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Introduction

The impact of surface roughness on lubrication is an important problem for many applications, albeit quite a difficult one. From a geometrical point of view only, it requires the computation of the flow over a time dependent fluid domain resulting from the motion and deformation of the moving solid surfaces. The more complex the surface ͑e.g., random, multi scaled, tridimensional rough-ness͒, the more difficult it is to understand the interplay between the surfaces topography and the observed macroscopic pressure, flux, and shear. Additional physical effects, such as cavitation, piezoviscosity or compressibility, among others, may contribute to the complexity of the problem but will be ignored in the analysis since, for simplicity, as far as up-scaling is concerned, they are generally discarded ͓1,2͔.

There is nevertheless an important body of literature that have been interested in such up-scaling description of sliding surfaces lubrication since the first developments of Christensen ͓3͔ and Chow et Cheng ͓4͔. Different techniques have been used to derive macroscopic equations coupling the macroscopic flux, pressure and shear stress, with some ''flow factors'' that are related to the underlying surfaces geometry. Patir and Cheng ͓1,2͔ were the first to propose a heuristic model for general roughness patterns. Tripp ͓5͔ derived the correct tensorial form of the average flow model using a stochastic approach, while Bayada et al. ͓6,7͔ addressed the problem within the framework of the homogenization theory for spatially periodic structures and more recently volume averaging techniques ͓8͔ were used for macroscopisation of the flow between lubricated sliding surfaces with solid contacts ͓9͔.

The literature thus provides some averaged macroscopic model for lubricated sliding surfaces propounding a systematic method for the flow factors computation. The latter reference ͓9͔ has nevertheless pointed out that flow factors must be computed combining spatial and time average when the two surfaces are intercorrelated. Such correlation between solid surfaces occurs naturally during rolling process where roughness is transferred from the steel roll to the workpiece ͓10͔ as well as in any process where deformations conform the two pieces one another.

In the present paper, this precise issue is further analyzed considering a specific geometry for the sliding surfaces. Simple unidirectional sinusoidal wavy surface ͑Fig. 1͒ are chosen for careful investigation. Such one-dimensional anisotropic surface roughness, are relevant, in the context of laminating processes ͓10͔ or in those of magnetic recording disk ͓11-13͔ where surfaces presenting one-dimensional like streaks are commonly found. This problem is of interest from at least four points of view: ͑1͒ it is, to a great extent, amenable to analytical developments, and thus it could be interesting to estimate the impact of some coarse description of surface roughness on flux, pressure and shear without any numerical computations, ͑2͒ the flow factor behaviors near contact can be obtained analytically, ͑3͒ the obtained results can be useful for testing numerical computation procedures, in particular for close contact lubrication studies, for which we give an explicit analytical treatment ͑4͒ it sheds light on the influence of inter-correlation between surfaces. In particular, we show that the concept of composite roughness does not apply where two surfaces are inter-correlated. Obviously, considering sinusoidal roughness as model roughness is not a novelty in the lubrication literature, ͓14 -18͔. However, to the best of our knowledge, the complete hereby presented analytical developments have not been reported previously.

As in ͓9͔ and ͓19͔, the analysis is restricted to non-deformable surfaces, isoviscous Newtonian and incompressible fluids. Cavitation, if any, is ignored as well as temperature variations. The local slopes being small, the flow at the roughness scale is described by the Reynolds ͑lubrication͒ equation. The flow is generated by the relative surfaces motion and the macroscopic pressure gradient.

Geometry and Kinematics

Figure 1 illustrates the geometry of the problem. y ͑resp. x͒ is the coordinate associated with ͑resp. perpendicular to͒ the streak direction. The top surface-defined as surface number 2-is moving at velocity U 2 and the bottom one ͑surface 1͒ at velocity U 1 . Note that U 2 and U 1 are not necessarily collinear, and that there have zero vertical components. The characteristic wavelength of sinusoidal surfaces is the same on each surface. The surface amplitude is noted a and b respectively for surfaces 1 and 2. h is the local aperture and h m is the mean distance between the two sur- faces. h m can be defined as h m ϭaϩbϩ␦ where ␦ is the minimum local aperture between the two surfaces ͑Fig. 2͒. In order to study the flow factor behaviors near contact, we define the dimensionless variable ⑀ as ⑀ϭ␦/ where is the composite r.m.s roughness classically defined as ϭͱ 1 2 ϩ 2 2 ͑where 1 and 2 are the r.m.s roughness of each surface, which gives here 1 2 ϭa 2 /2 and 2 2 ϭb 2 /2͒. When surfaces touch one another, then ⑀ϭ0 ͑i.e., h m ϭaϩb͒. In this limit, permanent contact occurs only when one of the two amplitudes a or b is zero. The time and space evolutions of surfaces height h i , iϭ1,2, are given by

h i ͑ x,t ͒ϭh io ϩͱ2 i sin ͩ 2 ͑ xϪU ix t ͒ϩ i ͪ
where h io is the mean planes of surfaces i related to the distance between both surfaces mean plane h m ϭh 2o Ϫh 1o , and i is the surface phase at initial time t o . The aperture field h(x,t) then reads

h͑x,t ͒ϭh m ϩb sin ͩ 2 ͑ xϪU 2x t ͒ϩ 2 ͪ Ϫa sin ͩ 2 ͑ xϪU 1x t ͒ϩ 1 ͪ
Defining the following dimensionless quantities:

