
HAL Id: hal-04289436
https://hal.science/hal-04289436

Submitted on 17 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Low-complexity algorithm for the minimum distance
properties of PAC codes

Malek Ellouze, Romain Tajan, Camille Leroux, Christophe Jégo, Charly
Poulliat

To cite this version:
Malek Ellouze, Romain Tajan, Camille Leroux, Christophe Jégo, Charly Poulliat. Low-complexity
algorithm for the minimum distance properties of PAC codes. International Symposium on Topics in
Coding (ISTC), Sep 2023, Brest, France. �hal-04289436�

https://hal.science/hal-04289436
https://hal.archives-ouvertes.fr

Low-complexity algorithm for the minimum
distance properties of PAC codes

Malek Ellouze∗, Romain Tajan∗, Camille Leroux∗, Christophe Jégo∗ and Charly Poulliat †
∗University of Bordeaux, Bordeaux INP, IMS Lab, UMR CNRS 5218, France

†University of Toulouse, INPT-ENSEEIHT, IRIT Lab, UMR CNRS 5505, France

Abstract—In this paper, a low-complexity algorithm that en-
ables to compute the minimum distance as well as its associated
number of occurrences for PAC codes is described. The method
relies on the computation of the minimum weight properties of
polar cosets while taking into consideration the initial precoding.
Due to the exponential rise of the number of cosets, we propose
a method that discards the cosets that have no impact on the
computation of the minimum distance. This method does not
impose any specific rules on the choice of the frozen bit set and
the initial precoding.

Index Terms—Polar codes, PAC codes, Minimum distance
computation, Minimum weight codewords.

I. INTRODUCTION

Polar codes [1] have poor performance at finite length under
Successive Cancellation (SC) decoding. As an approximation
of Maximum Likelihood (ML) decoding, the Successive Can-
cellation List (SCL) decoder [2] allows to partially close this
gap if the list size is large enough. However, the mediocre
distance properties of polar codes prevent them from better
performance for medium / low length. In order to improve
the distance properties, the polar coding structure has to be
modified.

The first option, used in the 5G standard, is to use a CRC
as an outer code [3]. This increases the distance of the code
and allows the SCL decoder to discard candidate codewords
at the end of the decoding. A more recent alternative is
to apply a rate-1 precoding before the polar transformation.
As such, the dynamic frozen bits polar codes use an upper
triangular transformation on the frozen bits [4]. In the case
of Polarization-Adjusted Convolutional (PAC) codes, a rate-1
convolutional encoder [5] is used. Precoding a polar code can
be very efficient : near optimal performance is for instance
reported in [6] for a (128,64) PAC codes.

Computing the distance properties of polar codes and pre-
coded polar codes allows to rapidly estimate the decoding
performance of the ML decoder at high SNR.

The computation of the minimum distance of polar codes
was first proposed in [7]. In [8], the number of minimum
weight codewords is computed under the assumption that the
considered polar code is a decreasing monomial code. A more
general approach is used in [9] where Monte Carlo simulation
of an SCL decoder with very large list size allows to estimate
the partial distance of polar codes. It is however very complex
as the code length grows.

In the case of PAC codes, it is also possible to use the
complex Monte Carlo approach [6]. In [10], the low-weight

codewords of polar and precoded polar codes are enumerated
based on a recursive decomposition. Although very general,
this approach becomes complex for precoded polar codes
because the decomposition is less favorable than for regular
polar codes.

In [11], a low complexity method allows to enumerate
the minimum weights codewords of PAC codes. However, it
is only applicable under frozen set of decreasing monomial
codes.

In this paper, a very low-complexity algorithm capable
of computing both the minimum distance and its associated
number of occurrences for PAC codes is proposed. Unlike [11],
the method is ”universal” in the sense that it does not assume
any particular structure for the frozen bit set. Besides, stating
that like polar codes, PAC codes can be described as a union
of well-defined code cosets, a drastic complexity reduction is
achieved by considering the relevant cosets. Considering that
this method can be applied regardless of the frozen bit set,
it can help design frozen bit sets that can be more adapted
to PAC codes and consequently significantly improve their
performance.

