
HAL Id: hal-04289535
https://hal.science/hal-04289535

Submitted on 16 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Average Flow Model of Rough Surface Lubrication:
Flow Factors for Sinusoidal Surfaces
Nicolas Letalleur, Franck Plouraboué, Marc Prat

To cite this version:
Nicolas Letalleur, Franck Plouraboué, Marc Prat. Average Flow Model of Rough Surface Lubri-
cation: Flow Factors for Sinusoidal Surfaces. Journal of Tribology, 2002, 124 (3), pp.539-546.
�10.1115/1.1467084�. �hal-04289535�

https://hal.science/hal-04289535
https://hal.archives-ouvertes.fr


oidal
flow
pact.
local
ough
light
e flow
N. Letalleur

F. Plouraboué
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Average Flow Model of Rough
Surface Lubrication: Flow Factors
for Sinusoidal Surfaces
The effects of lubricant film flow, pressurized and sheared between two parallel sinus
wavy surfaces in sliding motion is studied analytically. Results are presented using a
factor model which provides an average description of the surfaces roughness im
Two distinct cases are studied in order to compare stationary or time dependent
aperture configurations. Flow factors are computed respectively for each case thr
spatial or spatio-temporal average, revealing striking differences. The results shed
on the relevance of the composite roughness concept. Special attention is paid to th
factor analytical behavior when surfaces are near contact.@DOI: 10.1115/1.1467084#
t

h

h
e

i

s

i
s

d

h

c

l

t

and
arse

ith-

, in
ve

hat
two
idal
tion
he
been

le
vita-
cal
d by
e
nt.

ov-

re

am-

ur-
1 Introduction
The impact of surface roughness on lubrication is an impor

problem for many applications, albeit quite a difficult one. From
geometrical point of view only, it requires the computation of t
flow over a time dependent fluid domain resulting from the m
tion and deformation of the moving solid surfaces. The more co
plex the surface~e.g., random, multi scaled, tridimensional roug
ness!, the more difficult it is to understand the interplay betw
the surfaces topography and the observed macroscopic pres
flux, and shear. Additional physical effects, such as cavitat
piezoviscosity or compressibility, among others, may contribute
the complexity of the problem but will be ignored in the analy
since, for simplicity, as far as up-scaling is concerned, they
generally discarded@1,2#.

There is nevertheless an important body of literature that h
been interested in such up-scaling description of sliding surfa
lubrication since the first developments of Christensen@3# and
Chow et Cheng@4#. Different techniques have been used to der
macroscopic equations coupling the macroscopic flux, pres
and shear stress, with some ‘‘flow factors’’ that are related to
underlying surfaces geometry. Patir and Cheng@1,2# were the first
to propose a heuristic model for general roughness patterns. T
@5# derived the correct tensorial form of the average flow mo
using a stochastic approach, while Bayada et al.@6,7# addressed
the problem within the framework of the homogenization theo
for spatially periodic structures and more recently volume aver
ing techniques@8# were used for macroscopisation of the flo
between lubricated sliding surfaces with solid contacts@9#.

The literature thus provides some averaged macroscopic m
for lubricated sliding surfaces propounding a systematic met
for the flow factors computation. The latter reference@9# has nev-
ertheless pointed out that flow factors must be computed com
ing spatial and time average when the two surfaces are inter
related. Such correlation between solid surfaces occurs natu
during rolling process where roughness is transferred from
steel roll to the workpiece@10# as well as in any process wher
deformations conform the two pieces one another.

In the present paper, this precise issue is further analyzed
sidering a specific geometry for the sliding surfaces. Simple u
directional sinusoidal wavy surface~Fig. 1! are chosen for carefu
investigation. Such one-dimensional anisotropic surface rou
ness, are relevant, in the context of laminating processes@10# or in
those of magnetic recording disk@11–13# where surfaces presen
ing one-dimensional like streaks are commonly found.
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This problem is of interest from at least four points of view:~1!
it is, to a great extent, amenable to analytical developments,
thus it could be interesting to estimate the impact of some co
description of surface roughness on flux, pressure and shear w
out any numerical computations,~2! the flow factor behaviors
near contact can be obtained analytically,~3! the obtained results
can be useful for testing numerical computation procedures
particular for close contact lubrication studies, for which we gi
an explicit analytical treatment~4! it sheds light on the influence
of inter-correlation between surfaces. In particular, we show t
the concept of composite roughness does not apply where
surfaces are inter-correlated. Obviously, considering sinuso
roughness as model roughness is not a novelty in the lubrica
literature, @14–18#. However, to the best of our knowledge, t
complete hereby presented analytical developments have not
reported previously.

