈] − ǫ, ǫ[. If on the contrary such a conic C belongs to Con(J, x) ∪ Conred(J, x), it
follows from Proposition 3.10 that it deforms for t ∈] − ǫ, 0] (resp. t ∈ [0, ǫ[) if and only if
< C,B0

1 >= − < L2, B
0
1 > (resp. < C,B0

1 >=< L2, B
0
1 >), that is, if and only if C and L2

are locally on opposite sides of B0
1 (resp. on the same side of B0

1). Hence the result. �

4.3 Final remarks

1) The results of §4 take advantage of the fact that a pseudo-holomorphic conic cannot be
cuspidal and may have two irreducible components at most. To extend the results of §1.2 to
pseudo-holomorphic curves having s > 1 tangency conditions with L would seem to require
the introduction of 4s terms in the definition of Γd,B. These terms consist of curves having
s1 tangency conditions with L, s2 cusps, s3 + 1 irreducible components and s4 tangency
conditions with the lines Ti, i ∈ I, where s1 + · · · + s4 = s. One should then study the
collisions between these tangency conditions, cusps, etc... which has not been done here.

2) In contrast with the works [9], [10], the moduli space RMd
L does not appear here as

the fixed point set of some Z/2Z-action on some complexified moduli space Md
L. For such

a purpose, we should have complexified L to some surface LC in X and restricted ourselves
to almost complex structures J for which LC is J-antiholomorphic, as in [4] and [2]. The
advantage not to do so here was to get immediatly some invariant for any J ∈ RJω without
any restrictions.

3) The condition that L is smooth and bounded by a smooth surface B is of course too
restrictive. We reduced our study to this case for convenience. For example, one could replace
the embedding B → RX with some smooth map with finitely many ramification points and
which maps the boundary L of B to some immersed curve with transversal double points as
singularities. The index < x,B > for x ∈ RX should then be defined as twice the number of
preimages of x in B less one. Since every step of the proof of Theorem 1.1 is local, it readily
extends to this case. However, when L is any immersed curve, say for example the figure
eight curve in the projective plane, it is not clear to me how to extend the results presented
here.

4) Likewise, how does Γd,B
r depend on r can be understood exactly in the same way as

in §3 of [9] by introducing curves passing through c1(X)d − 3 distinct points but having a
double point at one special point of this configuration, see Theorem 3.2 of [9]. The proof of
Theorem 3.2 of [9] adapts here without any change.

20



References

[1] M. Gromov. Pseudoholomorphic curves in symplectic manifolds. Invent. Math.,
82(2):307–347, 1985.

[2] E.-N. Ionel and T. H. Parker. Relative Gromov-Witten invariants. Ann. of Math. (2),
157(1):45–96, 2003.

[3] S. Ivashkovich and V. Shevchishin. Structure of the moduli space in a neighborhood of
a cusp-curve and meromorphic hulls. Invent. Math., 136(3):571–602, 1999.

[4] A.-M. Li and Y. Ruan. Symplectic surgery and Gromov-Witten invariants of Calabi-Yau
3-folds. Invent. Math., 145(1):151–218, 2001.

[5] D. McDuff and D. Salamon. J-holomorphic curves and symplectic topology, volume 52
of American Mathematical Society Colloquium Publications. American Mathematical
Society, Providence, RI, 2004.

[6] F. Ronga, A. Tognoli, and T. Vust. The number of conics tangent to five given conics:
the real case. Rev. Mat. Univ. Complut. Madrid, 10(2):391–421, 1997.

[7] V. V. Shevchishin. Pseudoholomorphic curves and the symplectic isotopy problem.
preprint math.SG/0010262, 2000. Habilitation thesis at Ruhr-University, Bochum, Ger-
many.

[8] J.-Y. Welschinger. Invariants of real rational symplectic 4-manifolds and lower bounds
in real enumerative geometry. C. R. Math. Acad. Sci. Paris, 336(4):341–344, 2003.

[9] J.-Y. Welschinger. Invariants of real symplectic 4-manifolds and lower bounds in real
enumerative geometry. Preprint math.AG/0303145, 2003. To appear in Invent. Math.

[10] J.-Y. Welschinger. Invariants of real symplectic 4-manifolds out of reducible and cuspidal
curves. Preprint math.SG/0502355, 2005.
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