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Abstract

We address the problem of configuring a power distribution network
with reliability and resilience objectives by satisfying the demands of the
consumers and saturating each production source as little as possible. We
consider power distribution networks containing source nodes producing
electricity, nodes representing electricity consumers and switches between
them. Configuring this network consists in deciding the orientation of the
links between the nodes of the network. The electric flow is a direct con-
sequence of the chosen configuration and can be computed in polynomial
time. It is valid if it satisfies the demand of each consumer and capacity
constraints on the network. In such a case, we study the problem of de-
termining a feasible solution that balances the loads of the sources, that
is their production rates. We use three metrics to measure the quality of
a solution: minimizing the maximum load, maximizing the minimum load
and minimizing the difference of the maximum and the minimum loads.
This defines optimization problems called respectively min-M, max-m and
min-R.

In the case where the graph of the network is a tree, it is known
that the problem of building a valid configuration is polynomial. We
show the three optimization variants have distinct properties regarding
the theoretical complexity and the approximability. Particularly, we show
that min-M is polynomial, that max-m is NP-Hard but belongs to the
class FPTAS and that min-R is NP-Hard, cannot be approximated to
within any exponential relative ratio but, for any ε > 0, there exists an
algorithm for which the value of the returned solution equals the value of
an optimal solution shifted by at most ε.
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1 Introduction

Smart electrical distribution networks are becoming increasingly heterogeneous
[10] with a multiplication of sources of production of different natures and ca-
pacities (wind, solar, biomass, etc.) with a diverse geographical distribution
in particular at the scale of an urban territory. The configuration of these
resilient networks must be dynamically optimized [6] by guaranteeing a relia-
bility of service taking into account changes in the capacity of sources or in
consumer demands but also breakdowns or degradations due for example to
weather conditions [9, 11]. This dynamic configuration of the distribution net-
work is essential for the current development of smartgrids or microgrids [20]
implementing collective self-consumption grids interconnecting on a local ter-
ritory a set of prosumers (i.e. consumers able to produce, store and therefore
share energy) [2, 7, 10].

Configuring such a distribution network means deciding which components
(lines, sources, switches) should be activated or not. Reliability can be defined
as the capacity of the electrical system to supply electricity in the quantity
and with the quality demanded by consumers by using available sources reli-
ably and fairly. Thus, to guarantee reliability, the objective here is to find the
configuration satisfying the demands of the consumers [6, 18, 22] by saturating
as little as possible the production capacity of (heterogeneous) sources and the
flow capacity of links and switches [3, 5].

Configuration problems with reliability and resilience objectives are often
considered from a graph theory perspective [1, 19]. Thus, some solutions seek
balanced configurations in terms of load power [21] and other ones configure the
network in disjoint balanced subnetworks [12, 16, 20, 22], in particular in the
form of spanning trees or sub-DAGS [17].

But, as the electric flow in a network is a direct consequence of the chosen
configuration [21], the objective is more to determine if there exists a configu-
ration satisfying the production and capacity constraints and the consumption
demands than to compute an electric flow in a graph (such as in [8]). Moreover,
the reliability of a network can be guaranteed by the existence of a configura-
tion which does not use all the capacity of each link and each switch in order to
contain the impact of the snowball effect during breakdowns. So given a desired
maximum percentage s, the problem we solve allows us to determine if there is
a network configuration using each switch and each link at most s percents of
its capacity. This percentage is called the load of the node. In [3, 4] we prove
that this existence problem is NP-complete for general network topologies but
polynomial for trees.

This paper introduces an optimization perspective to the problem so that
the objective is now to determine a feasible configuration of the network where
the loads of the sources are as balanced as possible. Such a balance responds,
on the one hand, to the need to avoid saturating sources that would not be able
to adapt to failures or sudden changes in demand (to avoid snowball effects),
and, on the other hand, to propose a fair use of the energy produced by each
actor in the context of a collective self-consumption grid, for example [7, 10].
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We therefore introduce three metrics that can answer this problematic. As
done, in [3], we introduce the load reserve, which is the difference between the
maximum and the minimum loads of the sources. This load reserve should
be minimized. Another way to balance the network is also to maximize the
minimum load or minimize the maximum load. We show in this paper that,
when the network topology is a tree, the three problems have distinct proper-
ties regarding the theoretical complexity and the approximability. Minimizing
the maximum load is polynomial, which is a direct consequence of the result of
[4], while minimizing the load reserve and maximizing the minimum load are
strongly NP-hard problems. The two latter problems differ in their approxima-
bility. There exists an FPTAS when the objective is to maximize the minimum
load, but no polynomial approximation (with any exponential ratio) exists for
the other problem. Finally, for the two problems, there exists an FPTAS with
an absolute ratio, i.e., for any ε > 0, there exists an algorithm for which the
value of the returned solution is equal to the value of an optimal solution shifted
by at most ε.

The FPTAS algorithms are based on the fact that we can manipulate the
flows with a small precision. An interesting property is that, if we consider the
physical electrical network, we cannot (and we do not need) to do the calcu-
lations with a flow that has an infinite precision, and this limitation naturally
leads to an approximation algorithm that can run in polynomial time.

The paper is organized as follows. First, we define our model and the re-
lated computational problems. We then prove the polynomial and NP-hardness
results, and end with the approximability result.

2 Model

The electrical distribution network is represented by a graph G = (V,E) in
which there are three types of vertices S, W and P . S represents the set of
sources of the network; each vertex s ∈ S is characterized by a maximum supply
capacity denoted Prod(s) ∈ N∗. W corresponds to the set of switches; each
vertex w ∈ W has a maximum flow capacity Cap(w) ∈ N. And P represents
the set of sinks (or consumers); each vertex p ∈ P is characterized by a demand
Pow(p) ∈ N. The edges are the connections between the vertices. In the
following, we focus on graphs G that are trees.

Remark. Note that we do not require the sources or the sinks to be leaves of
the tree. Similarly, we do not require the switches to be internal nodes.

An orientation O of a graph G is a function associating each edge [u, v] ∈ E
with a couple (u, v) or (v, u) corresponding to the orientation of this edge. The
directed graph obtained with O must be a DAG to avoid circuits in the graph
of the electrical flow. In this paper we only focus on the case where G is a tree,
so the DAG constraint is necessarily satisfied.

Note that for a given orientation, a switch is activated only if it belongs to
at least one induced path from a source to a sink. The activation of the switches
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can thus be seen as a consequence of the orientation of the edges. Consequently,
in the rest of the paper, only the orientation will be considered to determine
the configuration of a network.

Note also that even if the use of expensive technologies based on diodes for-
bidding one direction of electric flow on a link is sometimes considered, they are
not deployed in large electrical distribution networks. This orientation of each
link of the graph is a consequence of the positions of sources and sinks on the
network and their demand and production values, with the consequence that a
brutal variation on production or demand can cause blackout situations (as the
northeast one in 2023). In our model however, we consider that the orientation
of the links is a decision variable (as for example in the case of restoration meth-
ods based on the search for the shortest paths considered as oriented from the
source to the sinks [15, 19]). On the one hand, this avoids having to complicate
the graph model by electrical considerations and on the other hand having to
calculate a flow at each step of the optimization algorithms. In practice, with
the considerations linked to the activation of the switches indicated above, the
optimal solutions finally obtained turn out to be a realistic approximation of
the real behavior of an electrical network in terms of orientation of the links,
which is particularly true in the case of trees [13]. Thus, an orientation of the
arcs can therefore be considered valid from the point of view of an electric flow
if for each arc (u,v), the total quantity of electricity in u is greater than the one
in v, which will always be the case in the configurations discussed.

2.1 Flow in the oriented tree and feasible orientation

Given an orientation O, the network G becomes a flow network with capacity
only on the switches, with multiple sources and sinks. Such a flow network can
be made compatible with the one used in [8], but the fundamental difference lies
in the constraints satisfied by the flow. In addition to the classical conservation
and capacity constraints, the (electric) flow entering each node in W ∪ P must
be equitably distributed over all its incoming arcs (i.e., the arcs are considered
equivalent to resistors with same resistance value). In the special case of a
source, the same constraint applies except that the source production itself
counts as an additional fictive arc. Consequently, the goal here is then not to
determine a maximum flow since it is unique and determined by the orientation:
since the directed graph we obtain with this orientation is a DAG, we can
compute it by going up from P . Our objective is to know if there exists an
orientation for which the implied unique flow satisfies the demands of the nodes
of P and respects the supply capacities of the sources of S and the capacities
of the switches of W . Figure 1 gives examples of an orientation and the flow
induced by that orientation.

Definition 1. Let O be an orientation of the edges of the graph G. Let Γ+(v)
and d−(v) be respectively the set of successors and the in-degree of v, the flow
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FO(u, v) going through each arc (u, v) entering v is

if v ∈ W, v ∈ S, v ∈ P

FO(u, v) =

∑
w∈Γ+(v)

FO(v, w)

d−(v)
,

∑
w∈Γ+(v)

FO(v, w)

d−(v) + 1
,

∑
w∈Γ+(v)

FO(v, w) + Pow(v)

d−(v)

Since u does not intervene in the formula, we also denote this value by FO(v).
We say the orientation O is feasible if:

• it satisfies the demand constraints: for every switch v ∈ W and every sink
v ∈ P , we have d−(v) > 0.

• it satisfies the capacity constraints: FO(v) · d−(v) ≤ Cap(v) for v ∈ W
and FO(v) ≤ Prod(v) for v ∈ S. Note that these capacity constraints
include a supply capacity constraint.

Example 1. Assuming the input network is the one shown in Figure 1a. We
give 5 examples of orientations, two of which satisfy the demand and the capacity
constraints. Note that sources may not be leaves and may have entering arcs
(as in Figure 1c).

Determining whether there is a feasible orientation for a given electrical
network leads to the following decision problem, which is shown to be NP-
complete for general graphs [3], but polynomial for trees [4].

Problem 1 (VALID). Given a graph G = (V,E), three functions Prod, Cap
and Pow, does there exist a feasible orientation O of G.

Theorem 1. [4] If G is a tree, VALID can be solved in time O(n4 log(n)). In
case of a positive answer, the algorithm builds a feasible orientation.

In the rest of the paper, we focus on this particular case where the input
graph is a tree T .

2.2 Optimization version

To evaluate the quality of a solution O, we consider the loads of the sources.

Definition 2. Given a feasible orientation O, the load of a source s ∈ S is
defined as the ratio loadO(s) = FO(s)/Prod(s).

Maximizing the minimum load, minimizing the maximum load or minimizing
the load reserve leads to a more balanced solicitation rate of the sources, knowing
that the more balanced these rates are, the more resistant the network is to
a reconfiguration in case of failures [12, 17]. Reliability and resilience of the
network are thus related to the following three optimization problems.
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s1

100

s2

20

w1

60

w2

20

w3

35

p1
50

p2
20

p3
10

(a) The instance, each node is
associated with a production,

capacity or power depending if it
is a source, a switch or a sink.

60/100 20/20

50

10

20

50 20

(b) m(O) = 0.6, M(O) = 1,
R(O) = 0.4.

5/100 75/20

55/20

5

10

75

50

55 55

20

(c) The capacity constraint is not
satisfied for w2 and s2.

70/100 10/20

60

10

10

50

10 10

20

(d) m(O) = 0.5, M(O) = 0.70,
R(O) = 0.2.

(e) The demand constraint is not
satisfied as p2 has no entering arc.

25

10

10

50

25 10

20

(f) The demand constraint is not
satisfied as w2 has no entering

arc.

Figure 1: Example of an instance and orientations for that instance. Throughout
the paper, we use triangles, circles and squares to represent sources, switches and
sinks respectively. For each orientation, it is explained if it is feasible according
to Definition 1. In this case, the metrics introduced in Definition 2 are given.

Problem 2 (max-m). Given a tree T = (V,E), three functions Prod, Cap and
Pow, compute an orientation O of T satisfying the demand and the capacity
constraints and maximizing the minimum load m(O) = min

s∈S
loadO(s).
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Problem 3 (min-M). Given a tree T = (V,E), three functions Prod, Cap and
Pow, compute an orientation O of T satisfying the demand and the capacity
constraints and minimizing the maximum load M(O) = max

s∈S
loadO(s).

Problem 4 (min-R). Given a tree T = (V,E), three functions Prod, Cap and
Pow, compute an orientation O of T satisfying the demand and the capacity
constraints and minimizing the load reserve R(O) = M(O)−m(O)

Example 2. Figure 1 gives examples of values for m(O), M(O) and R(O).
Note that this example shows that maximizing m(O) is not equivalent to mini-
mize R(O). Similarly, we could build an example where the solutions minimizing
M(O) are not the solutions minimizing R(O).