H ⑀ ͑ X,t ͒ϭ h͑x,t ͒ h m ; Xϭ 2x ;
(1)

A ⑀ ϭ a h m ϭ a aϩbϩ⑀ ; B ⑀ ϭ b h m
leads to express the local aperture in dimensionless form as

H ⑀ ͑ X,t ͒ϭ1ϩB ⑀ sin͑XϪ 2 tϩ 2 ͒ϪA ⑀ sin͑XϪ 1 tϩ 1 ͒ (2)
where surface iϭ1,2 pulsations are given by i ϭ2U ix /. According to Eq. ͑2͒, H ⑀ (X,t) can be regarded as the sum of two harmonic oscillators of pulsation 1 and 2 , respectively. Classical developments ͑Appendix A͒ lead to express H ⑀ (X,t) as

H ⑀ ͑ X,t ͒ϭ1ϩC ⑀ ͑ t ͒sin͑ Xϩ ⑀ ͑ t ͒͒ (3) 
with

C ⑀ ͑ t ͒ϭͱA ⑀ 2 ϩB ⑀ 2 Ϫ2A ⑀ B ⑀ cos͓͑ 1 Ϫ 2 ͒tϩ 2 Ϫ 1 ͔ (4)
and

⑀ ͑ t ͒ϭarctan ͫ B ⑀ sin͑ 2 Ϫ 2 t ͒ϪA ⑀ sin͑ 1 Ϫ 1 t ͒ B ⑀ cos͑ 2 Ϫ 2 t ͒ϪA ⑀ cos͑ 1 Ϫ 1 t ͒ ͬ (5)

Flow Factors Definition

As shown in ͓9͔, the unit flow averaged over the spatial period can be expressed through a macroscopic Reynolds equation:

ٌ•qϭ0 (6) ͗q͘ϭϪ h m 3 12 •ٌ͗p͘ϩ ͗h͘ 2 ͑ U 2 ϩU 1 ͒ϩ 2 s •͑U 1 ϪU 2 ͒
Where, in the case of mono-dimensional surface roughness, flow factor tensors , and s are diagonal and given by:

ϭ ͩ x 0 0 y ͪ ϭ ͩ 1 h m 3 ͗h Ϫ3 ͘ 0 0 ͗h 3 ͘ h m 3 ͪ , (7) s ϭ ͩ sx 0 0 sy ͪ ϭ ͩ 1 ͗h Ϫ3 ͘ ͳ h ˜1ϩh ˜2 h 3 ʹ h m 0 0 0 ͪ (8)
While the averaged shear takes the form:

͗͘ϭ 2 ͑ f Ϯ f s ͒•͑ U 2 ϪU 1 ͒Ϯ h m 2 f p •ٌ͗p͘ (9)
With diagonal shear flow factors of the form:

f ϭ f Iϭh m ͗h Ϫ1 ͘I (10) f s ϭ ͩ 3h m ͫͳ h ˜1ϩh ˜2 h 3 ʹ ͗h Ϫ2 ͘ ͗h Ϫ3 ͘ Ϫ ͳ h ˜1ϩh ˜2 h 2 ʹͬ 0 0 0 ͪ
where I is the identity tensor and 11) In these equations h ˜i is the height variation of surface iϭ1,2 around its mean plane, i.e., h i ϭ͗h i ͘ϩh ˜i . ͗h i ͘ denotes the super- ficial surface average of h i as defined in ͓9͔ and ͑12͒. Obviously, ͗h i ͘ϭh io .

f p ϭ ͩ f px 0 0 f py ͪ ϭ ͩ ͗h Ϫ2 ͘ h m ͗h Ϫ3 ͘ 0 0 ͗h͘ h m ϭ1 ͪ ( 
As pointed out in ͓9͔, Eqs. ͑6͒-͑11͒ are in complete agreement with the Patir and Cheng approach in this special case where the off-diagonal coefficient of the flow factor tensors are equal to zero. Being non-dimensional, the flow factors can be more appropriately expressed using dimensionless quantities H ⑀ , H ˜1⑀ , and H ˜2⑀ ͑note that H ⑀ ϭ1ϩH ˜2⑀ ϪH ˜1⑀ ͒. The expressions are similar to the above tensorial expressions, changing h and h ˜i by H ⑀ , H ˜i⑀ , for iϭ1,2 respectively, and the composite r.m.s roughness by its following dimensionless counterpart ⌺ϭ/h m ͑which is a function of ⑀͒. As all geometric quantities are spatially periodic, of period in the x direction, and independent of y, the superficial average ͗͘ of any function can be expressed in terms of the dimensionless coordinate X as ͗͑X,t͒͘ϭ

1 2 ͵ 0 2 ͑X,t͒dX (12) 
The derivation of flow factors involves evaluating ''Sommerfeld'' integrals described in Appendix A. These integrals are defined if and only if C ⑀ (t)Ͻ1. It can be easily shown that this condition is verified for ⑀Ͼ0 ͑non-contact condition͒. This leads to express the flow factors as Equations ͑3͒-͑5͒ show that H ⑀ (X,t) is harmonic only for the trivial case where 1 ϭ 2 , i.e., U 2x ϭU 1x ͑we recall that the wavelength of sinusoidal surfaces is assumed to be the same on each surface͒.

