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Synopsis. 

Space plasmas are three-dimensional dynamic entities. Except under very special circumstances, 
their structure in space and their behavior in time are not related in any simple way. Therefore, 
single spacecraft in situ measurements cannot unambiguously unravel the full space-time 
structure of the heliospheric plasmas of interest – in the inner heliosphere, in the Geospace 
environment, or the outer heliosphere.  This shortcoming leaves numerous central questions 
incompletely answered.  Deficiencies remain in at least two important subjects - Space Weather 
and fundamental plasma turbulence theory - due to a lack of a more complete understanding of 
the space-time structure of dynamic plasmas.  Only with multispacecraft measurements over 
suitable spans of spatial separation and temporal duration can these ambiguities be resolved.  
These characterizations apply to turbulence across a wide range of scales, and also equally well 
to shocks, flux ropes, magnetic clouds, current sheets, stream interactions, (confined) plasma 
disruptions, etc. Here, we will describe the basic requirements for resolving space-time structure 
in general, using “turbulence” as both an example and a principal target of our study. Several 
types of missions are suggested to resolve space-time structure throughout the Heliosphere. 

1. Introduction.  

Turbulence refers to complex dynamics of fluid and plasma systems when nonlinear effects, such 
as advection, the Lorentz force, and Ohm’s law are stronger than dissipative effects. 
Dimensionless parameters such as a Reynolds number measure the ratio of the strengths of 
nonlinearities and dissipation. The usual picture of turbulence begins with a source of large 
length-scale fluctuations which, through nonlinear processes, transfer energy by cascade 
mechanisms across the ‘inertial range’ to the shorter scale lengths of the kinetic range, where the 
energy is converted into internal energy of the plasma. Small-scale turbulent motions become so 
disorderly that theory frequently employs statistical descriptions, even if the dynamics is 
formally deterministic [1].  Revealing the physics of turbulence in the heliosphere (with 
implications for astrophysical plasmas in general) will require multi-point observations and an 
array of spacecraft with a range of inter-spacecraft spatial separations [2].  The technology for 
such missions has been in large part demonstrated by Cluster and MMS, with essential additional 
capabilities under development for Helioswarm. The multispacecraft missions suggested below, 
with their diverse scientific goals, are feasible, and their implementation will have an enormous 
positive impact on heliospheric applications [3], as well as controlled fusion [47,48]. 

Complex dynamical couplings in turbulence lead to small-scale dissipation of the energy 
supplied at large scales – a process described as a cascade. Experiments, observations, and 
numerical simulations all show that analogous descriptions apply to hydrodynamic fluids, 
magnetofluids (MHD and Hall-MHD), and weakly collisional plasmas. The greatest similarities 
are found at the larger scales, while space plasmas differ at small scales and high frequencies due 
to the deficit of collisions and the concomitant emergence of complex kinetic physics. 
Understanding turbulence requires intensive study of statistical properties for the varying 
parameters found in nature. We argue that multi-point measurements over a range of scales are 
required to make significant progress in solar wind physics, which remains the only turbulent 
space plasma for which such a program is feasible. An array of spatially distributed spacecraft 
making measurements at moderately high time cadence can provide a wealth of information for 
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space physics applications, including space weather [37], and would be of great importance in 
more distant plasma venues, from the corona to the interstellar medium.  

2. Turbulence effects in the heliosphere.  

The effects of turbulence are intrinsically multi-scale, and the solar wind cascade process spans 
decades of spatial and temporal scales. One might view the turbulence cascade as a primary way 
in which cross-scale couplings are enabled, connecting macroscopic and microscopic physics in 
essential ways. Among the most impactful macroscopic influences of heliospheric turbulence [3] 
is its possible role as a driver of coronal heating [31] and subsequent solar wind acceleration, 
which, despite numerous supporting observations, remains to be fully established. Explaining 
solar wind acceleration is a fundamental goal of missions such as Parker Solar Probe and Solar 
Orbiter. In the solar wind, extended heating is likely also due to turbulent cascade [4], which 
operates at different rates in the high cross helicity fast wind, and in the lower cross helicity slow 
wind [5]. Cross helicity (Alfvénicity, or strong correlation between the velocity and magnetic 
fields) slows the development of turbulence initially, but eventually expansion [6] and shear [7] 
or parametric decay (e.g., [45,46]) cause a systematic reduction of this Alfvénic correlation. 
Similar turbulence effects account for the radial behavior of the Alfvén ratio (or, residual 
energy), and spectral steepening in Helios data [8]. Accordingly, turbulence also appears to 
account well for the radial evolution of the (low-frequency) spectral breakpoint that is closely 
associated with the systematic increase of the correlation scale of the fluctuations. It is 
noteworthy that these effects are inconsistent with WKB theory of non-interacting waves [3]. 

