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Abstract
Abstract

Almost all early cognitive development takes place in social contexts. At the moment,
however, we know little about the neural and cognitive mechanisms that drive infant
attention during social interactions. Recording EEG during naturalistic caregiver-infant
interactions (N=66), we compare two different accounts. Attentional scaffolding perspectives
emphasise the role of the caregiver in structuring the child’s behaviour, whilst active learning
models focus on motivational factors, endogenous to the infant, that guide their attention.
Our results show that, already by 12-months, intrinsic cognitive processes control infants’
attention: fluctuations in endogenous oscillatory neural activity associated with changes in
infant attentiveness, and predicted the length of infant attention episodes towards objects. In
comparison, infant attention was not forwards-predicted by caregiver gaze, or modulations
in the spectral and temporal properties of their caregiver’s speech. Instead, caregivers rapidly
modulated their behaviours in response to changes in infant attention and cognitive
engagement, and greater reactive changes associated with longer infant attention. Our
findings suggest that shared attention develops through interactive but asymmetric, infant-
led processes that operate across the caregiver-child dyad.

eLife assessment

This study reports important evidence that infants' internal factors guide children's
attention and that caregivers respond to infants' attentional shifts during caregiver-
infant interactions. The authors analyzed EEG data and multiple types of behaviors
using solid methodologies that can guide future studies of neural responses during
social interaction in infants. However, the analysis is incomplete, as several
methodological choices need more adequate justification.
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Introduction

Almost all early cognitive development and learning takes place in social contexts 1     . We know
that caregiver behaviours influence where, how, and for how long children allocate their attention
in real-world settings 2     , and that individual differences in how caregivers behave while
interacting with their child can predict later language learning and socio-cognitive development
3     –5     . But we currently understand little about the intrapersonal and bidirectional neural
mechanisms that influence how infants allocate their attention to learn from their environment
during naturalistic, free-flowing interactions.

A number of different theoretical models try to explain how social partners influence infants’
attention. The first, and probably the oldest, proposes that caregivers directly and didactically
scaffold their infant’s attention, for example by building a structure of how they pay attention, and
when, and encouraging the child to follow their attentional focus (a process sometimes known as
‘attentional scaffolding’ 6     . This might take place through children copying where caregivers are
paying attention, second by second, while they complete a shared task 2     . Or, it might happen
through adults organisedly and actively using ostensive signalling to guide infant attention
7     ,8     . To do this, the adult partner might be using salient behaviours (e.g., eye gaze, high pitched
speech, etc) to exogenously influence where children allocate their attention. In either of these
cases, infant attention is reactive to changes in the behaviour of the caregiver 9     ,10     .

Recent micro-behavioural analyses of caregiver and infant gaze behaviour during joint table-top
interactions support this perspective, to some extent. Multimodal behavioural inputs by the
caregiver are known to support episodes of sustained attention towards objects: for example,
infant attention durations lasting over 3 seconds are directly predicted by the amount and timing
of caregiver speech and touch to objects 11     . More indirectly, other research has shown that
infant attention is more fast-changing in joint compared to solo play, despite infant attention
durations being, overall, longer in joint play 12      - suggesting that endogenous cognitive processes
such as attentional inertia (the finding that, the longer a look lasts, the less likely it is to end 13     )
have less of an influence on infant attention in social contexts. Further research suggests that,
rather than following the focus of the adults’ gaze, infants most often co-ordinate their attention
with the adult through attending towards their partners’ object manipulations, which corresponds
to the idea that adults use exogenous attention capture to drive infant attention 10     . Other salient
behaviours might also be important, but are under-investigated. For example, infant-directed
speech is known to contain more variability in amplitude and pitch 14     , which increases its
auditory salience 15     ; but although it is known that children generally pay more attention to
infant-directed speech 15     , no previous research has examined whether caregivers use moment-
by-moment variability in the salience of their voice to influence how children allocate attention.

Within this framework, it is possible that, rather than repeated and reactive contingent
responsivity to isolated behaviours, temporal dependency between infant and caregiver attention
is driven by infant behaviour becoming periodically coupled to the behavioural modulations of
their partner 16     ,17     . Similar to inter-dyadic patterns of vocalisations in adults and marmoset
monkeys 18     ,19     , in early infant-caregiver interactions, vocal pauses in one partner’s
vocalisations can be predicted from those of the other 20     ,21     , and, during face-to-face
interactions at the end of the first year, caregiver-infant facial affect becomes temporally aligned
22     . Oscillatory entrainment, that is, consistent temporal alignment between fluctuations in
caregiver and infant behaviour, could be particularly important in ensuring that salient sensory
and information-rich inputs by the caregiver occur at moments infant are most receptive to
receiving information 17     .

https://doi.org/10.7554/eLife.88775.1


Emily A.M. Phillips et al., 2023 eLife. https://doi.org/10.7554/eLife.88775.1 3 of 39

An alternative interpretation of these micro-behavioural findings, however, is that, rather than
structuring infant behaviour through leading infant attention, caregivers instead scaffold how
infants pay attention by following and responding to re-orientations in their infant’s attention.
This second model suggests that, rather than considering unidirectional caregiver->child
influences we should instead be considering bidirectional child<->caregiver influences. In
following the focus of their infants’ attention at moments that they reorient towards a new object,
the caregiver ‘catches’ and extends infant attention with reactive and dynamic change in their
salient ostensive behaviours, to which infants are responsive 2     . The contingent adaptation of the
caregiver to modulations in infant attention serves to maintain and extend infant attention, and
provides inputs at points where infants anticipate to receive new information 23     . Indeed, from
early infancy, caregivers are contingently responsive to modulations in their infant’s behaviour.
From 2-3 months, caregivers respond differentially to distinct facial affects produced by the infant
24     , modulate their vocal feedback to infant babbling 25     –27     ; and, towards the end of the first
year, provide more labelling responses relative to infant’s pointing than to their object-directed
vocalisations 28     .

According to the first model, then, caregivers drive and actively control infants’ attention during
joint interaction. According to the alternative model, caregivers influence infants’ attention by
reactively and contingently responding to the infant’s attention shifts. But according to the latter
model, what drives how infants initially allocate their attention in the first place? In caregivers,
the timing of attention shifts can be partially described using an oscillatory structure, reflecting
rhythmic attention reorientations that possibly correspond to fluctuations in the central nervous
system 29     –31     . Research with infants has also suggested that, even during early life, infants’
attention shifting is not purely stochastic 32     . In free-viewing paradigms, infant gaze exhibits a
fractal structure: becoming more periodic and less stochastic over the course of the first year
33     ,34     , and periodic structure in 12-month old attention patterns has been associated with
increased cognitive control 35     . Regulatory mechanisms endogenous to the infant could therefore
be one mechanism that influences when infants reorient their attention during real-world
naturalistic interactions.

By the end of the first year, however, as well as periodic attention reorientations, fluctuations in
top-down attentional control processes, thought to be driven by the executive attention system,
begin to influence where and when infants shift their attention. For example, research has shown
that infants routinely deploy active and effortful information-sampling strategies to maximise
their opportunities for learning 36     –40     . For example, infants aged 8-9 months optimise
information gain by directing their attention towards stimuli that are neither too complex, nor too
predictable 38     ,41      and disengage from stimuli that are less informative compared to past
observations 40     . Corresponding to developments in intentionally-mediated forms of joint
communication 42     , infants are also thought to begin to use active strategies to directly elicit
information from a social partner about their environment. For example, infants aged 12-14
months point in an interrogative manner 43     ,44     , and look towards their caregiver to ask for
help when uncertain 45     ,46     .

These approaches suggest that infants’ endogenous engagement or interest forward-predicts their
attention patterns. In addition, though, there is an alternative, complementary possibility. Infants’
attention shifts may initially happen as random, foraging-type behaviours 32     ,47      (i.e. not
forward-predicted by fluctuations in infants’ endogenous engagement or interest); processes after
the attention shift (determined by what information is present at the attended-to location) may
drive increases in infants’ endogenous engagement or interest which prolong that attention
episode. (This distinction is similar to that we discussed above, about whether caregiver
behaviours forwards-predict infant attention, or whether caregivers influence infants by
reactively responding to their attention shifts, but operates at the individual level.) Consistent with
this possibility, dynamic, generative models based on this framework can accurately predict
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attention patterns at least in younger infants 32     ,48     . Dynamic, amplificatory processes that take
place after an attention shift can also explain patterns of attention inertia observed in naturalistic
settings 13     .

To examine how fluctuations in endogenous engagement or interest drive and/or maintain infant
attention during naturalistic interactions, we can measure theta activity (3-6Hz), which is an
oscillatory rhythm associated with intrinsically guided cognitive process in early infancy 49     . In
particular EEG activity in the theta range has been found to increase over fronto-central
electrodes during episodes of endogenously controlled attention. For example, theta activity over
fronto-central electrodes increases where infants anticipate the next actions of an experimenter,
and theta activity occurring in the time before infants look towards an object has been found to
predict the length of time infants pay attention to that object during solitary play 50     ,51     . Recent
work has also showed dynamic fluctuations in theta activity over the course of sustained attention
episodes: Xie and colleagues found that, whilst 10-12 month-old infants viewed cartoon videos,
theta activity increased during heart-rate defined periods of attentional engagement 52      (see also
53     ).