x ͑ t ͒ϭ 2͑1ϪC ⑀ ͑ t ͒ 2 ͒ 5/2 ͑ 2ϩC ⑀ ͑ t ͒ 2 ͒ y ͑ t ͒ϭ1ϩ 3 2 C ⑀ ͑ t ͒ 2 sx ͑ t ͒ϭ 3ͱ2͑A ⑀ 2 ϪB ⑀ 2 ͒ ͑ 2ϩC ⑀ ͑ t ͒ 2 ͒ͱA ⑀ 2 ϩB ⑀ 2 (13) f ͑ t ͒ϭ 1 ͱ1ϪC ⑀ ͑ t ͒ 2 f sx ͑ t ͒ϭ 3͑A ⑀ 2 ϪB ⑀ 2 ͒ ͑ 2ϩC ⑀ ͑ t ͒ 2 ͒ͱ1ϪC ⑀ ͑ t ͒ 2 f px ͑ t ͒ϭ 2͑1ϪC ⑀ ͑ t ͒ 2 ͒ ͑ 2ϩC ⑀ ͑ t ͒ 2 ͒
Expressions ͑13͒ show that flow factors depend on: ͑1͒ both surfaces amplitudes A ⑀ and B ⑀ ͑2͒ time through the resulting amplitude C ⑀ (t) which is a periodic function of period Tϭ/(U 2x ϪU 1x ). Thus, in general, the above flow factors are time periodic. It can be also seen that the flow factors x , y , f , f p are always positive, while the sign of the flow factors s , f s depends on the difference between surfaces amplitude.

At this stage, it is interesting to clearly distinguish two types of situation depending on the inter-correlation between the top and bottom surfaces. The intercorrelation function can be defined here as

C 12 ͑ l,t ͒ϭ 1 ͵ 0 ͑ h 1 ͑ x,t ͒Ϫ͗h 1 ͑ x,t ͒͘ ͒͑h 2 ͑ xϩl,t ͒Ϫ͗h 2 ͑ x,t ͒͘ ͒dx (14) 
which leads to

C 12 ͑ l,t ͒ϭ 1 2 cos ͩ 2 ͑ U 2x ϪU 1x ͒tϪ 2l ϩ 1 Ϫ 2 ͪ (15) 
Hence, the two aforementioned types of situations can be described as:

1. The case where there is no correlation between the two surfaces (C 12 (l,t)ϭ0). In this case one can consider that one of the two surfaces is smooth ͑for instance the top surface, 2 ϭ0͒, taking advantage on the surfaces roughness decorrelation. Then, in the referential frame of the moving rough surface, there is a permanent contact point in the limit ⑀ϭ0. Flow factors obtained in ͑13͒ become time independent. It is interesting to note that, in this case, the flow factors ͑as given by Eqs. ͑7͒, ͑8͒, and ͑9͒͒ can be expressed in terms of spatial averages involving only the local aperture h ͑since here h ˜2ϭ0 and hϭ͗h͘Ϫh ˜1͒:

⌽ sx ϭ 1 ͩ͗ h͘Ϫ ͗h Ϫ2 ͘ ͗h Ϫ3 ͘ ͪ ⌽ f sx ϭ3h m ͩͳ h Ϫ1 Ϫ ͗h Ϫ2 ͘ 2 ͗h Ϫ3 ͘ ͪ (16)
where the symbol ⌽ is used here ͑instead of ͒ for clearly stressing that the above equations are valid only for the smooth/rough case and do not apply to the rough/rough case. For this first case, the spatial average performed above is sufficient to determine the average behavior, for which C ⑀ (t)ϭC ⑀ ϭA ⑀ . 2. The case where there is a correlation between the upper and lower surfaces (C 12 (l,t) 0). Such correlation occurs naturally from elasto-plastic deformation during rolling process ͑see for example ͓10͔͒. Here, we examine the case where both surfaces are rough ͑A ⑀ 0 and B ⑀ 0͒ leading to a sinusoidal inter-correlation function ͑15͒. As can be seen from Eq. ͑15͒, the two surfaces are perfectly correlated when they are in phase and perfectly uncorrelated when out of phase. On the contrary to the first case, contact is intermittent in the limit ⑀ϭ0. The relative motion of the two surfaces induces time variations of the local apertures and slopes. Under these circumstances, a time average must follow the spatial average for obtaining the average behaviors ͑that also could be obtained by ensemble averaging over all relative positions of two surfaces in the x di-rection͒. This is consistent with the fact that the time average of the inter-correlation function of Eq. ͑15͒ is zero.

Therefore, these two types of situation are associated with two types of averaging. The first one, i.e., the spatial averaging, is classical, see for instance ͓2,20,21͔ and references therein. The second type-i.e., spatio-temporal average-has not been considered to our knowledge, for flow factors computation. Discarding the spatio-temporal flow factor dependence is equivalent to choose a surface inter-correlation function equal to zero. Time averaging aspect of the problem has been, however, pointed out by Elrod ͓22͔.

