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Average Flow Model of Rough
v eanesr  OUrface Lubrication: Flow Factors
rriouraboue — fOF Sinusoidal Surfaces

M. Prat The effects of lubricant film flow, pressurized and sheared between two parallel sinusoidal

Institut de Mécanique des Fluides de Toulouse, wavy surfaces in sliding motion is studied analytically. Results are presented using a flow
UMR CNRS/INPT/UPS no. 5502, factor model which provides an average description of the surfaces roughness impact.

Allée du Pr C. Soula 31400 Toulouse, France Two distinct cases are studied in order to compare stationary or time dependent local
aperture configurations. Flow factors are computed respectively for each case through

spatial or spatio-temporal average, revealing striking differences. The results shed light
on the relevance of the composite roughness concept. Special attention is paid to the flow

factor analytical behavior when surfaces are near cont@BxOl: 10.1115/1.1467084]

1 Introduction This problem is of interest from at least four points of vigi}
The impact of surface roughness on lubrication is an import S, to a great extent, gmenable_ to analytl_cal developments, and
problem for many applications, albeit quite a difficult one Fromamus it could be interesting to estimate the impact of some coarse
. 3 . ' ) ey aescription of surface roughness on flux, pressure and shear with-
geometrical point of view only, it requires the computation of th‘Sut any numerical computation$2) the flow factor behaviors
flow over a time dependent fluid domain resuilting from the M%ear contact can be obtained analyticalB), the obtained results

t'?n ‘"’t‘Ed def?rmétlon of tge movmlg SO“? Zuif%c_es. The mlore Cohr_Eén be useful for testing numerical computation procedures, in
piex he surtacée.g., random, muili Scaled, tridimensional rougiy, 5 iy 1ar for close contact lubrication studies, for which we give

ness), the more difficult it is to understand the interplay betwe explicit analytical treatmeri8) it sheds light on the influence

the surfaces topography and thg observed macroscopic PresSifGnter-correlation between surfaces. In particular, we show that
flux, and shear. Additional physical effects, such as cavitatiofye ¢oncept of composite roughness does not apply where two
piezoviscosity or compressibility, among others, may contribute

th lexity of th blem but will be i dinth Ve rfaces are inter-correlated. Obviously, considering sinusoidal
1€ compiexity of the probiem but will be ignored in theé ana ySI?oughness as model roughness is not a novelty in the lubrication
since, for simplicity, as far as up-scaling is concerned, they aj

generally discardef 2]. ?erature,[14—18]. However, to the best of our knowledge, the

: . . complete hereby presented analytical developments have not been
There is nevertheless an important body of literature that hay o?ted previostI)y y P

been interested in such up-scaling description of sliding surface As in [9] and[19], the analysis is restricted to non-deformable

Iélrl:])rlcatlfghsmci trllje_ﬁflrst td?verlopmentﬁ of (ghrlstensg]:aréd _surfaces, isoviscous Newtonian and incompressible fluids. Cavita-
ow et Cheng4]. Different techniques have been used to deriVig, , i any is ignored as well as temperature variations. The local
macroscopic equations coupling the macroscopic flux, press

: iBpes bein small, the flow at the roughness scale is described b
and shear stress, with some “flow factors” that are related to tq P g 9 y

underlying surfaces geometry. Patir and ChEng]were the first fie Reynoldglubrication) equation. The flow is generated by the

- relative surfaces motion and the macroscopic pressure gradient.
to propose a heuristic model for general roughness patterns. Tripp

[5] derived the correct tensorial form of the average flow mod? G d Ki .

using a stochastic approach, while Bayada ef@&l7] addressed eometry and Kinematics

the problem within the framework of the homogenization theory Figure 1 illustrates the geometry of the probleym(resp.x) is

for spatially periodic structures and more recently volume averatiie coordinate associated witfesp. perpendicular tdhe streak

ing techniqueqd 8] were used for macroscopisation of the flondirection. The top surface—defined as surface number 2—is mov-
between lubricated sliding surfaces with solid cont§8ts ing at velocityU, and the bottom onésurface 1)at velocityU, .