In summary, therefore, research has examined two separate influences that could support how
infants pay attention in social settings. The first type of influence is endogenous engagement or
interest. The second is caregivers’ exogenous behaviour. But for both of them, it is unclear
whether the influences are forwards-predictive or reactive. Does infants’ endogenous attention
engagement forwards-predict attention, or do fluctuations in engagement that take place after an
attention shift predict how long that episode lasts? And do caregivers drive infant attention using
salience cues, or do they reactively change their behaviours in response to infant behaviours?

Here, recording EEG from infants during naturalistic interactions with their caregiver, we
examined the (inter)-dependent influences of infants’ endogenous oscillatory neural activity, and
inter-dyadic behavioural contingencies in organising infant attention. First, we examined
processes endogenous to the infant that determine the timing of their attention during the
interaction (part 2). Second, we examine caregiver behaviours (part 3).

In part 1, we first test whether oscillatory structures can be derived from the patterns of infant
and caregiver looking behaviour at an individual level, by computing the partial auto- correlation
function (PACF) for caregiver and infant attention durations. We then test whether infant and
caregiver behaviours act as coupled oscillators, by examining the time-course of the cross-
correlation function between infant and adult gaze 18     . If true, this would point to the existence
of mechanisms of influence between infant and adult gaze that our other analyses, examining
forwards-and backwards-predictive relationships (see below), would be unable to detect.

In part 2 we then assess whether infants’ endogenous cognitive processing forward-predicts infant
attention, by using cross-correlations to estimate the forwards-and backwards-predictive
associations between infant theta activity, recorded over fronto-central electrodes 54     , and look
durations. In addition, we further examined reactive changes in infant endogenous oscillatory
neural activity that take place after the onset of an attention episode. To do so, we used two
analyses: first, using linear-mixed effects models, we examined the direct temporal associations
between the infant attention durations and the average levels of infant theta activity during that
look. Next, we examined how theta activity changes dynamically across the course of individual
looks.

In part 3 we examine the (inter)-dependent relationships between caregiver behaviours and
infant attention. We examine two aspects of caregiver behaviour in particular. First (part 3.1), we
examine caregiver gaze behaviour, using cross-correlations to test whether increases in caregiver
attention towards objects forwards- or backwards-predicted changes in infant attention. In order
to test whether any association between infant attention and caregiver behaviour was
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independent of the relationship between infant attention and their endogenous oscillatory neural
activity, we also conducted cross-correlations to examine the associations between caregiver
attention and infant theta activity. And we used the same two analyses as used in part 2 to
examine how caregiver gaze behaviour changes reactively following the onset of an infant
attention episode.

Second (part 3.2) we examined saliency in the caregiver’s speech signal by computing the rate of
change in the fundamental frequency of their voice 15     . For this, we used the same analysis
approach. First, we conducted cross-correlations to examine whether changes in caregiver vocal
behaviour forwards- or backwards-predict changes in infant attention.

Second, we examined how caregiver vocal behaviour changes reactively following the onset of an
infant attention episode. Allostatic attentional-structuring models predict reactive change in
caregiver behaviour at the onset of infant attention, and over the duration of the look, that
associate with the length of infant looking.

Results

The results section is divided into three parts. In part 1, we first conduct descriptive statistics of
infant attention durations, and test for oscillatory structures in caregiver and infant attention.
Then, in part 2, we examine whether endogenous infant neural activity forwards-predicts
fluctuations in infant attention, and/or reactively changes in the time after the onset of an
attention episode. In part 3, we assess whether modulations in caregiver gaze and vocal behaviour
forwards-predict fluctuations in infant attention, and/or reactively change in the time after infants
shift their attention.

1 Oscillatory structures in caregiver and infant attention
First, as descriptive statistics, we report on the frequency distribution of caregiver and infant
attention durations towards objects, the partner, and periods of off-task attention, dividing
attention durations into 100ms bins. Histograms showing the distribution of caregiver and infant
attention durations towards objects, partners, and non-targets are displayed in Fig. 2a     . In both
distributions the mode is greater than the minimum value, consistent with previous observations
that attention shifting is periodic 55     . The caregiver’s distribution is also more left-skewed
compared to the infants’ distribution, reflecting the shorter and more frequent attention durations
by the caregiver (c.f 23     ,51     ). Finally, consistent with previous reports 10     , caregivers tended to
look towards their partner more frequently than infants, with infants attending most frequently to
the objects (Fig. 2a     ).

Next, to investigate whether there was an oscillatory component in the caregiver and infant gaze
time series, we computed the PACF of a binary attention variable separately for caregiver and
infant using 100, 200, 500 and 1000ms lags (see Methods and Fig. 1d      for more detail). In order to
explore whether the PACF reflected the temporal interdependencies between infant/caregiver
attention episodes (i.e. how likely an attention episode of a given length was to be followed by
another of a similar length), or, more simply, the overall distributions of attention episodes (i.e.
how common attention episodes of a given length are overall), the PACF was repeated after
shuffling the infant and caregiver attention durations in time (see Methods for permutation
procedure).

Fig. 2b      shows that for the 100ms, 200ms time bins (infant and caregiver) and 500ms time bin
(infant only), the lag 1 terms are negative, indicating that attention at time t is negatively
predictive of attention at time t+x where x is a short time interval. This pattern is also observed in
the baseline data (in which looks have been randomly shuffled in time). It reflects therefore, the
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Figure 1.

Experimental set-up and example of continuous variables.

a) Raw data sample, showing (from top) infant EEG over fronto-central electrodes, after pre-processing, infant gaze
behaviour, infant vocalisations, caregiver EEG over fronto-central electrodes, caregiver gaze behaviour, caregiver
vocalisations. b) Example camera angles for caregiver and infant (right and left), as well as zoomed-in images of caregiver
and infant faces, used for coding. c) Topographical map showing electrode locations on the bio-semi 32-cap; fronto-central
electrodes included in the theta activity analysis are highlighted in orange (AF3, AF4, FC1, FC2, F3, F4, Fz). d) Continuous
behaviour and EEG variables extracted from the caregiver and infant time-series, showing (from top), caregiver looks to
objects, the partner, and off-task looks, caregiver binary attention durations (for part 1), caregiver continuous attention
durations (for part 2 and 3), caregiver vocalisation durations, rate of change in caregiver F0, infant looks to objects, their
partner, and off-task looks, infant binary attention durations (for part 1), infant continuous look durations (for part 2 and 3),
infant relative theta activity.

https://doi.org/10.7554/eLife.88775.1
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Figure 2.

Testing for oscillatory patterns of attention behaviour in infants and caregivers.

a) Histogram of caregiver and infant attention episodes to objects, their partner and off-task episodes. Stacked bars show the
number of episodes in each category for each 100ms bin for all episodes up to 10s in duration. b) PACF computed at different
time lags for caregiver and infant gaze time series. Coloured lines show the PACF for infants (green) and caregivers (pink);
shaded areas show the SEM. Dashed black lines show the PACF of shuffled attention duration data. c) Cross-correlation
between caregiver and infant binary gaze variables. Black line shows the Spearman correlation coefficient at time-lags
ranging from 0-10s; error bars indicate the SEM. Blue dashed line shows the permutation cross-correlation between two time
series of poisson point process; one matching the average look rate of caregivers and the other, the average look rate of
infants.

https://doi.org/10.7554/eLife.88775.1
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overall pattern already shown in the histograms in Fig. 2a     , that short looks (e.g. 100-200ms) are
less frequent than longer looks (e.g. 500ms). It can also be seen that, at higher time lags, the
observed PACF values are above the baseline rate. This indicates temporal interdependencies
between look durations (i.e. that an attention episode of a given length is likely to be followed by
another of a similar length), which are not present when the look durations are randomly shuffled
to generate the baseline data.

Finally, we replicated previous analyses 18      to explore whether the inter-dyadic dynamics of
caregiver and infant looking behaviour could be modelled as coupled oscillators. To do so, we first
computed a binary attention variable, separately, for the infant and the caregiver. For this binary
attention variable, we coded each look alternatively as a 0 or 1 from the first look of the
interaction to the last, irrespective of where the infant or caregiver was looking (e.g. objects/ the
partner; see Fig. 1d     ). To examine whether caregiver and infant attention changes at consistent
temporal latencies, as would be the case if they were acting as entrained oscillators 17     , we
calculated the cross-correlation function between the infant and caregiver binary attention
variables. If caregiver and infant gaze behaviour act as coupled oscillators, then the cross-
correlation function should display significant peaks at regular intervals, reflecting these
consistent latencies between attention shifts 18     . In order to identify where peaks in the cross-
correlation function exceeded chance, we computed Poisson point process timeseries with look
duration lengths matching the average look duration in the actual data (see Methods for more
details). Fig. 2c      shows the results of this. Cluster-based permutation analysis revealed no
significant peaks in the cross-correlation function, compared to baselines created through poisson
process.