Flow Factors Computation

4.1 Smooth-Rough Stationary Case. One of the two surfaces is smooth. Let us assume that this is the top surface, i.e., bϭB ⑀ ϭ0, then C ⑀ ϭA ⑀ and flow factors trivially reads from ͑13͒

x ϭ 2͑1ϪA ⑀ 2 ͒ 5/2 ͑ 2ϩA ⑀ 2 ͒ y ϭ1ϩ 3 2 A ⑀ 2 sx ϭ 3ͱ2A ⑀ ͑ 2ϩA ⑀ 2 ͒ (17) f ϭ 1 ͱ1ϪA ⑀ 2 f sx ϭ 3A ⑀ 2 ͑ 2ϩA ⑀ 2 ͒ͱ1ϪA ⑀ 2 f px ϭ 2͑1ϪA ⑀ 2 ͒ ͑ 2ϩA ⑀ 2 ͒
One first notes that these flow factors have the expected behaviors for large gaps between surfaces, i.e., x , y , f , f px →1 and sx , f sx →0 ͑since A ⑀ →0 when ⑀→ϱ͒. Let us now consider their behaviors near contact, i.e., when ⑀→0. According to the definition of A ⑀ ͑Eq. ͑1͒͒, lim ⑀→0 A ⑀ ϭ1Ϫ⑀/ͱ2. This leads to the following flow factors behaviors near contact, when ⑀→0

x → 2 3

͑ ͱ2⑀͒ 5/2 y → 5 2 Ϫ 3 ͱ2 ⑀ sx →ͱ2Ϫ⑀ (18) f →͑ͱ2⑀ ͒ Ϫ1/2 f sx →͑ͱ2⑀ ͒ Ϫ1/2 f px → 2ͱ2 3 ⑀
As shown in Appendix B, these behaviors ͑except that of y ͒ can be obtained from the flow-factors definition itself using saddle point method, avoiding their explicit computation ͑17͒. Noting that ͗h͘ϭaϩ␦ (␦ϭ⑀) and ϭa/ͱ2, one obtains in terms of average unit flow when ⑀→0 goes to zero, for obvious geometrical reasons. The 5/2 exponent dependence reflects the specific parabolic structure of the aperture field near contact, and can be obtained from simple saddle point argument ͑Appendix B͒. This behavior is generic for symmetrical aperture around the minimum in the x direction but will be different for non symmetrical ones. Flux in the y direction is simply that expected from a plane geometry. Let us now turn to the macroscopic shear:

͗q x ␦ ͘→U 1x aϩU 2x ␦Ϫ 2ͱ2a 9 ␦ 5/2 ͗ץp͘ ץx (19) ͗q y ␦ ͘→ U 1y ϩU 2y 2 ͑ aϩ␦ ͒Ϫ a 3 12 ͩ 5 2 Ϫ3 ␦ a ͪ ͗ץp͘
͗ x ␦ ͑ h 2 ͒͘→͑ U 2x ϪU 1x ͒ 1 ͱ2a ␦ Ϫ1/2 ϩ 2 3 ␦ ͗ץp͘ ץx ͗ x ␦ ͑ h 1 ͒͘→Ϫ 2 3 ␦ ͗ץp͘ ץx (20) ͗ y ␦ ͑ h 2 ͒͘→͑ U 2y ϪU 1y ͒ 1 ͱ2a ␦ Ϫ1/2 ϩ a 2 ͗ץp͘ ץy ͗ y ␦ ͑ h 1 ͒͘→͑ U 2y ϪU 1y ͒ 1 ͱ2a ␦ Ϫ1/2 Ϫ a 2
͗ץp͘ ץy

As expected, the main macroscopic shear comes from the Couette contribution. The obtained behaviors display a rather drastic divergence as the minimum aperture ␦ decreases. Here again, the Ϫ1/2 exponent is geometry dependent, related to the aperture symmetry around the contact point. It is worth noting that the y direction shows a symmetrical shear behavior ͑i.e., same behavior on surfaces 1 and 2͒, while on the x direction the shear is fully asymmetric: the flat surface experiences a major shear, while the sinusoidal one is almost not sheared at all. This is nothing but a lubrication effect of the sinusoidal surface in the vicinity of which a fluid layer moving at velocity U 1x annihilates the Couette shear.

4.2 Rough-Rough Unstationary Case. In this case, A ⑀ 0 and B ⑀ 0. Time averaging ͑13͒ over one period T is not straightforward owing to elliptic integrals of the first kind (K 1 ) and third kind (K 3 ) for Couette shear stress flow factors ͑see Appendix A͒. The final expressions read

