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Abstract 

 

The foot-sole cutaneous receptors (section 2), their function in stance control (sway minimisation, exploratory 

role) (2.1), and the modulation of their effects by gait pattern and intended behaviour (2.2) are reviewed. 

Experimental manipulations (anaesthesia, temperature) (2.3 and 2.4) have shown that information from foot 

sole has widespread influence on balance. Foot-sole stimulation (2.5) appears to be a promising approach for 

rehabilitation. Proprioceptive information (3) has a pre-eminent role in balance and gait. Reflex responses to 

balance perturbations are produced by both leg and foot muscle stretch (3.1) and show complex interactions 

with skin input at both spinal and supra-spinal levels (3.2), where sensory feedback is modulated by posture, 

locomotion and vision. Other muscles, notably of neck and trunk, contribute to kinaesthesia and sense of 

orientation in space (3.3). The effects of age-related decline of afferent input are variable under different foot-

contact and visual conditions (3.4). Muscle force diminishes with age and sarcopenia, affecting intrinsic foot 

muscles relaying relevant feedback (3.5). In neuropathy (4), reduction in cutaneous sensation accompanies the 

diminished density of viable receptors (4.1). Loss of foot-sole input goes along with large-fibre dysfunction in 

intrinsic foot muscles. Diabetic patients have an elevated risk of falling, and vision and vestibular compensation 

strategies may be inadequate (4.2). From Charcot-Marie-Tooth 1A disease (4.3) we have become aware of the 

role of spindle group II fibres and of the anatomical feet conditions in balance control. Lastly (5) we touch on the 

effects of nerve stimulation onto cortical and spinal excitability, which may participate in plasticity processes, 

and on exercise interventions to reduce the impact of neuropathy. 
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cutaneous receptors, muscle spindles, foot sole, intrinsic foot muscles, reflexes, balance, gait, ageing, sarcopenia, 
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1   |   INTRODUCTION 

 

Our bipedal posture is intrinsically unstable. 1,2 Gait consists in a continuous series of downward accelerations 

and active braking of the body weight 3-6. No wonder falls are a problem. Fusion of sensory information, 

continuous check of balance, descending control of the spinal pattern generators by brain stem centres and 

cortical areas and appropriate recruitment of locomotor and postural muscles enable effective stance and 

locomotor tasks. 7  Proper orchestration of balance and walking activities protects us from toppling over when 

smooth progression is perturbed by sudden or anticipated changes in our environment. 8 

 

Information from the interface with the surrounding world is all too relevant for producing congruous motor 

activity. Sensory input from all the moving body parts constitutes a continuous flow of detailed messages 

correlated to those originating from the ground and objects we come in contact with. 9 All these inputs operate 

through short- or long-latency reflexes 10 or by conveying to the brain messages able to modulate the excitability 

of the neural circuits controlling balance and gait. 11 Vision displays the details of the environment and tells us 

whether the trajectory is appropriate or complications materialise ahead of us, and permits prediction and 

planning of sidestep strategies. 12, 13 

 

Here we wish to build upon old consolidated notions and briefly mention recent findings on the function of the 

receptors influencing the control of balance and gait and body orientation in space, having in mind ageing people 

and patients with peripheral neuropathies of various nature. Neuropathy is a quite complex condition that 

affects balance and gait by altering the transmission of the action potentials in the nerve fibres. Not only that, 

because neurones in the dorsal root ganglia can be affected together with the axons travelling in the long spinal 
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tracts. The degenerative disorder can also damage the nerve fibres originating in the vestibular receptors 14, 15 

and in the eye, 16 thereby presenting a further threat to balance and a serious risk factor for falls. Adaptation to 

loss of one or more sensory inputs can occur, e.g., cutaneous, 17 proprioceptive, 18 vestibular. 19  As a consequence, 

compensation processes 20 can interfere with the control of balance and gait. 

 

 

2    |   SKIN RECEPTORS OF THE FOOT SOLE 

 

The notion that sensory information from the feet is not negligible in modulating posture and locomotion has 

been established for many years. 21 Cutaneous receptors detect and code a wide range of mechanical stimuli. 

Low-threshold receptors code for pressure, vibration, light touch, texture as well as displacement of an object on 

the skin or vice versa. High-threshold receptors code for pain 22. The former are innervated by large myelinated 

fibres, the latter (not considered here) by small myelinated and unmyelinated fibres with low conduction 

velocity. A recent review summarises the general anatomy of the skin receptors and their transduction 

properties in response to adequate mechanical stimuli. 23 Receptors may be fast-adapting, ceasing to fire in spite 

of a steady stimulus with a restricted (FA type I) or larger receptive field (FAII), and slowly-adapting (SAI and 

SAII, respectively). 24  The skin receptors have a different distribution in the glabrous skin of the hand (with small 

receptive fields in a higher proportion distally) compared to the foot (where they are more uniformly 

distributed) 25, according to the distinct roles of hand 26 and foot.  

 

Another review article, centred on microneurographic recordings from sensory fibres from the skin of the foot 

sole, provides a detailed analysis of the receptive field distribution and density of these fibres. 27 About 60% of 

all recorded fibres originate in fast-adapting receptors with small receptive fields. The large percentage of fast-

adapting receptors suggests that dynamic as opposed to static stimuli trigger the necessary information about 

the relationship of the foot with its support surface. Interestingly, in the fast- compared to slow-adapting 

receptors there is a better match between the firing of the nerve fibres and the stimulus perception, 28 pointing 

to a potential role of the fast-adapting receptors in the subjective perception of body sway amplitude. 29 30  

Microneurographic recording from the tibial nerve at the ankle is likely to offer further information on the role of 

the receptors of the foot sole in the control of stance and gait. 31 

 

2.1   |   Is there a role for the continuous oscillation of the body during quiet stance? 