3 Complexity of max-m, min-M, min-R

In this section, we explore the classical complexity of the three problems. We
show that min-M is the easiest problem, since it is polynomial, while the other
two are strongly NP-Hard.

Theorem 2. min-M is polynomial

Proof. The core idea to solve min-M is to use a dichotomy with the algorithm of
Theorem 1. The dichotomy works as follows: at each iteration, we manipulate
an interval [a, b] containing the optimal maximum load (initialized with a = 0
and b = 1). We search for an orientation O with M(O) ≤ (a+ b)/2. If no such
orientation exists, then a becomes (a+ b)/2, otherwise, b becomes M(O).

To do so, we solve the construction problem associated to min-M that, given
a rational M ∈ [0; 1], asks for a feasible orientation O where M(O) ≤ M . This
problem can be answered by determining the validity of the instance where, for
every source s ∈ S, the production Prod(s) is truncated to M · Prod(s). By
the capacity constraint, the flow outgoing from s is less than M · Prod(s), con-
sequently, any feasible orientation O in that truncated instance is also feasible
in the original instance and satisfies M(O) ≤ M . Note that each production
should be an integer and that M ·Prod(s) can be not in N. We can get around
this problem by noticing that multiplying each production, capacity and power
by the same value does not change the instance. If M = p/q, then we can then
multiply all the values by q to get an equivalent instance where each production,
power and capacity is an integer.

The load reserve of any feasible orientation O is a rational that can be
encoded with a polynomial number of bits in the size of the instance. Then
there exists a value ε such that ⌊log(ε)⌋ is polynomial and, for any two distinct
feasible orientations O and O′, |M(O)−M(O′)| ≥ ε. So when b− a < ε, after
O(log(ε)) iterations, we stop and return the last found orientation O and the
corresponding value M(O).

Let σ = maxs∈S Prod(s) and Π =
∑

p∈P Pow(p). The load of a source is
either 0 or belongs to L = {p/q|p ∈ [1; Π] , q ∈ [1, nn ·σ]} Indeed, the flow cannot
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be greater that the value asked by the consumers, it cannot be divided more than
n times and is divided by at most n at each step, finally, in order to compute
the load, we divide the flow by at most the maximum source production. The
value ε is at least the minimum difference between two load reserves. Each load
reserve is a difference between two values of L. Thus ε ≥ 1/(nn · σ)4. The
number of iterations is then at most 4 ·n log(nσ). By Theorem 1, the dichotomy
is done in time at most O(n5 log(n) log(nσ)).

Theorem 3. max-m and min-R are strongly NP-hard. More precisely deter-
mining if there exists a feasible orientation O with R(O) ≤ 2

3 (respectively
m(O) ≥ 1

3) is NP-Complete.

Proof. We describe below a reduction from the Subset Sum problem where,
given n integers x1, x2, . . . , xn and an integer B, the question is to decide
whether there exists I ⊆ J1;nK such that

∑
i∈I xi = B. Let then I = (x1, x2, . . . , xn, B)

be such an instance.
This proof is done in three steps: first we describe a gadget to encode large

integers, then we describe the construction of the reduction and some properties,
and finally we prove the correctness of the reduction.

In the built instance, we will have M(O) = 1 if O is feasible, meaning that
maximizing the minimum load and minimizing the load reserve are equivalent.

Encode large numbers As Subset Sum is weakly NP-Complete, we cannot
use the values xi or B in the powers, capacities and productions of the in-
stance. First, we explain how it is possible to encode these integers with small
productions and powers. Let x ∈ N be any integer such that a binary encod-
ing of x + 2 is bp−1 · · · b1b0 (b0 is the lowest bit and bp−1 is the highest). Let
m ≥ p such that m ≥ 3, we set bp = bp+1 = · · · = bm−1 = 0. Then, we have

x+ 2 = bm−1 . . . b1b0 =
∑m−1

j=0 bj2
j .

We then build a path of size 2m containing alternatively, for j ∈ J1;mK, a
sink pj ∈ P with power Pow(pj) = 2+bj−1 and a source sj ∈ S with production
Prod(sj) = 2 if j = 1 and 3 otherwise. Finally, we assume that the source sm
has another neighbor v (which can be of any type). Figure 2 illustrates this
instance.

2 + b0

p1

2 + b1

p2

2 + bm−1

pm

2

s1

3

s2

3

sm v

Figure 2: Gadget equivalent to a sink with power 2 + x · 2−m where x + 2 =
bm−1 · · · b1b0. On the graph, each edge is directed toward the left as, otherwise,
some demand constraints or some capacity constraints are not satisfied. Below
each arc is given the flow going through the arc.

We now show an intermediate result showing that this path acts as a sink
of value 2 + x · 2−m.
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Fact 1. Given a feasible orientation O, then, for every j ∈ J1;mK, O([pj , sj ]) =
(sj , pj), for every j ∈ J1;m − 1K, O([pj+1, sj ]) = (pj+1, sj) and O([v, sm]) =
(v, sm). The load of each source sj is at least 0.5 and FO(v, sm) = 2 + x · 2−m.

Proof. We prove this property by induction on j, proving in addition that

FO(sj , pj) =
2j+1−2
2j−1 +

∑j−1
i=0 bi2

i+1−j .
[s1, p1] is directed toward p1 otherwise the demand constraint is not satisfied

for p1. In addition, O([s1, p2]) = (p2, s1) otherwise the flow outgoing from s1
is at least 3 which is greater than Prod(s1). The flow entering p1 is then

2 + b0 = 22−2
20 +

∑0
i=0 bi2

i. Thus, the property is satisfied for j = 1.
Assuming the property is true for all i ≤ j, we now show it is also true

for j + 1. The edge [sj+1, pj+1] is directed toward pj+1 otherwise the demand
constraint is not satisfied for pj+1. The flow FO(sj+1, pj+1) entering pj+1 is
then

2 + bj +
1

2

(
2j+1 − 2

2j−1
+

j−1∑
i=0

bi2
i+1−j

)
=

(
2 +

2j+1 − 2

2j

)
+

(
j−1∑
i=0

bi2
i−j + bj

)

=
2j+2 − 2

2j
+

j∑
i=0

bi2
i−j

If j + 1 ̸= m then O([sj+1, pj+2]) = (pj+2, sj+1) otherwise sj+1 must power
at least the flow FO(sj+1, pj+1) and half of Pow(pj+2), which is strictly greater
than (2j+2 − 2)/2j ≥ 3 = Prod(sj+1). If j + 1 = m then sm cannot power pm
alone as j + 1 = m ≥ 3 and then (2j+2 − 2)/2j > 3 = Prod(sm). The property
is then proved by induction.

Consequently, the flow FO(v, sm) entering sm is the flow entering pm divided
by 2.

FO(v, sm) =
2m+1 − 2

2m
+

m−1∑
i=0

bi2
i−m = 2 + (

m−1∑
i=0

bi2
i − 2) · 2−m = 2 + x · 2−m

Note that FO(sj) = FO(sj , pj)/2 is between 1.5 and 2.5 except when j = 1
where it is between 1 and 1.5. Then loadO(sj) is greater than 0.5.

Thus we can now use sinks with called powers 2− 2−mx for any integer x.

Build the instance In this part, we will explain how we build an instance
J = (T, Prod, Cap, Pow) of min-R and max-m from I = (x1, x2, . . . , xn, B)
using the previous gadget.

Without loss of generality, we assume that n is such that 0.1 > 2
3n+1 and

that B ≥ xi for all i ∈ J1;nK. We then choose m such that

1 > 2−mB; −1 < 2−m(B −
n∑

i=1

xi); ∀i ∈ J1;nK
2

3n+ 1
> 2−m2xi

Note that m is polynomial in n and the size of the encoding of xi and B.
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• We add 2n+2 switches w1, w2, . . . , wn, v1, v2, . . . , vn, w and wc with arbi-
trarily large capacities (for instance

∑
p∈P Pow(p)).

• We build n sinks pi with power 4−2−m2xi, for each i ∈ J1;nK, by building
the gadget of Figure 2 with x = 2m−2xi and where the node v is replaced
by a sink with power 1. We also build a sink p with power 2 + 2−mB by
using the gadget with x = B where the node v is the switch w. Note that
this procedure adds (2m+ 1) · n+ 2m nodes.

• We add n sinks q1, q2, . . . , qn with power 4 and a sink pc with power 10.

• We add 2n sources t1, t2, . . . , tn, r1, r2, . . . , rn with production 4; n sources
s1, s2, . . . , sn with production 2; a source s with production 6 and a source
sc with production 10.

• For each i ∈ J1;nK, we add the 7 edges [pi, ti], [ti, wi], [wi, w], [qi, ri],
[ri, vi], [vi, w] and [si, w].

• We add the edges [sn, wc], [wc, sc], [pc, sc] and [s, w].

Figure 3 illustrates this instance.

4− 2−m2x1

p1

4− 2−m2xn

pn

4

q1

4

qn

4 t1

4 tn

4 r1

4 rn

w1

wn

v1

vn

w

2 + 2−mB
p 6

s

2

s1

2

s2

2

sn

wc

sc
10

pc
10

...

...

Figure 3: Instance J of the reduction. Some edges are directed on the drawing,
other orientations for these edges imply that the capacity or the demand con-
straints are not satisfied. The powers and productions are written next to each
sink and source. Each switch can be considered to have an infinite capacity.
Note that the switch wc is not activated as no arc goes out of this switch.

This tree contains N = 2m · (n+ 1) + 7n+ 5 nodes (recall that p and each
sink pi are gadgets creating (2m+1) ·n+2m additional nodes), every power and
production is between 2 and 10 and every capacity is at most

∑
p∈P Pow(p) ≤

10 ·N . This construction of J is then done in polynomial time.

Properties of a feasible orientation of J Let O be any feasible orientation
of J . Due to the demand constraint, O([sc, pc]) = (sc, pc). Then the switch
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wc cannot be activated (the two incident edges of wc are directed toward it),
otherwise either sc powers some sink through wc which exceeds its production,
or sn powers at least a fraction 1

4 of Pow(pc), that is 2.5, which exceeds its
production too. Consequently, sc powers pc alone and loadO(c) = 1.

Note that if O directs one of the edges [s, w] or [si, w], for some i ∈ J1;nK,
from w then the flow outgoing from the source is 0. In that case, the load reserve
R(O) is 1 and the minimum load m(O) is 0. We then consider only feasible
orientations where this case does not occur.

Again, due to the demand constraint, O([w, p]) = (w, p) and, for each i ∈
J1;nK, we have O([pi, ti]) = (ti, pi) and O([qi, ri]) = (ri, qi).

We now assume that O([w,wi]) = (wi, w) for some i ∈ J1;nK. The flow
FO(wi, w) is at least FO(w, p)/(3n + 1) ≥ 2/(3n + 1). We can now examine
the orientation of [ti, wi]. If O([ti, wi]) = (wi, ti), the demand constraint is not
satisfied for wi which has no entering arc. On the other hand, if O([ti, wi]) =
(ti, wi), then FO(ti) = FO(ti, pi) + FO(ti, wi) ≥ 4 − 2−m2xi + 2/(3n + 1). As
we chose m so that 2/(3n + 1) > 2−m2xi and as the production of ti is 4, the
capacity constraint of ti is not satisfied. Consequently, O([w,wi]) = (w,wi).
Similarly, O([w, vi]) = (w, vi).

Hence, the only degree of freedom we have is to decide the orientation of the
edges [ti, wi] and [ri, vi].

We now detail the load of each source:

• loadO(sc) = 1

• For each i ∈ J1;nK, loadO(ri) = 1 if O([ri, vi]) = (ri, vi) and 0.5 otherwise.

• For each i ∈ J1;nK, loadO(ti) = 1 − 2−mxi/2 if O([ti, wi]) = (ti, wi) and
0.5− 2−mxi/4 otherwise. Note that m has been chosen so that 2−m2xi ≤
0.1. Consequently, the load of ti is at least 0.4875.

• By Fact 1, the load of each hidden source in the gadgets is at least 0.5.

• Let αv be the indexes i ∈ J1;nK such that O([ri, vi]) = (vi, ri) and αw be
those for which O([ti, wi]) = (wi, ti).

loadO(s) =
1

Prod(s) · (n+ 1)

2 + 2−mB +
∑
j∈αw

(2− 2−mxj) +
∑
j∈αv

2


=

1

6 · (n+ 1)

2 · (1 + |αw|+ |αv|) + 2−m(B −
∑
j∈αw

xj)


• For each i ∈ J1;nK, we have loadO(si) = 3 · loadO(s).

The load of s cannot be greater than 1
3 as, otherwise, for each i ∈ J1;nK, we

would have loadO(si) = 3 · loadO(s) > 1, which means that O is not feasible.
Consequently, m(O) = loadO(s).