The literature thus provides some averaged macroscopic mobeite thatU, andU,; are not necessarily collinear, and that there
for lubricated sliding surfaces propounding a systematic methbdve zero vertical components. The characteristic wavelength
for the flow factors computation. The latter referefi@éhas nev- sinusoidal surfaces is the same on each surface. The surface am-
ertheless pointed out that flow factors must be computed combpiitude is notech andb respectively for surfaces 1 andRis the
ing spatial and time average when the two surfaces are interclmeal aperture anth,, is the mean distance between the two sur-
related. Such correlation between solid surfaces occurs naturally
during rolling process where roughness is transferred from the
steel roll to the workpiec¢10] as well as in any process where
deformations conform the two pieces one another.

In the present paper, this precise issue is further analyzed con
sidering a specific geometry for the sliding surfaces. Simple uni-
directional sinusoidal wavy surfa¢€ig. 1) are chosen for careful
investigation. Such one-dimensional anisotropic surface rough-
ness, are relevant, in the context of laminating proceds#or in

rose of g ecordng Gk 19 uhere Sufaces resnt | y Wy
[0 X

Fig. 1 Sketch of the situation studied
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3 Flow Factors Definition

As shown in[9], the unit flow averaged over the spatial period
\ can be expressed through a macroscopic Reynolds equation:

V.-g=0

hs, (h) o
(aq)y=— m¢'v<p>+ T(Uz"‘ U,)+ E¢s'(U1_U2)

(6)

Where, in the case of mono-dimensional surface roughness, flow
factor tensorsp, and ¢ are diagonal and given by:

Fig. 2 Geometry in the plane y=0 1
¢ 0\ | hath™) .
¢= = : 7
0 4, o (M)
facesh,, can be defined as,=a+ b+ § wheresis the minimum h
local aperture between the two surfa¢Egy. 2). In order to study - ~
the flow factor behaviors near contact, we define the dimension- é 1 hy+h;,
less variables ase= 8/ whereo is the composite r.m.s roughness ¢S_( sx ) =| o(h™9) h3 m (8)
classically defined as= \/021+ 022 (whereo; ando, are the rm.s 0 oy 0 0
roughness of each surface, which gives hefe=a%/2 and o
=b?/2). When surfaces touch one another, ther0 (i.e., h,, While the averaged shear takes the form:
=a-+b). In this limit, permanent contact occurs only when one of u h
the two amplitudes or b is zero. The time and space evolutions e+ (U,—U;)=—2 .V 9
of surfaces heighh; , i=1,2, are given by {n) 2 (¢r= ¢rs) (U= U= 2 1o V(P) ©)
(2 With diagonal shear flow factors of the form:
hi(X,t) = hi0+ \/EU'i Sin T (X_ Uixt) + (2
¢f:¢’f|:hm<h71>| (10)
whereh;, is the mean planes of surfaceeelated to the distance - o
between both surfaces mean plang=h,,—h;,, and¢; is the hi+hy\ (h™%)  [hi+h,
surface phase at initial timg,. The aperture fielch(x,t) then brs= 3hn, h3 [ (h73%) T\ TRz
reads s
0 0
(27 ) -
h(x,t)=h,+b sm(T (X—=Up,t)+ @2) wherel is the identity tensor and
-2
2w M
—asinl —(x—Uy,t)+¢; btox O hm(h™3)
. b=\ o 4 |= (hy (11)
Defining the following dimensionless quantities: fpy 0 o -1
m

h(x,t 21X
(0 2w

X === —

(1)
a a b
A =

“h " aibres S h.
leads to express the local aperture in dimensionless form as
H (X,t)=1+B_sin(X—w,t+ ¢,) — A, SiN(X—wt+¢q)
&)
where surfacé= 1,2 pulsations are given hy;=27U;,/\. Ac-
cording to Eq.(2), H(X,t) can be regarded as the sum of tw

harmonic oscillators of pulsatiom; and w,, respectively. Clas-
sical development§Appendix A) lead to expressi (X,t) as

H (X,t)=1+C_(t)sin(X+ 6.(t)) ?3)
with

Ct)=JAZ+BZ-2AB, cof(w;~w)t+ o~ 1]  (4)
and
B sin(@y— wot) — A sin(¢; — wit)
B 0% ¢,— wal)—A,coS @y —wil)] )

Equations(3)—(5) show that H.(X,t) is harmoniconly for the
trivial casewhere w;=w,, i.e., Uy, =U4, (we recall that the
wavelengthk of sinusoidalsurfaceds assumedo be the sameon
eachsurface).