 

Body sway during normal standing is not just an effect of ‘inadequate’ balance control mechanisms. Kiemel et al. 
32 noted that minimisation of muscle activity rather than of body sway per se is the main task of the postural 

control system during quiet stance. Independently of the underpinning mechanisms, 33 sway is a source of crucial 

information and in stance healthy individuals sway continually. Carpenter et al. 34 suggested that the postural 

sway may be exploited to ensure that continuous dynamic inputs are provided by multiple sensory systems. In 

its spatial ‘exploration’, the body acquires sensory information from fast-adapting receptors from the foot sole 

(and from different distributed sources) in order to develop a better representation of where the body is in 

space. 35 Conversely, cutaneous slowly-adapting receptors may not serve exploration, but rather signal sharp or 

intense persistent stimuli, such as during the stance phase of gait. 36  Over time, not all receptors located in the 

skin of the foot sole may be firing, even when the foot is in contact with the support base, because they might be 

adapted if the mechanical stimulus is unchanging. The scope of the postural sway would be to allow the 

recruitment of new ‘silent’ receptors, as and when the previously firing fast-adapting receptors become adapted 

during still stance. Of course, the exploratory role would depend on the distance between the feet. This plays a 

substantial role, because sway increases when standing in tandem position (or under a single-leg stance 

condition), where the narrow base of support requires the development of a continuous stabilising torque about 

the ankles produced by leg and foot muscles. 37 38 In this case, the input from the foot sole varies much more and 

would be accompanied by a larger proprioceptive input from the recruited muscles. 

 



FELICETTI ET AL.                         Revised Version 2 - Submitted to the Journal of the Peripheral Nervous System, 31 December 2020 

4 

As it happens, sway can and does diminish when vision and/or touch subserve complementary sensory inflow, 39 

40 because continuous motion of the retinal image is an effective stimulus for postural stabilisation. 41 42 43  Body 

sway is reduced also when the brain receives additional information from light touching a solid frame with a 

finger tip or from the contact to the ground of a hand-held cane. 44 45 46 47  Since this is true even when touch may 

not be mechanically stabilising, as when the force exerted by finger or cane is below or close to 1 Newton, 48 

appropriately allocated sensory integration processes initiated by the light-touch feedback would explain the 

effect. Similar stabilising effects of the input from fingertip touch have been documented when sighted and blind 

subjects lightly touched the ground with a cane, and the time course of stabilisation process has been described. 
49 The non-negligible time-interval (of the order of a second) from ground contact by the cane to reduction of leg 

muscle activity and body sway is also similar to that following the index-finger light touch 46 . This suggests that 

the integration of the input for balance control is a time-consuming neural operation initiated by the haptic 

stimulus 26 at the interface finger-frame or hand-cane. Passive tactile cues to the skin of the lower limb or to the 

shoulder, 50 again exerting no mechanical effect, also enhance postural stability in older people and patients with 

neuropathy, 51 proving that the postural control process easily adapts to passive cutaneous information from 

various pats of the body. 

 

It would not be surprising if the ‘exploration’ would be centrally controlled in order to avoid a random input, 

which would be not easily exploited by the brain and require continuous unsupervised corrections. In this light, 

the hypothesis has been supported by several experimental observations that control of body sway during quiet 

stance relies on predictive, anticipatory control of postural muscle length rather than on postural muscle tone or 

stretch reflexes. 52 53 54 Possibly, the input from the foot sole is weighted by the descending control driving the 

anticipatory postural activities. 55 Clearly, postural sway is not an end it itself, but is normally coordinated with 

supra postural tasks (see e.g., 56 57). 

 

2.2   |    Cutaneous input and gait 

 

Standing does not occupy a large proportion of our time, but we assume this posture very often during our daily 

life activities. The sensory inflow from the foot sole plays a crucial role in detecting the effects of the postural 

changes and affects the activity of the postural muscles of the leg. 58 59 Not only of those muscles, though, because 

inputs from foot cutaneous mechanoreceptors produce widespread, task-dependent, reflex actions on multiple 

muscles in the ipsilateral and contralateral legs. 60 This information is up-weighted when a critical task like gait 

initiation is planned. 61  

Stimulation of the nerves carrying information from the foot skin has been extensively used. The reflexes evoked 

by sural stimulation are modulated with a presumably functional purpose by the locomotor activity as well (see 
62). A modulation of a cutaneous reflex from the skin of the foot dorsum (by stimulation of the superficial 

peroneal nerve), dependent on the task of avoiding an obstacle, 63 occurs during locomotion, and is stronger 

when vision is experimentally degraded. A most remarkable synthesis of the effects of cutaneous input from 

discrete regions of the foot during walking can be found in Pearcey & Zehr. 64 One may note that locomotion 

produces a continuous spatio-temporal change in the plantar pressures (and from foot dorsum when wearing 

shoes 65), thereby continuously varying the foot areas from which skin receptors are activated. 65, 66 For instance, 

remarkable changes in the plantar pressure occur between straight and curved walking, 67 potentially informing 

the brain on how to adapt the body motion to the complex condition of steering while walking. 68 The concurrent 

activation of the intrinsic foot muscles and of other postural muscles must provide a complex, presumably 

meaningful afferent discharge, ordained to be integrated by the centres responsible for the control of balance 

and gait. These inputs would contribute to fine-tuning the activity of the leg muscles for progression and of the 

trunk muscles for producing the centripetal force. 69, 70, 71 

 

2.3   |    Foot sole anaesthesia 
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Foot sole anaesthesia decreases the activity of the ipsilateral soleus and diminishes the vertical ground reaction 

force below the insensitive foot during balance recovery from an induced fall. 72, 73 Therefore, the plantar 

sensation is relevant in the maintenance of stance 74, in particular under critical balance conditions or in the 

absence of vision.  Mildren et al. 75 found that the perceptual threshold increases after anaesthesia. By reducing 

skin feedback, particularly around the region of the heel, and asking the subjects to voluntarily perform a feet-

position matching task with eyes closed for assessing joint position sense, the ankle of the anaesthetised foot was 

felt relatively more dorsiflexed when the ankle angles were actually equal, suggesting that posterior heel-region 

signals the magnitude of the skin stretch. A lidocaine block of all the nerve branches supplying the skin of foot 

and ankle did not modify the amplitude of the soleus stretch reflexes elicited by an imposed dorsiflexion of the 

foot during the stance phase of walking 76 (see section 3.1), as if joint position sense and short-latency 

motoneurone reflex excitability would be differently affected by the cutaneous input from the heel. 