11



Equivalence of the instances We end this proof by demonstrating that the
minimum load reserve of J is exactly 2

3 if and only if I is positive. Otherwise
it is strictly greater.

If I is positive, then there exists I ⊆ J1;nK such that
∑

i∈I xi = B. Let
O be the orientation where O([ti, wi]) = (wi, ti) and O([ri, vi]) = (ri, vi) if and
only if i ∈ I. In that case αw = I, αv = J1;nK\I and

∑
j∈αw

xj = B. Thus

loadO(s) =
1

6·(n+1) (2 · (1 + n) + 0) = 1
3 . The load of the sources si is 1. Thus

O is feasible, R(O) = 2
3 and m(O) = 1

3 .
If I is negative, then whatever the feasible orientation is, we have the relation

2−m(B −
∑

i:α(wi)=1 xi) ̸= 0. In addition, this value is lower than 2−mB < 1

and greater than 2−m(B −
∑n

i=1 xi) > −1.
Then 2 · (1 + |αw|+ |αv|) + 2−m(B −

∑
j∈αw

xj) cannot be an integer, thus we

have loadO(s) ̸= 1
3 . Consequently, loadO(s) <

1
3 , R(O) > 2

3 and m(O) < 1
3 .

This proves that min-R and max-m are strongly NP-Hard.

Remark. Theorem 3 also proves that no interesting parameterized algorithm
can be hoped for the decision versions of min-R and max-m (with respect to the
natural parameters of those problems).

Note also that we can arbitrarily increase the constant 2
3 of Theorem 3 (re-

spectively decrease the value 1
3) by increasing the production of s. We can also

decrease this constant (respectively increase), but in order to keep s to be the
source minimizing the load, we need to use a trick used later in the proof of
Theorem 4 in order to arbitrarily increase the load of all the sources.

4 Hardness of approximation for min-R

This section is devoted to extending the reduction of Theorem 3 in order to
prove that there is no efficient approximation algorithm for min-R unless P =
NP. Note that this proof does not apply to max-m. As we will see in the next
section, there is indeed an approximation algorithm for this problem.

Theorem 4. Unless P = NP, then, for any constant c ∈ N, there is no poly-
nomial approximation algorithm for min-R with ratio 2|T |c for a given tree T .

Proof. We use a construction that is similar to the one given in the proof of
Theorem 3 to build a GAP reduction from the Subset Sum problem. Let J
be the instance obtained in that proof, described in Figure 3. We then use the
same notations in this proof (particularly n, the number of variables xi in the
Subset Sum instance).

Let c ∈ N and r = 2|T |c . We set three values H ∈ N, ξ, L ∈ Q such that:

L = 2 +
2−m

r · (n+ 1)
;

2

L
< 1− ξ;

H

H + 10
≥ 1− ξ

Those values are polynomial with respect to the size of I (recall that log(r)
depends on |T | which is polynomial in |I|).

12



From J , we build an instance K by increasing the load of all the sources
except s. For each such source s′, we attach to s′ a sink with power H, and we
increase Prod(s′) by H. Thus the load of s′ is at least H/(H + 10) ≥ 1 − ξ.
Note that this operation does not change the feasibility of any orientation. It
also does not change the load of the source sc which is 1. For the source s, we
replace Prod(s) by L. Note that this production is not an integer, but if we
write L = p/q, we can simply multiply each power, capacity and production by
q to get an equivalent instance with integer productions, powers and capacities.

Given a feasible orientation O, the load of s is at most 2
L < 1 − ξ thus

min(O) = loadO(s).
Let αv be the indexes i ∈ J1;nK such that O([ri, vi]) = (vi, ri) and αw be

those for which O([ti, wi]) = (wi, ti).

loadO(s) =
1

L · (n+ 1)

2 · (1 + |αw|+ |αv|) + 2−m(B −
∑
j∈αw

xj)


If I is positive, then there exists I ⊆ J1;nK such that

∑
i∈I xi = B. Let

O be the orientation where O([ti, wi]) = (wi, ti) and O([ri, vi]) = (ri, vi) if and
only if i ∈ I. In that case αw = I, αv = J1;nK\I and

∑
j∈αw

xj = B. Thus the

load of s is loadO(s) =
1

L·(n+1) (2 · (1 + n) + 0) = 2/L. The load of the sources

si is 1. Thus O is feasible, and R(O) = 1− 2/L.
If I is negative, then whatever the feasible orientation is, we have the relation

2−m(B −
∑

i:α(wi)=1 xi) ̸= 0. The difference B −
∑

i:α(wi)=1 xi is necessarily

negative (otherwise the capacity of s is exceeded) and is an integer. Thus

2 · (1 + |αw|+ |αv|) + 2−m(B −
∑
j∈αw

xj) ≤ 2 · (n+ 1)− 2−m

loadO(s) ≤
2

L
− 2−m

L · (n+ 1)

R(O) ≥ 1− 2

L
+

2−m

L · (n+ 1)

However
1− 2

L + 2−m

L·(n+1)

1− 2
L

=
L− 2 + 2−m

n+1

L− 2
=

2−m

r·(n+1) +
2−m

n+1

2−m

r·(n+1)

= 1 + r

Consequently, any polynomial approximation for min-R with ratio strictly
less than 1 + r could decide in polynomial time whether I is positive or not.
Unless P = NP, there is no r-polynomial approximation for min-R.

13



5 Approximability of max-m and min-R

In this section, we prove that there exists an FPTAS1 for max-m and an FPTAS
with an absolute ratio2 for max-m and min-R. Note that this last result does
not contradict the inapproximability result of min-R as we do not use the same
metric: there is no FPTAS (with a relative ratio) for min-R, but there exists an
FPTAS with an absolute ratio.

The key idea to overcome the hardness of the reduction of Theorem 3 consists
in noticing that, for many feasible solutions O, the value m(O) is close to 1/3.
In particular, it seems that the flow obtained in the arc (s, w) does not depend
so much on the chosen orientation as this flow vary from 2 − ε to 2 (where ε
is a very small value). The problem is NP-hard because it is hard to achieve
the desired value 2, but it is not hard to get a value really close to 2. For
example, one can set O([wi, ti]) = (wi, ti) and O([vi, ri]) = (ri, vi) for all i, to

get loadO(s) = 1/3 + 2−m · (B −
n∑

j=1

xj)/(6 · (n+ 1)) > 1/3− 1/(6 · (n+ 1)).

Similarly, Theorem 4 shows that it is hard to find a feasible solution with
a small relative error for min-R. In the reduction, the load reserves of all the
feasible orientations are close to 0 as all the loads are close to 1. It is then not
hard to find a feasible solution with a very small load reserve, in which case we
achieve a very small absolute error. However, the relative error is very high as
the optimal value is almost 0.

In this context, one way to approximate the problem is to round the flow at
each step of the calculation to get rid of the small variations. This defines, for
each orientation, a new metric based on the rounded flow instead of the flow
itself in which we focus on the rounded load of each source (that is the output
rounded flow divided by the production of the source). Instead of searching for
an optimal solution, we will focus on finding a feasible orientation that minimizes
the rounded load reserve or maximizes the minimum rounded load.

Three main questions arise from this strategy:

• First, what makes the computation with the rounded flow easier? An im-
portant property of that flow is that there should be a polynomial number
of possible values of a rounded flow. This allows to enumerate all these
values and use them in a dynamic programming algorithm. Furthermore,
this allows to enumerate all the possible values of rounded loads and thus
all the possible objective values in polynomial time. To achieve such a
result, it is necessary not to use a linear rounding, that is rounding to

1A Fully Polynomial Time Approximation Scheme (or FPTAS) for a minimization problem
(respectively maximization problem) is an algorithm that, given a value ε > 0, returns a
feasible solution for which the objective value is equal to the optimal value multiplied by at
most 1 + ε (respectively 1 − ε). This algorithm is polynomial in the size of the instance and
in 1/ε.

2An FPTAS with absolute ratio for a minimization problem (respectively maximization
problem) is an algorithm that, given a value ε > 0, returns a feasible solution for which the
objective value is equal to the optimal value shifted by at most ε (respectively −ε). This
algorithm is polynomial in the size of the instance and in 1/ε.

14



the closest fraction of some value ε. Indeed, the real flow belongs to an
interval that has an exponential size. To overcome this difficulty, we use
a rounding that depends on the value of the flow: the larger the flow is,
the larger the rounding error is. To do so, we cut each interval [2i; 2i+1]
into

⌈
1
ε

⌉
pieces and we round the flow to the closest piece.

• Second, does this rounded flow provide a good approximation ratio? As
we compute the rounding flow from the sinks to the sources, the round-
ing error propagates and increases. We show that with a polynomially
small value ε this rounding error can be bounded by an arbitrarily small
constant.

• Third, our technique is, in some way, adapted from the FPTAS algo-
rithm for the Knapsack problem [14]. In this algorithm, the coefficients
of the objective functions are rounded but not those of the constraints,
which trivially makes the set of feasible solutions unchanged during the
rounding process. In our problem, the objective function and the capacity
constraints are based on the flow. Since the rounded flow is lower than the
real flow, there may be some orientations that are feasible with respect
to the rounded flow and not with the real flow. This is the tricky part
of the algorithm. We want the rounded flow to be used only to define a
new metric that is easier to optimize while not changing the set of feasible
solutions. Thus, we must somehow keep the real flow in the computation
to ensure that the capacity constraints are satisfied by any orientation
that can be given by algorithm. To do this, we will use a technique that
extends the one used in [4] to search for the existence of a feasible solution.

In this algorithm, for each possible orientation (u, v) of an edge, the algo-
rithm computes two values: the maximum flow that can be produced by
the sources and that can be sent to v through u, and the minimum flow
that can be demanded by the sinks and that should come from u through
v. If the former is greater than the latter, there exists a feasible orienta-
tion. This is done with a dynamic programming algorithm using the tree
structure of the graph. In the optimization variant of the problem, we
should search for the same two values (computed with the real flow also
with an extension of the dynamic programming algorithm of [4]) with the
additional constraint that the rounded loads of the sources lie in an inter-
val [m̃; M̃ ]. If such values exist, we know there exists a feasible solution

where the rounded load reserve is at most M̃ −m̃. By enumerating all the
possible couples of rounded loads, we get the desired feasible solution.

Note that this rounding method has a real physical meaning, since it is not
possible to manipulate an electrical flow with an infinite precision. Thus a flow
that is close to 2 will be measured as 2 and thus rounded. Consequently, the
approximate solution can be seen as the best solution that could be obtained
with regard to the physical constraints of the measurement.

This section is divided into three parts. The first part defines the rounded
flow and proves some useful properties about it. The second part proves the

15



approximation ratio of the algorithms. The last part is dedicated to the de-
scription of a polynomial time algorithm that optimizes the rounded loads of
the sources.

Definition 3. Throughout this section, we denote with n the size of T ; with Π
the sum

∑
p∈P Pow(p); and with N an arbitrary numbering of the nodes of T .

5.1 Rounding the flow and computing the rounding error

The goal of rounding the flow is to manipulate a polynomial number of possible
values in each arc.

Without rounding, the flow is a rational between 1/nn (as the flow can
be divided by at most n at most n times) and Π (which roughly leads to an
exponential number O(nnΠ) of possible values for the flow). A naive rounding
method would consist in fixing a value ε > 0 and rounding to the closest multiple
of ε/n. We can show that, as the rounding error propagates, it never exceeds ε
which leads to an ε-approximation ratio of the loads. However, this decreases
the number of values to εΠ which is only pseudo-polynomial.

To overcome this obstacle, one should note that there is no need to round
high flows to close values. Remember that we are interested in optimizing the
loads of the sources, which means that the rounding error of a high rounded
flow will be divided by the production of sources feeding that called power. And
a high power should be necessarily powered by a source with a high production
due to the capacity constraint. Consequently, the greater the flow value, the
greater the rounding error can be.

We now fix two values ε′ ∈]0; 1/2[ and ε = ε′/(n2+1)2 and define hereinafter
the rounded flow, the rounded minimum load and the rounded load reserve.

Definition 4 (Rounding a rational). Let f > 0 be a rational. If f ∈ [2i; 2i+1[
then we set the error e(f) = 2iε. We define a(f) as the closest multiple of e(f)

lower than f , that is a(f) =
⌊

f
e(f)

⌋
· e(f).

Lemma 1. a(f) ≥ f · (1− ε).

Proof. Let i such that f ∈ [2i; 2i+1[, then a(f) =
⌊

f
e(f)

⌋
· e(f) ≥ f − e(f) ≥

f − ε2i ≥ f − ε · f .

We now define the operator ⊕ that is the rounding version of
∑p

i=1 fi/d and
will be used in the formula of the rounded flow.