As in @9# and @19#, the analysis is restricted to non-deformab
surfaces, isoviscous Newtonian and incompressible fluids. Ca
tion, if any, is ignored as well as temperature variations. The lo
slopes being small, the flow at the roughness scale is describe
the Reynolds~lubrication!equation. The flow is generated by th
relative surfaces motion and the macroscopic pressure gradie

2 Geometry and Kinematics
Figure 1 illustrates the geometry of the problem.y ~resp.x! is

the coordinate associated with~resp. perpendicular to!the streak
direction. The top surface—defined as surface number 2—is m
ing at velocityU2 and the bottom one~surface 1!at velocityU1 .
Note thatU2 andU1 are not necessarily collinear, and that the
have zero vertical components. The characteristic wavelengthl of
sinusoidal surfaces is the same on each surface. The surface
plitude is noteda andb respectively for surfaces 1 and 2.h is the
local aperture andhm is the mean distance between the two s

Fig. 1 Sketch of the situation studied

https://crossmark.crossref.org/dialog/?doi=10.1115/1.1467084&domain=pdf&date_stamp=2002-05-31
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faces.hm can be defined ashm5a1b1d whered is the minimum
local aperture between the two surfaces~Fig. 2!. In order to study
the flow factor behaviors near contact, we define the dimens
less variablee ase5d/s wheres is the composite r.m.s roughnes
classically defined ass5As1

21s2
2 ~wheres1 ands2 are the r.m.s

roughness of each surface, which gives heres1
25a2/2 and s2

2

5b2/2!. When surfaces touch one another, thene50 ~i.e., hm
5a1b!. In this limit, permanent contact occurs only when one
the two amplitudesa or b is zero. The time and space evolution
of surfaces heighthi , i 51,2, are given by

hi~x,t !5hio1A2s i sinS 2p

l
~x2Uixt !1w i D

wherehio is the mean planes of surfacesi related to the distance
between both surfaces mean planehm5h2o2h1o , andw i is the
surface phase at initial timeto . The aperture fieldh(x,t) then
reads

h~x,t !5hm1b sinS 2p

l
~x2U2xt !1w2D

2a sinS 2p

l
~x2U1xt !1w1D

Defining the following dimensionless quantities:

He~X,t !5
h~x,t !

hm
; X5

2px

l
;

(1)

Ae5
a

hm
5

a

a1b1es
; Be5

b

hm

leads to express the local aperture in dimensionless form as

He~X,t !511Be sin~X2v2t1w2!2Ae sin~X2v1t1w1!
(2)

where surfacei 51,2 pulsations are given byv i52pUix /l. Ac-
cording to Eq.~2!, He(X,t) can be regarded as the sum of tw
harmonic oscillators of pulsationv1 and v2 , respectively. Clas-
sical developments~Appendix A! lead to expressHe(X,t) as

He~X,t !511Ce~ t !sin~X1ue~ t !! (3)

with

Ce~ t !5AAe
21Be

222AeBe cos@~v12v2!t1w22w1# (4)

and

ue~ t !5arctanF Be sin~w22v2t !2Ae sin~w12v1t !

Be cos~w22v2t !2Ae cos~w12v1t !G (5)

Fig. 2 Geometry in the plane yÄ0

Equations ~3!–~5! show that He (X,t) is harmonic only for the
trivial case where v 15v 2 , i.e., U2x5U1x ~we recall that the 
wavelength l of sinusoidal surfaces is assumed to be the same on 
each surface!.
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3 Flow Factors Definition
As shown in@9#, the unit flow averaged over the spatial perio

l can be expressed through a macroscopic Reynolds equatio

¹•q50
(6)

^q&52
hm

3

12m
f•¹^p&1

^h&
2

~U21U1!1
s

2
fs•~U12U2!

Where, in the case of mono-dimensional surface roughness,
factor tensorsf, andfs are diagonal and given by:

f5S fx 0

0 fy
D 5S 1

hm
3 ^h23&

0

0
^h3&

hm
3
D , (7)

fs5S fsx 0

0 fsy
D 5S 1

s^h23& K h̃11h̃2

h3 L hm 0

0 0
D (8)

While the averaged shear takes the form:

^t&5
m

2
~f f6f f s!•~U22U1!6

hm

2
f f p•¹^p& (9)

With diagonal shear flow factors of the form:

f f5f f I5 hm^h21&I
(10)

f f s5S 3hmF K h̃11h̃2

h3 L ^h22&

^h23&
2K h̃11h̃2

h2 L G 0

0 0
D

whereI is the identity tensor and

f f p5S f f px 0

0 f f py
D 5S ^h22&

hm^h23&
0

0
^h&
hm

51
D (11)

In these equationsh̃i is the height variation of surfacei 51,2
around its mean plane, i.e.,hi5^hi&1h̃i . ^hi& denotes the super
ficial surface average ofhi as defined in@9# and ~12!. Obviously,
^hi&5hio .