All of the above effects are essentially at the larger collective fluid-like scales. Over a range of 
scales, extending several decades towards the smaller range, theory suggests that the dynamical 
development of heliospheric turbulence is responsible for the very important observed features of 
anisotropy [9] and intermittency [10]. See [3] for details. 

Another arena in which turbulence is a major player is the transport, scattering, and acceleration 
of suprathermal and energetic charged particles. In this case, effects such as pitch-angle 
scattering also operate in a truly cross-scale manner; with solar wind thermal protons resonantly 
interacting with turbulent fluctuations at the scale of a few hundred kilometers at 1 au, while 1-
10 Gev cosmic rays or solar energetic particles (SEPs) resonantly interact with fluctuations at 
scales of millions of kilometers. Turbulence amplitudes and spectral anisotropy are central in 
controlling interactions, including resonances, with these energetic particles, e.g. [11]. 
Given all these demonstrated or anticipated influences, one may reasonably ask at what level do 
we understand the turbulence that produces these diverse effects in the heliosphere? The answer 
seems to be that, even with numerous accumulated observational constraints and a reasonable 
level of progress based on simulation and theory, there are many fundamental questions that 
remain to be addressed experimentally. Simple, idealized steady-state inertial range 
phenomenologies can provide motivation for observed spectral slopes, but physical 
understanding of these diverse cross-scale effects, even in the inertial range, requires deeper, 
more detailed knowledge and more advanced observations. Beyond inertial range issues, there 
are questions about dissipation, and intermittency that involve structures and dynamics at sub-
proton kinetic scales [12-14]. Fundamental relationships such as the generalized Ohm’s law [49] 
also involve contributions across a wide range of length scales. Due to the cross-scale couplings 
and cascade mechanisms involved, the kinetic processes are necessarily driven by the cascade 
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from larger energy-containing scales [15]. This poses further observational challenges for 
understanding dissipative structures and bulk heating in the corona and solar wind.  

Major questions in solar wind turbulence.  There are numerous outstanding issues about 
heliospheric turbulence that have not yet been addressed in observations, in particular, due to a 
lack of sufficient spatial and temporal resolution. Without the associated observations, the field 
cannot realistically advance beyond its current status. A few examples are given here.   

Unraveling correlations & structure in space and time. Solar wind researchers are accustomed 
to employing the Taylor hypothesis, while plasma wave theorists are accustomed to invoking 
linear dispersion relations. Both of these provide a one-to-one correspondence of variations in 
space and variations in time. However, in general, spatial and temporal structures are 
independent entities. For example, the correlation scale is properly defined using single-time 
multi-point measurements [16]. Unraveling the space-time relationship is a necessary goal in 
quantifying and distinguishing the effects of turbulence, waves, reconnection, and other 
phenomena in space plasmas. Revealing how turbulent energy in a space plasma is distributed in 
space and time requires multi-point measurements. 

Anisotropy of the spectrum at varying scales [9]. Spectral information relative to preferred 
directions, e.g., radial and magnetic field directions, is required to validate or refute available 
theoretical explanations. Purely phenomenological treatments of course do not provide strong 
conclusions. Anisotropic measurements are required, necessitating simultaneous multi-point 
measurements that span three-dimensional spatial directions. 