II. PRELIMINARIES

A. Polar codes and polar cosets

The polar transformation TN is defined as

TN =

[
1 0
1 1

]⊗n

where
⊗

n denotes the n fold Kronecker product and N = 2n.
The codewords of a (N,K) polar code are obtained such

that c = uTN , where u ∈ FN
2 . u is a binary vector for which

K positions are assigned to the information bits, whereas the
remaining ones are frozen to some known values. We define
F as the indice set of the components of u corresponding to
the frozen bits.
As in [12], given ui−1

0 = (u0, u1, ..., ui−1) ∈ Fi−1
2 and ui ∈

F2, a polar coset C(i)N can be defined as:

C(i)N (ui−1
0 , ui) = {[ui−1

0 , ui,u
N−1
i+1]TN |uN−1

i+1 ∈ FN−i−1
2 }

(1)
A polar coset C(i)N (ui−1

0 , ui) thus describes the codewords’
space generated by the prefix ui

0 without considering the

frozen bits contained in uN−1
i+1 . A polar code C can be defined

as the disjoint union of the following cosets:

C =
⋃

ui ∈ {0, 1},∀i /∈ F
ui = 0,∀i ∈ F

C(s)N (us−1
0 , us = 0) (2)

where s denotes the index of the last frozen bit.

B. PAC codes

PAC codes denoted by PAC(N,K,g) consist in polar codes
where the input vector uN−1

0 is obtained by a convolutional
transformation using the generator polynomial g of degree m−
1 with coefficients [g0, g1, ..., gm−1], i.e. given a vector vi

0, the
associated ui is obtained as follows:

ui = g(vi
0) =

m−1∑
j=0

gjvi−j (3)

In other terms, the input element ui of the polar encoder
depend on the i− 1 previous elements as well as the current
element vi. Conventionally, we have g0 = gm−1 = 1. Unless
specified otherwise, in this paper the following polynomial is
used : g = [1, 0, 1, 1, 0, 1, 1]. Similar to regular polar codes,
PAC codes can be defined as follows:

CPAC =
⋃
B
C(s)N (us−1

0 , us) (4)

where B defines the set:

B =

{
us
0 ∈ {0, 1}

s+1|ui = g(vi
0),∀i ∈ [[0; s]]

vi ∈ {0, 1},∀i /∈ F , vi = 0,∀i ∈ F (5)

C. Minimum distance properties of PAC codes

In [12], it is shown that the distance properties of a polar
code can be deduced from the analysis of the polar cosets.
This is also true for PAC codes. When taking advantage of
the equation (4), CPAC can be expressed as follows:

CPAC =
⋃
B

vs
0 ̸= 0s

0

C(s)N (us−1
0 , us)

⋃
C(s)N (g(0s−1

0), g(0))

It is important to note that as g0 = gm−1 = 1 then ∀i ∈
[[0;N − 1]] and b ∈ {0, 1}:

g([0i−1
0 , b]) = [0i−1

0 , b]

this results in:

CPAC =
⋃
B

vs
0 ̸= 0s

0

C(s)N (us−1
0 , us)

⋃
C(s)N (0s−1

0 , 0) (6)

C(s)N (0s−1
0 , 0) can also be expressed as:

C(s)N (0s−1
0 , 0) =

⋃
i∈[[s+1,N−1]]

C(i)N (0i−1
0 , ui = 1)

⋃
C(s)N (0N−2

0 , 0)

(7)

When taking advantage of the equations (6) and (7), the overall
minimum distance of a PAC code d∗ can be expressed as
follows:

d∗ ≜ w∗(CPAC \ C(N−1)
N (0N−2

0 , uN−1 = 0))

=min (d1, d2)
(8)

where

d1 = min
us−1

0 ̸=0s−1
0

w∗(C(s)N (us−1
0 , us = 0)) (9)

d2 = min
i∈[[s+1,N−1]]

w∗(C(i)N (0i−1
0 , ui = 1)). (10)

Where w∗(.) defines the minimum weight of a set of code-
words. In order to achieve a deterministic computation of d∗

and A∗, the total number of cosets to explore can be expressed
as:

nd = 2γ + (N − s) (11)

where γ, refer to the mixing factor in [12], denotes the
total number of information bits before the last frozen bit.
Knowing that γ can reach 98 for a (256,128,g) PAC code, the
resulting computational complexity of exploring all possible
cosets may become prohibitive even for moderate code sizes.
In order to reply to this limitation, we propose here an
algorithm that reduces the number of explored cosets.