Definition 5. Let F = (f1, f2, . . . , fp) be rationals and d be an positive integer.
Then

⊕(F, d) =

{
0 if p = 0

a(⊕((f1, f2, . . . , fp−1), d) +
fp
d ) otherwise
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Remark. One may ask why we use this recursive formula leading to a(a(· · · a(a( f1d )+
f2
d ) + · · · ) + fp

d ) that accumulates many rounding errors where a(
∑p

i=1 fi/d)
seems to do the same job with less errors. This has to do with the complexity
of the approximation algorithm we will describe later. It is polynomial if we use
the recursive formula and exponential if we use the latter formula.

Lemma 2. ⊕(F, d) ≥ 1
d

p∑
i=1

fi · (1− ε)p.

Proof. The proof is done by induction on p. If p = 0, the two values equal 0.

If we assume that ⊕((f1, f2, . . . , fp−1), d) ≥ 1
d

p−1∑
i=1

fi · (1− ε)p−1.

Then

⊕(F, d) = a(⊕((f1, f2, . . . , fp−1), d) +
fp
d
)

By Lemma 1,

⊕(F, d) ≥
(
⊕((f1, f2, . . . , fp−1), d) +

fp
d

)
· (1− ε)

⊕(F, d) ≥ (
1

d

p−1∑
i=1

fi · (1− ε)p−1 +
fp
d
) · (1− ε)

As (1− ε)p ≤ 1− ε

⊕(F, d) ≥ (
1

d

p−1∑
i=1

fi +
fp
d
) · (1− ε)p

We can now define the rounded flow.

Definition 6 (Rounded flow). Let O be a feasible orientation.
Let d−(v) be the in-degree of v and (v1, v2, . . . , vp) be the set of successors

of v, ordered using the numbering N . The rounded flow F̃O(u, v) going through
each arc (u, v) entering v is

• if v ∈ W , F̃O(u, v) = ⊕((F̃O(v, vi))i∈J1;pK, d
−(v)) if d−(v) ̸= 0 and +∞

otherwise

• if v ∈ S, F̃O(u, v) = ⊕((F̃O(v, vi))i∈J1;pK, d
−(v) + 1)

• if v ∈ P , F̃O(u, v) = ⊕((Pow(v), F̃O(v, vi))i∈J1;pK, d
−(v)) if d−(v) ̸= 0 and

+∞ otherwise

We also denote by F̃O(v) this value as u does not intervene in the formula.
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Example 3. We reuse the network given in Figure 1. We show in Figure 4
the rounded flow of the orientations given in Figures 1b and 1d. We use the
parameter ε′ = 0.1. As n = 8, we have ε = ε′/(n2 + 1)2 ≃ 2.36 · 10−5.

We assume the numbering N of the nodes of T gives the following order:
(s1, s2, w1, w2, w3, p1, p2, p3).

On the two figures, the rounded flow F̃O(s1, p3) is ⊕((Pow((p3))), 1) =
a(Pow((p3))) = a(10). The value 10 is rounded to the highest multiple of
23 · ε ≃ 1.89 · 10−4 lower than 10, which is 23 · ε · 52812 ≃ 9.99991. We can
also compute F̃O(w3, p2) = a(20), the highest multiple of 24 · ε which is around

19.99981 and F̃O(w1, p1) = a(50), the highest multiple of 25 · ε which is around
49.99952.

On Figure 4a, F̃O(s1, w1) = a(F̃O(w1, p1)) = a(a(50)) is the highest multiple
of 25 · ε lower than a(50) which is exactly a(50) ≃ 49.99952. The same occurs

for F̃O(s2, p3) = 19.99981. The rounded flow in s1 is

F̃O(s1) = ⊕((F̃O(s1, w1), F̃O(s1, p3)), 1)

= a(a(F̃O(s1, w1)) + F̃O(s1, p3))

= a(a(a(a(50))) + a(10))

≃ 59.99943

Similarly, F̃O(s2) = 19.99981.

On Figure 4a, the same reasoning leads to F̃O(s2) ≃ 9.99991 and

F̃O(s1) = ⊕((F̃O(s1, w1), F̃O(s1, p3)), 1)

= a(a(F̃O(s1, w1)) + F̃O(s1, p3))

≃ a(69.99934)

≃ 69.99858

Recall that we set a constant ε′ and fixed ε = ε′/(n2 + 1)2. We now prove
that the rounding error that is propagated through the arcs of the tree does not
lead to a mistake greater than (1− ε′).

Lemma 3. Let O be a feasible orientation and (u, v) be an arc of the directed

tree, then F̃O(u, v) ∈ [FO(u, v) · (1− ε′);FO(u, v)].

Proof. The upper bound is trivial as we round down the flow. We prove the
lower bound by induction on p, where p is the length of a longest path from v
to a sink, that F̃O(u, v) ≥ FO(u, v) · (1− ε)np+1. Note that, if such a sink does
not exist, then the flow and the rounded flow going out of v is 0.

If p = 0 then v is a sink and there is no path from v to another sink. In
that case, F̃O(u, v) = ⊕((Pow(v)), d−(v)) = a(Pow(v)/d−(v)) = a(FO(u, v)) ≥
FO(u, v) · (1− ε) by Lemma 1.

We now assume that p > 0 and that the property is true for every node at
distance at most p− 1 from a sink. Let v be a node for which the farthest sink
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Figure 4: Example of rounded flow. Next to each arc and source is written the
rounded flow going through it.

is at distance p and let (v1, v2, . . . , vq) be the successors of v, ordered using the
numbering N . The longest path from vi to a sink is pi ≤ p− 1. By induction,
F̃O(v, vi) ≥ FO(v, vi) · (1− ε)npi+1 ≥ FO(v, vi) · (1− ε)n·(p−1)+1.

We also assume without loss of generality that v ∈ W . The calculations can
be easily adapted to the cases where v ∈ P or v ∈ S. Let

F̃O(u, v) = ⊕((F̃O(v, vi))i∈J1;pK, d
−(v))

By Lemma 2

≥ 1

d−(v)

q∑
i=1

F̃O(v, vi) · (1− ε)q
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As q ≤ n

≥ 1

d−(v)

q∑
i=1

F̃O(v, vi) · (1− ε)n

≥ 1

d−(v)

q∑
i=1

FO(v, vi) · (1− ε)n·(p−1)+1 · (1− ε)n

≥ 1

d−(v)

q∑
i=1

FO(v, vi) · (1− ε)np+1

≥ FO(u, v) · (1− ε)np+1

In addition, as p ≤ n

(1− ε)pn+1 ≥ (1− ε)n
2+1

As (1− ε)n
2+1 =

n2+1∑
i=0

(
n2+1

i

)
(−ε)i

(1− ε)pn+1 ≥
n2+1∑
i=0

(
n2 + 1

i

)
(−ε)i

(1− ε)pn+1 ≥ 1−
n2+1∑
i=1

(
n2 + 1

i

)
εi

As
(
a
b

)
≤ ab

(1− ε)pn+1 ≥ 1−
n2+1∑
i=1

(ε · (n2 + 1))i

As ε · (n2 + 1) = ε′

n2+1

(1− ε)pn+1 ≥ 1−
n2+1∑
i=1

(
ε′

n2 + 1

)i

(1− ε)pn+1 ≥ 1− (n2 + 1)
ε′

n2 + 1
= 1− ε′

5.2 Approximation factor

With the rounded flow, we can now define the rounded loads, and thus a rounded
version of m(O), M(O) and R(O).
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Definition 7 (Rounded objectives). Given a feasible orientation O, the rounded

load of a source s ∈ S is defined as the ratio l̃oadO(s) =
F̃O(s)

Prod(s) .

• The minimum rounded load m̃(O) is min
s∈S

l̃oadO(s).

• The maximum rounded load M̃(O) is max
s∈S

l̃oadO(s).

• The rounded load reserve R̃(O) is M̃(O)− m̃(O)

In this part we prove that a feasible solution minimizing the rounded load
reserve is a close approximation of the solutions minimizing the load reserve.
Similarly, a solution that maximizes the minimum rounded load approximates
the solutions that maximize the minimum load.

Note that rounding the flow may change the set of feasible orientations as
such a flow is lower than the regular flow FO and thus may be lower than some
capacity exceeded by the flow. However, hereinafter, by feasible solution, we
mean a solution satisfying the capacity constraints and the demand constraints
with the regular flow as explained in Definition 1, not with the rounded flow
F̃O, which only changes the metric used to measure the quality of the feasible
solutions. We show in the next subsection how to build solutions with good
rounded metrics in polynomial time even though we use the regular flow to
check the feasibility of the returned orientation.

Lemma 4. Let O∗ be an orientation maximizing m(O) and Õ a feasible solution

maximizing m̃(O) then m(Õ) ≥ m(O∗) · (1− ε′) and m(Õ) ≥ m(O∗)− ε′.

Proof. Let sm be the source with the lower (not rounded) load in Õ and s∗m be

the source with the lower rounded load in O∗, in other words: m(Õ) =
FÕ(sm)

Prod(sm)

and m̃(O∗) =
F̃O∗ (s∗m)
Prod(s∗m) .

By Lemma 3 and definition of m̃(Õ),

m(Õ) =
FÕ(sm)

Prod(sm)
≥

F̃Õ(sm)

Prod(sm)
≥ m̃(Õ)

As, by definition of Õ, it maximizes m̃(Õ), then

m̃(Õ) ≥ m̃(O∗) =
F̃O∗(s∗m)

Prod(s∗m)

By Lemma 3 and definition of m(O∗),

m̃(O∗) ≥ FO∗(s∗m)

Prod(s∗m)
· (1− ε′) ≥ m(O∗) · (1− ε′)
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Finally, as m(O∗) ≤ 1, we also have

m(O∗) · (1− ε′) ≥ m(O∗)− ε′

Lemma 5. Let O∗ be an orientation minimizing R(O) and Õ a feasible solution

minimizing R̃(O) then R(Õ) ≤ R(O∗) + 3ε′.

Proof. Let sm and sM be the sources with respectively the lower and higher
(not rounded) loads in Õ and let s∗m and s∗M be the sources with respectively
the lower and higher rounded loads in O∗, in other words:

• M(Õ) =
FÕ(sM )

Prod(sM ) and m(Õ) =
FÕ(sm)

Prod(sm) .

• M̃(O∗) =
F̃O∗ (s∗M )
Prod(s∗M ) and m̃(O∗) =

F̃O∗ (s∗m)
Prod(s∗m)

R(Õ) = M(Õ)−m(Õ) =
FÕ(sM )

Prod(sM )
−

FÕ(sm)

Prod(sm)

By Lemma 3,

R(Õ) ≤
F̃Õ(sM )

Prod(sM )
· 1

1− ε′
−

F̃Õ(sm)

Prod(sm)

By definition of M̃(Õ) and m̃(Õ)

R(Õ) ≤ M̃(Õ) · 1

1− ε′
− m̃(Õ)

As 1
1−ε′ = 1 + ε′

1−ε′ and M̃(Õ) ≤ 1

M̃(Õ) · 1

1− ε′
− m̃(Õ) ≤ M̃(Õ)− m̃(Õ) +

ε′

1− ε′
= R̃(Õ) +

ε′

1− ε′

As, by definition of Õ, it minimizes R̃(Õ), then

R̃(Õ) +
ε′

1− ε′
≤ R̃(O∗) +

ε′

1− ε′
=

F̃O∗(s∗M )

Prod(s∗M )
− F̃O∗(s∗m)

Prod(s∗m)
+

ε′

1− ε′

By Lemma 3

R̃(O∗) +
ε′

1− ε′
≤ FO∗(s∗M )

Prod(s∗M )
− FO∗(s∗m)

Prod(s∗m)
· (1− ε′) +

ε′

1− ε′
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By definition of M(O∗) and m(O∗)

R̃(O∗) +
ε′

1− ε′
≤ M(O∗)−m(O∗) · (1− ε′) +

ε′

1− ε′

Finally, as ε′ ∈]0; 1
2 [, then

ε′

1−ε′ ≤ 2ε′, and as m(O∗) ≤ 1

M(O∗)−m(O∗) · (1− ε′) +
ε′

1− ε′
≤ M(O∗)−m(O∗) + 3ε′

5.3 Compute a feasible orientation minimizing R̃(O) or
maximizing m̃(O) in polynomial time

Recall that we denote by n the size of the tree T and by Π =
∑

p∈P Pow(p).
We prove it is possible to return in polynomial time the approximate solutions
mentioned in Lemmas 4 and 5.

To do so, we adapt the algorithm of [4], which solved VALID in polynomial
time, to those problems.

We first prove the following lemma that states the number of distinct values
for a rounded flow is bounded by a polynomial.