As pointed out in@9#, Eqs.~6!–~11! are in complete agreemen
with the Patir and Cheng approach in this special case where
off-diagonal coefficient of the flow factor tensors are equal
zero. Being non-dimensional, the flow factors can be more ap
priately expressed using dimensionless quantitiesHe , H̃1e , and
H̃2e ~note thatHe511H̃2e2H̃1e!. The expressions are similar t
the above tensorial expressions, changingh and h̃i by He , H̃ i e ,
for i 51,2 respectively, and the composite r.m.s roughnesss by its
following dimensionless counterpartS5s/hm ~which is a func-
tion of e!. As all geometric quantities are spatially periodic,
period l in the x direction, and independent ofy, the superficial
averagê c& of any functionc can be expressed in terms of th
dimensionless coordinateX as

^c~X,t !&5
1

2p E
0

2p

c~X,t !dX (12)

The derivation of flow factors involves evaluating ‘‘Sommerfeld
integrals described in Appendix A. These integrals are define
and only ifCe(t),1. It can be easily shown that this condition
verified fore.0 ~non-contact condition!. This leads to express th
flow factors as
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fx~ t !5
2~12Ce~ t !2!5/2

~21Ce~ t !2!
fy~ t !511

3

2
Ce~ t !2

fsx~ t !5
3A2~Ae

22Be
2!

~21Ce~ t !2!AAe
21Be

2

(13)

f f~ t !5
1

A12Ce~ t !2
f f sx~ t !5

3~Ae
22Be

2!

~21Ce~ t !2!A12Ce~ t !2

f f px~ t !5
2~12Ce~ t !2!

~21Ce~ t !2!

Expressions~13! show that flow factors depend on:~1! both sur-
faces amplitudesAe andBe ~2! time through the resulting ampli
tude Ce(t) which is a periodic function of periodT5l/(U2x
2U1x).

Thus, in general, the above flow factors are time periodic. It
be also seen that the flow factorsfx , fy , f f , f f p are always
positive, while the sign of the flow factorsfs , f f s depends on the
difference between surfaces amplitude.

At this stage, it is interesting to clearly distinguish two typ
of situation depending on the inter-correlation between the
and bottom surfaces. The intercorrelation function can be defi
here as

C12~ l ,t !5
1

l E0

l

~h1~x,t !2^h1~x,t !&!~h2~x1 l ,t !2^h2~x,t !&!dx

(14)

which leads to

C12~ l ,t !5s1s2 cosS 2p

l
~U2x2U1x!t2

2p l

l
1w12w2D

(15)

Hence, the two aforementioned types of situations can be
scribed as:

1. The case where there is no correlation between the
surfaces (C12( l ,t)50). In this case one can consider th
one of the two surfaces is smooth~for instance the top
surface,s250!, taking advantage on the surfaces roug
ness decorrelation. Then, in the referential frame of
moving rough surface, there is a permanent contact poin
the limit e50. Flow factors obtained in~13! become time
independent. It is interesting to note that, in this case,
flow factors ~as given by Eqs.~7!, ~8!, and ~9!! can be
expressed in terms of spatial averages involving only
local apertureh ~since hereh̃250 andh5^h&2h̃1!:

Fsx5
1

s S ^h&2
^h22&

^h23& D F f sx53hmS K h212
^h22&2

^h23& D
(16)

where the symbolF is used here~instead off! for clearly
stressing that the above equations are valid only for
smooth/rough case and do not apply to the rough/ro
case. For this first case, the spatial average perform
above is sufficient to determine the average behavior,
which Ce(t)5Ce5Ae .