0. (t)= arcta+

In these equationEi is the height variation of surfade=1,2
around its mean plane, i.d,=(h;)+h;. (h;) denotes the super-
ficial surface average df; as defined if9] and(12). Obviously,

hj)=hj, .
< IA>\S pé)ointed out in9], Egs.(6)—(11) are in complete agreement
with the Patir and Cheng approach in this special case where the
off-diagonal coefficient of the flow factor tensors are equal to
zero. Being non-dimensional, the flow factors can be more appro-
priately expressed using dimensionless quantites ﬁls, and
dt|2€ (note thatH .= l+ﬁ2€—ﬁle). The expressions are similar to

the above tensorial expressions, chandinandh; by H., H;,,
fori=1,2 respectively, and the composite r.m.s roughwoesg its
following dimensionless counterpa¥t= o/h,, (which is a func-
tion of €). As all geometric quantities are spatially periodic, of
period A in the x direction, and independent gf the superficial
average(y of any functiony can be expressed in terms of the
dimensionless coordinat¢ as

1 2m
(w0x0)= 52 | woxoax (12)

The derivation of flow factors involves evaluating “Sommerfeld”
integrals described in Appendix A. These integrals are defined if
and only if C_(t)<1. It can be easily shown that this condition is
verified for e>0 (non-contact condition This leads to express the
flow factors as



2(1-C(1)?)5? 3 ) and slopes. Under these circumstances, a time average
by (1) = W dy(t)=1+ ECE(t) must follow the spatial average for obtaining the average
€ behaviorgthat also could be obtained by ensemble averag-
3\/§(A2— B?) ing over aII.re.Iative positions of two surfaces in .tkleii-
bet)= € ; > rection). This is consistent with the fact that the time aver-
(2+C(1)?) \/A€+ B (13) age of the inter-correlation function of E(@L5) is zero.
2 o2 Therefore, these two types of situation are associated with two
bi(t)= 1 bio(t) = 3(A—Bo) types of averaging. The first one, i.e., the spatial averaging, is
V1-C(t)? > (2+C (1)) Y1-C.(1)? classical, see for instand@,20,21]and references therein. The
second type—i.e., spatio-temporal average—has not been consid-
~2(1-Cd1)?) ered to our knowledge, for flow factors computation. Discarding
brox(t) = (2+C(1)?) the spatio-temporal flow factor dependence is equivalent to

) ) choose a surface inter-correlation function equal to zero. Time
Expressiong13) show that flow factors depend oft) both sur-  ayeraging aspect of the problem has been, however, pointed out
faces amplitudes. andB, (2) time through the resulting ampli- py E|rod[22].

tude C.(t) which is a periodic function of period=\/(U,y
—Ugy).
Thus, in general, the above flow factors are time periodic. It cap - Flow Factors Computation
be also seen that the flow factogs,, ¢y, ¢¢, ¢, are always
positive, while the sign of the flow factois,, ¢¢s depends onthe 4.1 Smooth-Rough Stationary Case. One of the two sur-
difference between surfaces amplitude. faces is smooth. Let us assume that this is the top surface, i.e.,
At this stage, it is interesting to clearly distinguish two typeb=B_.=0, thenC.=A, and flow factors trivially reads froriL3)
of situation depending on the inter-correlation between the top

2\5/2
and bottom surfaces. The intercorrelation function can be defined b :2(17Af) b=1+ EAz bo= 3V2A,
here as X (2+A) y 27 T2+ A?) a7
1 1 3A2 2(1-A2)
Ciall )=+ f (hy (0 = (hy GO (ha(x LD = (O )dx o ¢ B el
0 J1-A2 (2+AY)1-AZ TP (24A))