Lemma 6. Let

F̃ = {F̃O(O([u, v])), (u, v) ∈ T,O is a feasible orientation}

Then, |F̃ | ≤ (n log(n) + log(Π) + 1)(1 + 1
ε ) + 1 = (n log(n) + log(Π) + 1)(1 +

(n+1)2

ε′ ) + 1 = O( 1
ε′ · (n

3 log(n) + n2 log(Π))).

Proof. Let f ∈ [2i; 2i+1[ then a(f) is the closest multiple of 2iε lower than

f . Those multiples belong to the interval [
⌊

2i

2iε

⌋
· 2iε; 2i+1] ⊂ [2i(1 − ε); 2i+1].

Then there are at most (2i+1 − 2i · (1 − ε))/2iε = 1 + 1/ε such multiples.
As a consequence, if the value i is between a and b then, there are at most
(1 + 1/ε) · (b− a) possible values for the rounded flow.

Let O be a feasible orientation, and (u, v) be an arc in that orientation, then

F̃O(u, v) ≤ FO(u, v) ≤ Π. Thus i ≤ log(Π).
The flow can also be split. This happens at most once per node in the tree

and each node has at most n entering arcs, thus the flow FO(u, v) cannot be

less than 1/nn unless if the flow is zero. By Lemma 3, F̃O(u, v) ≥ (1− ε′)/nn.
We recall that ε′ was chosen between 0 and 1/2, thus 1 − ε′ ≥ 1/2 and, then,
(1− ε′)/nn ≥ 1/(2 · nn) = 2−n log(n)−1. Consequently, i ≥ −n log(n)− 1.

Thus, the number of non null rounded flows is (1+1/ε)·(log(Π)−(−n log(n)−
1)). There is one additional possible rounded flow: the null flow.

23



5.3.1 Feasible semi-orientations

Given an edge [u, v], we consider the two trees Tu and Tv of the forest T\[u, v],
respectively containing u and v.

We consider a feasible orientation O of T , where O([u, v]) = (u, v). The flow

FO and the rounded flow F̃O in Tv and (u, v) do not depend on the orientation
of Tu. Similarly, the flow and the rounded flow in Tu depend only on the flow
and the rounded flow in (u, v) and on the orientation of Tu, but not on the
orientations of Tv. We express this idea with the notion of semi-orientations.

Definition 8. An semi-orientation HO outgoing from (u, v) is an orientation
of the edges of Tv and of [u, v] such that HO([u, v]) = (u, v). The calculations of

the flow FHO and rounded flow F̃HO in Tv∪{[u, v]} follow the Definitions 1 and
6. We say HO is feasible if it satisfies the demand and the capacity constraints
on the nodes of Tv.

Definition 9. An semi-orientation HO entering (u, v) is an orientation of the

edges of Tu and of [u, v] such that HO([u, v]) = (u, v). Given f ≥ 0 and f̃ ∈ F̃ ,

if we set FHO(u, v) = f and F̃HO(u, v) = f̃ then we can compute the flow FHO
and rounded flow F̃HO in Tu ∪ {[u, v]} with Definitions 1 and 6. We denote by

semi-orientation HO entering (u, v) with f and f̃ the triplet (HO, f, f̃) and we

write F(HO,f,f̃) and F̃(HO,f,f̃) the associated flows. We say (HO, f, f̃) is feasible

if and only if F(HO,f,f̃) satisfies the demand and the capacity constraints on the

nodes of Tu.

Remark. Considering a feasible semi-orientation HO outgoing from (u, v),
there is no constraint on the flow FHO(u, v): the demand and the capacity con-
straints should only be satisfied for the nodes of Tv.

Remark. Considering an semi-orientation entering (u, v) with f and f̃ , then,

even if v is a sink, there is no relation between f , f̃ and Pow(v).

Lemma 7. Given 0 ≤ f ′ < f and f̃ ∈ F̃ . If (HO, f, f̃) is feasible, then

(HO, f ′, f̃) is also feasible.

Proof. F(HO,f,f̃) satisfies the demand and the capacity constraint on the nodes

of Tu. As f ′ ≤ f , for every arc in Tu, F(HO,f ′,f̃)(u, v) ≤ F(HO,f,f̃)(u, v), thus

F(HO,f ′,f̃) also satisfies the demand and capacity constraints.

Example 4. In Figure 5, we reuse the example of Figure 1 to show examples
of feasible and not feasible semi-orientations.

5.3.2 Functions i and o

We adapt the notations M̃(O) and m̃(O) to the semi-orientations.

Given an semi-orientationHO outgoing from (u, v), M̃(HO) and m̃(HO) are
the maximum and minimum rounded loads of the sources in Tv (not including
u).
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s2

20/20

v
u

20

(a) Example of semi-orientation
entering (u, v). With f = 0 and

any value f̃ , this semi-orientation
is feasible. However, if f > 0, it is

not feasible anymore as the
capacity constraint is not satisfied

for s2.

5/100

v
55/60

u

55/20

50

10

(b) Example of semi-orientation
outgoing from (u, v). This

semi-orientation is feasible as all
the nodes of Tv satisfy the
capacity and the demand

constraints (even if u does not).

v
u

p1

(c) This semi-orientation is not
feasible as the demand constraint

is not satisfied for p1

v
u

(d) This semi-orientation is not
feasible as the demand constraint

is not satisfied for u.

Figure 5: Example of instance and orientations for that instance. For each
orientation, it is explained if it is feasible according to Definitions 8 and 9.

Given an semi-orientation HO entering (u, v) with f and f̃ , M̃(HO, f, f̃)

and m̃(HO, f, f̃) are the maximum and minimum rounded loads of the sources
in Tu (not including v).

Remark. In case of an semi-orientation HO outgoing from (u, v) where u is a
source, as u is not part of Tv, the load of u does not intervene in the calculations
of M̃(HO) and m̃(HO). This is necessary as, otherwise, only the flow going
from u to v would count in the load of u and this would mistakenly reduce the
value of M̃(HO) and m̃(HO).

Similarly, if v is a source and is considered in the definition of M̃(HO, f, f̃)

and m̃(HO, f, f̃), where HO is an semi-orientation entering (u, v), we would
have m̃(HO) = 0 whatever the orientation of Tu is.

We write L̃ = { f̃
Prod(s) |f̃ ∈ F̃ , s ∈ S}. Note that |L̃| = |F̃ | · |S| is polynomial
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and that M̃(HO), m̃(HO), M̃(HO, f, f̃) and m̃(HO, f, f̃) are in L̃.
Building a feasible orientation minimizing the rounded load reserve can be

done using the following algorithm: given any two neighbors u and v and three
values f̃ ∈ F̃ , M̃ ∈ L̃, m̃ ∈ L̃, we search for a rational f such that there exists a
feasible semi-orientation HO outgoing from (u, v) satisfying FHO(u, v) = f and

F̃HO(u, v) = f̃ and a feasible semi-orientation HO′ entering (u, v) with f and

f̃ . In addition, the loads should be such that m̃(HO) ≥ m̃, m̃(HO, f, f̃) ≥ m̃,

M̃(HO) ≤ M̃ and M̃(HO, f, f̃) ≤ M̃ .
If such semi-orientations exist, the union is a feasible orientation O such that

O([u, v]) = (u, v), m̃(O) ≥ m̃ and M̃(O) ≤ M̃ . We start again for every possible

values of f̃ , M̃ , m̃. We then renew this operation by reversing the orientation
of [u, v]. We get a feasible orientation minimizing the rounded load reserve by

returning the one where M̃ − m̃ is minimum, and a solution maximizing the
minimum rounded load by returning the one where m̃ is maximum (in that

case, enumerating all the values of M̃ is not necessary, we can set M̃ to 1).

It is possible to enumerate the triplets f̃ , m̃ and M̃ in polynomial time, but
not all the possible values of f . This is why we use auxiliary functions i and o
that will respectively give the lowest possible value f for HO and the highest
possible value f for HO′.

Definition 10. Let f̃ ∈ F̃ , M̃ ∈ L̃, m̃ ∈ L̃ and [u, v] be an edge of T . Let P
be the set of all values f such that there exists a feasible semi-orientation HO
outgoing from (u, v) such that FHO(u, v) = f , F̃HO(u, v) = f̃ , M̃(HO) ≤ M̃

and m̃(HO) ≥ m̃. We then write i(u, v, f̃ , M̃ , m̃) = min(P). If P = ∅, then

i(u, v, f̃ , M̃ , m̃) = +∞.

Definition 11. Let f̃ ∈ F̃ , M̃ ∈ L̃, m̃ ∈ L̃ and [u, v] be an edge of T . Let P
be the set of all values f such that there exists a feasible semi-orientation HO′

entering in (u, v) with f and f̃ such that M̃(HO′, f, f̃) ≤ M̃ and m̃(HO′, f, f̃) ≥
m̃. We then write o(u, v, f̃ , M̃ , m̃) = max(P). If P = ∅, then o(u, v, f̃ , M̃ , m̃) =
−∞.

i(u, v, f̃ , M̃ , m̃) can be seen as the minimum power than should be called
by the sinks of Tv and produced by the sources of Tu. On the contrary,
o(u, v, f̃ , M̃ , m̃) is the maximum power that can be produced by the sources
of Tu and called by the sinks of Tv. This interpretation leads intuitively to
Lemma 8.

Example 5. In the example of Figure 5, we set m̃ = 0, M̃ = 1 and u, v are
the two nodes shown in the figure. There are two possible semi-orientations
outgoing from (u, v) satisfying the demand constraint: the one of Figure 5b and
the same orientation where we reverse the arc going from v to the source above.
In the first case, the flow going through (u, v) is 55 and the rounded flow is
around 54.991, and, in the second case, the flow going through (u, v) is 25 and
the rounded flow is around 24.9976. Consequently, i(u, v, 54.991, 1, 0) = 55 and
i(u, v, 24.9976, 1, 0) = 25.
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There is no feasible orientation entering (u, v) with f = 25 and f̃ = 24.9976
as the capacity constraint is, in that case, not satisfied for u. The maximum
value f for which it is feasible is 0, thus, o(u, v, 24.9976, 1, 0) = 0. Similarly,
o(u, v, 54.991, 1, 0) = 0.

As we can see, it is not possible to call a power greater than 0 to u whereas
v needs at least 25. In other words, there is no feasible orientation where
O([u, v]) = (u, v).

Lemma 8. Let [u, v] be any edge of T , and M̃, m̃ ∈ L̃, there exists a fea-

sible orientation O where M̃ ≥ M̃(O) and m̃ ≤ m̃(O) if and only if there

exists f̃ ∈ F̃ such that i(u, v, f̃ , M̃ , m̃) ≤ o(u, v, f̃ , M̃ , m̃) or i(v, u, f̃ , M̃ , m̃) ≤
o(v, u, f̃ , M̃ , m̃).

Proof. Assuming such a feasible orientation O exists with O([u, v]) = (u, v),

f = FO(u, v) and f̃ = F̃O(u, v). Finally, let HO be the orientation O restricted
to Tv ∪ [u, v], and HO′ be O restricted to Tu ∪ [u, v].

Then, first, HO is an semi-orientation outgoing from (u, v). For every edge

e ∈ Tv, we have FO(e) = FHO(e) and F̃O(e) = F̃HO(e). Consequently HO
is feasible and satisfies FHO(u, v) = f and F̃HO(u, v) = f̃ , M̃ ≥ M̃(O) and

m̃ ≤ m̃(O). Thus i(u, v, f̃ , M̃ , m̃) ≤ f .

Secondly HO′ is an semi-orientation entering (u, v) with f and f̃ . For ev-

ery edge e ∈ Tu, we have FO(e) = F(HO′,f)(e) and F̃O(e) = F̃(HO′,f,f̃))(e).

Consequently HO′ is feasible and satisfies M̃ ≥ M̃(O) and m̃ ≤ m̃(O). Thus

o(u, v, f̃ , M̃ , m̃) ≥ f . We then have o(u, v, f̃ , M̃ , m̃) ≥ i(u, v, f̃ , M̃ , m̃).

We now assume that o(u, v, f̃ , M̃ , m̃) ≥ i(u, v, f̃ , M̃ , m̃) for some value f̃ ∈ F̃ .

We can first deduce that i(u, v, f̃ , M̃ , m̃) ̸= +∞ and o(u, v, f̃ , M̃ , m̃) ̸= −∞.