 

2.4   |    Foot sole temperature 

 

The above findings complement experiments with cooling of the foot sole. 77 The threshold for vibratory 

sensitivity increases with cooling, 77 supporting the notion that skin temperature modulates the afferent 

discharge from the foot sole. 78 Four times as many falls in January than May have been reported in Sweden 79 

(see 80). Even by accounting for stumbles on snow or ice, falls were two times more frequent in cold weather. 

Cooling the foot (or leg) may be blamed for many falls, more so in the elderly or in neuropathic patients. 

However, cooling the foot sole may not be sufficient to increase sway during quiet stance to any major extent in 

healthy subjects. 81, 82 Controlled cooling has also scarce effects on anticipatory and compensatory balance 

responses to perturbations. 83 These findings can be explained by the relatively modest effects of cutaneous 

input from the foot sole and on the central reweighting of different inputs to compensate for the cold-induced 

loss of plantar cutaneous sensation. 84, 85 On the other hand, the sensitivity threshold decreases as the 

temperature increases. 86 Active (after treadmill walking) or passive warming (by an infrared radiator) the foot 

sole lowers the vibration perception thresholds. 87 

 

2.5   |    Enhanced cutaneous information from the foot sole  

 

A non-painful stimulation to the sural nerve, which innervates the lateral aspect of foot and heel, or to the tibial 

nerve at the ankle at about the motor threshold elicit reflex actions on many active muscles of the lower limbs. 88, 

58 These effects are partly spread to the contralateral limb as well, have a short latency (however longer than 

that of the monosynaptic reflex), can be facilitatory or inhibitory, and are task-modulated(standing, sitting, 

relining). They may differ depending on the muscle and the motor units, emphasising a widespread and complex 

influence. The modulatory effects suggest that the inputs from the foot may be gated by the motor command to 

play different functional roles. For example, the foot cutaneous input and the descending volley from the motor 

cortex converge at spinal level and affect the firing motoneurones to leg muscles by way of presynaptic 

inhibition. 89 

 

Direct mechanical stimulation of the foot sole delivered to different areas of the skin of the foot sole produce 

marked postural effects. These are ‘meaningful’, because moderate body tilts are produced, oriented contra-

laterally with respect to the stimulation site. 90 Conceivably, subjects perceive their body weight displaced 

towards the stimulated foot and shift the body to the opposite side to make the CoP even. Again, in several 

studies vibratory stimulations to the foot sole have been administered by instrumented insoles, and reduced 

sway and gait variability have been observed. 91, 92 A simple mechanical stimulation by means of a thin object 

placed underneath the forefoot, on the force plate upon which subjects stand, produces a reduction in body sway 

area and improvement in recovering balance following a perturbation, 93 as if additional information would 

represent a further reference. Others have recently confirmed that mechanical facilitation of sensation of the 

plantar soles enhances postural stability. 94, 95 A small raised edge placed underneath the boundary of the foot 

was shown to improve the reaction to unpredictable postural perturbations. 96 Changing the texture of a shoe-
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insert from smooth to clearly perceptible textured material can alter lower leg muscle activity during walking, 

suggesting that the sensory feedback from cutaneous receptors of the plantar surface of the foot improves 

dynamic balance control. 97, 98, 99 Anyhow, in spite of a plethora of fine studies addressing this issue in healthy 

subjects and patients (e.g., 100), the clinical effectiveness of mechanical stimulation by patterned insoles remains 

elusive. 101, 102  

 

One would argue that a certain thickness underneath the foot sole and the toes would not only produce a 

deformation of the receptive field of the cutaneous receptors, but would also modify, albeit minimally, the length 

of the plantar muscles of the foot, thereby recruiting stretch-sensitive muscle receptors. This adds to, but does 

not cancel the purely cutaneous input, as shown by the anaesthesia experiments mentioned above. Hence, both 

cutaneous and proprioceptive muscle inputs cooperate in sending the brain and spinal cord combined 

information crucial for postural control. In this light, Jean-Pierre Roll and coworkers posited that tactile and 

proprioceptive information from foot soles and leg postural muscles is centrally integrated to subserve balance 

control. 103 

 

In an influential article, Proske & Gandevia 104 noted that the discharge of skin receptors contributes to 

movement sensation and stated that ‘receptors involved in proprioception are located in skin’, in addition to 

more conventional locations. That standpoint represents the best link to the following sections of this brief 

overview. 

 

 

3   |    PROPRIOCEPTION AND THE INTRINSIC MUSCLES OF THE FOOT 

 

Foot muscles possess quite a number of spindles 105, 106 and the sensory inflow from the receptors of these active 

muscles must play a pre-eminent role in balance control. 107 The more so, because spindles are subject to 

centrifugal control, whereby the gamma motoneurones can enhance the spindle responsiveness to changes in 

muscle length by acting onto the intrafusal muscle fibres. Burke & Eklund 108 recorded the discharge of single 

nerve fibres from the spindles of the pretibial muscles. The spindle discharge frequency was not higher under 

standing than supine condition, but increased when the muscles were active, as during body backward sway 

(producing contraction of the pretibial muscles in order to shift the centre of feet pressure toward the heels). 