x ϭ 4͑1Ϫ͑B ⑀ ϪA ⑀ ͒ 2 ͒ 5/2 ͑2ϩ͑B ⑀ ϪA ⑀ ͒ 2 ͒ W͑k 2 ,p 2 ͒ y ϭ1ϩ 3 2 ͑ A ⑀ 2 ϩB ⑀ 2 ͒ sx ϭ 3ͱ2͑A ⑀ 2 ϪB ⑀ 2 ͒ ͱ͑A ⑀ 2 ϩB ⑀ 2 ͒͑2ϩ͑ B ⑀ ϪA ⑀ ͒ 2 ͒͑2ϩ͑ B ⑀ ϩA ⑀ ͒ 2 ͒ f ϭ 2 ͱ1Ϫ͑B ⑀ ϪA ⑀ ͒ 2 K 1 ͑ k 2 ͒ (21) f sx ϭ 6͑A ⑀ 2 ϪB ⑀ 2 ͒ ͑2ϩ͑B ⑀ ϪA ⑀ ͒ 2 ͒ͱ1Ϫ͑ B ⑀ ϪA ⑀ ͒ 2 K 3 ͑ k 2 ,p 2 ͒ f px ϭ 6 ͱ͑2ϩ͑B ⑀ ϪA ⑀ ͒ 2 ͒͑2ϩ͑ B ⑀ ϩA ⑀ ͒ 2 ͒ Ϫ2
where W is a definite and positive integral defined by

W͑k 2 ,p 2 ͒ϭ ͵ 0 /2 1Ϫk sin 2 v 5/2 dv ͑ 1ϩp 2 sin 2 v ͒ , k 2 ϭ 4A ⑀ B ⑀ 1Ϫ͑B ⑀ ϪA ⑀ ͒ 2 , p 2 ϭ 4A ⑀ B ⑀ 2ϩ͑B ⑀ ϪA ⑀ ͒ 2
These results show that the flow factors x , y , and f px , associated with the average pressure gradient are always positive as represented in Figs. 3 and4. The fluid can flow both in the direction perpendicular to streaks ͑i.e., along x͒ and in the direction parallel to streaks ͑i.e., along y͒ for the contact is only intermittent. As before, the shear stress flow factors sx and f sx depend on the difference between the surface amplitudes. It can be shown that the elliptic integrals of first kind K 1 (k 2 ) and third kind K 3 (k 2 ,p 2 ) diverge when the two surfaces are near contact, i.e., when ⑀→0 and k 2 →1Ϫ⑀/2(1/aϩ1/b). As a result the flow factors behave asymptotically as ⑀→0

x → 32 These results display a drastic difference from the stationary case ͑18͒. First as already observed on results ͑21͒, flow factors x and f px converge to some positive constant which depends on the surfaces amplitude in a non trivial way, on the contrary to ͑18͒ where they tends to zero. These result simply indicate that even in the contact limit the aperture instationarity is a sufficient mechanism to produce flow and shear through pressure gradient in both x and y direction. Secondly, shear flow factors f and f sx diverge in the vicinity of contact, as observed in ͑18͒. Nevertheless, this divergence is quantitatively very different, being algebraic in ͑18͒ and logarithmic in ͑22͒. Such behavior can not be predicted using a saddle point approximation due to his non algebraic nature. It is nevertheless a result specific to the chosen geometry.

͑ ab͒ 3/2 ͑ aϩb ͒ 3 ͭ p ͩ 1ϩ 1 p 2 ͪ 2 arctan͑ p ͒Ϫ 5 6 Ϫ 1 p 2 ͮ y →1ϩ 3 2 ͩ a 2 ϩb 2 ͑ aϩb ͒ 2 ͪ sx → ͱ6͑a 2 Ϫb 2 ͒ ͱ͑a 2 ϩb 2 ͓͒2͑ aϩb ͒ 2 ϩ͑aϪb ͒ 2 ͔ f →Ϫ ͑ bϩa ͒ 2ͱab ln ͫ ⑀ 32 ͩ 1 a ϩ 1 b ͪͬ (22) f sx →Ϫ ͑ aϪb ͒ 2ͱab ln ͫ ⑀ 2 5 ͩ 1 a ϩ 1 b ͪͬ f px → 2ͱ3͑aϩb ͒ ͱ͓2͑aϩb͒ 2 ϩ͑aϪb ͒ 2 ͔ Ϫ2
As a result, the average stress on surfaces in x direction, which is given, in the ⑀→0 limit by

͗ x ␦ ͑ h 2 ͒͘→ ͑ U 1x ϪU 2x ͒ ͑aϩb ͒ ͱ a b ln ͫ ␦ 2 5 ͩ 1 a ϩ 1 b ͪͬ ϩ ͑ aϩb ͒ 2 f px ͗ץp͘ ץx (23) ͗ x ␦ ͑ h 1 ͒͘→ ͑ U 1x ϪU 2x ͒ ͑aϩb ͒ ͱ a b ln ͫ ␦ 2 5 ͩ 1 a ϩ 1 b ͪͬ Ϫ ͑ aϩb ͒ 2 f px ͗ץp͘ ץx
also diverges logarithmically. Nevertheless, on the contrary to previous results ͑20͒ the Couette contribution to the shear in the x direction is now symmetrical on both surfaces, reflecting the geometry symmetry.