By definition of i(u, v, f̃ , M̃ , m̃), there exists a feasible semi-orientation HO
outgoing from (u, v) such that FHO(u, v) = i(u, v, f̃ , M̃ , m̃), F̃HO(u, v) = f̃ ,

M̃ ≥ M̃(HO) and m̃ ≤ m̃(HO). By definition of o(u, v, f̃ , M̃ , m̃), there exists

a feasible semi-orientation HO′ entering (u, v) with o(u, v, f̃ , M̃ , m̃) and f̃ such

that M̃ ≥ M̃(HO′) and m̃ ≤ m̃(HO′). By Lemma 7, (HO′, i(u, v, f̃ , M̃ , m̃), f̃)
is also feasible.

LetO = HO∪HO′. Note that, on the edges of Tv∪[u, v], the flow FO and the

rounded flow F̃O coincide respectively with FHO and F̃HO. In addition, on the
edges of Tu ∪ [u, v], the flow FO and the rounded flow F̃O coincide respectively

with F
(HO′,i(u,v,f̃ ,M̃,m̃),f̃)

and F̃
(HO′,i(u,v,f̃ ,M̃,m̃),f̃)

. Then O is feasible and M̃ ≥
M̃(O) and m̃ ≤ m̃(O).

The end of the section is devoted to explaining how we can compute the
auxiliary functions in polynomial time. In order to prevent the technical de-
tails from obfuscating the key principles of this proof, the rest of the section is
organized as follows.

• In Subsection 5.3.3, Lemma 9 gives the complexity of an algorithm com-
puting the auxiliary functions o and i, given some assumption on the
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existence of two functions ho and hi that can be computed in polynomial
time,

• Those two functions are respectively described in Subsections 5.3.4 (in
Lemmas 10 and 11) and 5.3.5 (in Lemmas 12 and 13). In order to prove
their complexities, we make another assumption on the existence of an-
other algorithm.

• This algorithm is then described in Subsection 5.3.6 and Lemma 14.

5.3.3 Complexity of the computation of the auxiliary functions

We assume M̃ ∈ L̃, m̃ ∈ L̃, f̃ ∈ F̃ and [u, v] ∈ T are given, and we want

to compute i(u, v, f̃ , M̃ , m̃) and o(u, v, f̃ , M̃ , m̃). For readability, we denote

hereinafter those values by i(u, v, f̃) and o(u, v, f̃) as, in the proofs, the values

M̃ and m̃ never change.

Lemma 9. Given a node u ∈ T , we write Γ(u) the neighbors of u. We assume

that, for every edge [u, v] in T and every f̃ ,

• there exists a function ho : N2·(|Γ(u)|−1)·|F̃ | → N such that

o(u, v, f̃) = ho

({
o(w, u, f̃ ′), i(u,w, f̃ ′)|w ∈ Γ(u)\{v}, f̃ ′ ∈ F̃

})
and that can be computed in time O(n4|F̃ |4)

• there exists a function hi : N2·(|Γ(v)|−1)·|F̃ | → N such that

i(u, v, f̃) = hi

({
o(w, v, f̃ ′), i(v, w, f̃ ′)|w ∈ Γ(v)\{u}, f̃ ′ ∈ F̃

})
and that can be computed in time O(n4|F̃ |3)

then we can compute i(u, v, f̃) and o(u, v, f̃) for all [u, v] ∈ T and f̃ ∈ F̃ in time

O(n5|F̃ |5).

Proof. If v is a leaf, the value Γ(v)\{u} is empty. In that case, i(u, v, f̃) = hi(∅)
and can be computed in time O(n4|F̃ |3) for each value f̃ ∈ F̃ . Similarly, if u

is a leaf, o(u, v, f̃) = ho(∅) can be computed, for each value f̃ ∈ F̃ , in time

O(n4|F̃ |4) (in fact, those values can be computed in constant time, but this
does not change the result of the lemma).

We can then compute i(u, v, f̃) (respectively o(u, v, f̃)) for every edge [u, v]
such that the height of the tree Tv (respectively Tu) is 1. By induction on
the height of the trees Tv and Tu, we can then compute step by step from the
leaves all the values i(u, v, f̃) and o(u, v, f̃) for all [u, v] ∈ T and f̃ ∈ F̃ . At

each iteration, a new value o(u, v, f̃) (respectively i(u, v, f̃)) is evaluated in time

O(n4|F̃ |4) (respectively O(n4|F̃ |3)). There are O((n − 1) · |F̃ |) possible values

for (u, v) and f̃ , thus the lemma follows.
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5.3.4 Complexity of the computation of the function ho of Lemma 9

u

v

u1

u2

u|J|

u|J|+1

u|J|+2

up

g ≤
o(u

1 , u, g̃)[g̃]

g ≤ o(u2, u, g̃)[g̃]

g ≤
o(u

|J|
, u,

g̃)[
g̃]

f |J
|+

1
=
i(u

, u |J|
+
1
, f̃ |

J|+
1
)[f̃

|J|
+
1
]

f|J|+2 = i(u, u|J|+2, f̃|J|+2)[f̃|J|+2]

fp = i(u, u
p , f̃p)[f̃p ]f = o(u, v, f̃)[f̃ ]

...
...

Figure 6: Illustration of Lemma 10, assuming J = {1, 2, . . . , |J |}. On each arc
is written the flow followed by the rounded flow between square brackets.

Let u1, u2, . . . , up be the p neighbors of u in Tu (every neighbor distinct from
v). In this part, we assume u ∈ W and Cap(u) = +∞. We will describe the

formula of o(u, v, f̃) and explain how to adapt it to sources, sinks and switches
with finite capacity. Without loss of generality, we also assume that v has
the minimum number in N (the numbering of the nodes of T ) among all the
neighbors of u.

The following lemma describes the function ho mentioned in Lemma 9 that,
given o(w, u, f̃ ′) and i(u,w, f̃ ′) for every neighbor w of u except v and every

rounded flow f̃ ′, computes o(u, v, f̃).

Lemma 10. Let J ⊆ J1; pK, with J ̸= ∅, and f̃j ∈ F̃ for j ̸∈ J .

We set g̃ = ⊕((f̃ , f̃j)j ̸∈J , |J |) where f̃j = 0 if j ∈ J , and

f(J, (f̃j)j ̸∈J) =

|J | ·min
j∈J

o(uj , u, g̃)−
∑
j ̸∈J

i(u, uj , f̃j) if this value is non-negative

−∞ otherwise

then
o(u, v, f̃) = max

J⊆J1;pK
J ̸=∅

max
f̃j∈F̃
j ̸∈J

f(J, (fj)j ̸∈J)

Example 6. We use the instance of Figure 7 to illustrate the Lemma. We
assume that ε = 1 to simplify the calculations of rounding values. We also
assume that m̃ = 0.2 and M̃ = 0.5. We would like to compute o(u, v, 4) that
is the greatest power that can be sent from u to v if the rounded flow between
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20/20

v
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15 p2

Figure 7: Illustation of Example 6.

them is 4. Intuitively, this value is 5 as the source s2 can produce at most 20
and must send 15 to p2.

Now lets compute the formula of Lemma 10. We get:

o(u, v, 4) = max


o(s2, u, g̃)− i(u, p2, f̃2) where g̃ = ⊕((4, f̃2), 1)

2 ·min(o(s2, u, g̃), o(p2, u, g̃)) where g̃ = ⊕((4), 2)

o(p2, u, g̃)− i(u, s2, f̃1) where g̃ = ⊕((4, f̃1), 1)

The value o(p2, u, g̃) is necessarily −∞. Indeed, there is not feasible semi-
orientation where the arc (p2, u) is directed toward u as the demand constraint
would not be satisfied for p2. This leave us with

o(u, v, 4) = o(s2, u, g̃)− i(u, p2, f̃2) where g̃ = ⊕((4, f̃2), 1)

The value i(u, p2, f̃2) is +∞ if f̃2 is not the rounded value of Pow(p2), that
is a(15) = 8 if ε = 1, and i(u, p2, 8) is Pow(p2) = 15. The value g̃ is then
⊕((4, 8), 1) = a(8 + a(4)) = a(12) = 8. We search for o(s2, u, 8). A rounded
flow for s2 of 8 is valid as its rounded load would be 8/20, which is between m̃

and M̃ . As s2 cannot produce more than 20, o(s2, u, 8) is 20.
Thus we get o(u, v, 4) = 20− 15 = 5 as predicted.

Remark (Intuition). Figure 6 illustrates Lemma 10. Given a subset J and

rounded flows (f̃j)j ̸∈J , the value f(J, (f̃j)j ̸∈J) corresponds to the maximum flow

that can go through u to v if, for every j ̸∈ J , the rounded flow in (u, uj) is f̃j
and if, for every j ∈ J , all the edges (uj , u) are directed toward u. In those arcs,

assuming the rounded flow in (u, v) is f̃ , the rounded flow is necessarily g̃.
|J | ·minj∈J o(uj , u, g̃) is the maximum value that can be equitably distributed

over all the input arcs of u. And
∑

j ̸∈J i(u, uj , f̃j) is the value requested by the
neighbors directed from u other than v, consequently, the maximum value that
can go from u to v is the difference.

Note that J must be not empty in order to direct at least one arc toward u
to satisfy the demand constraint.
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Proof. Let ma = max
J⊆J1;pK
J ̸=∅

max
f̃j∈F̃
j ̸∈J

f(J, (fj)j ̸∈J).

We assume that o(u, v, f̃) ̸= −∞. Then, by definition of o(u, v, f̃), there ex-

ists a feasible semi-orientation HO entering (u, v) with f = o(u, v, f̃) and f̃ such

that M̃((HO, f, f̃)) ≤ M̃ and m̃((HO, f, f̃)) ≥ m̃. Let J be the set of indexes
j ∈ J1; pK such that HO([u, uj ]) = (uj , u). The set J is not empty, otherwise
the demand constraint is not satisfied for u. We write g = F(HO,f,f̃)(uj , u),

g̃ = F̃(HO,f,f̃)(uj , u), and fj = F(HO,f,f̃)(u, uj), f̃j = F̃(HO,f,f̃)(u, uj) for j ̸∈ J .

By definition of the rounded flow, and because v has the minimum number in
N among all the neighbors of u, ⊕((f̃ , f̃j)j ̸∈J , |J |) = g̃. Finally, by definition of
F(HO,f,f̃), f = |J | · g −

∑
j ̸∈J

fj .

Let Tuj be the subtree of Tu containing uj in the forest Tu\[u, uj ], let
j ∈ J , and let HOj be the semi-orientation entering (uj , u) that equals HO
restricted to Tuj then HOj is feasible with g and g̃. In addition, M̃(HOj , g, g̃) ≤
M̃(HO, f, f̃) ≤ M̃ and m̃(HOj , g, g̃) ≥ m̃(HO, f, f̃) ≥ m̃ thus F(HO,f,f̃)(uj , u) ≤
o(uj , u, g̃). As, for every edge [uj , u], F(HO,f,f̃)(uj , u) = g, we have, g ≤
min
j∈J

o(uj , u, g̃). We can similarly show that, for j ̸∈ J , fj ≥ i(u, uj , f̃j). Conse-

quently, f = |J | · g −
∑
j ̸∈J

fj ≤ |J | ·min
j∈J

o(uj , u, g̃) −
∑
j ̸∈J

i(u, uj , f̃j) ≤ ma. Thus

o(u, v, f̃) ≤ ma. As o(u, v, f̃) ̸= −∞, we can also deduce that ma ̸= −∞.

We now assume that ma ̸= −∞. Let J ̸= ∅ and f̃j for j ̸∈ J , such that

f(J, (f̃j)j ̸∈J) = ma = |J | · min
j∈J

o(uj , u, g̃) −
∑
j ̸∈J

i(u, uj , f̃j) with the value g̃

being ⊕((f̃ , f̃j)j ̸∈J , |J |) (as J ̸= ∅, this equality is defined). We build an

semi-orientation HO entering (u, v) satisfying ma ≤ o(u, v, f̃). To do so, we
set HO([uj , u]) = (uj , u) if j ∈ J and (u, uj) otherwise. As ma ̸= −∞, we

know that, if j ∈ J , then o(uj , u, g̃) ̸= −∞ and, if j ̸∈ J , i(u, uj , f̃j) ̸= +∞.
Thus, for every j ∈ J , there exists a feasible semi-orientation HOj enter-

ing (uj , u) with o(uj , u, g̃) and g̃ such that M̃(HOj , o(uj , u, g̃), g̃) ≤ M̃ and
m̃(HOj , o(uj , u, g̃), g̃) ≥ m̃. Similarly, for every j ̸∈ J , there exists a fea-

sible halt-orientation HOj outgoing from (u, uj) such that M̃(HOj) ≤ M̃ ,

m̃(HOj) ≥ m̃, FHOj
(u, uj) = i(u, uj , f̃j) and F̃HOj

(u, uj) = f̃j . Let then
HO be the union of all those semi-orientations plus HO([u, v]) = (u, v).