2. The case where there is a correlation between the u
and lower surfaces (C12( l ,t)Þ0). Such correlation occurs
naturally from elasto-plastic deformation during rollin
process~see for example@10#!. Here, we examine the cas
where both surfaces are rough~AeÞ0 andBeÞ0! leading
to a sinusoidal inter-correlation function~15!. As can be
seen from Eq.~15!, the two surfaces are perfectly corr
lated when they are in phase and perfectly uncorrela
when out of phase. On the contrary to the first case, con
is intermittent in the limite50. The relative motion of the
two surfaces induces time variations of the local apertu
an
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and slopes. Under these circumstances, a time ave
must follow the spatial average for obtaining the avera
behaviors~that also could be obtained by ensemble aver
ing over all relative positions of two surfaces in thex di-
rection!. This is consistent with the fact that the time av
age of the inter-correlation function of Eq.~15! is zero.

Therefore, these two types of situation are associated with
types of averaging. The first one, i.e., the spatial averaging
classical, see for instance@2,20,21#and references therein. Th
second type—i.e., spatio-temporal average—has not been co
ered to our knowledge, for flow factors computation. Discard
the spatio-temporal flow factor dependence is equivalent
choose a surface inter-correlation function equal to zero. T
averaging aspect of the problem has been, however, pointed
by Elrod @22#.

4 Flow Factors Computation

4.1 Smooth-Rough Stationary Case. One of the two sur-
faces is smooth. Let us assume that this is the top surface,
b5Be50, thenCe5Ae and flow factors trivially reads from~13!

fx5
2~12Ae

2!5/2

~21Ae
2!

fy511
3

2
Ae

2 fsx5
3A2Ae

~21Ae
2!

(17)

f f5
1

A12Ae
2

f f sx5
3Ae

2

~21Ae
2!A12Ae

2
f f px5

2~12Ae
2!

~21Ae
2!

One first notes that these flow factors have the expected beha
for large gaps between surfaces, i.e.,fx , fy , f f , f f px→1 and
fsx , f f sx→0 ~since Ae→0 when e→`!. Let us now consider
their behaviors near contact, i.e., whene→0. According to the
definition of Ae ~Eq. ~1!!, lim

e→0
Ae512e/A2. This leads to the

following flow factors behaviors near contact, whene→0

fx→
2

3
~A2e!5/2 fy→

5

2
2

3

A2
e fsx→A22e

(18)

f f→~A2e!21/2 f f sx→~A2e!21/2 f f px→
2A2

3
e

As shown in Appendix B, these behaviors~except that offy! can
be obtained from the flow-factors definition itself using sadd
point method, avoiding their explicit computation~17!. Noting
that ^h&5a1d (d5es) and s5a/A2, one obtains in terms o
average unit flow whene→0

^qx
d&→U1xa1U2xd2

2A2a

9m
d5/2

]^p&
]x

(19)

^qy
d&→

U1y1U2y

2
~a1d!2

a3

12m S 5

2
23

d

aD ]^p&
]y

From Eq.~19!, it is interesting to note that the average Coue
flow near contact in thex direction is made up of two contribu
tions. The first one is the flow induced by the roughness co
sponding to a fluid volume of mean thicknessa transported at
velocity U1x . The second one is the flow induced by the t
smooth surface carrying a small fluid volume of mean thicknesd
at velocityU2x . It is expected that the Poiseuille contribution
flow in the x direction, cancels out as the minimum apertured
goes to zero, for obvious geometrical reasons. The 5/2 expo
dependence reflects the specific parabolic structure of the ape
field near contact, and can be obtained from simple saddle p
argument~Appendix B!. This behavior is generic for symmetric
aperture around the minimum in thex direction but will be differ-
ent for non symmetrical ones. Flux in they direction is simply that
expected from a plane geometry. Let us now turn to the mac
scopic shear:
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^tx
d~h2!&→m~U2x2U1x!

1

A2a
d21/21

2

3
d

]^p&
]x

^tx
d~h1!&→2

2

3
d

]^p&
]x

(20)

^ty
d~h2!&→m~U2y2U1y!

1

A2a
d21/21

a

2

]^p&
]y

^ty
d~h1!&→m~U2y2U1y!

1

A2a
d21/22

a

2

]^p&
]y

As expected, the main macroscopic shear comes from the Co
contribution. The obtained behaviors display a rather drastic
vergence as the minimum apertured decreases. Here again, th
21/2 exponent is geometry dependent, related to the ape
symmetry around the contact point. It is worth noting that thy
direction shows a symmetrical shear behavior~i.e., same behavior
on surfaces 1 and 2!, while on thex direction the shear is fully
asymmetric: the flat surface experiences a major shear, while
sinusoidal one is almost not sheared at all. This is nothing b
lubrication effect of the sinusoidal surface in the vicinity of whic
a fluid layer moving at velocityU1x annihilates the Couette shea

4.2 Rough-Rough Unstationary Case. In this case,AeÞ0
andBeÞ0. Time averaging~13! over one periodT is not straight-
forward owing to elliptic integrals of the first kind (K1) and third
kind (K3) for Couette shear stress flow factors~see Appendix A!.
The final expressions read

fx5
4~12~Be2Ae!