Regarding the average shear stress in the y direction, its behavior when ⑀→0 reads

͗ y ␦ ͑ h 2 ͒͘→ ͑ U 1y ϪU 2y ͒ ͑aϩb ͒ ͱ b a ln ͫ ␦ 2 5 ͩ 1 a ϩ 1 b ͪͬ ϩ ͑ aϩb ͒ 2 ͗ץp͘ ץy (24) ͗ y ␦ ͑ h 1 ͒͘→ ͑ U 1y ϪU 2y ͒ ͑aϩb ͒ ͱ a b ln ͫ ␦ 2 5 ͩ 1 a ϩ 1 b ͪͬ Ϫ ͑ aϩb ͒ 2 ͗ץp͘ ץy

Discussion

The previously computed flow factors are sketched in Figs. 3-7 in order to investigate the composite roughness approximation in the context of sinusoidal surfaces. The flow factors displayed in these figures have been carefully compared with a direct numerical integration of expression Eqs. ͑7͒-͑11͒. Such numerical integration is in full agreement with the analytical results presented in the previous section. Both smooth/rough and rough/rough configuration are chosen with the same composite roughness leading to a rough surface amplitude ͱ2a in the smooth/rough case and aϭb in the rough/rough one.

For this particular choice, the Couette flow factors of the unstationary case are equal to zero ͑ sx ϭ0 and f sx ϭ0͒. The asymptotic behaviors near contact deduced from the saddle point approximation ͑Appendix B͒ are also represented. These figures illustrate the following points:

• As shown in Figs. 3 and4, the''Poiseuille'' flow factors x and f px tend to zero near contact in the stationary case ͑smooth/rough͒, because, in this limit, contact permanently clogs the flow. Then, the fluid cannot migrate from one valley to the another whatever the pressure gradient is in the x direction. It is interesting to observe the quality and range of validity of the saddle point approximation in the close contact region shown in the insets of Figs. 3 and4. This domain gives the region for which macroscopic behavior is dominated by the local structure of the aperture field near contact. On the contrary, in the unstationary case ͑rough/rough͒, flow factors x and f px tend towards non zero constants in the contact limit. A fluid flow in the x direction driven by an average pressure gradient is then possible owing to the intermittent nature of contact.

• The shear flow factor sx depends on the difference between the standard deviations of each surface. Hence, it can be either positive or negative. Interestingly, sx is zero at contact in the particular case where the surfaces are strictly identical ͑Fig. 5͒. Roughness contribution to mean flow in the x direction due to the surfaces relative sliding is then canceling out.

We recall from ͑6͒ that the mean flow due to sliding in the x direction is made up of two components. The first one is the Couette mean flow (U 2x ϩU 1x )͗h͘/2. The second one, (U 1x ϪU 2x ) s /2, is associated with the additional drag due to roughness. In the stationary case ͑smooth/rough͒ when the top surface is fixed and the rough bottom one is moving at velocity U 1x , the net mean flow due to sliding is U 1x ͗h͘.

This exactly corresponds to the volume of dragged valleys moving at the bottom surface velocity. This illustrates the coupled influence of geometry and kinematics on the mean flow due to sliding. • In the stationary case, Couette shear stress flow factors f and f sx ͑Figs. 6 and 7͒ diverge as ⑀ Ϫ1/2 near contact. f is always positive whereas the sign of f sx depends on the considered configuration. f sx Ͼ0 when the top surface is smooth and f sx Ͻ0 otherwise. This induces significant differences on the asymptotic behaviors of mean shear stress on each surface. We recall that the top surface experiences a mean shear stress proportional to f ϩ f sx while proportional to f Ϫ f sx for the bottom one. Thus, in the stationary case, the rough surface experiences a mean shear stress diverging near contact as ⑀ Ϫ1/2 , while the mean shear stress tends to zero on the smooth surface. Obviously, this is only true in an average sense. Locally, the shear stress value can be very high. As previously noted, this singular behavior is related to the symmetry of the aperture geometry around the contact point. • In the unstationary configuration, the flow factors f and f sx diverge logarithmically near contact ͑Figs. 6 and 7͒. The log-log plot in the inset displays the comparison between the algebraic and logarithmic divergence. f sx depends however on the surface amplitude difference, and is equal to zero when surfaces amplitude are identical. The ''Couette'' mean shear stress experienced by each surface is positive and diverges logarithmically. Hence, here, the unsteadiness of the aperture field leads to a striking modification of shear stress behavior compared to the smooth-rough case. The local squeeze effects induced by the time evolution of the aperture field modify continuously the flow structure. As a result, pressure generation may occur in a divergent. This effect cannot occur in the steady smooth-rough case.

Lastly, when two rough surfaces are not intercorrelated, the flow factors s and f s , of each surface, can be expressed in terms of the corresponding flow factors of the smooth/rough case ͓2,5͔, 25) 2 2

s ϭ 1 2 Ϫ 2 2 2 ⌽ s ͩ h m ͪ f s ϭ 1 2 Ϫ 2 2 2 ⌽ f sͩ h m ͪ ( 

Conclusions

Newtonian lubricant flow between two unidirectional wavy sinusoidal surfaces in sliding motion has been studied. Analytic expressions have been derived for flow factors describing the roughness impact on the macroscopic flow and shear. Two cases have been distinguished. In the first one, accounting for decorrelated surfaces, the aperture field is stationary and one of the two surfaces is smooth. Flows factor are then stationary and computed from simple spatial averaging. On the contrary, in the second case accounting for correlated surfaces ͑rough/rough case͒, the spatially averaged flow factors are time periodic. A temporal average leads to significant differences in the flow factor expressions. The obtained differences, can be regarded as resulting from the surface inter-correlation. Accordingly, the rough/rough situation investigated in the present paper is an example for which the composite roughness concept does not apply.