14
() One first notes that these flow factors have the expected behaviors
for large gaps between surfaces, i@y, ¢y, ¢¢, ¢rpx—1 and
o 2 bsy, Pisx—0 (since A,—0 when e—x). Let us now consider
Ciul,t)y=010, cos(—(UzX—le)t— —+ o1~y their behaviors near contact, i.e., when-0. According to the
A A (15 definition of A, (Eq. (1) lim__ ,A.=1—e/ /2. This leads to the
) ) . following flow factors behaviors near contact, wher0
Hence, the two aforementioned types of situations can be de-
scribed as: 2 y 5 3
1. The case where there is no correlation between the two d&ﬂg(ﬁf)sz by— 5 ﬁf b \2—€
surfaces Cq5(1,t)=0). In this case one can consider that
one of the two surfaces is smootfor instance the top 2.2
surface,o,=0), taking advantage on the surfaces rough- bi—(V26) 2 o (V2e) 2 i e
ness decorrelation. Then, in the referential frame of the 3
moving rough surface, there is a permanent contact point & shown in Appendix B, these behavidexcept that ofp,) can
the limit e=0. Flow factors obtained i13) become time be obtained from the flow-factors definition itself using saddle
independent. It is interesting to note that, in this case, thint method, avoiding their explicit computatida7). Noting
flow factors (as given by Eqs(7), (8), and(9)) can be that(h)=a+ &(6=eo) and o=al/Z, one obtains in terms of
expressed in terms of spatial averages involving only thg/erage unit flow wher—0

local apertureh (since heren,=0 andh=(h)—h,):

which leads to

(18)

2\2a 5, 4p)

1 h-2 h-2)2 (q))—Ua+Uys— 5
Do (h)*ék]fr;) By= 3Ny <hl<<h—%) R (19)
s Uiy tUy 5 a® (5 8\ d(p)
@) —5 @ d-3515783) %y

where the symbod is used heréinstead of¢) for clearly
stressing that the above equations are valid only for tH&om Eq.(19), it is interesting to note that the average Couette
smooth/rough case and do not apply to the rough/roudlow near contact in the direction is made up of two contribu-
case. For this first case, the spatial average performgdns. The first one is the flow induced by the roughness corre-
above is sufficient to determine the average behavior, feponding to a fluid volume of mean thickneasransported at
which C(t)=C_=A,. velocity Uy,. The second one is the flow induced by the top
2. The case where there is a correlation between the upgenooth surface carrying a small fluid volume of mean thickress
and lower surfaces@;,(I,t)#0). Such correlation occurs at velocity U,, . It is expected that the Poiseuille contribution to
naturally from elasto-plastic deformation during rollingflow in the x direction, cancels out as the minimum apertdre
procesgsee for exampl€10]). Here, we examine the casegoes to zero, for obvious geometrical reasons. The 5/2 exponent
where both surfaces are rough,#0 andB.#0) leading dependence reflects the specific parabolic structure of the aperture
to a sinusoidal inter-correlation functiadid5). As can be field near contact, and can be obtained from simple saddle point
seen from Eq(15), the two surfaces are perfectly correargumentAppendix B). This behavior is generic for symmetrical
lated when they are in phase and perfectly uncorrelategherture around the minimum in tikeirection but will be differ-
when out of phase. On the contrary to the first case, contagit for non symmetrical ones. Flux in thielirection is simply that
is intermittent in the limite=0. The relative motion of the expected from a plane geometry. Let us now turn to the macro-
two surfaces induces time variations of the local aperturssopic shear:



1 2 9
<T>(<s(h2)>ﬂ,u,(U2Xfle) E 52 3 5%
2 _¥p)
<Tf(h1)>—>——5—
3 ox 20)
1 p adp)
(Tj(h2)>—>,U«(U2y*Uly)\/?5 112 S
1 a d(p
<T€(hl)>—>ﬂ(U2y_Uly)E5 ) 2(<7_y>

As expected, the main macroscopic shear comes from the Cout
contribution. The obtained behaviors display a rather drastic ¢
vergence as the minimum apertufedecreases. Here again, the
—1/2 exponent is geometry dependent, related to the apert
symmetry around the contact point. It is worth noting that yhe
direction shows a symmetrical shear behavi@., same behavior

on surfaces 1 and 2), while on thedirection the shear is fully rig 3 comparison of pressure flow factors

0.2

0.0

0.0 8.0

¢, calculated for

asymmetric: the flat surface experiences a major shear, while gionary case (smooth/rough, solid line ) and unstationary
sinusoidal one is almost not sheared at all. This is nothing buioAe (rough/rough, dotted line ). The dashed line corresponds to

lubrication effect of the sinusoidal surface in the vicinity of which

a fluid layer moving at velocity ;, annihilates the Couette shearcase. The inset shows the log-log plot of

he saddle point estimate near contact for the smooth /rough
¢, near contact with

same conventions.