Direct measurement of scale transfer. What are the cascade rate and the heating rate? Can 
turbulence explain observed heating and the origin of the solar wind? The Yaglom-Kolmogorov 
3rd-order laws [17-19] provide a direct evaluation of energy transfer rates at a given scale. The 
simplest forms require isotropy or some other simple symmetry. Anisotropic forms of the 3rd-
order law in MHD and beyond have been applied using Cluster or MMS at single scales, but 
understanding cross-scale transfer requires anisotropic measurement at several scales. 
Simultaneous 3D multi-point measurements are needed to reveal how turbulent energy is 
transferred anisotropically across scales [50,42]. These exact laws can also be used to unravel in 
a systematic way higher-order statistics and intermittency in general. 

Higher-order statistics and coherent structures. Intermittency or patchiness is an essential 
feature of turbulent heating and cascade processes. Indeed, in strong turbulence at high Reynolds 
numbers, most statistical measures of spectral transfer and dissipation are highly non-uniform. 
The fourth-order (single-time) statistics provide a baseline measurement of intermittency. The 
sixth-order statistics are a natural measure of the patchiness of energy transfer. These are 
fundamental but have not been fully characterized and measured in the solar wind, as they must 
be measured in anisotropic form, due to the strong influence of the large-scale magnetic field and 
strong gradients, e.g., in stream interaction regions and shear layers [32], as well as in regions of 
interaction of turbulence with waves [33,34]. Measurement of 3D structure and orientation of 
coherent structures near the kinetic proton scales is needed to reveal the role of higher order 
moments in dissipation, thus requiring simultaneous 3D multi-point measurements at two or 
more spatial scales. 
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Anisotropic scale-dependent relaxation times. Because of the classic “closure problem” (the n-
th moment depends on the (n+1)-th), higher order statistics at least up to 4th order contain 
fundamental information about the dynamics. The single-time statistics are important, but so too 
are the decay rates of higher-order correlations. For example, the decay time of the 3rd-order 
correlations controls spectral evolution. In the context of statistical closures [20], the decay times 
of the triple correlations are identified with scale-dependent Lagrangian correlation times and are 
usually treated as the local Kolmogorov time scale, because the dominant sweeping timescale 
does not induce spectral transfer. In plasma, there are additional available time scales, and 
understanding 3rd and higher-order correlations becomes more complex. Observational 
constraints, including measurement of anisotropic 4th-order (and higher) moments, are needed to 
understand this basic physics. Multi-spacecraft measurements are required over a wide range of 
scales to assess these crucial dynamical time scales.  

3. Key turbulence measurements.   

A central quantity of interest is the two-point, two-time correlation of a primitive variable (e.g., 
a magnetic field component 𝑏𝑏𝑖𝑖.) This four-dimensional (4D) space-time correlation may be 
defined as 𝑅𝑅𝑖𝑖𝑖𝑖(𝒓𝒓, 𝜏𝜏) = 〈𝑏𝑏𝑖𝑖(𝒙𝒙, 𝑡𝑡)𝑏𝑏𝑖𝑖(𝒙𝒙 + 𝒓𝒓, 𝑡𝑡 + 𝜏𝜏)〉, where the brackets denote an ensemble 
average, or a suitable space-time average. The (trace) wave vector spectrum is 𝑆𝑆(𝒌𝒌) =
 [ 1
2 𝜋𝜋

]3∫ 𝑑𝑑3𝑟𝑟 𝑅𝑅(𝒓𝒓, 0)𝑒𝑒𝑖𝑖𝒌𝒌⋅ 𝒓𝒓, in which the time lag is zero, as well as the Eulerian frequency 

spectrum 𝐸𝐸(𝜔𝜔) = 1
2𝜋𝜋
∫ 𝑑𝑑 𝜏𝜏 𝑅𝑅(0,𝜏𝜏)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖, in which the spatial lag is zero. The full space-time (trace) 

𝑆𝑆(𝒌𝒌,𝜔𝜔) spectrum is analogously defined as the Fourier transform of the 4D space-time 𝑅𝑅. This is 
an analog of a dispersion relation, but without the expectation of a definite relationship between 
frequency and wavevector. If a nonzero time lag is retained when the spatial transform is carried 
out, one arrives at the important quantity 𝑆𝑆(𝒌𝒌, 𝜏𝜏) = 𝑆𝑆(𝒌𝒌)𝛤𝛤(𝒌𝒌, 𝜏𝜏). This defines the scale-
dependent time correlation (in the Eulerian frame) 𝛤𝛤(𝒌𝒌, 𝜏𝜏), alluded to in the prior section [51]. 
The space-time correlation also permits direct tests of the Taylor hypothesis. Observational 
determination of the 2nd-order, two-time, two-point correlation contains much information that 
we require, but this is not all that is needed to describe interplanetary turbulence. 