III. MINIMUM DISTANCE PROPERTIES EVALUATION OF
PAC CODES

A. Low complexity algorithm

Knowing that we are able to compute w∗ and A∗ for any
polar coset C(i)N (ui−1

0 , ui), it is possible to propose an enumer-
ation structure similar to a list decoder that has the advantage
of pruning cosets with a constraint of their minimal weight and
only exploring relevant cosets. This enhances the efficiency of
the algorithm by avoiding unnecessary computations on cosets
having a large minimum weight.
Knowing that any coset C(i)N (0i−1

0 , ui = 1)∀i > s only
describes codewords, its is possible to use the minimum weight
of those cosets as an upper bound on the minimum distance.
Therefore, d2 is computed first with the associated occurrences
in order to have a first bound on the minimum distance.
Algorithm 1 gives the details of the proposed algorithm. Its
main steps can be summarized as follows :

• For a considered polar code and the associated frozen bits
strategy, d2 = w∗(C(i)N (0i−1

0 , ui = 1|i ∈ [[s+ 1;N − 1]]))
is computed together with the associated occurrences.

• All the possible information vector vi
0 at an exploration

stage i such that i ≤ s are listed and the associated
prefixes ui

0 are computed using the convolutional trans-
formation.

• For each of the aforementioned paths, w∗(C(i)N (ui−1
0 , ui))

is computed. See section II.B for details
• The cosets with w∗(C(i)N (ui−1

0 , ui)) > d2 are discarded.

Algorithm 1: Computing d∗ and A∗ of a PAC code
Input: PAC code CPAC(N,K,F ,g), Cmax

1 s ← index of the last frozen bit
2 L← 1
3 for i ∈ [[s+ 1;N − 1]] do
4 Compute w∗ and A∗ of C(i)N (0i−1

0 , ui = 1))
5 end
6 d2 ← min

i∈[[s+1,N−1]]
w∗(C(i)N (0i−1

0 , ui = 1))

7 A2 ← Occurrences of d2
8 for i ∈ [[1; s]] do
9 if i ∈ F then

10 for l ∈ [[1;L]] do
11 vi[l]← 0
12 [ui[l], si+1[l]]← conv(vi[l], si[l])
13 Compute w∗ of C(i)N (ui−1

0 , ui[l]))
14 Discard the paths for which w∗ > d2
15 L← |L|
16 end
17 else
18 L ← L

⋃
L′ /* L′ is a copy of L */

19

20 for l ∈ [[1;L]] do
21 [vi[l], vi[l

′]]← [0, 1]
22 [ui[l], si+1[l]]← conv(vi[l], si[l])
23 [ui[l

′], si+1[l
′]]← conv(vi[l′], si[l′])

24 Compute w∗ of C(i)N (ui−1
0 , ui[l])) and

C(i)N (ui−1
0 , ui[l

′]))
25 Discard the cosets for which w∗ > d2
26 L← |L|
27 if L > Cmax then
28 L ← Keep the Lmax cosets with the

least minimum weights
29 end
30 end
31 end
32 if i = s then
33 d1 ← minimum weight of the cosets remaining

in the list except the all zero coset
34 A1 ← Occurrences of d1
35 end
36 end
37 d∗ ← min(d1, d2)
38 A∗ ← Occurrences of d∗

39 Return (d∗, A∗)

• If the number of considered cosets reaches a max-
imum value Cmax, only Lmax cosets with the least
w∗(C(i)N (ui−1

0 , ui)) are kept at a exploration stage i.
• When i = s the minimum weights of the cosets remaining

in the list as well as their numbers of occurrences are
computed.

It is important to note that if Ci < Cmax ∀i ∈ [[1; s]] then the

(
0 1
1 1

) (
0 1
1 1

) (
0 1
1 1

) (
0 1
1 1

) (
1 1
0 1

) (
0 1
1 1

) (
0 1
1 1

) (
0 1
1 1

)

(
0 1
1 2

) (
0 1
1 2

) (
1 2
0 1

) (
0 1
1 2

)
(
0 1
2 4

) (
1 2
1 2

)

(
1 2
1 2

)

v0 v1

u2

x1 x5x3 x7 x0 x4 x2 x6

(a)

(b)

Parity node

Variable node
Hidden variable node

Fig. 1: Graph decoding of u2 for a polar code with N = 8

proposed algorithm provides the exact minimum distance as
well as its associated number of occurrences. In fact, at each
computation stage i, only the cosets having a minimum weight
greater than the upper bound are discarded. If the number of
relevant cosets does not exceed the maximum size Cmax, we
are sure that all the cosets with minimum weight have been
explored.