4.2 Rough-Rough Unstationary Case. In this caseA.#0
andB_#0. Time averaging13) over one period is not straight-
forward owing to elliptic integrals of the first kindk(;) and third

kind (K3) for Couette shear stress flow factgsee Appendix A). 3 [ a?+b?
The final expressions read by—1+ 2\ (a+b)?
4(1—(B.—A,)?)>%? 3 2_12
0= B AL wiept) 4,1+ 5 (AZ+ED Gorm /B(al b
77( ( € e) ) \/(a2+b2)[2(a+b)2+(a—b)2]
b S5 ICAC M AL R @
7 V(AZ+BY)(2+(B~A)P)(2+(BAA)D) " 27yab | 32la’ b
2 ) s (a—h) | ol N 1)
- —— ———InNle—x| — —
¢f - —1—(BE—AE)2 Kl(k ) (21) fsx 277\/% 25 a b’
6(A2-B?) ) . 2\3(a+b)
_ € € fox—
o B AL B A P P [2(a+b)*+(a=b)7]
b = 6
P2+ (B A2+ (BAA)D) 10 — ‘
whereW is a definite and positive integral defined by
2 (1-k?sinf v)°d ]
W(kz,p2)=f ( i .v) v 0.8
o (1+p?sirfv)
k2: 4AeBe p2: 4AeBe ¢fp 0.6 ]
1-(B.~AJ)% 2+(B.~A)? W
These results show that the flow factebs, ¢,, andeyp,, asso- 0.4 ]‘
ciated with the average pressure gradient are always positive ’ ;
represented in Figs. 3 and 4. The fluid can flow both in the dire :
tion perpendicular to streak$.e., alongx) and in the direction :
parallel to streaksi.e., alongy) for the contact is only intermit- 0.2 ‘
tent. As before, the shear stress flow fact@tg and ¢+, depend W
on the difference between the surface amplitudes. It can be sha 0.0
that the elliptic integrals of first kindK,(k?) and third kind .
Ks(k?,p?) diverge when the two surfaces are near contact, i.¢ 0.0 2.0 4.0 p 6.0 8.0

whene—0 andk?>—1— ea/2(1/a+ 1/b). As a result the flow fac-
tors behave asymptotically as-0

32 (ab)®?
(a+ b)§

2

p’

x—)

5
arctarip) — 5

142
P

m

Fig. 4 Comparison of shear stress flow factors b px calculated
for the stationary case (smooth/rough, solid line ) and the un-
stationary one (rough/rough, dotted line ). Same conventions as
Fig. 3 have been used.



These results display a drastic difference from the stationary ce
(18). First as already observed on res(®s$), flow factorse, and
®ipx CONvVerge to some positive constant which depends on t
surfaces amplitude in a non trivial way, on the contrary(18)
where they tends to zero. These result simply indicate that even
the contact limit the aperture instationarity is a sufficient mech:
nism to produce flow and shear through pressure gradient in bc
x andy direction. Secondly, shear flow factafg and ¢;, diverge

in the vicinity of contact, as observed {#8). Nevertheless, this
divergence is quantitatively very different, being algebrai¢lid)
and logarithmic in(22). Such behavior can not be predicted usin

a saddle point approximation due to his non algebraic nature. It¥sT |

nevertheless a result specific to the chosen geometry.
As a result, the average shear stress on each surfaces i tt
direction, which is given, in the—0 limit by

et 31,1

2 TP ox 23)
FININCIT S NI

2 TP ox

Fig. 5 Comparison of shear stress flow factors
for the stationary case

stationary one (rough/rough, dotted line ). Same conventions as
Fig. 3 have been used.