It is clearly expected that the observed drastic inter-correlation influence is enhanced by the deterministic nature of the chosen geometry as well as the considered roughness one-dimensional character. Nevertheless, for one-dimensional anisotropic surfaces, averaged stochastic geometries will share common features with our analysis.

Nomenclature

a, b ϭ bottom surface and top surface amplitudes A ⑀ ϭ a/h m B ⑀ ϭ b/h m C 12 (l,t) ϭ inter-correlation function between the two surfaces h(x,t) ϭ aperture field between the two surfaces h ˜i ϭ spatial fluctuation of the surface i h m ϭh 2o Ϫh 1o ϭaϩbϩ␦ ϭ distance between surfaces mean plane which coincides with the mean distance between the two surfaces ͗h i ͘ϭh io ϭ mean plane of surface i with i ϭ1,2 where is the composite roughness as defined previously ( ϭͱ 1 ϩ 2 ) and ⌽ s , ⌽ fs correspond to the smooth/rough case. Clearly, these relations do no apply to the surfaces considered in the present paper ͑as can be easily checked analytically͒.In our case, the inter-correlation function is different from zero when both surfaces are rough and the composite roughness approximation associated with Eq. ͑25͒ is not valid. 

H ⑀ ϭ h/h m I ϭ identity tensor k 2 ϭ 4A ⑀ B ⑀ /1Ϫ(B ⑀ ϪA ⑀ ) 2 K 1 ϭ elliptic integral of the first kind K 3 ϭ elliptic integral of the third kind q ϭ unit flow q ␦ ϭ unit flow near contact p 2 ϭ 4A ⑀ B ⑀ /2ϩ(B ⑀ ϪA ⑀ ) 2 t ϭ
H ⑀ ͑ X,t ͒ϭ1ϩB ⑀ sin͑XϪ 2 tϩ 2 ͒ϪA ⑀ sin͑XϪ 1 tϩ 1 ͒
H ⑀ (X,t) can be expressed in terms of sin(X) and cos(X) as

H ⑀ ͑ X,t ͒ϭ1ϩsin͑ X ͓͒B ⑀ cos ⌽ 2 ϪA ⑀ cos ⌽ 1 ͔ ϩcos͑X ͓͒B ⑀ sin ⌽ 2 ϪA ⑀ sin ⌽ 1 ͔ where ⌽ i ϭϪ i •tϩ i (iϭ1,2).
Then, defining the angle by

tan ϭ B ⑀ sin ⌽ 2 ϪA ⑀ sin ⌽ 1 B ⑀ cos ⌽ 2 ϪA ⑀ cos ⌽ 1 allows one to express H ⑀ (X,t) as H ⑀ ͑ X,t ͒ϭ1ϩ ͓B ⑀ cos ⌽ 2 ϪA ⑀ cos ⌽ 1 ͔ cos ͕sin X cos ϩcos X sin ͖ which gives H ⑀ ͑ X,t ͒ϭ1ϩ ͓B ⑀ cos ⌽ 2 ϪA ⑀ cos ⌽ 1 ͔ cos sin͑Xϩ ͒
As cos 2 ϭ1/(1ϩtan 2 ) one finally obtains

H ⑀ ͑ X,t ͒ϭ1ϩͱA ⑀ 2 ϩB ⑀ 2 Ϫ2A ⑀ B ⑀ cos͓⌽ 2 Ϫ⌽ 1 ͔ sin͑Xϩ ͒ Sommerfeld Integral.
As can be seen from Eqs. ͑7͒-͑11͒, the computation of flow factors necessitate the evaluation of the spatial averages ͗H ⑀ 3 ͘, ͗H ⑀ Ϫn ͘, nϭ2,3, and ͗(H ˜1⑀ ϩH ˜2⑀ )/H ⑀ n ͘, n ϭ2,3. These averages reads,

͗H ⑀ 3 ͘ϭ 1 2 ͵ 0 2 ͑ 1ϩC ⑀ ͑ t ͒sin͑ xϩ ⑀ ͑ t ͒͒ 3 dx, ͗H ⑀ Ϫn ͘ϭ 1 2 ͵ 0 2 1 ͑ 1ϩC ⑀ ͑ t ͒sin͑ xϩ ⑀ ͑ t ͒͒ n dx, ͳ H ˜1⑀ ϩH ˜2⑀ H ⑀ n ʹ ϭ 1 2 ͵ 0 2 B ⑀ sin͑xϩ⌽ 2 ͒ϩA ⑀ sin͑xϩ⌽ 1 ͒ ͑ 1ϩC ⑀ ͑ t ͒sin͑ xϩ ⑀ ͑ t ͒͒ n . 2 2 S ͑ m,n ͒ ϭ 1 2 ͵ 0 2 cos m ͑ 1ϩC cos ͒ n d
These integrals ͑referred to as Sommerfeld integrals, see for instance ͓17͔͒ can be evaluated analytically. The most useful formulas for our problem are the cases where m can take integer values 0 or 1 and nϭ1,2,3.