In summary, oscillatory mechanisms appear to govern both caregiver and infant attention
durations; with infant attention durations centring around 1-2s in length, and adults around 200-
500ms. The cross-correlation analysis, however, suggested that caregiver and infant attention
shifts do not act as coupled oscillators across the dyad (Fig. 2c     ).

2 Does endogenous infant neural activity forwards-predict infant
attention, or reactively change following the onset of a new infant
attention episode?
In this section, we investigate the relationship between infant endogenous oscillatory neural
activity and infant attention durations, considering both forwards-predictive relationships and
reactive changes in infants’ endogenous oscillatory activity after the onsets of attention episodes.

2.1 Forwards predictive relationship between infant attention and infant
theta activity

To examine whether infant endogenous neural activity significantly forwards-predicted infant
attentiveness, we calculated a cross-correlation between the continuous infant attention duration
time-series (see Fig. 1d     ), including all infant attention episodes to objects, the partner and looks
elsewhere, and infant theta activity. Fig. 3a      shows the results of the cross-correlation analysis.
This analysis revealed a significant, positive association between the two variables at time-lags
ranging from -2 to +6s (p = 0.004).

This indicates that infant theta power significantly forwards-predicted infant attention durations
at lags up to 2 seconds, as well as that infant attention durations significantly forwards-predicted
infant theta at lags of up to 6 seconds. Interpreting the exact time intervals over which a cross-
correlation is significant is challenging due to the auto-correlation in the data 56     ,57     , but there
are two points of significance here. The first is the fact that the peak cross-correlation is observed
not at time 0 but at time t+1.5 seconds (i.e. between looking behaviour at time t and theta power at
time t+1.5 seconds). The second is that the significance window is asymmetric around time 0.

https://doi.org/10.7554/eLife.88775.1
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Figure 3

Relationship between infant attention durations and infant theta activity.

a) Cross-correlation between infant theta activity and infant attention durations. Black line shows the Pearson correlation at
each time lag, coloured shaded areas indicate the SEM. Significant time lags identified by the cluster-based permutation
analysis are indicated by black horizontal lines (*p <0.05). Cluster-based permutation analysis revealed a significant cluster of
time points ranging from -2 to +6 seconds (p = 0.004). b) Linear mixed effects model, predicting infant object attention
durations from infant theta activity. The model reveals a significant positive association between infant theta activity and
attention durations (β=0.33; p<0.001). c) Infant theta activity split into 3 attention chunks across the duration of attention
episodes, binned according to episode length. Wilcoxon signed ranks tests explored significant differences between attention
chunks, for each duration bin (*p < 0.05).

https://doi.org/10.7554/eLife.88775.1
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Neither of these points can be attributable to residual auto-correlation. Overall, then, we can
conclude that there is a temporally specific relationship between infant attention durations and
theta power; and that attention durations forwards-predict theta power more than vice versa.

2.2 Reactive change in infant theta activity following look onset

In addition to the cross-correlation, we also conducted two further analyses to investigate the
relationship between theta activity and the duration of attention episodes. First, we calculated a
linear mixed effects model to examine the relationship between the lengths of infant attention
episodes and average theta activity during that episode. This showed a significant, positive
association between the two variables (β =0.33; p<0.001); scatter plot between the two variables is
shown in Fig. 3b     . This indicates that higher average theta power across the attention episode
associates with longer attention durations. Second, we explored dynamic change in theta activity
relative to the onset of infant attention episodes towards objects. The modulation analysis (Fig.
3c     ), examining average infant theta activity during each third of a continuous look, showed that
there was little change in infant theta activity over the duration of infant attention episodes, for
any duration time-bin: a series of Wilcoxon signed rank tests indicated decreases in infant theta
activity for attention episodes lasting 1-3s, but this did not survive Benjamini-Hochberg correction.

2.3 Summary

In summary, there is a temporally specific relationship between infant attention durations and
theta power, with attention durations forwards-predicting theta power more than vice versa (Fig
3a     ). Longer attention episodes are associated with increased average theta activity over the
length of the episode (Fig. 3b     ), but little dynamical change in theta activity is observed over the
course of an attention episode.

3 Does caregiver behaviour forwards-predict infant attention, or
reactively change following the onset of a new infant attention
episode?
First, we examine whether caregiver gaze behaviour associates with infant attentiveness (section
3.1     ). Second, we examine whether caregiver vocal behaviour associates with infant
attentiveness, focusing on the rate of change of caregiver F0 as an index of auditory salience
(section 3.2     ). In each case, we examine both forwards-predictive relationships and reactive
changes in caregiver behaviour relative to the onsets of infant attention episodes.

3.1 Caregiver gaze behaviour

3.1.1 Forwards-predictive relationships between infant attention durations and caregiver
attention durations

To examine whether caregiver attention forwards-predicts infant attentiveness, we conducted
cross-correlation analyses between the continuous infant and caregiver attention durations
towards the objects (see Fig. 1d     ). In order to test whether any association between infant
attentiveness and caregiver attentiveness was independent of the relationship between infant
attentiveness and their endogenous oscillatory neural activity shown in Fig. 3a     , we also
repeated these analyses relative to infant theta activity. Results are reported in Fig. 4     . The cross-
correlation between caregiver and infant attention durations peaks after lag zero (t+2.5 seconds),
but cluster-based permutation analysis revealed no significant clusters of time points, though one
cluster verged on significance (p=0.10). The cross-correlation function between caregiver attention
durations and infant theta activity revealed a similar pattern (Fig.4b), peaking in the period after
time 0, and the cluster-based permutation analysis revealed a significant cluster ranging from -1 to
5s (p=0.012). Although it is likely that the association between caregiver attention durations and
infant theta shown in Fig. 4b      is mediated by the association between caregiver attention
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durations and infant attention durations shown in Fig. 4a     , the latter association is significant
whereas the former is not. As for the analyses described in part 2, the exact time window over
which the cross-correlation is significant cannot be interpreted due to autocorrelation in the data;
but the fact that the peak cross-correlation is observed, again, at t+1.5 seconds, and that the
significance window is asymmetric around time 0, both indicate that, overall, infant theta predicts
caregiver attention durations more than vice versa.

3.1.2 Reactive change in caregiver look durations following infant look onset

To examine reactive change in caregiver attention to objects following the onsets of infant
attention episodes to objects, we time-locked caregiver attention durations to infant attention
onsets towards objects. Fig. 5a      shows changes in caregiver attention durations around the onset
of infant attention towards an object. Cluster-based permutation analysis revealed a significant
cluster of time points 0 to 4 seconds post attention onset (p = 0.009), indicating that caregiver
attention durations significantly decreased after the onset of a new infant attention episode. Fig.
5b      shows the same event-related analysis subdivided by infant attention duration. This
revealed that the decrease in caregiver attention durations after infant attention onsets was
significant for attention episodes lasting over 3s.

To investigate how caregiver behaviour changed over the course of infant object looks, we next
employed the same modulation analysis as described in part 2.2, computing differences in mean
caregiver attention durations between 3 equal-spaced chunks over the course of an infant object
look. This analysis revealed that, in contrast to the first 4 seconds of an infant attention episode
during which caregiver attention durations decreased, caregiver attention durations actually
significantly increased over the course of the entire attention episode, with a Wilcoxon signed
ranks test indicating a significant difference between the first chunk of an attention episode and
the third (Fig. 5c     ). Dividing infant attention durations into log-spaced bins again revealed that
this effect was driven by attention episodes lasting over 3s (Fig. 5d     ). Finally, we computed a
linear mixed effect model to examine the relationship between infant object attention durations
and caregiver object attention durations. Corresponding to the modulation analyses reported
above, when we averaged over the course of the entire infant object attention episode, we found
that longer infant object attention durations associated with longer average caregiver attention
durations (β = 0.16, p < 0.001). Fig. 5e      shows the scatter plot of the association between infant
look durations and averaged caregiver look durations over the length of each individual infant
look duration.

3.1.3 Summary

In summary, both the continuous and event-related analyses revealed that caregivers dynamically
adapted their gaze behaviour in response to changes in infant attentiveness during the
interaction. Infant theta activity significantly forwards-predicted caregiver attention durations,
suggesting that caregivers dynamically adapt their behaviour according to infant engagement (Fig
4b     ). Caregiver attention durations to objects decreased around the start of a new infant
attention episode (Fig 5a     ); but overall, longer infant attention durations associated with longer
attention durations by the caregiver towards objects (Fig 5e     ). These analyses demonstrate
immediate, reactive, change in caregiver behaviour at the onset of infant attention towards an
object, as well as slower-changing modulations in their behaviour over the length of an attention
episode.