0.0 . 1

4.0 6.0 8.0

€

¢, calculated
(smooth/rough, solid line ) and the un-

contrary, in the unstationary cag®ugh/rough), flow factors

also diverges logarithmically. Nevertheless, on the contrary to pre- ¢, and ¢y, tend towards non zero constants in the contact

vious results(20) the Couette contribution to the shear in the

direction is now symmetrical on both surfaces, reflecting the ge-

ometry symmetry.

Regarding the average shear stress inytbaection, its behav-
ior when e—0 reads

5 (Uy—U,y) b [5(1 1) (a+b) a(p)
(i —e sy Nazlatel| 2wy
(24)
(Uy—Uy) fa [6(1 1|] (a+b)dp)

0 y y _
- NS b

5 Discussion

limit. A fluid flow in the x direction driven by an average
pressure gradient is then possible owing to the intermittent
nature of contact.

» The shear flow factots, depends on the difference between
the standard deviations of each surface. Hence, it can be ei-
ther positive or negative. Interestingly, is zero at contact
in the particular case where the surfaces are strictly identical
(Fig. 5). Roughness contribution to mean flow in thdirec-
tion due to the surfaces relative sliding is then canceling out.
We recall from(6) that the mean flow due to sliding in the
direction is made up of two components. The first one is the
Couette mean flow,,+U,,){h)/2. The second oneU,
—U,)oddl2, is associated with the additional drag due to
roughness. In the stationary cagmooth/rough)when the
top surface is fixed and the rough bottom one is moving at

The previously computed flow factors are sketched in Figs. 3—7 Vvelocity Uy, the net mean flow due to sliding 13,(h).
in order to investigate the composite roughness approximation in This exactly corresponds to the volume of dragged valleys

the context of sinusoidal surfaces. The flow factors displayed in

these figures have been carefully compared with a direct numeri-

cal integration of expression Eq&.)—(11). Such numerical inte-

gration is in full agreement with the analytical results presented in
the previous section. Both smooth/rough and rough/rough con
figuration are chosen with the same composite roughness leadin

to a rough surface amplitudg?a in the smooth/rough case and
a=b in the rough/rough one.

For this particular choice, the Couette flow factors of the unsta-¢f

tionary case are equal to zer@)s,=0 and ¢s,=0). The
asymptotic behaviors near contact deduced from the saddle poir

approximation(Appendix B) are also represented. These figures
illustrate the following points:

e As shown in Figs. 3 and 4, the“Poiseuille” flow factoes,
and ¢,y tend to zero near contact in the stationary case
(smooth/rough), because, in this limit, contact permanently
clogs the flow. Then, the fluid cannot migrate from one valley
to the another whatever the pressure gradient is irxtde
rection. It is interesting to observe the quality and range of
validity of the saddle point approximation in the close contag;

. - . . : - 6 Comparison of shear stress flow factors
region shown in the insets of Figs. 3 and 4. This domain givegr the stationary case

6.0 — ; :
10 T
4.0
2.0 A,
1

0.0 : L .

0.0 2.0 4.0 6.0 8.0

€

¢ calculated
(smooth/rough, solid line ) and the un-

the region for which macroscopic behavior is dominated btationary one (rough/rough, dotted line ). Same conventions as
the local structure of the aperture field near contact. On tify. 3 have been used.
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0.0 2.0 6.0 8.0

€

Fig. 7 Comparison of shear stress flow factors sy Calculated
for the stationary and the unstationary one. Same conventions
as Fig. 3 have been used.

Conclusions

Newtonian lubricant flow between two unidirectional wavy
sinusoidal surfaces in sliding motion has been studied. Analytic
expressions have been derived for flow factors describing the
roughness impact on the macroscopic flow and shear. Two cases
have been distinguished. In the first one, accounting for decorre-
lated surfaces, the aperture field is stationary and one of the two
surfaces is smooth. Flows factor are then stationary and computed
from simple spatial averaging. On the contrary, in the second case
accounting for correlated surfacésough/rough case), the spa-
tially averaged flow factors are time periodic. A temporal average
leads to significant differences in the flow factor expressions. The
obtained differences, can be regarded as resulting from the surface
inter-correlation. Accordingly, the rough/rough situation investi-
gated in the present paper is an example for which the composite
roughness concept does not apply.