The afferent input from the intrinsic foot muscles has been also addressed recently. 109 In this case as well, many 

spindles were silent at rest, but during stance their discharge was modulated by changes in the position of the 

centre of foot pressure. All in all, it is evident that the muscle spindles contribute significant information about 

the displacement, anyhow modest, of the standing body.  

 

Foot muscles act as a group to provide dynamic support of the longitudinal arch of the foot during quiet standing 

as well as during gait, where they concur to body propulsion in the last phase of the stance period. 110 The 

activation of these muscles increases with increasing postural demand 111, 112 as the foot shape changes. 113 

During stance, changes in the foot architecture may produce ‘internal’ foot muscle deformation, and affect 

spindle discharge from the foot intrinsic muscles. This can originate a significant input, when the information 

about the foot dorsi- or plantar-flexor muscles may not accurately code for the ankle angle due to the foot 

compliance. 114 Further, internal changes in muscle length occur normally during body sway, out of phase with 

the ankle angle. This occurrence has been shown for the triceps muscle, 52, 54 but may hold for the intrinsic foot 

muscles as well (see 2.1). Individual differences in foot compliance are common, and could be responsible for the 

ample variability across subjects detected in posturography measures. During walking, the action of the intrinsic 

foot muscles is largely specific and separable from that of the extrinsic foot muscles. 115 Thus, these muscles 

contribute to locomotion in unique and likely irreplaceable ways, and must be coordinated in a highly controlled 

synergy. 

 

3.1    |    Postural responses to electrically- or perturbation-elicited proprioceptive input from the foot 
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Years ago, we and others have shown that the intrinsic muscles of the foot are the site of clear-cut reflex 

responses. The H reflex can be elicited in these muscles by electrical stimulation of the tibial nerve 116, 117 and 

full-blown stretch reflex responses are elicited by fast perturbations of stance. 116 The flexor digitorum brevis is 

the site of short- and medium-latency responses to toe-up rotation of the platform upon which the subject 

stands. This action adds to and supports the well known reflex response elicited in the triceps surae muscles 

when the body reacts to such a perturbation. 118, 119 In passing, the concurrent recording from muscles placed at 

a different distance from the spinal cord (foot and calf) allowed to identify the receptors and estimate the 

conduction velocity of the fibres responsible for the short- (group Ia spindle afferents) and the medium-latency 

(group II spindle afferents) reflex response to stretch 120, 121 (see 4.3). 

 

3.2   |    Interactions between cutaneous and proprioceptive inputs and their central integration 

 

There is ample possibility for interaction of proprioceptive and cutaneous input at the spinal as well as at higher 

levels. Skin afferents from the foot have multi-synaptic reflex connections with the motoneurone pools directed 

to the leg muscles. 59 These influences have a well-defined distribution 60 and are depressed by standing. 122 

Reflexes in the erectores spinae muscles are evoked by stimulation of the sural nerve and are modulated by 

postural tasks, indicating that meaningful responses are produced in these muscles by cutaneous receptors of 

the foot. 123 Anaesthesia of the entire contact surface of the foot sole modifies the amplitude and distribution of 

the body reaction to a balance perturbation in the frontal plane. 124  

 

A simple example of an interaction between skin and muscle inputs, likely occurring at spinal level, is the 

inhibitory effect on the triceps surae activity exerted by the foot sole. Electrical stimulation of the tibial nerve at 

the ankle, aimed at activating the proprioceptive fibres from the foot muscles, normally induces a short-lasting 

facilitation of the tonic activity of the triceps surae. This is preceded by inhibition under quiet stance or when a 

firm surface is pressed against the foot sole under reclining condition. 125 Therefore, foot muscle afferents 

establish oligo-synaptic connections transmitting mixed effects to the triceps muscle motoneurones, while the 

foot sole continuous mechanical stimulation discloses a short-latency inhibitory action. In this light, it comes as 

no surprise that H-reflex amplitude is larger under prone than standing condition 126 and that the H reflex is 

depressed during the early stance phase of gait. 127 Overall, the cutaneous input from the foot produces a 

modulation of the excitability of the monosynaptic reflex of the leg postural muscles during stance, possibly for 

avoiding excessive responses elicited by a toe-up perturbation that would produce a backward body thrust. 

Simultaneously, the muscles of the trunk receive information that help control the position of the upper body. 128   

 

The multi-sensory integration for posture and balance has received substantial attention in the exhaustive 

synthesis by Peterka, 55 which highlights the variable weight attributed to the sensory inflow depending on the 

current behavioural conditions. A recent finding represents a straightforward case of a high-level reweighting of 

proprioception by vision. The firing of spindles of leg and foot relaxed muscles was recorded by 

microneurography during passive foot plantar- and dorsiflexion movements, while the subjects could see their 

foot or not. 129 Briefly, the spindle firing frequency diminished in the presence of vision by reduction of the 

efferent activity of the gamma-motoneurones, possibly in order to attenuate the spindle firing when an 

additional, complementary information reaches the brain. 

 

3.3   |    The proprioceptive input from different body parts affects balance and gait and is modulated by 

vision 

 

The distribution of the muscle spindles is tremendously different across the muscles of our body. Of course, the 

spindle number is proportional to the muscle mass. However, when a regression is built of spindle number 

against muscle mass, the muscle with the greatest upward offset from the average distribution is the longissimus 

capitis of the neck, and that with the greatest negative deviation is the digastricus. 130 While the paucity of 
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spindles in the latter is easily explained by the protective role of the digastricus muscle in the jaw-opening reflex, 

where there is no need of spindle feedback and controlled development of force, the former must have its 

purpose in the need of detailed information about head and trunk position during dynamic tasks. 131  No wonder 

that fatigue of the neck muscles increases body sway during stance and worsens the perception of stability. 132 

The neck and the axial muscles represent a complex source of inputs appropriate for producing balance 

correcting responses to perturbations 133 and modifying our orientation in space during a locomotor task. 