3.2 Caregiver vocal behaviour
Next, we used an identical analysis approach to examine forwards-predictive and reactive
associations between infant attention and caregiver vocal behaviours. Here, we concentrate on
the rate of change in F0 as a marker of auditory saliency in the caregiver’s voice. In additional

https://doi.org/10.7554/eLife.88775.1


Emily A.M. Phillips et al., 2023 eLife. https://doi.org/10.7554/eLife.88775.1 12 of 39

Figure 4.

Assessing forwards-predictive associations between caregiver attention durations, infant
attention durations, and infant theta activity.

Black lines show the Pearson cross-correlation between two variables; coloured shaded areas indicate the SEM. Black
horizontal lines show significant clusters of time lags (*p < 0.05). a) Infant and caregiver continuous attention durations.
Cluster based permutation analysis revealed no significant clusters of time points, although one cluster verged on
significance (p=0.10). b) Infant theta activity and caregiver continuous attention durations. Cluster-based permutation
analysis indicated one significant cluster ranging from -1 to 5s (p=0.012).
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Figure 5.

Dynamic event-locked association between infant object attention and caregiver attention
durations.

a) Event-related analysis showing change in caregiver attention durations around infant attention onsets to objects: black line
shows average caregiver attention durations (log); coloured shaded areas indicate the SEM. Black horizontal line shows areas
of significance revealed by the cluster-based permutation analysis (p < 0.05). Cluster-based permutation analysis reveals a
significant cluster of time points 0 to 4 seconds after attention onset (p = 0.009). b) event-related analysis split by infant object
attention-duration time bins. Black lines show average caregiver attention durations (log); coloured shaded areas indicate
the SEM. Black horizontal lines shows areas of significance revealed by the cluster-based permutation analysis (p < 0.05).
Permutation analysis again revealed a decrease in caregiver attention durations in the time after attention onset for looks 3-
35s long. c) Modulation analysis: each bar shows the median caregiver attention duration, across participants, for each
chunk, averaged across all infant object attention durations. Wilcoxon signed ranks tests investigated significant differences
between chunks (*p < 0.05). d) same as c), for each infant object attention duration time bin. e) Scatter-plot showing the
association between infant object attention durations and caregiver continuous attention durations. Coloured dots show
each individual object attention duration; black line shows the linear line of best fit. Linear mixed effects modelling revealed a
significant positive association between the two variables (β = 0.16, p < 0.001).
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analyses presented in the SM, we also examine caregiver vocal durations, and caregiver amplitude
modulations (Figures S2      and S3     ).

3.2.1 Forwards-predictive relationships between infant look durations and
caregiver vocal behaviour

First, we computed the cross-correlations between rate of change of caregiver F0, infant attention,
and infant endogenous neural activity. Results are shown in Fig.6     . Cluster-based permutation
analysis revealed that the time-lagged associations between infant attention and rate of change in
caregiver F0 did not exceed chance (Fig. 6a     ). To test whether there was any direct influence of
caregiver behaviour on modulations in infant endogenous neural activity, the same analyses were
subsequently repeated relative to infant theta activity (Fig. 6b     ): cluster-based permutation
analysis again suggested no significant association between rate of change in caregiver F0 and
infant endogenous neural activity. The same analyses are presented relative to caregiver vocal
durations and amplitude modulations in Fig.S2, which showed a similar pattern of results.

3.2.2 Reactive change in caregiver vocal behaviour following infant look
onset

To examine whether caregivers reactively adapted their vocal behaviour to changes in infant
attention, we repeated the same analysis presented in section 3.1.2     , with rate of change of
caregiver F0 as the dependent variable. The event-related analysis revealed no increase in the rate
of change in caregiver F0 relative to infant attention onsets: cluster-based permutation analysis
revealed no change above chance levels (Fig. 7b     ). This suggests that modulations in caregiver’s
speech were not immediately reactive to infant attention onsets towards objects. Over the length
of individual attention episodes towards objects, however, linear mixed effects models revealed
that longer object looks associated with a greater rate of change in caregiver F0 (β=0.13; p< 0.001;
Fig. 7a     ), and, for looks lasting between 3-10 seconds, caregivers’ decreased the rate of change in
the fundamental frequency of their voice, over the course of a look (Fig. 7c,d     ). The exact same
analysis relative to caregiver vocal durations and amplitude modulations showed a similar
pattern of findings, which is presented in Fig.S3.

3.2.3 Summary

In summary, longer infant object look durations associated with a greater rate of change in
caregiver F0, overall. Caregiver vocal behaviour showed no event-related change relative to infant
attention onsets, but longer attention durations were associated with a decrease in the rate of
change in F0.

Discussion

Recording EEG activity from infants whilst they engaged in shared, naturalistic interactions with
their caregiver, we examined the endogenous mechanisms and bi-directional, interactive,
contingencies that control the allocation of infant attention during social interaction. To do so, we
conducted three sets of analyses. First, we examined whether caregiver and infant attention
patterns act as coupled oscillators (part 1). Second, we examined how infants’ endogenous neural
activity forwards-predicted attention durations, and how it changed reactively relative to the
onsets of infant attention episodes towards objects (part 2). Third, we examined how caregiver
gaze and vocal behaviour forwards-predicted infant attention durations, and how it changed
reactively to the onsets of infant object looks (parts 3.1 and 3.2).
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Figure 6

Assessing forwards-predictive associations between caregiver vocal behaviour, and infant
attention, and infant theta activity.

Black lines show the Pearson cross-correlation between two variables; coloured shaded areas indicate the SEM. Black
horizontal lines show significant clusters of time lags (*p<0.05). a) Rate of change in caregiver F0 and continuous infant
attention durations. b) Rate of change in caregiver F0 and infant theta activity.

Figure 7.

Reactive change in caregiver vocal behaviour relative to infant attention onsets.

a) Scatter plot of the association between infant attention durations and rate of change in caregiver F0. A linear mixed effects
model revealed a significant positive association between the two variables (β=0.13; p< 0.001), b) Event related analysis
examining reactive change in caregiver F0 in the time after the onset of an infant object look. Black line indicates the average
across participants; coloured shaded area indicates SEM. c) Modulation analysis: each bar shows the median for each chunk
across participants; errors bars show the SEM. Wilcoxon signed ranks tests explored significant differences between attention
chunks (*p < 0.05), d) Same as c), binned by infant attention durations.
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When we examined whether and how endogenous cognitive processes predict infant attention, we
found evidence for two distinct mechanisms. First, oscillatory mechanisms predict infant attention
durations (part 1, Fig. 2     ), with a period centring around 1-2 seconds in length. Second,
independently, fluctuations in neural markers of infants’ engagement or interest forward-predict
their attentiveness towards objects (part 2). Cross-correlation analyses revealed associations
between infant theta activity and infant attention durations, such that increases in infant
attention durations forwards-predicted increases in infant theta activity more than vice versa (Fig.
3a     ). Overall, average theta power during an attention episode correlated with the duration of
that episode (Fig 3b     ). Infant theta activity did not, however, show any immediate change at the
beginning of an attention episode, or modulate over the length of longer episodes (Fig. 3c     ; S1).
This last result may appear inconsistent with other previous findings that theta activity increases
over the course of a sustained attention episode 52     . The reason for this is likely to be
methodological, as Xie and colleagues measured infants’ attention while they were alone watching
unfolding events on TV, while infants in our task were playing with the same toy over the course
of an attention episode, and were engaged in a social interaction with their caregiver.

Overall these findings suggest, partially consistent with the predictions of active learning models
58     ,59     , that infants’ own endogenous cognitive processing is one mechanism that drives and
maintains infant attention during online interactions. Strikingly, however, we found that attention
durations forward-predicted theta power more than vice versa. One possible interpretation of this
finding is that longer attention durations by the infant drive incremental increases in infants’
endogenous control over the allocation of their attention, through self-sustaining, bidirectional
interactions between their own exploratory behaviours and information gain from the
environment 38     ,39     ,41     ,55     . Whilst infants’ attention shifts may often be initiated as random,
foraging-type behaviours 32     ,47     , at times, these self-sustaining interactions drive increases in
infants’ endogenous attention control, over the course of consecutive attention onsets.

Next, in order to evaluate the hypothesis that caregivers actively scaffold their infants’ attention,
we examined the association between caregiver behaviours and infant attention. Consistent with
previous research 2      we found that oscillatory mechanisms govern both caregiver and infant
attention durations, but that the oscillatory period of infant attention durations is shorter
(centring around 1-2 seconds in length) compared with caregivers (centring around 200-500ms in
length) (part 1, Fig. 2a     , 2b). However, when we examined whether infant and caregiver
attention patterns act as coupled oscillators, which is one mechanism through which caregiver
gaze behaviour might support infant gaze behaviour 30     , we found no evidence to support this
(Fig. 2c     ). This suggests that mechanisms of influence between infant and caregiver attention are
more likely to operate as lagged, forwards- or backwards-predictive relationships, as we
investigated in part 2.