It is clearly expected that the observed drastic inter-correlation
influence is enhanced by the deterministic nature of the chosen
geometry as well as the considered roughness one-dimensional
character. Nevertheless, for one-dimensional anisotropic surfaces,
averaged stochastic geometries will share common features with
our analysis.

moving at the bottom surface velocity. This illustrates the

coupled influence of geometry and kinematics on the megn

flow due to sliding.

-1/2

and ¢;, (Figs. 6 and 7xdiverge ase near contacte; is

In the stationary case, Couette shear stress flow faetors
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mean shear stress proportional 9+ ¢, While propor-

tional to ¢p¢ — ¢y for the bottom one. Thus, in the stationarynomenclature
case, the rough surface experiences a mean shear stress di-

verging near contact as “2 while the mean shear stress a, b = bottom surface and top
tends to zero on the smooth surface. Obviously, this is only surface amplitudes
true in an average sense. Locally, the shear stress value can A, = alh,
be very high. As previously noted, this singular behavior is Be = !O/hm . )
related to the symmetry of the aperture geometry around the Cyil,t) = inter-correlation function between
contact point. the two sgrfaces
« In the unstationary configuration, the flow factogs and h(x,t) = aperture field between the two
¢4 diverge logarithmically near contagigs. 6 and 7). The - surfaces
log-log plot in the inset displays the comparison between the h; = spatial fluctuation of the surfage
algebraic and logarithmic divergencg;s, depends however h,=h,,—h,;,=a+b+ 4 = distance between surfaces mean
on the surface amplitude difference, and is equal to zero plane which coincides with the
when surfaces amplitude are identical. The “Couette” mean mean distance between the two
shear stress experienced by each surface is positive and di- surfaces
verges logarithmically. Hence, here, the unsteadiness of the (h;)=h;, = mean plane of surfadewith i
aperture field leads to a striking modification of shear stress =12
behavior compared to the smooth-rough case. The local H. = h/h,
squeeze effects induced by the time evolution of the aperture | = identity tensor
field modify continuously the flow structure. As a result, pres- k? = 4ABJ/1—(B.—A,)?
sure generation may occur in a divergent. This effect cannot K, = elliptic integral of the first kind
occur in the steady smooth-rough case. K5 = elliptic integral of the third kind
Lastly, when two rough surfaces are not intercorrelated, the flow c; B un!t I:OW
factors¢g and ¢, of each surface, can be expressed in terms of q2 = unit flow near cont?ct
the corresponding flow factors of the smooth/rough ¢asg|, pt = 3r'?‘qeelez+(Be_As)
2 2 2 2 P .
o1~ 05 hm oi— 05 him tg = initial time
b= o2 ‘DS(;) bis= o2 PDs F) (25) T=MN/U,—U,, = time period
. ) . ) U; = surface velocity
where o is the compositeroughnessas defined previously (o x = coordinate perpendicular to the
= \/012+022) and®g, @ correspondo the smooth/rougtcase. streak’s direction
Clearly, theserelationsdo no apply to the surfacesconsidered X = 2mx/\
in the presenpaper(ascanbe easilycheckedanalytically). In our y = coordinate parallel to the
case, the inter-correlationfunction is different from zero when streak’s direction
both surfacesare rough andthe compositeroughnesspproxima- € = do
tion associatedvith Eq. (25) is not valid. 8 = minimum local aperture



¢; = phase of surfaceatt=t,
¢, ¢, = Poiseduille flow factors
tensors
bs, bi, Pss = Couette flow factors tensors
d,,= psx = when surface 2 is smooth
D= disx = When surface 2 is smooth
N = wave length of sinusoidal surface

fluid dynamic viscosity

Y
o1=Va%2, o,= Jb?12
o= \/a'f-i- a'g

r.m.s roughness
composite r.m.s roughness

3 = olhy

T = macroscopic tangential shear
stress

7% = macroscopic tangential shear

stress near contact
( ) = spatial average

Appendix A
Derivation of Eq. (3). Starting from Eq.(2),
H.(X,t)=1+B,sin(X—wyt+ @,) — A, sin(X— wt+@;)
H(X,t) can be expressed in terms of sfhi@nd cos(X) as
H(X,t)=1+sin(X)[B,cosd,—A_ cosd,]
+cogX)[B,sin®,—A_sind,]

where®;=—ow;-t+¢; (i=1,2).
Then, defining the anglé by

B.sin®,—A,sind,
"~ B.cos®,—A_cosd,

allows one to expresd .(X,t) as
[B.cos®,— A, cosd,]