S ͑ 0,1͒ ϭ 1 ͱ1ϪC 2 S ͑ 0,2͒ ϭ 1 ͑ 1ϪC 2 ͒ 3/2 S ͑ 0,3͒ ϭ 2ϩC 2 2͑1ϪC 2 ͒ 5/2 S ͑ 1,2͒ ϭ ϪC ͑ 1ϪC 2 ͒ 3/2 S ͑ 1,3͒ ϭ Ϫ3C 2͑1ϪC 2 ͒ 5/2
This leads to the expressions of flow factors given by Eq. ͑11͒.

One can refer to ͓23͔ for more details Elliptic Integrals. Let us first consider the definition of Elliptic integral of the first kind:

K 1 ͑ k 2 ͒ϭ ͵ 0 /2 dv ͱ1Ϫk 2 sin 2 v ϭ 2 F ͩ 1 2 ; 1 2 ;1;k 2 ͪ
where F is the hyper-geometric function as described in ͓23͔. In general, this integral must be evaluated numerically ͑see ͓24͔͒.

Again, an analytical evaluation can be performed near contact ͑i.e., when k 2 →1͒. This yields lim

k 2 →1 K 1 ͑ k 2 ͒ϭϪ 1 2 ln ͩ 1Ϫk 2 2 4 ͪ
Let us now turn to Elliptic integral of the third kind:

K 3 ͑ k 2 ,p 2 ͒ϭ ͵ 0 /2 dv ͑ 1ϩ p 2 sin 2 v ͒ͱ1Ϫk 2 sin 2 v
Again, in the general case, this integral must be evaluated numerically, ͓24͔.

Its asymptotic evaluation when k 2 →1 can be derived from that of K 1 (k 2 ) ͓23͔ since lim

k 2 →1 K 3 ͑ k 2 ,p 2 ͒ϭ 1 1ϩ p 2 lim k 2 →1 K 1 ͑ k 2 ͒

Appendix B

Saddle Point Estimate of Flow Factors Near Contact. Let us first turn our attention to the stationary case. The evaluation of flow factors ͑except y , sy , f sy , and f py which are trivial ones͒ involves integrals of the form ͗h Ϫn ͘ϭ1/͐h Ϫn dx. Near contact, i.e., when ⑀→0., these integrals are dominated by the contribution associated with the lowest values of h. For this reason, it seems quite reasonable to seek an estimate of these integrals by the saddle point method ͓25͔. Noting f ϭh Ϫn , this amounts to estimating ͗ f ͘ as ͱ2/ f (0) 3/2 /ͱϪ f Љ(0) ͑in a coor- dinate system where hϭ⑀ at xϭ0͒. With hϭ⑀ϩ2a(1 Ϫcos(2/x)), this leads to the following estimates as ⑀→0:

x →ͱ3ͱ2⑀ 5/2 sx →ͱ2 ͩ 1Ϫ ͱ3 ͱ2 ⑀ ͪ f → 1 ͱ2 ⑀ Ϫ1/2 f sx → 3͑2Ϫͱ3 ͒ 2ͱ2 ⑀ Ϫ1/2 f px →ͱ 3 2 ⑀
Scalings with ⑀ are in full agreement with the results of the direct calculus ͑18͒. The prefactors are correctly estimated for x , sx , f px while not accurate for f and f sx . Such approximation can be applied to the unstationary case, but fails. The direct computation provides the explanation, as logarithmic divergence are beyond the scope of this rough estimate.

Recalling that

C ⑀ ͑t͒ϭͱA ⑀ ϩB ⑀ Ϫ2A ⑀ B ⑀ cos͓͑ 1 Ϫ 2 ͒tϩ 2 Ϫ 1 ͔
The evaluation of the first integral is trivial. The second and third integrals are a little more difficult. They can be expressed in terms of integrals of the form
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 1 Fig. 1 Sketch of the situation studied
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 2 Fig. 2 Geometry in the plane yÄ0
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  From Eq. ͑19͒, it is interesting to note that the average Couette flow near contact in the x direction is made up of two contributions. The first one is the flow induced by the roughness corresponding to a fluid volume of mean thickness a transported at velocity U 1x . The second one is the flow induced by the top smooth surface carrying a small fluid volume of mean thickness ␦ at velocity U 2x . It is expected that the Poiseuille contribution to flow in the x direction, cancels out as the minimum aperture ␦

Fig. 3

 3 Fig. 3 Comparison of pressure flow factors x calculated for stationary case "smoothÕrough, solid line… and unstationary one "roughÕrough, dotted line…. The dashed line corresponds to the saddle point estimate near contact for the smoothÕrough case. The inset shows the log-log plot of x near contact with same conventions.

Fig. 5

 5 Fig. 5 Comparison of shear stress flow factors sx calculated for the stationary case "smoothÕrough, solid line… and the unstationary one "roughÕrough, dotted line…. Same conventions as Fig. 3 have been used.

Fig. 7

 7 Fig. 7 Comparison of shear stress flow factors fsx calculated for the stationary and the unstationary one. Same conventions as Fig. 3 have been used.
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