On the one hand, we found little to no evidence in support of the hypothesis that adult gaze and
vocal behaviours forwards-predict infant attention (part 2). Against adult-led attentional
structuring perspectives of early interaction, the cross-correlation analyses showed that, overall,
fluctuations in infant look durations were not forwards-predicted by changes in caregiver look
durations (Fig. 4a     ); rather, changes in infant neural engagement largely forward-predicted
changes in caregiver attention durations (Fig. 4b     ). This association was likely partially mediated
by the weaker and non-significant associations observed between infant attention and caregiver
attention (Fig 4a     ). We also found no evidence for co-fluctuations between the rate of change of
caregiver F0 (a marker of auditory salience) and infant attention durations (Fig.6     ), suggesting
that increases in caregiver vocal saliency did not forward-predict changes in infant attention.

On the other hand, we did find evidence that caregivers rapidly modulated their behaviours in
response to shifts in infant attention. This was particularly evident in adult gaze behaviour, where
in addition to the cross-correlation findings (Fig. 4     ) our event-locked analyses showed that
caregiver attention durations significantly decreased after the onset of a new infant attention
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episode (Fig. 5a     ). Over the duration of longer attention episodes, however, caregiver attention
durations significantly increased (Fig.5c), so that, overall, the linear mixed effects model revealed
that longer infant object looks were associated with longer looks by the adult partner (Fig.5d). A
series of linear mixed effects models also revealed that longer infant attention durations co-
occurred with a greater rate of change in caregiver F0, as well as longer caregiver vocalisations,
and an increase in caregiver amplitude (Fig.7     ; S3). The modulation analysis further showed that
longer infant looks (those lasting between 3-10 seconds) were associated with a decrease in the
rate of change in caregiver F0 over the course of the look. In contrast to caregiver gaze behaviour,
however, there was little dynamic change in caregiver vocal behaviour immediately after
attention onset (Fig.7     , Fig.S3).

Overall, the caregiver behaviours we studied were largely reactive to changes in infant attention.
The rapid change in caregiver gaze in response to the onset of infant attention towards objects,
beginning just before attention onset, suggests that it is unlikely that caregivers are responding to
active attention sharing cues produced by the infant 42     ,44     ,60     . Indeed, similar to previous
micro-behavioural studies of 12-month-old infants in shared interactions 10     , infants rarely
looked towards their caregiver’s face (Fig.2a), and, in a previous analysis of this data, infants did
not increase looks to their partner’s face in the time before leading an episode of joint attention
61     . It seems therefore unlikely that the relationship between infant attention and fluctuations in
their own endogenous cognitive processing is related to intentionally mediated forms of
communication by the infant, with the goal of directly eliciting information from their caregiver
10     ,61     .

Instead, caregivers are anticipating shifts in infant attention, and, in line with an allostatic model
of inter-personal interaction, ‘catching’ infants’ attention, and monitoring their behaviour 2     .
This increase in the rate of caregiver behaviour after look onsets could reflect dynamic up-
regulatory processes that serve to maintain infant attention: though not reflected in their
vocalisations; other fast-changing salient cues such as hand movements and facial affect could
also increase in variability 62     . The down-regulation of caregiver attention over the course of
longer attention episodes by the infant might subsequently index decoupling of caregivers’
regulatory processes from infant attention; this is also reflected in the decreased rate of change in
caregiver F0 (Fig.6f). Combined, therefore, our findings suggest that, during interactions at the end
of the first year, infant attention is structured through joint but independent influences of
caregiver responsivity and regulation, and their own intrinsically motivated engagement.

In this perspective, our results can be interpreted relative to neurocomputational, associative
accounts of active learning in early infancy 39     ,59     . These accounts postulate that contingent
changes in the environment in response to actions produced by the infant improves infants’
prediction and control over their own behaviour 63     ,64     . In the context of shared interaction,
consistent and contingent responsiveness by the caregiver to infant attention gives meaning to
infants’ behaviour, increasing infant engagement and further exploratory behaviours 39     ,65     .

Over time, therefore, infants’ experience of repeated interactive contingencies could influence
how controlled processes begin to guide their attention, as well as their sensitivity to and
engagement in intentionally mediated forms of shared communication 65     .

This has implications for how we view and understand the interactive processes that support how
infants begin to use and engage with a language system. Previous accounts have emphasised the
role of the caregiver in structuring infant learning in joint attentional frames, where they use
clear ostensive signals to guide infant attention, and support word-object representations
42     ,66     . The present study, however found no evidence that increases in salient cues by the
caregiver forward-predicted increases in infant attention durations. Increases in infant
attentiveness are instead related to inter-dyadic, sensorimotor processes that are independent of
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the influence of infants’ own endogenous cognitive process. How these fast-acting intra- and inter-
individual influences on infant attention support early language acquisition should be a key focus
for future research 23     ,67     .

The naturalistic design of our study is a strength as well as a limitation. Of note, we were unable to
control how much infants moved during the interaction, which may have contributed to eye
movement artifacts time-locked to shifts in infant attention. However, eye-movement artifacts
were removed using ICA decomposition, and, though this does not remove all artifact introduced
to the EEG signal 68     , the relationships observed between infant attention and theta activity
suggest that this did not affect our main findings. If eye-movement artifact influenced the
association between infant attention duration and theta activity, shorter attention episodes ought
to associate with more theta activity, which was not the case.

In future work it will be important to take a more holistic, computational and multi-modal
approach to studying how factors intrinsic to the infant, and the inter-personal behavioural
contingencies of the dyad, structure infant attention and behaviour 69     . For example, studying
how inter-related multi-modal patterns of caregiver behaviour, such as body movement 62     ,
facial affect 24     ,70      and vocalisations 26      support infants’ engagement in joint attention, will
build on the work that we reported here. In addition to the micro-dynamic analyses that we
present here, it will also be important for future work to employ modelling approaches to further
investigate infants’ neural entrainment to the unidirectional and inter-dyadic action-generated
contingencies of shared interaction 71     ,72     . A particular focus of this work should be on
studying the temporal latencies at which entrainment and/or behavioural responsivity occur;
utilising eye tracking methods will help with this. Finally, a limitation of our study is that our
findings might reflect a particular caregiving style (that of middle-class mothers living in East
London), and it will be important in future research to study other populations, to investigate
whether our results generalize to other populations and caregiving practices73     .

Overall, our findings suggest that infant attention in early interaction is asymmetric, related to
their own endogenous cognitive processing and to consistent, reactive contingency to changes in
their attention by the caregiver. Active learning strategies operate across the dyad; and are likely
foundational to early language acquisition and socio-cognitive learning.

Materials and Methods

Participants
Ninety-four caregiver-infant dyads took part in this study. The final overall sample with usable,
coded, gaze data was 66 (17 infants were excluded due to recording error or equipment failure, 4
infants were excluded for fussiness and 6 infants were excluded due to poor quality EEG data, and
limited coding resources). Of the infants with usable gaze data, 51 had additional vocal data (15
excluded due to recording error/equipment failure. Of those with gaze data, 60 infants had usable
EEG data (a further 6 excluded due to noisy EEG data (see artifact rejection section below). All
usable data sets available for each separate analysis were used in the results reported below (e.g.
infants with gaze and EEG data but no vocal data are included in analyses exploring the
relationship between infant EEG and gaze). The mean age of the final overall sample (n=66) was
11.18 months (SD=1.27); 33 females, 30 males. All caregivers were female. Participants were
recruited through baby groups and Childrens’ Centers in the Boroughs of Newham and Tower
Hamlets, as well as through online platforms such as Facebook, Twitter and Instagram. Written
informed consent was obtained from all participants before taking part in the study, and consent
to publish was obtained for all identifiable images used. All experimental procedures were
reviewed and approved by the University of East London Ethics Committee.

https://doi.org/10.7554/eLife.88775.1


Emily A.M. Phillips et al., 2023 eLife. https://doi.org/10.7554/eLife.88775.1 19 of 39

Experimental set-up
Parents and infants were seated facing each other on opposite sides of a 65cm wide table. Infants
were seated in a high-chair, within easy reach of the toys (see Fig. 1b     ). The shared toy play
comprised two sections, with a different set of toys in each section, each lasting ∼5 minutes each.
Two different sets of three small, age-appropriate toys were used in each section; this number was
chosen to encourage caregiver and infant attention to move between the objects, whilst leaving
the table uncluttered enough for caregiver and infant gaze behaviour to be accurately recorded
cf.10     .

At the beginning of the play session, a researcher placed the toys on the table, in the same order
for each participant, and asked the caregiver to play with their infant just as they would at home.
Both researchers stayed behind a screen out of view of caregiver and infant, except for the short
break between play sessions. The mean length of joint toy play recorded for play section 1      was
297.28s (SD=54.93) and 323.18s (SD=83.45) for play section 2     .