2!5/2

p~21~Be2Ae!
2!

W~k2,p2! fy511
3

2
~Ae

21Be
2!

fsx5
3A2~Ae

22Be
2!

A~Ae
21Be

2!~21~Be2Ae!
2!~21~Be1Ae!

2!

f f5
2

pA12~Be2Ae!
2

K1~k2! (21)

f f sx5
6~Ae

22Be
2!

p~21~Be2Ae!
2!A12~Be2Ae!

2
K3~k2,p2!

f f px5
6

A~21~Be2Ae!
2!~21~Be1Ae!

2!
22

whereW is a definite and positive integral defined by

W~k2,p2!5E
0

p/2 ~12k2 sin2 v !5/2dv
~11p2 sin2 v !

,

k25
4AeBe

12~Be2Ae!
2 , p25

4AeBe

21~Be2Ae!
2

These results show that the flow factorsfx , fy , andf f px , asso-
ciated with the average pressure gradient are always positiv
represented in Figs. 3 and 4. The fluid can flow both in the dir
tion perpendicular to streaks~i.e., alongx! and in the direction
parallel to streaks~i.e., alongy! for the contact is only intermit-
tent. As before, the shear stress flow factorsfsx andf f sx depend
on the difference between the surface amplitudes. It can be sh
that the elliptic integrals of first kindK1(k2) and third kind
K3(k2,p2) diverge when the two surfaces are near contact,
whene→0 andk2→12es/2(1/a11/b). As a result the flow fac-
tors behave asymptotically ase→0

fx→
32

p

~ab!3/2

~a1b!3 H pS 11
1

p2D 2

arctan~p!2
5

6
2

1

p2J
ette
di-
e
ture

the
t a
h
r.

e as
ec-

own

.e.,

fy→11
3

2 S a21b2

~a1b!2D
fsx→

A6~a22b2!

A~a21b2!@2~a1b!21~a2b!2#

f f→2
~b1a!

2pAab
lnFe

s

32 S 1

a
1

1

bD G (22)

f f sx→2
~a2b!

2pAab
lnFe

s

25 S 1

a
1

1

bD G
f f px→

2A3~a1b!

A@2~a1b!21~a2b!2#
22

Fig. 3 Comparison of pressure flow factors fx calculated for
stationary case „smoothÕrough, solid line … and unstationary
one „roughÕrough, dotted line …. The dashed line corresponds to
the saddle point estimate near contact for the smooth Õrough
case. The inset shows the log-log plot of fx near contact with
same conventions.

Fig. 4 Comparison of shear stress flow factors f fpx calculated
for the stationary case „smoothÕrough, solid line … and the un-
stationary one „roughÕrough, dotted line …. Same conventions as
Fig. 3 have been used.
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These results display a drastic difference from the stationary
~18!. First as already observed on results~21!, flow factorsfx and
f f px converge to some positive constant which depends on
surfaces amplitude in a non trivial way, on the contrary to~18!
where they tends to zero. These result simply indicate that eve
the contact limit the aperture instationarity is a sufficient mec
nism to produce flow and shear through pressure gradient in
x andy direction. Secondly, shear flow factorsf f andf f sx diverge
in the vicinity of contact, as observed in~18!. Nevertheless, this
divergence is quantitatively very different, being algebraic in~18!
and logarithmic in~22!. Such behavior can not be predicted usi
a saddle point approximation due to his non algebraic nature.
nevertheless a result specific to the chosen geometry.

As a result, the average shear stress on each surfaces inx
direction, which is given, in thee→0 limit by

^tx
d~h2!&→m

~U1x2U2x!

p~a1b!
Aa

b
lnF d

25 S 1

a
1

1

bD G
1

~a1b!

2
f f px

]^p&
]x

(23)

^tx
d~h1!&→m

~U1x2U2x!

p~a1b!
Aa

b
lnF d

25 S 1

a
1

1

bD G
2

~a1b!

2
f f px

]^p&
]x

also diverges logarithmically. Nevertheless, on the contrary to
vious results~20! the Couette contribution to the shear in thex
direction is now symmetrical on both surfaces, reflecting the
ometry symmetry.