Selective spindle afferent fibres activation by unilateral vibration of the neck sterno-mastoideus muscle induces 

ample deviations of the gait path (eyes-closed) toward the side opposite to stimulation. 134 Unilateral vibration of 

the erector spinae muscle during gait produces a deviation of the walking trajectory toward the opposite side as 

well. 135, 136   

 

As expected, vision reduces the sway evoked by neck vibration during standing. 137 This occurs also when vision 

precedes the vibratory stimulation, while no-vision before vibration enhances the vibration-induced 

destabilisation. Hence, a finite time period must elapse before the visual reference is fully established. In a study 

on proprioceptive-visual integration, Kabbaligere et al. 7 noted that the postural response to combined 

stimulation (leg proprioception by vibration and vision by motion of a virtual scene) depends on the weight 

allotted to each cue, in turn contingent on its reliability. Moreover, neck muscle proprioception and vestibular 

stimulation interact at different brain levels and contribute to the subject's representation of space 138, 139 140 (see 
141). A recent review by Jamal et al. 143 summarises and discusses the findings of neck vibration on postural 

orientation and spatial perception. 

 

3.4   |    Foot sensitivity in the elderly 

 

A review on balance and gait changes associated with ageing has been recently published 143. Elderly subjects 

show significantly elevated threshold for high-frequency vibration of the foot sole 144, 145, 146 or of internal 

malleolus. 144 However, healthy ageing may not be necessarily accompanied by major increases in body sway 

during stance when vision is available, although absence of vision or standing on foam 147 discloses a decline in 

postural stability 148. Sway increases beyond 60 years of age or so 149, in particular when unhealthy conditions 

are present. 150, 151, 152 A study by Machado et al. 153 showed that foot sensitivity diminishes with age, particularly 

at the heel. The reduced plantar sensitivity of the foot in the elderlies, correlated with changes in the threshold of 

the skin receptors, affects the strength of the cutaneous postural reflexes as well. 154  Critical information about 

the tibio-tarsal angle originates also from the proprioceptors (muscle spindles, see below) of the leg muscles 

about the ankle and by the retinacula of the ankle joint as well, which are endowed with receptors and nerve 

fibres. 155 Interestingly, a recent report shows that acuity of proprioception at the ankle does not diminish in 

healthy ageing, as tested by psychophysical methods under controlled conditions, taking into account the history 

of the leg muscle contractions and relaxations. 156  

 

3.5   |    Sarcopenia 

 

Certainly, in the old adult, muscle weakness is an issue. Sarcopenia designates the loss of muscle mass and 

strength that occurs with ageing and contributes to frailty and functional impairment in the elderly. 157 Loss of 

skeletal muscle innervation with structural changes in neuromuscular junction can accompany increased age. 

Muscle fibres can loose their pristine innervation by retraction of the terminal parts of their motor axons and 

may be innervated by the remaining healthy axons. However this compensatory process may fail with age, and 

an attenuation of motor unit growth would ensue, with no compensation for lost skeletal muscle innervation. 158 

This event does not necessarily accompany physically fit ageing, where intense motor activity may facilitate 

axonal sprouting and reinnervation of denervated fibers. 159 As a side note, animal studies have established that 

ageing results in the loss of fast-twitch motor units, but the reinnervation process in humans is not simple (see 
160, 161, 162). There is hope to soon elucidate the relevant molecular pathways. 163 
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The connections between muscle condition and balance function in older and younger subjects are addressed in 

a comprehensive review article. 164 Many studies have considered the control of balance under static and 

dynamic conditions in the elderlies with an eye on their muscle status, but no firm conclusions have been 

reached, probably because of the complexity of the matter. 164 Muscle weakness certainly is a cause of 

insufficient production of muscle torques for standing and walking. 165 However, physical activity practice does 

not seem to give an edge to either young or elderly healthy subjects when standing quietly on a firm surface or 

on foam. 166  On the other hand, a recent study on a large cohort of subjects has found that sarcopenia markedly 

increases the risk of postural dysfunction in middle-age adults. 167 

 

Whether sarcopenia in the elderly directly affects the spindle sensitivity is another question. Intriguingly, in the 

mouse, the capsule surrounding the muscle spindles undergoes thickening with ageing, probably modifying their 

transduction properties. 168 Some time ago, the hypothesis had been put forward that muscle weakness per se 

impairs the joint position sense and the control of stance, as deduced from the disproportionate increase in sway 

in the weaker subjects on closing the eyes (for an equal sway amplitude eyes-open). 169 Apparently, vision 

information compensated for an impaired sensibility of the muscle spindles receptors. This might indirectly 

explain the more favourable outcome on stance control of interventions aimed at strengthening the muscles than 

training postural capacities by balance exercises in sarcopenia women 170 (see 171, 172 for a general discussion on 

this matter and other interventions). 
 

Figure 1 is an attempt to summarise some of the issues mentioned so far, as an introduction to section 4.  

 

 

FIGURE 1  The highly simplified scheme lists some of the receptors responsible for conveying to the brain relevant inputs for 

balance control. All of them are briefly 

considered in this article (except 

Hearing), but skin and muscle receptors 

have received more attention. 