B. Computation of the minimum distance properties of a coset
on a factor graph

We now provide a sketch of proof of a method that enables
to determine both the minimum weight and its number of
occurrences for any polar coset.

Proposition III.1. For any polar coset C(i)N (ui−1
0 , ui), the

minimum weight w∗ and related occurrences A∗ can be
computed using the factor graph of each ui described in [13].

Sketch of proof 1. In the following, we will denote by T i
0

and TN−1
i+1 the upper (i + 1) first rows and the (N − i − 1)

last rows of TN . Given p = ui−1
0 T i−1

0 and s = uN−1
i TN−1

i ,
we prove that w∗ and A∗ can be expressed as:

w∗(p, ui) = min
s ∈ FN

2

v ∈ Fd
2

w(

N−1∑
j=0

pj⊕sj)−log(1([s,v,ui]H
(i)T=0)) (12)

A∗(p, ui) = | argmin
s ∈ FN

2

v ∈ Fd
2

w(

N−1∑
j=0

pj ⊕ sj)− log(1([s,v,ui]H
(i)T=0))|

(13)
where H(i)T denotes the extended parity check matrix asso-
ciated to TN−1

i+1 so that the decoding graph of ui is a tree,v
denotes all the hidden variables resulting from the Kronecker
product and the |.| operator defines the cardinality of a set.

Permuting the sum and the minimum operator in (12) is
possible according to [14]. It enables to build a graphical
representation of the factorization. In the specific case of polar
codes, the decoding factor graphs of each ui is a tree as it
was shown in [13]. This tree representation allows a simple
way to compute efficiently the minimum weight and associated
occurrences. Figure 1 gives an illustration of a decoding factor
graph of bit u2 for a polar code of length N = 8 for
p = [10000000].

During the computation, two configurations can be encoun-
tered. The dashed sub-graph (a) of Figure 1 describes the case
where two variable nodes x1 and x2 are connected to a variable
node xp through a check node f . As in message passing
formalism, messages are functions of the different variables.
Each one of those messages can be represented by a matrix
2× 2 θx given by:

θx =

(
µ
(0)
x A

(0)
x

µ
(1)
x A

(1)
x

)
(14)

where µ
(0)
x and µ

(1)
x denote the minimum weight of the

configurations with x = 0 and x = 1, while A
(0)
x and A

(1)
x are

defined as the associated number of occurrences.
As depicted in Figure 1 in the dashed sub-graph (a), θxp

can be computed as follows:

µ(0)
xp

=min(µ(0)
x1

+ µ(0)
x2︸ ︷︷ ︸

w1

, µ(1)
x1

+ µ(1)
x2︸ ︷︷ ︸

w2

)

A(0)
xp

=A(0)
x1

A(0)
x2
1(µ(0)

xp
= w1) +A(1)

x1
A(1)

x2
1(µ(0)

xp
= w2)

(15)
Similarly, we have:

µ(1)
xp

=min(µ(0)
x1

+ µ(1)
x2︸ ︷︷ ︸

w1

, µ(1)
x1

+ µ(0)
x2︸ ︷︷ ︸

w2

)

A(1)
xp

=A(0)
x1

A(1)
x2
1(µ(1)

xp
= w1) +A(1)

x1
A(0)

x2
1(µ(1)

xp
= w2)

(16)
For instance, in the example given in Figure 1, considering
the dashed sub-graph (a), we have:

θv0
=

(
min(1 + 1, 0 + 0) A

(0)
v0

min(1 + 0, 0 + 1) A
(1)
v0

)
=

(
0 1
1 2

)
(17)

Figure 1 in the dashed sub-graph (b) describes the case
where two check nodes f1 and f2 are connected to a variable
node x. Given the two incoming messages from the check
nodes to the variable node x, the messages µ

(b)
x and A

(b)
x ,

b = {0, 1}, can be expressed as follows:{
µ
(b)
x = µ

(b)
x1 + µ

(b)
x2

A
(b)
x = A

(b)
x1 A

(b)
x2

(18)

Proposition III.2. The overall time complexity defined as the
number of arithmetic operations of computing d∗ and A∗ for
a coset is at most 12(N − 1).