Regarding the average shear stress in they direction, its behav-
ior whene→0 reads

^ty
d~h2!&→m

~U1y2U2y!

p~a1b!
Ab

a
lnF d

25 S 1

a
1

1

bD G1
~a1b!

2

]^p&
]y

(24)

^ty
d~h1!&→m

~U1y2U2y!

p~a1b!
Aa

b
lnF d

25 S 1

a
1

1

bD G2
~a1b!

2

]^p&
]y

5 Discussion
The previously computed flow factors are sketched in Figs. 3

in order to investigate the composite roughness approximatio
the context of sinusoidal surfaces. The flow factors displayed
these figures have been carefully compared with a direct num
cal integration of expression Eqs.~7!–~11!. Such numerical inte-
gration is in full agreement with the analytical results presente
the previous section. Both smooth/rough and rough/rough c
figuration are chosen with the same composite roughness lea
to a rough surface amplitudeA2a in the smooth/rough case an
a5b in the rough/rough one.

For this particular choice, the Couette flow factors of the uns
tionary case are equal to zero~fsx50 and f f sx50!. The
asymptotic behaviors near contact deduced from the saddle p
approximation~Appendix B! are also represented. These figur
illustrate the following points:

• As shown in Figs. 3 and 4, the‘‘Poiseuille’’ flow factorsfx
and f f px tend to zero near contact in the stationary ca
~smooth/rough!, because, in this limit, contact permanen
clogs the flow. Then, the fluid cannot migrate from one val
to the another whatever the pressure gradient is in thex di-
rection. It is interesting to observe the quality and range
validity of the saddle point approximation in the close cont
region shown in the insets of Figs. 3 and 4. This domain gi
the region for which macroscopic behavior is dominated
the local structure of the aperture field near contact. On
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contrary, in the unstationary case~rough/rough!, flow factors
fx and f f px tend towards non zero constants in the cont
limit. A fluid flow in the x direction driven by an average
pressure gradient is then possible owing to the intermitt
nature of contact.

• The shear flow factorfsx depends on the difference betwee
the standard deviations of each surface. Hence, it can be
ther positive or negative. Interestingly,fsx is zero at contact
in the particular case where the surfaces are strictly ident
~Fig. 5!. Roughness contribution to mean flow in thex direc-
tion due to the surfaces relative sliding is then canceling o
We recall from~6! that the mean flow due to sliding in thex
direction is made up of two components. The first one is
Couette mean flow (U2x1U1x)^h&/2. The second one, (U1x
2U2x)sfs/2, is associated with the additional drag due
roughness. In the stationary case~smooth/rough!when the
top surface is fixed and the rough bottom one is moving
velocity U1x , the net mean flow due to sliding isU1x^h&.
This exactly corresponds to the volume of dragged valle

Fig. 5 Comparison of shear stress flow factors fsx calculated
for the stationary case „smoothÕrough, solid line … and the un-
stationary one „roughÕrough, dotted line …. Same conventions as
Fig. 3 have been used.

Fig. 6 Comparison of shear stress flow factors f f calculated
for the stationary case „smoothÕrough, solid line … and the un-
stationary one „roughÕrough, dotted line …. Same conventions as
Fig. 3 have been used.
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moving at the bottom surface velocity. This illustrates t
coupled influence of geometry and kinematics on the m
flow due to sliding.

• In the stationary case, Couette shear stress flow factorsf f

andf f sx ~Figs. 6 and 7!diverge ase21/2 near contact.f f is
always positive whereas the sign off f sx depends on the con
sidered configuration.f f sx.0 when the top surface is
smooth andf f sx,0 otherwise. This induces significant di
ferences on the asymptotic behaviors of mean shear stres
each surface. We recall that the top surface experienc
mean shear stress proportional tof f1f f sx while propor-
tional tof f2f f sx for the bottom one. Thus, in the stationa
case, the rough surface experiences a mean shear stre
verging near contact ase21/2, while the mean shear stres
tends to zero on the smooth surface. Obviously, this is o
true in an average sense. Locally, the shear stress value
be very high. As previously noted, this singular behavior
related to the symmetry of the aperture geometry around
contact point.