Neuropathy can lead to degeneration 

(the red dotted-line circle) of all 

mentioned receptors and fibres in the 

nerves and ascending tracts, and 

prevents information from accessing the 

brain centres (green) devoted to 

integration and reweighting of the 

sensory information (including the 

thalamus, basal ganglia, cerebellum and 

several cortical areas). The innermost 

turquoise circle denotes the brain stem 

centres which contain the nuclei 

orchestrating balance and gait control 

processes. Central pathways are omitted 

despite being mentioned in text. Some flow of information is indicated by arrows as in the ‘Levels of Integration & 

Reweighting’, but not shown in every relevant case to avoid intricacy. The outermost ring would point to several conditions 

and factors that affect transduction, firing, impulse conduction and effectiveness of motor action (top part) and integrity of 

the conditions enabling overall safe control of balance and gait (lower part) 

 

 

4   |    HINTS FROM NEUROPATHIES 

 

A clinical-epidemiological study addressed the association of decreased sensation of the foot skin assessed by 

monofilament technique with mortality, in a large cohort of general adult population (including but not limited 

to diabetic or neuropathic patients). The authors’ conclusion was that peripheral neuropathy, which is not 

uncommon in the general population, is associated with excess risk of all-cause mortality. 173 
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Clinical evaluation allocates patients into motor, sensitive or mixed neuropathy. Interestingly, a simple test 

based on the measure of the limits of equilibrium is able to discriminate between motor and sensory 

neuropathies, dependent on the exerted force necessary to reach the limits of stability. 111, 174 Nutritional 

deficiencies represent a frequent source of complex neuropathies, 175 and should be carefully considered because 

of the overlapping of the clinical picture with other disorders and with balance problems in the elderly. 176 

Recent reviews have addressed the complex features of neuropathies, with a view on improving diagnosis and 

considering the possibility of counteracting their  evolution. 177, 178, 179, 180 Overall, nerve fibre degeneration 

(demyelination or axonopathy or both) would be the consequence of a diffuse nerve ischaemia produced by a 

microvascular disease, the effects of which range from nerve fibre loss to foot ulcers (in a detrimental feedback 

loop between the two), to retinopathy and to autonomic neuropathy. 181, 182 In connection with the latter, 

autonomic neuropathy would not be inconsequential as far as proprioception is concerned (in addition to the 

protean ailments accompanying autonomic failure, e.g., 183). This is because muscles spindles, much as the typical 

extrafusal muscle fibres and their neuromuscular junctions as well, 184 receive sympathetic innervation 

potentially modulating their transduction properties. 185, 186, 187  Whether sympathetic neuropathy can contribute 

to sarcopenia (3.5) is not settled, but is not beyond understanding. 188 

 

4.1   |   Skin and muscle nerve fibres in the foot are affected by neuropathy 

 

The density and the anatomy of Meissner corpuscles has been quantified from skin biopsies obtained from 

patients with neuropathy. 189 Within the neuropathy but not the healthy subjects’ cohort, there was an 

association between the number of intact receptors and the detection threshold. This is in keeping with 

numerous findings showing, as mentioned above, that sensitivity of the plantar skin 25 declines with age and 

neuropathy. 145, 154  On the motor side, remarkably, the volume of the intrinsic foot muscles is much reduced in 

patients with diabetic neuropathy, and their atrophy is related to the clinical severity. 190, 191 In a recent 

retrospective study in a large number of patients with proven small-fibre neuropathy with loss of skin fibres, 

evaluation by electrodiagnostic tests of denervation in the foot muscles revealed large-fibre dysfunction. 192 

Hence, neuropathy disrupts both skin and muscle input and likely disorganises their coordinated effects on 

balance at spinal level. Since information from foot skin and muscle normally affects the balance control centres 

that supervise balance and locomotion, and modulates the excitability of many related muscles as mentioned 

above (3.1, 3.2, 3.3), the effect of the loss of these fibres must be extremely relevant for balance control. The 

nerve fibre dysfunction in the distal-most part of the lower limb adds to muscle weakness and to the diffuse 

sarcopenia frequently encountered in neuropathy, 193 leading to major problems in balance and gait, hence to 

impairment in the patient's mobility and independence (see 194). 

 

4.2   |    Balance and falls in diabetic patients 

 

In a study on a large cohort of patients with type 2 diabetes, two-thirds were found to have evidence for some 

variety of neuropathy, even if symptoms appeared in less than half of them. 195 These patients often suffer from 

sensorimotor distal symmetric polyneuropathy starting in the feet, even if the upper limbs are not spared. 196, 197 

The degenerative process affects both the large and the small-diameter myelinated fibres originating in the skin 

and muscles, both in type 1 and type 2 diabetes. 198 The conduction velocity of the fibres in the spindle group Ia 

and group II fibres of the foot and leg muscles is diminished in diabetes and the medium-latency response to foot 

and leg muscles stretch produced by balance perturbation are delayed.199 The decrease in conduction velocity of 

the group II fibres 199 contributes to postural unsteadiness of these patients, supporting the view that the spindle 

group II fibres may normally play a major role in standing stability. The conduction velocity of the motor nerves 

is diminished as well. 198, 199 The magnitude of changes in the neuromuscular properties of these patients are 

muscle dependent and reflect a length-dependent disease progression. 200 
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It has been shown earlier and confirmed recently that these patients are generally less stable than healthy 

subjects, as detected by posturography. 201, 202, 203 Even with vision, their postural stability is impaired, indicating 

incomplete compensation by vision of the loss of input from the feet. 204 In a recent assessment centred on 

balance and falls, three fourths of multiple-faller patients had a diagnosis of neuropathy. 205 These exhibited 

objectively increased body sway with or without vision, standing on solid ground or foam, and walking speed 

was slower than in patients who did not fall. In this regard, it has been found in a study that recruited patients of 

different age groups that the tactile pressure sensitivity threshold increases significantly across the entire foot 

sole with age, with the larger loss of sensitivity at the heel than at the forefoot. 206 This probably explains part of 

their gait problems such as a reduced ankle flexion at the stance phase and higher loads at the push-off phase. 207  