A Relation of central importance is the third order law, which directly measures energy transfer 
across scales. The contribution of incompressive transfer is given by the Politano-Pouquet law 
[17]. Hall effect contributions and compressive contributions [21] can be treated additively. With 
suitable conditions on time stationarity, a pristine inertial range, etc., the relevant incompressive 
divergence form is 𝛻𝛻𝑠𝑠 ⋅ 〈𝛿𝛿𝛿𝛿𝑠𝑠∓ |𝛿𝛿𝛿𝛿𝑠𝑠±|2〉 = −4𝜖𝜖± for the increments of the Elsässer fields 𝛿𝛿± = � ± 
� and lag s. Integrating over a volume in lag space and employing Gauss’s law yields a surface 
integral that determines the total incompressive transfer of the 𝛿𝛿±  fields across that surface. A 
suitable multi-spacecraft configuration (say, a regular tetrahedron) enables an approximate 
evaluation of this transfer [18, 22]. It is also clear that estimates based on the third order law will 
improve when a sufficient number of lag directions are available which enables directional 
averaging to be carried out in an appropriate way [40-42]. Carrying out this multi-spacecraft 
measurement provides a direct evaluation of scale transfer with no approximations concerning 
rotational symmetry. This approach can be supplemented with single spacecraft results using the 
frozen-in flow (Taylor) hypothesis, or using assumption of isotropy and other rotational 
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symmetry [23]. This approach can reveal potential cascades to both large and small scales [33-
35]. It is also possible to account for the presence of large-scale shear [52]. 

Fourth-order correlations are also crucial, as they quantify intermittency, and drive all the 
important third-order correlations. In MHD the effect of a mean magnetic field appears in the 
moment hierarchy at the same order as the 4th-order correlations [36]. Together with the mean 
field, the 3rd- and 4th-order correlations influence the production of spectral anisotropy [9,24], a 
major issue in plasma cascade and dissipation [14]. Also at 4th-order is the anisotropic scale-
dependent kurtosis, a quantity that reveals scale-varying intermittency, anisotropy of coherent 
structures, and incoherent wave activity, as seen in the reference [25] using MMS data. 

Much theoretical attention is paid to the inertial and kinetic cascade ranges in plasma turbulence. 
However, the last stages in which collective flow and field energies are converted into 
microscopic motions or “heat” are crucial for understanding dissipation. Two quantities of 
great importance in this regard are the work done on particles of species �, that is, �� ⋅� by the 
electromagnetic (EM) fields, where 𝑬𝑬 is the total electric field, and the pressure strain 
interaction 𝑃𝑃𝑖𝑖𝑖𝑖𝛼𝛼  𝑆𝑆 𝑖𝑖𝑖𝑖

𝛼𝛼  , where 𝑷𝑷𝛼𝛼 is the pressure tensor and 𝑆𝑆 𝑖𝑖𝑖𝑖
𝛼𝛼 =  𝜕𝜕𝑖𝑖𝑢𝑢𝑖𝑖𝛼𝛼 + 𝜕𝜕𝑖𝑖  𝑢𝑢𝑖𝑖𝛼𝛼  is the symmetric 

rate of the strain tensor, each of species � [26, 27]. Even though these quantities are not sign-
definite, as viscous dissipation would be, their net (averaged) values are interpreted as the 
conversion of EM energy into flow energy, and the conversion of energy in the flow into internal 
energy, respectively. These channels of energy conversion are agnostic regarding specific 
mechanisms (e.g., reconnection) that may be producing heating, and are therefore crucial 
diagnostics for understanding the termination of the cascade and the degeneration of collective 
motions into internal energy. Multi-spacecraft techniques again enter prominently, as the total 𝑱𝑱 
can be evaluated by curlometer techniques, while the rate of strain tensor can be similarly 
evaluated by differencing the velocities across various spacecraft pairs.  