Proof. In the described algorithm, depending on the configura-
tion (parity node case or variable node case), a certain number
of arithmetic operations has to be performed.
In the parity node case, equations (13) and (14) are computed.
Computation of µ

(0)
x and µ

(1)
x need 3 arithmetic operations

each resulting in 6 operations. The computation of A
(0)
x and

A
(1)
x need at most 3 arithmetic operations each. We will

consider this worst case.
In the variable node case, Computation of µ

(0)
x , µ

(1)
x , A

(0)
x

and A
(1)
x need 1 arithmetic operations each resulting in 4

operations. The parity node case has the highest complexity so

TABLE I: Minimum distance and number of occurrences

(N,K) F d∗ A∗
PAC C∗ nc ne [11]

(64, 22) RM 16 500 57 1061 65192

(128, 64) RM 16 3120 2825 58329 7265295

(256, 192) GA 4dB 8 53456 10326 227624 977664

(512, 256) GA 2dB 16 36256 6074 139822 133968

we will only consider this case. Given that on each graph factor
of ui, N − 1 nodes have to be evaluated, the time complexity
is at most equal to 12(N − 1)

IV. EXPERIMENTAL RESULTS

A. Complexity comparison

Algorithm 1 consists in N−s loop iterations where a single
coset is evaluated and s loop iterations where Ci cosets are
evaluated, with Ci < Cmax. The complexity of the proposed
method is driven by the total number of evaluated cosets nc:

nc =

s∑
i=0

Ci + (N − s) (19)

In all our experimentations, Cmax was set to 2000000 and we
observed that C∗ < Cmax, with C∗ = maxi(Ci). This means
that the number of explored cosets never reaches Cmax and
the reported (d∗, A∗) values are exact.

Algorithm 1 was applied on a range of PAC codes, for
different code rates and different frozen set constructions. We
will refer to the Gaussian Approximation (GA) construction
with design-SNR of XdB [15] as GA XdB and to the Reed
Muller construction as RM.
Table I summarizes the minimum distance d∗, the associated
occurrences A∗ for both polar and PAC configurations. The
(d∗, A∗) values highlighted in green were corroborated with
results in [11]. It is possible to estimate the complexity of [11]
as the total number of explorations : ne =

∑
i∈B 2|K

f
i |(f − i).

The complexity comparison also shows that the proposed
algorithm outperforms the algorithm proposed in [11]. In
particular, for RM constructions, the number of explorations
reduction is very significant. In terms of execution time,
our MATLAB code time execution was compared to the
MATLAB code time execution of [11] that can be found in
[16]. For a (128,64) PAC code with a RM construction, our
simulation time is around 11 seconds whereas [16]’s running
time is around 25 minutes. Note that unlike Algorithm 1, the
algorithm proposed in [11] is only valid for polar and RM
constructions, no comparisons can be undertaken with other
kind of frozen bit set constructions.

The complexity of the proposed algorithm was also com-
pared to the method introduced in [10] in which the results
are shown not only for the codewords with minimum weights
but also for the codewords with a weight up to a certain value
wmax. Algorithm 1 was slightly modified to accommodate the
computation of the number of codewords up to a fixed weight.
The changes consist the following changes in Algorithm 1:

TABLE II: Low weight codewords enumeration

(N,K) (128, 64) (128, 80)

(w,Aw)

(8, 288) (8, 4312)

(12, 832) (10, 2368)

(16, 75864) (12, 374240)

(18, 6272) (14, 1267648)

ΣN (X)
Subcode [10] 3831× 109 4585× 109

6nc(N − 1) 1532× 105 2396× 107

• Deleting lines 3− 7
• Replacing [[1; s]] in line 8 by [[1;N]]
• Replacing w∗ > wstart in lines 14 and 25 by w∗ >

wmax.
It is also important to note that results for precoded polar

codes are shown for dynamic frozen bits in [10]. Polar codes
with dynamic frozen bits can be seen as PAC codes with a
variable generator polynomial as follows:{

g = [1],∀i /∈ F
g = [g0, ..., gi−1],∀i ∈ F

(20)

In this study case, g0, ..., gi−1 are chosen randomly.
The algorithm’s overall time complexity is at most equal to
6nc(N−1) as only d∗ needs to be computed whereas [10]’s al-
gorithm time complexity is dominated by the term ΣN (X)