 

In some diabetic patients, vision can be impaired as well. Both the retina and the cornea are involved in the 

neurodegenerative process. 208, 209 Remarkably it has been shown that both motor unit loss and retinal 

dysfunction are early markers of subclinical neuropathy. 210 Combined effect of poor visual acuity, kinaesthetic 

sense, slow walking speed and potential cognitive impairment are to be blamed for the increased fall risk beyond 

peripheral neuropathy itself. 211 This adds to the conclusion of previous ample studies on the risk of falling in a 

general population, in which multiple sensory impairment, i.e. vision, peripheral neuropathy and hearing 

problems 212 were associated with higher probability of falls or balance dysfunction. 213 However, reduced 

muscle strength in diabetic patients is present before the clinical onset of neuropathy and is characterised by 

increased fatiguability and reduced muscle twitch amplitude, without major changes in the pattern of motor unit 

firing, pointing to primary disruption of contractile function. 214  Muscle weakness impacts on the functional 

abilities of these patients and can lead to severely impaired balance reactions (see 215). 

 

A high prevalence of vestibular dysfunction was found in diabetic patients, accompanying a neuropathy of long 

duration. After adjusting for peripheral neuropathy and retinopathy, the vestibular dysfunction appeared to 

contribute to the risk of falling. 216 This adds to the effects of somatosensory loss, especially because 

somatosensory loss can result in increased vestibulo-spinal sensitivity, which normally compensates the severity 

of the peripheral neuropathy, as shown by increased postural sensitivity to galvanic vestibular stimulation. 217 It 

is known that the labyrinth modulates the muscle synergy that corrects the effects of balance perturbations and 

that a vestibular deficit reduces the activation of leg and trunk muscles. 218 Higher centres, including the 

cerebellum, integrate sensory input from multiple systems including the vestibular, visual, proprioceptive and 

somatosensory, and co-process information from the motor efference copy as well. 219 The consequences of 

involvement of the central nervous system in diabetic and other neuropathies 220 may not have received the 

necessary attention in the framework of balance control. 

 

4.3   |    Other neuropathies and balance 

 

A loss of the large-diameter (group Ia) spindle afferent fibres in the hereditary CMT1A disease is responsible for 

the disappearance of the monosynaptic reflex and of the short-latency reflex response to a perturbation-induced 

triceps stretch. Oddly enough, this major loss does not worsen the body sway to highly abnormal values during 

quiet stance, contrary to what occurs in diabetic patients with neuropathy. 221, 222 Further, in patients with 

CMT1A, postural perturbations delivered by a movable support base elicit in the foot and leg muscles full blown 

but delayed medium-latency responses. These are mediated by the small-diameter myelinated spindle fibres 

(group II fibres), normally conducting the action potentials at about half the velocity of the large fibres. 120, 223, 224 

Together with the above mentioned observation that the H reflex is decreased during stance in healthy subjects, 

this suggests that the group Ia spindle afferent fibres may not be essential for transmitting relevant information 

for the control of quiet stance. Since the diabetic neuropathy affects both large- and smaller-diameter fibres and 

body sway is increased in these patients, as noted above (4.2), 225 much of the control of quiet stance must be 

exerted by the smaller-diameter group II fibres. Alterations in body sway both while standing and in the stance 

phase of gait are larger in the diabetic than CMT1A patients, 226, 227 indicating that static and dynamic control of 

balance and gait worsen when the neuropathy affects the smaller-diameter group II fibres in addition to the 
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large fibres. The group II fibres are recruited during gait in response to a mild perturbation of the ankle angle in 

the patients with CMT1A, 228, 229 suggesting that they can normally assist gait, possibly as part of the central co-

activation of the alpha- and gamma-motoneurones. Li et al. 230 have recently proposed a model, inclusive of the 

process of adaptation to the neuropathy, with the aim of explaining the relationship between postural stability 

and the input from the smaller and larger spindle fibres.  

 

Gait is certainly severely affected in neuropathies, partly due to the muscle weakness or sensory loss, partly to 

the adaptation strategies such as reduced walking speed. 231 A systematic review considered young patients with 

mixed sub-types of CMT disease, showed reduced walking speed and short stride length, and highlighted the 

need for further studies 232 In a large number of mildly affected young adults, whose walking velocity on level 

ground was similar to that of healthy peers, kinematics and kinetics became clearly abnormal, as a sign of muscle 

weakness, when patients climbed a ladder 233. Unfortunately, the role of the foot deformity, which can have 

peculiar effects on the sensory inflow during stance and gait and complex tasks, 114, 234 has not received much 

attention. This is particularly relevant because the onset of CMT disease is usually in childhood, 235 a crucial 

period for the development of the gait networks and for the growth of the locomotor apparatus. 236, 237 

 

Much as hereditary ataxias can affect fibres in the peripheral nerves (see 238, 239), the peripheral neuropathies can 

also be associated with white matter loss in the spinal tracts 240 and higher brain centres. 241, 242 These severe 

complications may be responsible for major problems in balance and gait. Another group of peripheral nerve 

disease is represented by ganglionopathies (or sensory neurone diseases, SND), 243 often associated with 

immune-mediated conditions, vitamin intoxication or deficiency, neurotoxic drugs, and cancer. The loss of the 

sensory neurones in the dorsal root ganglia leads to degeneration of both the peripheral axons and their central 

projections. In these patients, body sway is much larger that in patients with CMT1A and also larger than in 

patients with diabetes, with and without vision. 244 This occurs even if muscle force is preserved. In SND, the 

somatosensory evoked potentials are undetectable, while cervical magnetic resonance imaging shows a diffuse 

hyper-intensity in the posterior columns in all the patients. 245 Again, such large degeneration of centripetal 

spinal cord tract would imply a major loss of input to the brain stem centres controlling balance, thereby 

explaining the abnormal control of standing and of the responses to perturbations. When a patient with a dorsal 

root ganglionopathy that produced total sensory loss in the lower limbs received postural perturbations by 

various displacements of the support base, 246 no short-latency responses were elicited. Later responses in the 

legs occurred, likely produced by hip, trunk and neck proprioceptive inputs, exploited by central compensatory 

mechanisms. In passing, in some of these patients, deep reflexes (tendon tap and H reflex) are paradoxically 

preserved and associated with complete loss of cutaneous afferent path, 247 suggesting a differential sensitivity of 

the dorsal ganglion neurones to the responsible noxious agent 248 (see also 249 for the diabetic polyneuropathy). 