If (HO,ma, f̃) is feasible, then, because we have M̃(HO,ma, f̃) ≤ M̃ and

m̃(HO,ma, f̃) ≥ m̃, then ma ≤ o(u, v, f̃) and o(u, v, f̃) ̸= −∞. First, note
that, because J ̸= ∅, the node u has an entering arc and the demand con-
straint is then satisfied for u. It is satisfied for every other node as all the
semi-orientations HO| are feasible. Secondly, for all j ̸∈ J , F(HO,ma,f̃)(u, uj) =

FHOj (u, uj) = i(u, uj , f̃j) and F̃(HO,ma,f̃)(u, uj) = f̃j . For all j ∈ J , the

flow F(HO,ma,f̃)(uj , u) = 1
|J| · (ma +

∑
j ̸∈J

F(HO,ma,f̃)(u, uj)) = min
j∈J

o(uj , u, g̃)

31



and the rounded flow F̃(HO,f,f̃)(uj , u) = ⊕((f̃ , f̃j)j ̸∈J , |J |) = g̃ (again because

v has the minimum number in N among all the neighbors of u). Finally,
for all j ∈ J , (HOj , o(uj , u, g̃), g̃) is feasible. According to Lemma 7, then

(HOj ,min
j∈J

o(uj , u, g̃), g̃) is also feasible. Consequently (HO,ma, f̃) is feasi-

ble.

The following lemma proves that we can compute the formula given in
Lemma 10 in polynomial time. This lemma makes a hypothesis that is proven
in Lemma 14.

Lemma 11.

• If we have access to o(uj , u, f̃) and i(u, uj , f̃) in O(1) for every j ∈ J1; pK
and f̃ ∈ F̃ ,

• and if, given d ∈ J1; pK, k ∈ J1; p− d+ 1K and g̃ ∈ F̃ , we can compute

min
J⊆J1;pK
|J|=d

min(J)=k

min
f̃j∈F̃
j ̸∈J

⊕((f̃ ,f̃j)j ̸∈J ,d)=g̃

∑
j ̸∈J

i(u, uj , f̃j)

in time O(n2|F̃ |3),

then we can compute o(u, v, f̃) in O(n4|F̃ |4).

Proof. By Lemma 10,

o(u, v, f̃) = max
J⊆J1;pK
J ̸=∅

max
f̃j∈F̃
j ̸∈J

f(J, (fj)j ̸∈J)

o(u, v, f̃) =
p

max
d=1

max
J⊆J1;pK
|J|=d

max
f̃j∈F̃
j ̸∈J

f(J, (fj)j ̸∈J)

o(u, v, f̃) =
p

max
d=1

p−d+1
max
k=1

max
J⊆J1;pK
|J|=d

min(J)=k

max
f̃j∈F̃
j ̸∈J

f(J, (fj)j ̸∈J)

o(u, v, f̃) =
p

max
d=1

p−d+1
max
k=1

max
g̃∈F̃

max
J⊆J1;pK
|J|=d

min(J)=k

max
f̃j∈F̃
j ̸∈J

⊕((f̃ ,f̃j)j ̸∈J ,d)=g̃

f(J, (fj)j ̸∈J)

If, for every g̃ ∈ F̃ , we write o1(g̃), o2(g̃), . . . , op(g̃) the p values o(uj , u, g̃) sorted
in ascending order

o(u, v, f̃) =
p

max
d=1

p−d+1
max
k=1

max
g̃∈F̃

max
J⊆J1;pK
|J|=d

min(J)=k

max
f̃j∈F̃
j ̸∈J

⊕((f̃ ,f̃j)j ̸∈J ,d)=g̃

d · ok(g̃)−
∑
j ̸∈J

i(u, uj , f̃j)
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Given d, k and g̃, we can compute max
J⊆J1;pK
|J|=d

min(J)=k

max
f̃j∈F̃
j ̸∈J

⊕((f̃ ,f̃j)j ̸∈J ,d)=g̃

d·ok(g̃)−
∑
j ̸∈J

i(u, uj , f̃j)

to solve the problem, and this can be computed in time O(n2|F̃ |3) by hypothesis.
If the obtained value is negative, we return −∞.

As a conclusion o(u, v, f̃) can be computed in time O(n4|F̃ |4) by enumerating
all the possible values of d, k and g̃, and by returning the maximum result
obtained with all the triplets.

Remark. We can adapt the formula of Lemma 10 to other cases.

• If the numbering of v in N is not the smallest among the numbers of all
the neighbors of u, the list (f̃ , f̃j)j ̸∈J should be sorted in the formula of g̃.

• If u is a switch with a finite capacity, we must replace |J |·min
j∈J

o(uj , u, g̃) by

min(Cap(u), |J |·min
j∈J

o(uj , u, g̃)) in the formula of the function f(J, (f̃j)j ̸∈J).

• If u is a source, then we can have J = ∅ and we must replace |J | ·
min
j∈J

o(uj , u, g̃) by min((|J | + 1) · Prod(u), (|J | + 1) · min
j∈J

o(uj , u, g̃)); in

addition, ⊕((f̃ , f̃j)j ̸∈J , |J |) must be replaced by ⊕((f̃ , f̃j)j ̸∈J , |J | + 1) in
the formula of g̃; and finally, we have to replace max

g̃∈F̃
by max

g̃∈F̃ ,m̃≤ g̃
Prod(u)

≤M̃

in the formula of o(u, v, f̃).

• If u is a sink, we must replace the formula of g̃ by ⊕((Pow(u), f̃ , f̃j)j ̸∈J , |J |)
and replace −

∑
j ̸∈J

i(u, uj , f̃j) by −
∑
j ̸∈J

i(u, uj , f̃j)−Pow(u) in the formula

of f(J, (f̃j)j ̸∈J).

5.3.5 Complexity of the computation of the function hi of Lemma 9

Let v1, v2, . . . , vp be the p neighbors of v in Tv (every neighbor distinct from
u). In this part, we assume v ∈ W and Cap(v) = +∞. We will describe the

formula of i(u, v, f̃) and explain how to adapt it to sources, sinks and switches
with finite capacity.

The following lemma describes the function hi mentioned in Lemma 9 that,
given o(w, v, f̃ ′) and i(v, w, f̃ ′) for every neighbor w of v except u and every

rounded flow f̃ ′, computes i(u, v, f̃).

Lemma 12. Let J ⊆ J1; pK, and f̃j ∈ F̃ for j ̸∈ J such that f̃ = ⊕((f̃j)j ̸∈J , |J |+
1).

We set

f(J, (f̃j)j ̸∈J) =


1

|J|+1

∑
j ̸∈J

i(v, vj , f̃j) if this value is lower than min
j∈J

o(vj , v, f̃)

+∞ otherwise
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u

v1
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v|J|

v|J|+1

v|J|+2
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f ≤
o(v

1 , v, f̃)[f̃ ]

f ≤ o(v2, v, f̃)[f̃ ]

f ≤ o(v|
J|
, v,

f̃)[
f̃ ]

f |J
|+

1
=
i(v

, v |
J|+

1
, f̃ |

J|+
1
)[f̃

|J|
+
1
]

f|J|+2 = i(v, v|J|+2, f̃|J|+2)[f̃|J|+2]

fp = i(u, vv , f̃p)[f̃p ]
f = i(u, v, f̃)[f̃ ]

...
...

Figure 8: Illustration of Lemma 12. On each arc is written the flow followed by
the rounded flow between square brackets.

If J = ∅, we set min
j∈J

o(vj , v, f̃) = +∞.

Then

i(u, v, f̃) = min
J⊆J1;pK

min
f̃j∈F̃
j ̸∈J

⊕((f̃j)j ̸∈J ,|J|+1)=f̃

f(J, (f̃j)j ̸∈J)

s2

7.5/20

u
v

15 p2

Figure 9: Illustation of Example 7.

Example 7. We use the instance of Figure 9 to illustrate the Lemma. We
assume that ε = 1 to simplify the calculations of rounding values. We also
assume that m̃ = 0.2 and M̃ = 0.5. We would like to compute i(u, v, 4) that is
the lower power that can be called by v to u if the rounded flow between them
is 4. Intuitively, this value is 7.5 as the sink p2 calls 15 to v, which can either
equally calls 7.5 to each of u and s2 or calls 15 to u alone.

Now lets compute the formula of Lemma 12. We get:

34



i(u, v, 4) = min


1
2 · i(v, p2, f̃1) if it is lower than o(s2, v, 4) where 4 = ⊕((f̃1), 2)
1
2 · i(v, s2, f̃2) if it is lower than o(p2, v, 4) where 4 = ⊕((f̃2), 2)

i(v, p2, f̃1) + i(v, s2, f̃2) if it is lower than +∞ where 4 = ⊕((f̃1, f̃2), 1)
1
3 · 0 if it is lower than min(o(p2, v, 4), o(s2, v, 4))

The value o(p2, v, 4) is necessarily −∞. Indeed, there is not feasible semi-
orientation where the arc (p2, v) is directed toward v as the demand constraint
would not be satisfied for p2. This leaves us with the first and third case of the
formula.

The value i(v, s2, f̃2) is +∞ if f̃2 ̸= 0, indeed, no power is called by s2 if
(v, s2) is directed toward s2. However, i(v, s2, 0) is also infinite as the source

would have a rounded load of 0 and this value is not between m̃ and M̃ . Conse-
quently,

i(u, v, 4) =
1

2
· i(v, p2, f̃1) if it is lower than o(s2, v, 4) where 4 = ⊕((f̃1), 2)

The value i(v, p2, f̃1) is +∞ if f̃1 is not the rounded value of Pow(p2), that
is a(15) = 8 if ε = 1, and i(v, p2, 8) = Pow(p2) = 15. We have ⊕((8), 2) = 4.
The rounded load of s2 is 4/20 if the rounded flow of s2 is 4, which is between

m̃ and M̃ . Thus o(s2, v, 4) is 20. Finally, 1
2 i(v, p2, 8) ≤ o(s2, v, 4).

Therefore, we get i(u, v, 4) = 1
2 · i(v, p2, 8) = 7.5 as predicted.

Remark (Intuition). Figure 8 illustrates Lemma 12. Given a subset J , and

rounded flows (f̃j)j ̸∈J , the value f(J, (f̃j)j ̸∈J) is the minimum flow requested to

v if, for every j ̸∈ J , the rounded flow in (v, vj) is f̃j and if, for every j ∈ J ,
all the edges (vj , v) are directed toward v. Assuming the rounded flow in (u, v)

is f̃ , as it is equal in all the input arcs of v, the rounded flow is then also f̃ in
(vj , v), and that value should equal ⊕((f̃j)j ̸∈J , |J |+ 1).

As the flow is also equal in all the input arcs, the minimum flow requested
to v cannot be more than minj∈J o(vj , v, f̃).

Note that, as v is a switch, it looks tempting to set J = J1;nK so that the
flow in (u, v) is 0 (and thus minimum). However, three problems may occur:

first, it does not work if f̃ ̸= 0, secondly, this solution may not satisfy the choice
of m̃ and M̃ , and thirdly, we may have o(vj , v, f̃) = −∞.

Proof. Let mi = min
J⊆J1;pK

min
f̃j∈F̃
j ̸∈J

⊕((f̃j)j ̸∈J ,|J|+1)=f̃

f(J, (f̃j)j ̸∈J).

If i(u, v, f̃) ̸= +∞, then there exists a feasible semi-orientation HO outgoing

from (u, v) such that M̃(HO) ≤ M̃ , m̃(HO) ≥ m̃, FHO(u, v) = i(u, v, f̃) and

F̃HO(u, v) = f̃ . We hereinafter denote by f the value i(u, v, f̃). Let J be

the set of indexes j ∈ J1; pK such that HO([v, vj ]) = (vj , v). We write f̃j =
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F̃HO(v, vj) for j ̸∈ J . By definition of the rounded flow, ⊕((f̃j)j ̸∈J , |J | + 1) =

f̃ = F̃HO(vj , v) for j ∈ J . Finally, by definition of the flow, for j ∈ J , f̃ =

F̃HO(vj , v) = 1/(|J |+ 1)
∑

j ̸∈J fj .
Let Tvj be the subtree of Tv containing vj in the forest Tv\[v, vj ], let j ∈ J ,

and letHOj be the semi-orientation entering (vj , v) that equalsHO restricted to

Tvj then HOj with f and f̃ is feasible. In addition, M̃(HOj , f, f̃) ≤ M̃(HO) ≤
M̃ and m̃(HOj , f, f̃) ≥ m̃(HO) ≥ m̃ thus f ≤ o(vj , v, f̃), and consequently

f ≤ minj∈J o(vj , v, g̃). We can similarly show that, for j ̸∈ J , fj ≥ i(v, vj , f̃j).