Equipment
EEG signals were recorded using a 32-chanel BioSemi gel-based ActiveTwo system with a sampling
rate of 512Hz with no online filtering using Actiview Software. The interaction was filmed using
three Canon LEGRIA HF R806 camcorders recording at 50 fps. Parent and infant vocalisations
were also recorded throughout the play session, using a ZOOM H4n Pro Handy Recorder and
Sennheiner EW 112P G4-R receiver.

Two cameras faced the infant: one placed on the left of the caregiver, and one on the right (see Fig.
1b     ). Cameras were placed so that the infant’s gaze and the three objects placed on the table
were clearly visible, as well as a side-view of the caregiver’s torso and head. One camera faced the
caregiver, positioned just behind the left or right side of the infant’s high-chair (counter-balanced
across participants). One microphone was attached to the caregiver’s clothing and the other to the
infant’s high-chair.

Caregiver and infant cameras were synchronised to the EEG via radio frequency (RF) receiver LED
boxes attached to each camera. The RF boxes simultaneously received trigger signals from a single
source (computer running MATLAB) at the beginning of each play section, and concurrently
emitted light impulses, visible in each camera. Microphone data was synchronised with the
infants’ video stream via a xylophone tone recorded in the infant camera and both microphones,
which was hand identified in the recordings by trained coders. All systems were extensively tested
and found to be free of latency and drift between EEG, camera and microphone to an accuracy of
+/- 20 ms.

Video coding
The visual attention of caregiver and infant was manually coded using custom-built MATLAB
scripts that provided a zoomed-in image of parent and infant faces (see Fig. 1b     ). Coders
indicated the start frame (i.e. to the closest 20ms, at 50fps) that caregiver or infant looked to one of
the three objects, to their partner, or looked away from the objects or their partner (i.e. became
inattentive). Partner attention epsiodes included all looks to the partner’s face; looks to any other
parts of the body or the cap were coded as inattentive. Periods where the researcher was within
camera frame were marked as uncodable, as well as instances where the caregiver or infant gaze
was blocked or obscured by an object, or their eyes were outside the camera frame. Video coding
was completed by two coders, who were trained by the first author. Inter-rater reliability analysis
on 10% of coded interactions (conducted on either play section 1      or play section 2     ), dividing
data into 20ms bins, indicated strong reliability between coders (kappa=0.9 for caregiver coding
and kappa=0.8 for infant coding).
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Vocalisation coding
The onset and offset times of caregiver and infant vocalisations were identified using an
automatic detector. The algorithm detected voiced segments and compared the volume and
fundamental frequency detected in each recorded channel to infer the probable speaker
(caregiver vs. infant). Identification of the onset and offset times of the detector then underwent a
secondary analysis by trained coders, who identified misidentification of utterances by the
automatic decoder, as well as classifying the speaker for each vocalisation. As the decoder did not
accurately identify onset and offset times of caregiver and infant during co-vocalisations, and, as
these vocalisations could not be included in analyses of the spectral properties of caregiver
vocalisations, these were excluded from all analyses. The mean percentage of caregiver
vocalisations that were co-vocalisations was less than 20%: 19.43 (SD=12.36; a box plot across all
participants is presented in Fig. S4     ). In a previous analysis conducted on a sub-sample of the
data61     , we have shown that there is no significant change in infant vocalisations, relative to the
onset of infant attention episodes, and their vocal beahviour did not distinguish between moments
that they either led or followed their partners’ attention during the interaction. It is therefore
unlikely that inclusion of co-vocalisations in the current analyses would affect the main findings,
time-locking caregiver vocalisations to infant attention.

Infant EEG artifact rejection and pre-processing
A fully automatic artifact rejection procedure including ICA was adopted, following procedures
from commonly used toolboxes for EEG pre-processing in adults 74     ,75      and infants 76     ,77     ,
and optimised and tested for use with our naturalistic infant EEG data 78     ,79     . This was
composed of the following steps: first, EEG data were high-pass filtered at 1Hz (FIR filter with a
Hamming window applied: order 3381 and 0.25/ 25% transition slope, passband edge of 1Hz and a
cut-off frequency at -6dB of 0.75Hz). Although there is debate over the appropriateness of high
pass filters when measuring ERPs (see 80     , previous work suggests that this approach obtains the
best possible ICA decomposition with our data 68     ,81     . Second, line noise was eliminated using
the EEGLAB 74      function clean_line.m 75     .

Third, the data were referenced to a robust average reference 74     . The robust reference was
obtained by rejecting channels using the EEGLAB clean_channels.m function with the default
settings and averaging the remaining channels. Fourth, noisy channels were rejected, using the
EEGLAB function clean_channels.m. The function input parameters ‘correlation threshold’ and
‘noise threshold’ (inputs one and two) were set at 0.7 and 3 respectively; all other input
parameters were set at their default values. Fifth, the channels identified in the previous stage
were interpolated back, using the EEGLAB function eeg_interp.m. Interpolation is commonly
carried out either before or after ICA cleaning but, in general, has been shown to make little
difference to the overall decomposition [70]. Infants with over 21% (7) electrodes interpolated
were excluded from analysis. After exclusion, the mean number of electrodes interpolated for
infants was 3.37 (SD=2.27) for play section 1     , and 3 (SD=2.16) for play section 2     .

Sixth, the data were low-pass filtered at 20Hz, again using an FIR filter with a Hamming window
applied identically to the high-pass filter. Seventh, continuous data were automatically rejected in
a sliding 1s epoch based on the percentage of channels (set here at 70% of channels) that exceed 5
standard deviations of the mean channel EEG power. For example, if more than 70% of channels
in each 1-sec epoch exceed 5 times the standard deviation of the mean power for all channels then
this epoch is marked for rejection. This step was applied very coarsely to remove only the very
worst sections of data (where almost all channels were affected), which can arise during times
when infants fuss or pull the caps. This step was applied at this point in the pipeline so that these
sections of data were not inputted into the ICA. The mean percentage of data removed in play The
mean percentage of data removed in play section 1      was 11.30 (SD=14.97), and 6.57(SD=6.57) for
play section 2     .
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Data collected from the entire course of the play session (including play section 1      and play
section two, as well as two further five minute interactions) were then concatenated and ICAs
were computed on the continuous data using the EEGLAB function runica.m. After ICA rejection,
data from each play section were re-split.

Pre-processing of continuous variables
Prior to conducting our main analyses, all primary variables of interest were converted into
continuous variables, in order to perform time-lagged and event-locked methods of analysis,
relative to infant attention (see Fig. 1d     ). All continuous variables were down sampled to match
the sampling rate of the video cameras (50Hz).

Infant theta activity over fronto-central electrodes

First, missing data points were excluded from the continuous time-series. Where one or more of
the fronto-central electrodes of an individual infant exceeded 100uV for more than 15% of the
interaction, the infant’s continuous theta time-series was excluded from analyses. Next, time-
frequency decomposition was conducted via continuous morlet wavelet analysis to extract EEG
activity occurring at frequencies ranging from 1-16Hz. Specifically, the EEG signal at each channel
was convolved with Gaussian-windowed complex sine-waves, ranging from 1-16Hz, in linearly
spaced intervals. The width of the guassian was set to 7 cycles.

Power was subsequently extracted as the absolute value squared, resulting from the complex
signal. After decomposition, to get rid of edge artifacts caused by convolution, the first and last
500ms of the time series were treated as missing data points. Missing data points were then re-
inserted into the continuous variable as blank values, and the 500ms before and after these
chunks of data also excluded. For each time point, for each frequency, power was expressed as
relative power (i.e. the total power at that frequency, divided by the total power over all
frequencies). EEG activity was then averaged over frequencies ranging from 3-6Hz, and averaged
over fronto-central electrodes (AF3, AF4, FC1, FC2, F3, F4, Fz; see Fig. 1     ).

This electrode cluster was chosen based on previous infant literature 54     . This continuous, one-
dimensional variable was then downsampled from 512 to 50Hz by taking the median theta activity
for every 10 samples of data, and, in each second, taking an extra 1 sample for 3 time points and
an extra 2 samples for 1 time point. The spacing of these added samples was shuffled for each
second of data.

Continuous attention durations

An attention episode was defined as a discrete period of attention towards one of the play objects
on the table, or to the partner. The end of each attention episode was defined as the moment
where the participant first looked away from the target towards another object, towards the
partner, or towards another location that was not either the object or the partner (coded as non-
target attention). See Fig. 1d      for an example. Parts of the caregiver/infant gaze coded as
uncodable were treated as missing data points, as well as the looks occurring in the time just
before and after (in order to account for the fact that we do not know how long these looks last).