• In the unstationary configuration, the flow factorsf f and
f f sx diverge logarithmically near contact~Figs. 6 and 7!. The
log-log plot in the inset displays the comparison between
algebraic and logarithmic divergence.f f sx depends howeve
on the surface amplitude difference, and is equal to z
when surfaces amplitude are identical. The ‘‘Couette’’ me
shear stress experienced by each surface is positive an
verges logarithmically. Hence, here, the unsteadiness of
aperture field leads to a striking modification of shear str
behavior compared to the smooth-rough case. The lo
squeeze effects induced by the time evolution of the aper
field modify continuously the flow structure. As a result, pre
sure generation may occur in a divergent. This effect can
occur in the steady smooth-rough case.

Lastly, when two rough surfaces are not intercorrelated, the fl
factorsfs andf f s , of each surface, can be expressed in terms
the corresponding flow factors of the smooth/rough case@2,5#,

fs5
s1

22s2
2

s2 FsS hm

s D f f s5
s1

22s2
2

s2 F f sS hm

s D (25)

2 2

Fig. 7 Comparison of shear stress flow factors f fsx calculated
for the stationary and the unstationary one. Same conventions
as Fig. 3 have been used.

where s is the composite roughness as defined previously (s
5As 11s 2) and Fs , F f s  correspond to the smooth/rough case.

Clearly, these relations do no apply to the surfaces considered
in the present paper ~as can be easily checked analytically!. In our  
case, the inter-correlation function is different from zero when 
both surfaces are rough and the composite roughness approxima-
tion associated with Eq. ~25! is not valid.
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Conclusions
Newtonian lubricant flow between two unidirectional wav

sinusoidal surfaces in sliding motion has been studied. Anal
expressions have been derived for flow factors describing
roughness impact on the macroscopic flow and shear. Two c
have been distinguished. In the first one, accounting for deco
lated surfaces, the aperture field is stationary and one of the
surfaces is smooth. Flows factor are then stationary and comp
from simple spatial averaging. On the contrary, in the second c
accounting for correlated surfaces~rough/rough case!, the spa
tially averaged flow factors are time periodic. A temporal avera
leads to significant differences in the flow factor expressions. T
obtained differences, can be regarded as resulting from the su
inter-correlation. Accordingly, the rough/rough situation inves
gated in the present paper is an example for which the compo
roughness concept does not apply.

It is clearly expected that the observed drastic inter-correla
influence is enhanced by the deterministic nature of the cho
geometry as well as the considered roughness one-dimens
character. Nevertheless, for one-dimensional anisotropic surfa
averaged stochastic geometries will share common features
our analysis.
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~LMS!, Collège de France~PMC!, ECL ~LTDS!, INPT~IMFT!,
INSA de Lyon ~LMC!, ENSMP~CEMEF!. The authors thank P
Montmitonnet for his remarks and suggestions.

Nomenclature

a, b 5 bottom surface and top
surface amplitudes

Ae 5 a/hm
Be 5 b/hm

C12( l ,t) 5 inter-correlation function between
the two surfaces

h(x,t) 5 aperture field between the two
surfaces

h̃i 5 spatial fluctuation of the surfacei
hm5h2o2h1o5a1b1d 5 distance between surfaces mean

plane which coincides with the
mean distance between the two
surfaces

^hi&5hio 5 mean plane of surfacei with i
51,2

He 5 h/hm
I 5 identity tensor

k2 5 4AeBe/12(Be2Ae)
2

K1 5 elliptic integral of the first kind
K3 5 elliptic integral of the third kind

q 5 unit flow
qd 5 unit flow near contact
p2 5 4AeBe/21(Be2Ae)

2

t 5 time
t0 5 initial time

T5l/U2x2U1x 5 time period
Ui 5 surface velocity
x 5 coordinate perpendicular to the

streak’s direction
X 5 2px/l
y 5 coordinate parallel to the

streak’s direction
e 5 d/s
d 5 minimum local aperture
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f i 5 phase of surfacei at t5t0
f, f f p 5 Poiseuille flow factors

tensors
fs , f f , f f s 5 Couette flow factors tensors

Fsx5fsx 5 when surface 2 is smooth
F f sx5f f sx 5 when surface 2 is smooth

l 5 wave length of sinusoidal surface
m 5 fluid dynamic viscosity

s15Aa2/2, s25Ab2/2 5 bottom surface, and top surface
r.m.s roughness

s5As1
21s2

2 5 composite r.m.s roughness
S 5 s/hm
t 5 macroscopic tangential shear

stress
td 5 macroscopic tangential shear

stress near contact
^ & 5 spatial average

Appendix A

Derivation of Eq. „3…. Starting from Eq.~2!,

He~X,t !511Be sin~X2v2t1w2!2Ae sin~X2v1t1w1!