14 . N .
H(X,t)=1 050 {sinX cos#+ cosX sin 6}
which gives
[B.cos®,— A, cosd,] .
H(X,t)=1+ sin(X+ 0)

cosf
As cog =1/(1+tarf 6) one finally obtains

H.(X,t)=1+ JA2+B2—2A B, co§ ®,— ®,] sin(X+ )

Sommerfeld Integral. As can be seen from Eq$7)—(11),
the computation of flow factors necessitate the evaluation of t

spatial averageéH?), (HZ™, n=2,3, and((H.+H,)/HD), n

These averages reads,
1 2m
(H3)= —f (1+C(t)sin(x+ 6(1))3dx,
27 J,

o 1 2m 1
<He>*§;J;(1+CAUQWX+9JU

)ndx,

HiotFo\ 1 [27B.sin(x+®,)+A, sinx+ ;)
H' | 27 ), (1+C tsin(x+6.(t)"

Recallingthat

Cc(t)=JAZ+BZ—2A.B, co§ (w1~ w )t + 92— ¢1]

The evaluationof thefirst integralis trivial. The secondandthird
integralsarea little moredifficult. They canbe expressedh terms

of integralsof the form

bottom surface, and top surface

s 1 (27 cosy d
M =27 |, (I+Ccosy)" X

These integralgreferred to as Sommerfeld integrals, see for in-
stancq 17]) can be evaluated analytically. The most useful formu-
las for our problem are the cases wherean take integer values
Oorlandnr=1,223.

2+C?
S03 = 3(1= 7y

1 1
Son=——- S,,=
(0,2) 1-C (0,2) mﬁ
-C -3C
3(1,2):m12 5(1,3): 2(1— Cz)s 2
This leads to the expressions of flow factors given by @d.).
One can refer t$23] for more details

Elliptic Integrals.  Let us first consider the definition of Ellip-
tic integral of the first kind:

l.l.
22’

K (kz)—fﬂlz dov o
! o V1-Klsifo 2

whereF is the hyper-geometric function as described28]. In
general, this integral must be evaluated numericédlge[24]).
Again, an analytical evaluation can be performed near contact
(i.e., whenk®—1). This yields

F

1;k2)

lim K (k2= — = LK
kZITl 1(k9)= En PL

Let us now turn to Elliptic integral of the third kind:

/2 d
wap%:f e —
o (1+p?sirfv)y1-k?sirfv

Again, in the general case, this integral must be evaluated nu-
merically, [24].

Its asymptotic evaluation whekf— 1 can be derived from that
of K;(k?) [23] since

. 1
lim K3(k?,p?)= —— lim K;(k?)
2 l+p 2

kc—1 ke—1

Appendix B

Saddle Point Estimate of Flow Factors Near Contact. Let

us first turn our attention to the stationary case. The evaluation of
flow factors (exceptey, ¢sy, ¢isy, and ¢y, which are trivial
ﬁnes)involves integrals of the form{h™")=1/Afh™"dx. Near

Sntact, i.e., where—0., these integrals are dominated by the
contribution associated with the lowest valueshofFor this rea-
son, it seems quite reasonable to seek an estimate of these inte-
grals by the saddle point methd@®5]. Noting f=h"", this
amounts to estimatingf) as (Za/\f(0)¥%/—"(0) (in a coor-
dinate system whereh=€¢ at x=0). With h=e+2a(l
—cos(27/\x)), this leads to the following estimates as:0:

PN ﬁ( - %)
1 3(2—3) 3
bi— \/Ef_l/z ¢fsx_>ﬁe_l/2 Prpx— \/;'E

Scalings withe are in full agreement with the results of the direct
calculus(18). The prefactors are correctly estimated dgr, ¢,

¢1px While not accurate foth; and ¢, . Such approximation can

be applied to the unstationary case, but fails. The direct computa-
tion provides the explanation, as logarithmic divergence are be-
yond the scope of this rough estimate.
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