For the analyses in parts 2 and 3, which examine the associations between attention durations and
other measures, we recoded each look based on the duration in seconds of that look. The
durations of each look were then used to produce a continuous look duration variable,
irrespective of whether that look was towards the object, partner, or non-target (see Fig 1d     ).
These analyses examine therefore the associations between the durations of attention episodes
and, respectively, endogenous infant neural activity (part 2) and caregiver behaviour (part 3).
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Binary attention durations

For the analyses in part 1, which examine the temporal oscillatory patterns of attention shifts, we
recoded each look alternatively as a 0 or 1 from the first look of the interaction to the last (see Fig.
1d     ). These analyses examine therefore the temporal inter-dependencies between attention
durations (within an individual and across the dyad), irrespective of where the attention is
directed.

Rate of change in the fundamental frequency (F0) of the caregiver’s voice

The fundamental frequency of the caregiver’s voice was extracted using Praat 82     , with floor and
ceiling parameters set between 75-600Hz. Caregiver fundamental frequency was placed into the
continuous variable only where the coder had identified that section of speech as the caregiver
speaking, so that infant vocalisations were not included in the analysis. Due to the caregiver being
within variable distance of their microphones, some clipping was identified in a sample of the
microphone recordings. A stringent clipping identification algorithm was used (see SM 1.1 and
Fig.S5) to remove parts of the microphone data where clipping occurred 83     . Vocalisations where
any clipping was identified were set to missing data points. Interactions with more than 30%
missing vocalisations were excluded from the analyses.

Statistics on the number of vocalisations excluded on this basis is presented in Fig. S5     . Co-
vocalisations were set to missing data points.

Next, unvoiced sounds and periods between vocalisations were interpolated, using MATLAB’s
interp1 function. To reduce the likelihood of background noise (e.g. toy clacks) affecting the
fundamental frequency, the interpolated variable was low-pass filtered at 20Hz using a 9th order
butterworth filter. The rate of change in the caregivers’ fundamental frequency was computed by
taking the sum of the derivative in 1000ms intervals. The start and end points of each interval
were then converted to time in camera frames, and the rate of change values inserted for the 50
corresponding frames.

See SM section 1.2      and 1.3      for description of the computation of caregiver vocal durations
and amplitude modulations.

Analysis procedures

Procedures for part 1

Partial autocorrelation function

The partial auto-correlation function (PACF) of the caregiver and infant gaze time series was
computed separately, over a range of time intervals, from 100-1000ms. First, the gaze time series
was converted to a continuous binary variable, with either a 1 or 0 inserted into the time series for
the duration of each attention episode, alternated for each consecutive look.

The PACF was then computed by fitting an ordinary least squares regression model, at time-lags
ranging from 0 to 10s, in 100ms intervals, controlling for all previous time-lags on each iteration.
This analysis was repeated at intervals of 200, 500 and 1000ms.
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Shuffled time series

To investigate whether the shape of the PACF reflected the temporal distribution of
infant/caregiver attention episodes or more simply the frequency distribution (i.e. infant/caregiver
attention episodes frequently last a similar length 84     ), we conducted a permutation procedure,
whereby, for each infant, their attention duration time series was shuffled randomly in time to
produce a binary gaze time series of shuffled attention durations. The PACF was then computed
for this time series in exactly the same way described above. This procedure was subsequently
repeated 100 times for each participant, before averaging over all permutations and participants.

Binary cross-correlation

Computation

The cross-correlation between caregiver and infant binary attention time-series was computed at
lags 0 to +10s in 500ms intervals. The zero-lagged cross-correlation was first computed between
the two binary attention variables using a Spearman correlation. The infant’s time series was then
moved forwards in time and the Spearman correlation computed between the two time-series at
each 500ms interval. The cross-correlations at each time-lag were then averaged over the two
interactions for each participant, and then averaged over all participants.

Poisson baselines

Poisson baselines were created by computing time series of the Poisson point process with the
length of look durations matching the average length of look durations in the actual data, for
caregivers and infants separately 18     . These variables were then converted to binary look
duration variables, and the cross-correlation between the two binary time-series computed in
exactly the same way described above. This procedure was repeated 100 times in order to create a
baseline permutation distribution.

Significance testing

A cluster-based permutation approach was used to investigate whether the binary cross
correlation differed significantly from the Poisson baseline distribution over any time-period. This
approach controls for family-wise error rate using a non-parametric Monte Carlo method 85     .
First, the cross-correlation at each time lag in the observed data was compared with the Poisson
baseline distribution at that time lag, and values falling above the 97.5th centile and below the
2.5th centile were accepted as significant (corresponding to a significance level of 0.05). Next, to
examine the likelihood of clusters of significant time points in the observed data occurring by
chance, a cluster-threshold was computed using a leave-on-out procedure with the Poisson
baselines. On each iteration, one baseline was compared with the 99 other baselines, and
significant time-points identified using the same method described above. The largest cluster
found on each iteration was identified to create a random permutation distribution of cluster
sizes. The clusters identified in the observed data were then compared with this permutation
distribution of maximum cluster sizes, and clusters falling above the 95th centile were considered
significant (corresponding to a significance level of 0.05).
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Procedures for parts 2 and 3

Cross-correlation analyses

Cross-correlations were computed between continuous infant attention durations, the continuous
caregiver variables and infant theta activity. All analyses for the continuous caregiver variables
were subsequently repeated relative to infant theta activity.

Computation

First, the time series of each variable were log transformed, and outliers falling 2 inter-quartile
ranges above the upper quartile and two inter-quartile ranges below the lower quartile removed.
A detrend was then applied to each variable; linear and quadratic bivariate polynomials were fit
to each transformed time-series, and the residuals of the model of best fit computed. The cross-
correlation between the two variables was then computed at lags -30 to +30s in 500ms intervals.
The zero-lagged cross-correlation was first computed between the two variables using a Pearson
correlation. The caregiver’s time series (or infant theta activity where this was computed relative
to infant attention durations) was then moved backwards in time (to compute negative lag
correlations), or forwards in time (to compute positive lag correlations), and the Pearson
correlation computed between the two time-series at each 500ms interval. In this way, we
estimated how the association between the two variables changed with increasing time lags. The
cross-correlations at each time-lag were then averaged over the two interactions for each
participant, and then averaged over all participants.

Significance testing

A cluster-based permutation approach was used to investigate whether the time-lagged cross
correlation differed significantly from chance over any time period. This approach controls for
family-wise error rate using a non-parametric Monte Carlo method 85     . To create a random
permutation distribution at each time-lag, each participant was randomly paired with another
participant, through a process of derangement, and the cross-correlation between the caregiver
and infant variables computed, and averaged over participants in exactly the same way described
above. This procedure was then repeated 1000 times, resulting in a random permutation
distribution at each time lag. Next, the cross-correlation at each time lag in the observed data was
compared with the permutation distribution at that time lag, and values falling above the 97.5th

centile and below the 2.5th centile were accepted as significant (corresponding to a significance
level of 0.05). To examine the likelihood of clusters of significant time points in the observed data
occurring by chance, a cluster-threshold was computed using a leave-on-out procedure on the
permutation data. On each iteration, one permutation was compared with the 999 other
permutations, and significant time-points identified using the same method described above. The
largest cluster found on each iteration was identified to create a random permutation distribution
of cluster sizes. The clusters identified in the observed data were then compared with this
permutation distribution of maximum cluster sizes, and clusters falling above the 95th centile
were considered significant (corresponding to a significance level of 0.05).

Linear mixed effect models

Linear mixed effect models were used to investigate the relationship between caregiver
behaviour, infant theta activity and infant attention durations. First, for each participant, for each
object attention episode, the continuous caregiver behavioural variable was averaged over the
length of the infant attention episode, to obtain one value for caregiver behaviour per infant
attention duration. Next, each variable was log-transformed, and outliers 2 inter-quartile ranges
above the upper quartile and two inter-quartile ranges below the lower quartile removed. Finally,
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linear mixed effects models were fitted, with caregiver behaviour, or infant theta activity as the
fixed effect, and infant attention durations as the response variable, with a random effect of
participant.

Attention onset event-related analysis

Computation

Before event-locking the continuous variables to infant attention, the continuous variable was log-
transformed, and outliers removed, applying a similar procedure to that described above. First,
the frame of the onset of each infant object look, as well as the duration of that look was extracted
from the infant gaze time series. Next, for each continuous variable, the frames occurring five
seconds before and five seconds after the onset of each infant look were extracted from the
caregiver time series. Given the fact that we were interested in how caregiver behaviour changed
around the onset of an attention episode, where the infant shifted gaze again in the 5 second time
period after attention onset, the values in the continuous caregiver variable were set to missing
data points. The continuous frames occurring before and after each look were then averaged over
looks, for each interaction, resulting in an averaged continuous variable along the time dimension.
These values were then averaged over interactions for each participant, before averaging over all
participants.

In order to explore the possibility that the length of the infant attention episode might affect how
the caregiver’s behaviour changed around the onset of that episode, exactly the same analysis was
repeated on attention durations of different lengths, in 5 log-spaced intervals, ranging from 0 to
the longest attention episode identified across the datasets (118s).