A peculiar form of progressive late-onset ganglionopathy of genetic origin with marked instability and high risk 

of falling, 250, 251 the cerebellar ataxia with neuropathy and bilateral vestibular areflexia (CANVAS), has been 

under investigation for a number of years. 252 

 

Cervical spondylosis is another not uncommon condition that produces major balance impairment. Most patients 

show increased body sway, larger in cervical spondylosis with myelopathy than without. 253 Surgical 

decompression normally enhances balance and gait, but the improvement may not be immediate. 254 In the 

chronic inflammatory demyelinating polyradiculoneuropathy, affecting both sensory and motor fibres and both 

distal and proximal nerve segments, body sway is much larger than in healthy subjects, and varies from a mainly 

ankle to a mainly hip strategy, 255 probably owing to the large extension of the sensory and motor impairment. 

The poor trunk control in these conditions resembles that observed in spinal cord injury, 256 where abnormal 

transmission of the somatosensory information to supra-spinal centres and of the descending commands to 

lower cord levels are accountable for ataxia. 

 

 

5   |    CONCLUSIONS AND PERSPECTIVES 
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Voluntary and automatic movements are unimaginable without appropriate control of balance. Safe balance is 

the final shared responsibility of our senses and of their central integration. In turn, the brain can provide proper 

control of balance if the motor pathways and the muscles themselves are functioning correctly. The quality of 

static and dynamic balance is the expression of the functioning of complex and diverse neural processes. 

Conveniently, we can rely with confidence on accurate and effective methodologies for recording and analysing 

balance and gait (e.g., 257, 258, 259). In neuropathies, one or more senses can be weakened. The combined action of 

their impoverishment can produce unfortunate consequences. The critical role of close attention to the task, as 

shown by Lajoie et al. 260 in a subject with massive loss of sensory fibres below the neck, can hardly compensate 

for the loss of sensory input. Attention is clearly an issue even in less deteriorated conditions. While in normal 

young subjects a dual-task may have a limited effect on gait, 261 simple attention-requiring concurrent tasks can 

worsen balance control in patients with diabetes and neuropathy, 262 an indication of the subtlety and frailness of 

standing and walking. 

 

Even if the short-term effect of a sensory volley produced by electrical stimulation of a peripheral nerve (either 

cutaneous or muscular 263) reaching the sensorimotor cortex is far beyond the scope of this short article, we 

would like to remind that this mere direct input plays a remarkable role in modifying the cortical excitability. 264, 

265  These effects (e.g., short-latency afferent inhibition, afferent facilitation, and long-latency afferent inhibition) 

have been attributed a role in cortical plasticity. 266 Further, a recent study has shown that a conditioning, 

prolonged stimulation of the cutaneous nerves that innervate the foot sole can increase the spinal excitability by 

reducing the activity of the spinal circuits underpinning the presynaptic inhibition, as tested by the H reflex. 267 

In this light, the loss of sensation from the lower limbs in neuropathies might have far reaching, still uncharted 

consequences in the capacity of the nervous system to adapt to this loss and to the presumably altered plasticity 

phenomena (see 268, 269). Conversely, it has been shown that activation of the somatosensory cortex by 

transcranial direct-current stimulation improves somatosensory function in the elderly, as tested by changes in 

the threshold to foot-sole vibratory stimulation while standing. 270 

 

The reassuring news is that fibre regeneration in neuropathy is possible. 271, 272, 273, 274 Excluding pharmacological 

treatments, motion (physical activity) seems to be the first and foremost step in fostering regeneration. 178, 275, 276, 

277, 278 No doubt, exercise, despite being itself a quite unspecific undertaking, should be recommended to aged 

people and neuropathic patients whenever possible. 215 In particular, aside from general strength training, 

specific exercises centred on the muscles of the foot and around the ankle should be considered, 279  because 

postural stabilisation is degraded by reduction of muscle strength in the distal muscles. 233 However, treatment 

should depend on the disease and the impairments. For instance, it is not clear whether exercise can be helpful in 

children with ataxia, 280  and strengthening exercises may not be manifestly effective in adult patients with 

Charcot-Marie-Tooth disease, 281 whereas adapted training can be helpful. 282  Endurance and balance training 

seem to be effective in chemotherapy-induced peripheral neuropathies. 283 

 

As a final observation, there are considerable technical and methodological challenges in conducting static and 

dynamic balance studies in healthy young and ageing subjects, not to speak of the effects onto the higher centres 

by the sensory inputs related to balance and locomotion, of their integration and of the elaboration of brain 

responses appropriate to the context. To a very large degree, the findings obtained in patients with sensory loss 

can help understand the normal function of the cutaneous and proprioceptive receptors during standing and 

walking, and of the motor impairments linked to motor nerve fibre loss and sarcopenia. Apparent 

inconsistencies in past and recent therapeutic approaches need to be harmonised with new pathophysiological 

findings 284 into a broader and pragmatic vision. 
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