Subcode.
Table II shows the computed partial weight distribution ob-
tained when introducing the aforementioned modifications to
Algorithm 1 (Since the precoding is done randomly, it is not
possible to reproduce the exact same values but only values
in a close range) and compares the overall complexity of
Algorithm 1 to the complexity of the algorithm in [10]. We
can see from the table that the computational complexity of the
proposed algorithm is lower by several orders of magnitude.
[10] shows the overall running time for a C++ implementation
on a computer with 6 cores i7 and a 3.2GHz processor. For
example, the running time for a randomly precoded (128,64)
is around one hour and a half in [10], whereas our running
time for a MATLAB implementation on a computer with 2
cores i5 and a 3.1GHz processor is less than 10 minutes.

B. d∗ and A∗ computation

The computation of d∗ and A∗ for N = 512 and
K ∈ [[1;N]] for the 5G standard frozen bit set is summarized
in Figure 2 for both polar and PAC codes for a generator
polynomial g = [1, 0, 1, 1, 0, 1, 1]. The frozen bit sets are the
ones specified in the 5G standard [3]. This proves that we are
able to compute d∗ and A∗ for any desired rate for a specific
frozen bit set. Moreover, it can be observed that d∗ is the
same for polar and PAC codes for any rate for this specific
frozen set.

V. CONCLUSION

A low-complexity algorithm that only explores cosets that
follows a constraint on their minimum weight in order to

0 100 200 300 400 500 600
100

101

102

103

104

105

106

107

K

d∗

A∗
Polar

A∗
PAC

Fig. 2: d∗ et A∗ for N = 512 and g = [1, 0, 1, 1, 0, 1, 1]
depending on K

compute the minimum distance and its associated number
of occurrences for PAC codes has been introduced in this
article. It has been proven to exhibit a low complexity in
comparison to other algorithms. Besides, it enables computing
the minimum distance as well as its associated number of
occurrences for any frozen bit set.

REFERENCES

[1] E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Trans. on Inf. Theory, 2009.

[2] I. Tal and A. Vardy, “List decoding of polar codes,” in 2021 IEEE
International Symposium on Information Theory (ISIT), 2011.

[3] 3GPP TS 38.212 V17.4.0, “5G; NR; multiplexing and channel coding,”
2023.

[4] P. Trifonov and V. Miloslavskaya, “Polar codes with dynamic frozen
symbols and their decoding by directed search,” in 2013 IEEE Informa-
tion Theory Workshop (ITW), 2013, pp. 1–5.

[5] M. Moradi, A. Mozammel, K. Qin, and E. Arikan, “Performance and
complexity of sequential decoding of PAC codes,” CoRR, 2020.

[6] T. Tonnellier and W. J. Gross, “On systematic polarization-adjusted
convolutional (pac) codes,” IEEE Communications Letters, 2021.

[7] N. Hussami, S. B. Korada, and R. Urbanke, “Performance of polar codes
for channel and source coding,” in IEEE ISIT, 2009.

[8] M. Bardet, V. Dragoi, A. Otmani, and J.-P. Tillich, “Algebraic properties
of polar codes from a new polynomial formalism,” in IEEE ISIT, 2016.

[9] B. Li, H. Shen, and D. Tse, “An adaptive successive cancellation
list decoder for polar codes with cyclic redundancy check,” IEEE
Communications Letters, 2012.

[10] V. Miloslavskaya, B. Vucetic, and Y. Li, “Computing the partial weight
distribution of punctured, shortened, precoded polar codes,” IEEE Trans-
actions on Communications, 2022.

[11] M. Rowshan and J. Yuan, “Fast enumeration of minimum weight
codewords of PAC codes,” in IEEE ITW, 2022.

[12] H. Yao, A. Fazeli, and A. Vardy, “A deterministic algorithm for
computing the weight distribution of polar code,” IEEE Transactions
on Information Theory, 2023.

[13] R. Mori and T. Tanaka, “Performance and construction of polar codes
on symmetric binary-input memoryless channels,” in IEEE ISIT, 2009.

[14] T. Richardson and R. Urbanke, Modern Coding Theory, Chapter 2,
Cambridge University Press, 2008.

[15] P. Trifonov, “Efficient design and decoding of polar codes,” IEEE
Transactions on Communications, 2012.

[16] https://github.com/mohammad-rowshan/Fast-Enumeration-of-
Minimum-Weight-Codewords-of-PAC-Codes.