Summary. Statistical quantities are essential to fully understand turbulence, the energy cascade 
and dissipation in magnetized plasmas. Correlations are expected to be anisotropic and proper 
analysis requires measurement at several lag scales, perhaps near the ion kinetic scales, or at   
larger MHD cascade scales. Methods have been developed to extract space-time information 
from multi-spacecraft datasets, including wave telescope (or k-filtering) [28] and direct methods 
that rely on ensemble statistics [29]. Some such methods have been successfully applied in 
plasma laboratory experiments [e.g., 38].  A quantitative assessment of the Taylor hypothesis 
would also be provided by these new space-time measurements. 

4. Mission concepts. 

Near 1 AU: Turbulence and HelioSwarm. The recently selected HelioSwarm mission consists 
of nine spacecraft in orbit near 1 AU, providing 36 baselines for two-point measurements. (See 
Decadal white paper by Klein et al.) This is a breakthrough mission with regard to resolving 
space/time ambiguity and for the study of fundamental turbulence properties, covering almost 
two decades of scale from less than 100 km to more than 1000 km. This is the first Heliophysics 
mission devoted principally to multiscale turbulence physics and will act as a pathfinder for the 
demonstration of a variety of turbulence properties and analysis techniques. It is expected to 
reveal fundamental physics of turbulence in the solar wind [30], with immediate implications for 
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the corona [31] and other space and astrophysical plasmas. HelioSwarm targets fundamental 
science with second and third-order statistics, as well as higher-order multifractal scalings.  

Significant steps beyond HelioSwarm will be to employ a larger number of spacecraft as well as 
improving payload. To obtain the topology of the turbulence and even images of the turbulence, 
the MagneToRE concept [39], deploys “many magnetometers over 100’s of km” to enable the 
reconstruction of images of the magnetic field using AI techniques. Scintillations of the inter-
spacecraft radio communications signals can also provide images of the plasma density. 
Preliminary analysis shows that approximately 30 nanosats each carrying radio and 
magnetometer, can accomplish such image reconstruction. This new type of helioscience 
contributes to Space Weather analysis and allows discovery of the morphology of the 
interplanetary plasma. Improvements in payload with respect to HelioSwarm will enable 
improved understanding of energy conversion and particle energization in turbulence. The 
Plasma Observatory, a multi-scale mission concept submitted to ESA as an M7 candidate,  is a 
constellation of one mothercraft and six identical smallsat daughter craft in 8 RE ×18 RE 

equatorial orbit. A more advanced payload includes electron, mass-resolved ion and energetic 
particles detectors and electric field antennas. Such a mission would study cross-scale coupling, 
energization and energy transport within the complex magnetospheric plasmas. MagneToRE and 
Plasma Observatory are just two examples of the next steps in understanding the 3D structure of 
the Heliospheric plasma and as the field evolves beyond HelioSwarm. 

L1 Cluster/“MMS in Solar Wind”. The numerous breakthrough discoveries in space plasma 
physics due to the MMS mission are of enormous significance in magnetospheric reconnection 
turbulence, and fundamental kinetic plasma physics. However, optimized for magnetospheric 
goals, its instrument design is less effective in the solar wind [55]. Consequently, there is 
significant motivation to investigate solar wind physics in similar detail, by deploying a four-
spacecraft interplanetary mission having high-resolution instruments based on adaptations of 
MMS technology. Such a mission would revolutionize solar wind physics. 

If a solar wind-adapted MMS-like cluster is placed at L1 in a halo orbit similar to ACE, the 
mission contributes significantly more to heliospheric physics. Even without continuous high 
cadence measurements, the L1 cluster would provide considerable support for contemporaneous 
L1 space weather monitors (such as ACE or IMAP). The L1 cluster provides additional points 
for estimating structure sizes and gradients that can refine boundary conditions for use in global 
magnetospheric modeling of response to solar wind conditions. The curvature of field lines, 
shocks, surfaces of discontinuity, and measurement of the internal structure of the heliospheric 
current sheet are other major enhancements to L1 monitoring that would be enabled.  