He(X,t) can be expressed in terms of sin(X) and cos(X) as

He~X,t !511sin~X!@Be cosF22Ae cosF1#

1cos~X!@Be sinF22Ae sinF1#

whereF i52v i•t1w i ( i 51,2).
Then, defining the angleu by

tanu5
Be sinF22Ae sinF1

Be cosF22Ae cosF1

allows one to expressHe(X,t) as

He~X,t !511
@Be cosF22Ae cosF1#

cosu
$sinX cosu1cosX sinu%

which gives

He~X,t !511
@Be cosF22Ae cosF1#

cosu
sin~X1u!

As cos2 u51/(11tan2 u) one finally obtains

He~X,t !511AAe
21Be

222AeBe cos@F22F1# sin~X1u!

Sommerfeld Integral. As can be seen from Eqs.~7!–~11!,
the computation of flow factors necessitate the evaluation of
spatial averageŝHe

3&, ^He
2n&, n52,3, and^(H̃1e1H̃2e)/He

n&, n
52,3.

These averages reads,

^He
3&5

1

2p E
0

2p

~11Ce~ t !sin~x1ue~ t !!3dx,

^He
2n&5

1

2p E
0

2p 1

~11Ce~ t !sin~x1ue~ t !!n dx,

K H̃1e1H̃2e

He
n L 5

1

2p E
0

2p Be sin~x1F2!1Ae sin~x1F1!

~11Ce~ t !sin~x1ue~ t !!n .

2 2

Recalling that

Ce ~ t !5AAe 1Be 22Ae Be cos@~v 12v 2!t1w 22w 1#

The evaluation of the first integral is trivial. The second and third 
integrals are a little more difficult. They can be expressed in terms 
of integrals of the form
the

S~m,n!5
1

2p E
0

2p cosmx

~11C cosx!n dx

These integrals~referred to as Sommerfeld integrals, see for
stance@17#! can be evaluated analytically. The most useful form
las for our problem are the cases wherem can take integer values
0 or 1 and n51,2,3.

S~0,1!5
1

A12C2
S~0,2!5

1

~12C2!3/2 S~0,3!5
21C2

2~12C2!5/2

S~1,2!5
2C

~12C2!3/2 S~1,3!5
23C

2~12C2!5/2

This leads to the expressions of flow factors given by Eq.~11!.
One can refer to@23# for more details

Elliptic Integrals. Let us first consider the definition of Ellip
tic integral of the first kind:

K1~k2!5E
0

p/2 dv

A12k2 sin2 v
5

p

2
FS 1

2
;

1

2
;1;k2D

whereF is the hyper-geometric function as described in@23#. In
general, this integral must be evaluated numerically~see @24#!.
Again, an analytical evaluation can be performed near con
~i.e., whenk2→1!. This yields

lim
k2→1

K1~k2!52
1

2
lnS 12k2

24 D
Let us now turn to Elliptic integral of the third kind:

K3~k2,p2!5E
0

p/2 dv

~11p2 sin2 v !A12k2 sin2 v

Again, in the general case, this integral must be evaluated
merically, @24#.

Its asymptotic evaluation whenk2→1 can be derived from tha
of K1(k2) @23# since

lim
k2→1

K3~k2,p2!5
1

11p2 lim
k2→1

K1~k2!

Appendix B

Saddle Point Estimate of Flow Factors Near Contact. Let
us first turn our attention to the stationary case. The evaluatio
flow factors ~exceptfy , fsy , f f sy , and f f py which are trivial
ones! involves integrals of the form̂h2n&51/l*h2ndx. Near
contact, i.e., whene→0., these integrals are dominated by t
contribution associated with the lowest values ofh. For this rea-
son, it seems quite reasonable to seek an estimate of these
grals by the saddle point method@25#. Noting f 5h2n, this
amounts to estimatinĝf & asA2p/l f (0)3/2/A2 f 9(0) ~in a coor-
dinate system whereh5e at x50!. With h5e12a(1
2cos(2p/lx)), this leads to the following estimates ase→0:

fx→A3A2pe5/2 fsx→A2S 12
A3

A2
e D

f f→
1

A2p
e21/2 f f sx→

3~22A3!

2A2p
e21/2 f f px→A3

2
e

Scalings withe are in full agreement with the results of the dire
calculus~18!. The prefactors are correctly estimated forfx , fsx ,
f f px while not accurate forf f andf f sx . Such approximation can
be applied to the unstationary case, but fails. The direct comp
tion provides the explanation, as logarithmic divergence are
yond the scope of this rough estimate.
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