Finally f = 1/(|J | + 1)
∑

j ̸∈J fj , consequently, 1/(|J | + 1)
∑

j ̸∈J i(v, vj , f̃j) ≤
min
j∈J

o(uj , u, f̃). Therefore f(J, (f̃j)j ̸∈J) is not infinite and equals f ; and then

mi ≤ f(J, (f̃j)j ̸∈J) ≤ f . As f = i(u, v, f̃), we conclude that mi ≤ i(u, v, f̃). We
can also deduce that mi ̸= +∞.

We now assumemi ̸= +∞. Let J and f̃j , for j ̸∈ J , such that⊕((f̃j)j ̸∈J , |J |+
1) = f̃ and f(J, (f̃j)j ̸∈J) = mi = 1/(|J | + 1)

∑
j ̸∈J i(v, vj , f̃j). We build an

semi-orientation HO outgoing from (u, v) satisfying mi ≥ i(u, v, f̃). To do so,
we set HO([vj , v]) = (vj , v) if j ∈ J and (v, vj) otherwise. As mi ̸= +∞
then f(J, (f̃j)j ̸∈J) ≤ min

j∈J
o(vj , v, f̃). Thus if j ∈ J , o(vj , v, f̃) ̸= −∞ and,

if j ̸∈ J , i(v, vj , f̃j) ̸= +∞. Consequently, there exists, for every j ∈ J , a

feasible semi-orientation HOj entering (vj , v) with o(vj , v, f̃) and f̃ such that

M̃(HOj , o(vj , v, f̃), f̃) ≤ M̃ and m̃(HOj , o(vj , v, f̃), f̃) ≥ m̃. Similarly, for ev-
ery j ̸∈ J , there exists an semi-orientation HOj outgoing from (v, vj) such that

M̃(HOj) ≤ M̃ , m̃(HOj) ≥ m̃, FHOj
(v, vj) = i(v, vj , f̃j) and F̃HOj

(v, vj) = f̃j .
Let HO be the union of all those semi-orientations plus HO([u, v]) = (u, v).

If HO is feasible, FHO(u, v) = mi and F̃HO(u, v) = f̃ , then, because we

have M̃(HO, f, f̃) ≤ M̃ and m̃(HO, f, f̃) ≥ m̃, then mi ≥ i(u, v, f̃) and then

i(u, v, f̃) ̸= +∞. Note firstly that the demand constraint is satisfied for u as
it has an input arc and it is satisfied for all the other nodes as all the semi-
orientations are feasible. For all j ̸∈ J , FHO(v, vj) = FHOj

(v, vj) = i(v, vj , f̃j)

and F̃HO(v, vj) = F̃HOj (v, vj) = f̃j . For all j ∈ J , FHO(u, v) = FHO(vj , v) =
1/(|J |+ 1) ·

∑
j ̸∈J FHO(v, vj) = mi. In addition, we made the assumption that

⊕((f̃j)j ̸∈J , |J | + 1) = f̃ , hence F̃HO(u, v) = F̃HO(vj , v) = f̃ . Finally, for every

j ∈ J , (HOj , o(vj , v, f̃), f̃) is feasible. As mi ≤ minj∈J o(vj , v, f̃) then, by

Lemma 7, the triplet (HOj , FHO(vj , v), f̃) is also feasible. As a consequence
HO is feasible.

The following lemma proves we can compute the formula given in Lemma 12
in polynomial time. This lemma makes a hypothesis that is proven in Lemma 14.

Lemma 13.

• If we have access to o(vj , v, f̃) and i(v, vj , f̃) in O(1) for every j ∈ J1; pK
and f̃ ∈ F̃ ,
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• and if, given d ∈ J0; pK and k ∈ J1; p− d+ 1K, we can compute

min
J⊆J1;pK
|J|=d

min(J)=k

min
f̃j∈F̃
j ̸∈J

⊕((f̃j)j ̸∈J ,d+1)=f̃

∑
j ̸∈J

i(v, vj , f̃j)

in O(n2|F̃ |3) (where min(∅) is arbitrarily set to p+ 1 so that the formula
is defined for d = 0)

then we can compute i(u, v, f̃) in O(n4|F̃ |3).

Proof. By Lemma 12

i(u, v, f̃) = min
J⊆J1;pK

min
f̃j∈F̃
j ̸∈J

⊕((f̃j)j ̸∈J ,|J|+1)=f̃

f(J, (f̃j)j ̸∈J)

i(u, v, f̃) =
p

min
d=0

min
J⊆J1;pK
|J|=d

min
f̃j∈F̃
j ̸∈J

⊕((f̃j)j ̸∈J ,d+1)=f̃

f(J, (f̃j)j ̸∈J)

i(u, v, f̃) =
p

min
d=0

p−d+1

min
k=1

min
J⊆J1;pK
|J|=d

min(J)=k

min
f̃j∈F̃
j ̸∈J

⊕((f̃j)j ̸∈J ,d+1)=f̃

f(J, (f̃j)j ̸∈J)

If we write o1(f̃), o2(f̃), . . . , op(f̃) the p values o(vj , v, f̃) sorted in ascending
order

i(u, v, f̃) =
p

min
d=0

p−d+1

min
k=1

min
J⊆J1;pK
|J|=d

min(J)=k

min
f̃j∈F̃
j ̸∈J

⊕((f̃j)j ̸∈J ,d+1)=f̃


1

d+1

∑
j ̸∈J

i(v, vj , f̃j)

if this value is lower than ok(f̃)

+∞ otherwise

Given d and k, we can compute min
J⊆J1;pK
|J|=d

min(J)=k

min
f̃j∈F̃
j ̸∈J

⊕((f̃j)j ̸∈J ,d+1)=f̃

∑
j ̸∈J

i(v, vj , f̃j) to

solve the problem, and this can be computed in time O(n2|F̃ |3) by hypothe-

sis. We then compare the returned value to ok(f̃), if it is lower, we return it,
otherwise we return +∞.

As a conclusion i(u, v, f̃) can be computed in O(n4|F̃ |3) by enumerating all
the possible values of d and k, and by returning the minimum result obtained
with all the couples.

Remark. We can adapt the formula of Lemma 12 to other cases:
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• if v is a switch with a finite capacity, we must replace min
j∈J

o(vj , v, g̃) by

min(Cap(v),min
j∈J

o(vj , v, g̃)) in the formula of the function f(J, (f̃j)j ̸∈J).

• if v is a source, we must replace 1
|J|+1

∑
j ̸∈J

i(v, vj , f̃j) if this value is lower

than min
j∈J

o(vj , v, f̃) by
1

|J|+2

∑
j ̸∈J

i(v, vj , f̃j) if this value is lower than min(Prod(v),min
j∈J

o(vj , v, f̃));

in addition, ⊕((f̃j)j ̸∈J , |J | + 1) = f̃ must be replaced by ⊕((f̃j)j ̸∈J , |J | +
2) = f̃ and, finally, we must set i(u, v, f̃) to +∞ if we do not check the

inequalities m̃ ≤ f̃/Prod(v) ≤ M̃

• if v is a sink, we must replace the formula ⊕((f̃j)j ̸∈J , |J | + 1) = f̃ by

⊕((Pow(v), f̃j)j ̸∈J , |J |+1) = f̃ ; and replace
∑
j ̸∈J

i(v, vj , f̃j) by
∑
j ̸∈J

i(v, vj , f̃j)+

Pow(v) in the formula of f(J, (f̃j)j ̸∈J).

5.3.6 Hypothesis of Lemmas 11 and 13

This final part proves the hypothesis made in the two lemmas. Let f̃ , g̃ ∈ F̃ , u
be a node of T and u1, u2, . . . , up be a subset of the neighbors of u in T . Let
d ∈ J0; pK, d′ ∈ Jd; d+1K and k ∈ J1; p− d+1K if d ̸= 0 and k = p+1 otherwise.
We arbitrarily set min(∅) = p+ 1. We compute the following value:

Ξ = min
J⊆J1;pK
|J|=d

min(J)=k

min
f̃j∈F̃
j ̸∈J

⊕((f̃ ,f̃jj ̸∈J ),d
′)=g̃

∑
j ̸∈J

i(u, uj , f̃j)

Remark. Recall the remark on page 17 interrogating why the formula opera-
tor ⊕ introduces many rounding errors. This hypothesis is where this choice
intervenes as it makes Lemma 14 true.

Lemma 14. Assuming we can access to i(u, uj , f̃) in O(1) for every j ∈ J1; pK
and f̃ ∈ F̃ , then we can compute Ξ in O(n2|F̃ |3).

Proof. Ξ can be equivalently seen as the search of p couples (f̃j , bj)p∈J1;pK where
bj is a boolean determining whether j ∈ J or not and where:

1. bk is true and there exist d − 1 other true bj with j > k; every other
boolean is false;

2. if bj is true then f̃j = 0;

3. g̃ = ⊕((f̃ , f̃1, f̃2, . . . , f̃p), d
′);

4.
p∑

j=1
bj is false

i(u, uj , f̃j) is minimum.
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Note that if d = 0 and k = p+ 1, then all the booleans are false.
We use a dynamic programming algorithm to compute the following recursive

function H. We set H(i, f̃ ′, s) as the function that equals the minimum value
i∑

j=1
bj is false

i(u, uj , f̃j) that can be obtained with i couples (f̃1, b1), (f̃2, b2), . . . , (f̃i, bi)

satisfying

1. if i ≥ k then bk is true and there exist s−1 other true bj with j > k; every
other boolean is false; if i < k then s = 0 and all the booleans are false.

2. if bj is true then f̃j = 0

3. f̃ ′ = ⊕((f̃ , f̃1, f̃2, . . . , f̃i), d
′)

If no such pairs exists then H(i, f̃ ′, s) = +∞. By computing H(p, g̃, d), we
obtain the desired result.

We then have the following recurrence formula.

H(0, f̃ ′, s) = 0 if s = 0 and f̃ ′ = a(
f̃

d′
), and +∞ otherwise

Indeed, if i = 0, then the sum we want to minimize is null, no boolean is
true and f̃ ′ = ⊕((f̃), d′).

H(i, f̃ ′, s) = min


H(i− 1, f̃”, s)− i(u, ui, f̃i) if i ̸= k and a(f̃” + f̃i

d′ ) = f̃ ′

H(i− 1, f̃ ′, s− 1) if i ≥ k

+∞

Note that, if d = 0 and k = p+1, then the second case never occurs, meaning
that s should equal 0 to reach the terminal state H(0, f̃ ′, 0).

The first case sets bi to false and the second one to true. With a dynamic
programming algorithm, this formula can be computed in time O(n2|F̃ |3) as

there are n possible values for i and s, and |F̃ | for f̃ ′; and as the first part of

the formula is computed in time O(|F̃ 2|) by enumerating all the couples (f̃”, f̃i)
and the second one in O(1).

5.3.7 Main result

Theorem 5. There exists an FPTAS for max-m and an FPTAS with absolute
ratio for max-m and min-R running in time O(n7|F̃ |7) where |F̃ | = O( 1

ε′ ·
(n3 log(n) + n2 log(Π))).

Proof. By Lemma 8, 9, 11, 13 and 14, given M̃, m̃ ∈ L̃, we can decide whether
there exists a feasible orientation O where M̃ ≥ M̃(O) and m̃ ≤ m̃(O) or not

in O(n5|F̃ |5). By computing this for every value of M̃ and m̃, in O(n5|F̃ |5|L̃|2),
we can get a feasible orientation Or minimizing R̃(O) or a feasible orientation
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Om maximizing m̃(O). By Lemmas 4 and 5, Or is an approximate solution
with absolute ratio ε′, and Om is an approximate solution with absolute ratio
ε′ and relative ratio (1− ε′).

Consequently, this algorithm is an FPTAS for max-m and an FPTAS with
absolute ratio for max-m and min-R. The complexity follows from the fact that
|L̃| = O(n|F̃ |) and from Lemma 6.

6 Conclusion

In this paper, we have studied the theoretical complexity and approximability of
three new optimization flow problems where a constraint of equality is added at
the entrance of each node, and whose objective is to return the orientation that
balance as much as possible the load of the sources of the network. A reasonable
continuation of this work is to implement and evaluate the performance of the
polynomial algorithm for min-M and the FPTAS algorithms for max-m and min-
R on real electrical distribution networks, to determine their runtime efficiency
and the resilience of the proposed configurations.

With this in mind, further work is needed first to improve the complexity of
the algorithms. For example, it may not be necessary to enumerate all the values
of M̃ , m̃ when searching for a solution optimizing the rounded load reserve with
Lemma 8. The computation of the functions i and o should also be improved.

Another continuation of the work would be to adapt the algorithms to net-
works that are almost trees, such as graphs with small treewidth or with small
cyclomatic number.
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