Space Weather Missions in the Inner Heliosphere. Multispacecraft missions situated well 
inside of 1 AU can make major contributions to the science underlying space weather as well as 
contributions to prediction or operations. In this regard, over the past two decades, there have 
been concept studies such as Solar Wind Sentinels, Inner Heliospheric Mappers, Solar Flotilla, 
Heliospheric Constellation, and Multispacecraft Heliospheric Mission. These have been 
discussed as contributions to Space Weather and NASA Living with a Star science and as such 
have emphasized the detection of the size, shape, and trajectories of relatively large-scale 
structures such as CMEs, CIRs, shock surfaces, etc. A major goal is usually to improve 
predictions of solar wind conditions later at Earth. Various formations have been suggested. For 
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example, Sentinels employed solar sails (10 m x 100 m) to reduce the solar-directed acceleration 
on the spacecraft, so that they can orbit the Sun with a one-year period well inside the L1 point at 
approximately 0.98 AU or climb out of the ecliptic plane to provide information on vertical 
gradients. These spacecraft would be spaced up to 0.1 AU apart longitudinally bracketing the 
Sun-Earth line and providing enhanced warnings for corotating solar wind structures. 
Measurements of the gradients would enable more accurate numerical models, improving 
predictions of their size and duration of disturbances at Earth. Such a mission might study the 
physics of shocks and shock particle acceleration, utilize spatial and temporal scales for energy 
dissipation and transfer in the solar wind, study the magnetic structure of the inner heliosphere, 
and visualize the dynamics of the inner heliosphere. This kind of Solar Flotilla or Heliospheric 
Constellation could consist of multiple autonomous microsatellites in several (three) principal 
solar elliptic orbits at 0.2 to 0.4 AU, with two to six microsatellites per orbit. Significant 
variation in inter-spacecraft separation would be possible depending on the orbital details. This 
class of mission, while its primary goals would be space weather-related, would also make 
significant contributions to very-large-scale nonlinear plasma dynamics (e.g., origins of 
turbulence) and the understanding of magnetic structures and SEP propagation.  

Cluster of Solar Probes. The Parker Solar Probe Mission has made and will continue to make 
breakthrough discoveries in the regions of the inner heliosphere that have never been explored 
before. The unprecedented close approach to the Sun allows the pioneering exploration of 
exciting features such as: switchbacks in the interplanetary magnetic field; imprints of features of 
the solar photosphere, chromosphere, and corona in the properties of solar wind fluctuations; 
radial evolution of solar wind fluctuations, especially crossing the Alfvén critical zone as the 
wind becomes super-Alfvénic; and a variety of structures in and around the heliospheric current 
sheet. However, many unsolved problems remain. A future cluster of Parker Solar Probes will be 
needed to answer questions that a single spacecraft alone cannot resolve. For example, a cluster 
of probes could: reveal the (local) 3D structure of the Alfvén critical zone [43]; clarify spectral 
and correlation anisotropy in the young solar wind and its radial evolution [44]; investigate the 
substructure of the heliospheric current sheet; resolve the topology of newborn magnetic 
structures; more accurately measure and map the transfer of energy in the lower corona [53,54]; 
and explore the spatial and temporal structure and intermittency of energy conversion and 
dissipation processes as a function of distance from the Sun. 

5. Conclusions. 

Future interplanetary missions with a sufficient number of spacecraft will employ multi-point 
methods to answer many basic questions about three-dimensional structure and dynamics, 
related to turbulence and Space Weather, that can be experimentally addressed in no other way 
[2]. Such missions may span various ranges of scales, varying inter-spacecraft separations 
depending on their particular emphasis, and may make significant contributions by placing them 
in various positions in the heliosphere, including near Earth, close to the Sun, and at 
intermediate distances. These missions are technologically feasible and can be appropriately 
prioritized to maximize scientific and societal benefits.  
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