Significance testing

Significance testing followed exactly the same procedures outlined in the cross-correlation
analysis section.

Modulation during attention episodes

For this analysis, all continuous data variables (caregiver behaviour / infant theta activity) were
log transformed and outliers removed (see above). Then, for each infant object look, the
continuous caregiver behaviour / infant theta activity was extracted over the length of that
attention episode, and divided into 3 equal-spaced chunks. The continuous data variable occurring
in the first half of each chunk was then averaged for each attention episode, before being
averaged over all episodes for that interaction. Averaged chunks from play section 1      and play
section 2      were then averaged together for each participant, and the mean over all participants,
for each chunk, computed. A series of Wilcoxon Signed ranks tests assessed whether the chunks
differed to each other, compared to that which would be expected by chance. The Benjamini-
Hochberg false discovery rate procedure was applied to correct for multiple comparisons (p< 0.05
86     ).

Similar to the event-related analysis, infant object look durations were divided into 5 log-spaced
bins to assess whether modulations in infant endogenous cognitive processing or caregiver
behaviour differed for episodes lasting different lengths: exactly the same procedure was repeated
for each duration bin.
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Materials and Methods

1.1 Clipping identification algorithm

The clipping algorithm was based on that outlined by 1. First, points in the speech signal reaching
the maximum or minimum amplitude were identified. Next, to identify whether each max/min
value was the beginning of a clipping event, the algorithm detected whether the value next to this
point was 99.5% +/- of the max/min. A clipping event was considered to have ended where 3
consecutive values below/above the 99.5% threshold occurred. All vocalisations involving any
clipping were excluded from analyses.

1.2 Caregiver vocalisation durations

The length of each caregiver vocalisation was computed in seconds and inserted into the video-
frame time series for the duration of that vocalisation. Periods where the caregiver was not
vocalising (i.e. vocal pauses) were set to missing data points. Times where co-vocalisations
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occurred were also set to missing data points.

1.3 Caregiver amplitude modulations

Amplitude modulations in the caregivers’ speech were extracted using the NSL toolbox 2. First, the
speech signal was downsampled to 16kHz. The 128-channel auditory spectrogram, with centre
frequencies ranging from 180-7246Hz was then computed (frame length=5ms, time constant=8ms,
no nonlinear filtering), and the band-specific envelopes summed across frequencies to obtain the
broadband envelope of the speech signal. The amplitude envelope was inserted into the
continuous variable only where the coder had identified the caregiver as vocalising: all vocal
pauses were treated as missing data points. Clipped vocalisations were also identified using the
same method described above, and set as missing values. Finally, the continuous amplitude
variable was synchronised to the video frames.

Materials and Methods
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Fig. S1.

Event-related analysis for relative infant theta activity.

a) Event-related analysis showing change in infant theta activity around infant attention onsets to objects: black line shows
average infant theta activity (log); coloured shaded areas indicate the SEM. Black horizontal line shows areas of significance
revealed by the cluster-based permutation analysis (p < 0.05). Cluster-based permutation analysis revealed no significant
clusters of time points (all p < 0.05). b) event-related analysis split by infant object attention-duration time bins. Black lines
shows average infant theta activity (log); shaded areas indicate the SEM. Black horizontal lines shows areas of significance
revealed by the cluster-based permutation analysis (p < 0.05). Permutation analysis again revealed no significant clusters of
time points (all p < 0.05).
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Fig. S2

Assessing forwards-predictive associations between caregiver vocal behaviour, and infant
attention, and endogenous oscillatory activity.

Black lines show the Pearson cross-correlation between two variables; shaded areas indicate the SEM. Black horizontal lines
show significant clusters of time lags (*p<0.05). First column shows the association between caregiver vocal durations and a)
infant attention durations, and b) infant theta activity. Second column shows the association between caregiver amplitude
modulations and c) infant attention durations and d) infant theta activity.
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Fig. S3

Reactive change in caregiver vocal behaviour relative to infant attention onsets.

First row: scatter plots of the association between infant attention duration and a) caregiver vocal durations, d) caregiver
amplitude modulations. Coloured dots show each infant object look; black line indicates linear line of best fit. Second row:
event related analysis to all infant object looks for b) caregiver vocal durations, e) caregiver amplitude modulations. Black line
indicates the average across participants; coloured shaded area indicates SEM. Third row: modulation analysis for each infant
object look for c) caregiver vocal durations, g) caregiver amplitude modulations. Each bar shows the median for each chunk
across participants; errors bars show the SEM. Wilcoxon signed ranks tests explored significant differences between attention
chunks (*p < 0.05). Fourth row: same as third row, binned by infant attention durations, for d) caregiver vocal durations, h)
rate of change in caregiver F0, l) caregiver amplitude modulations. Bottom row: event-related analysis showing change in
caregiver vocal behaviour around infant attention onsets to objects: black line shows average across participants; coloured
shaded areas indicate the SEM. Black horizontal lines shows areas of significance revealed by the cluster-based permutation
analysis (p < 0.05). d) caregiver vocal durations, h) caregiver amplitude modulations.
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Fig. S4.

Percentage of caregiver vocalisations that were co-vocalisations.

Box plot showing the percentage of caregiver vocalisations that were vocalisations across participants.

Fig S5.

Percentage of clipped vocalisations.

The box plot shows the percentage of clipped vocalisations, across participants. The pink horizontal line indicates the
threshold at which participants were excluded from analyses (30%).
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Reviewer #1 (Public Review):

The authors bring together multiple study methods (brain recordings with EEG and
behavioral coding of infant and caregiver looking, and caregiver vocal changes) to
understand social processes involved in infant attention. They test different hypotheses on
whether caregivers scaffold attention by structuring a child's behavior, versus whether the
child's attention is guided by internal factors and caregivers then respond to infants'
attentional shifts. They conclude that internal processes (as measured by brain activation
preceding looking) control infants' attention, and that caregivers rapidly modify their
behaviors in response to changes in infant attention.

The study is meticulously documented, with cutting-edge analytic approaches to testing
alternative models; this type of work provides a careful and well-documented guide for how
to conduct studies and process and analyze data for researchers in the relatively new area of
neural response in infants in social contexts.

Some concerns arise around the use of terms (for example, an infant may "look" at an object,
but that does not mean the infant is actually "attending); collapsing of different types of looks
(to people and objects), and the averaging of data across infants that may mask some of the
individual patterns.

Reviewer #2 (Public Review):

Summary:
This paper acknowledges that most development occurs in social contexts, with other social
partners. The authors put forth two main frameworks of how development occurs within a
social interaction with a caregiver. The first is that although social interaction with mature
partners is somewhat bi-directional, mature social partners exogenously influence infant
behaviors and attention through "attentional scaffolding", and that in this case infant
attention is reactive to caregiver behavior. The second framework posits that caregivers
support and guide infant attention by contingently responding to reorientations in infant
behavior, thus caregiver behaviors are reactive to infant behavior. The aim of this paper is to
use moment-to-moment analysis techniques to understand the directionality of dyadic
interaction. It is difficult to determine whether the authors prove their point as the results
are not clearly explained as is the motivation for the chosen methods.

Strengths
The question driving this study is interesting and a genuine gap in the literature. Almost all
development occurs in the presence of a mature social partner. While it is known that these
interactions are critical for development, the directionality of how these interactions unfold
in real-time is less known.
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The analyses largely seem to be appropriate for the question at hand, capturing small
moment-to-moment dynamics in both infant and child behavior, and their relationships with
themselves and each other. Autocorrelations and cross-correlations are powerful tools that
can uncover small but meaningful patterns in data that may not be uncovered with other
more discretized analyses (i.e. regression).

Weaknesses
The major weakness of this paper is that the reader is assumed to understand why these
results lead to their claimed findings. The authors need to describe more carefully their
reasoning and justification for their analyses and what they hope to show. While a handful of
experts would understand why autocorrelations and cross-correlations should be used, they
are by no means basic analyses. It would also be helpful to use simulated data or even a
simple figure to help the reader more easily understand what a significant result looks like
versus an insignificant result.

While the overall question is interesting the introduction does not properly set up the rest of
the paper. The authors spend a lot of time talking about oscillatory patterns in general but
leave very little discussion to the fact they are using EEG to measure these patterns. The
justification for using EEG is also not very well developed. Why did the authors single out
fronto-temporal channels instead of using whole brain techniques, which are more standard
in the field? This is idiosyncratic and not common.

A worrisome weakness is that the figures are not consistently formatted. The y-axes are not
consistent within figures making the data difficult to compare and interpret. Labels are also
not consistent and very often the text size is way too small making reading the axes difficult.
This is a noticeable lack of attention to detail.

No data is provided to reproduce the figures. This does not need to include the original videos
but rather the processed and de-identified data used to generate the figures. Providing the
data to support reproducibility is increasingly common in the field of developmental science
and the authors are greatly encouraged to do so.
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