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ABSTRACT

Wave propagation through porous media with active inner heat sources is investigated in this paper.

Through the use of the two-scale asymptotic method of homogenisation, it is found that a macroscopic

non-homogeneous wave equation describes the emission and propagation of sound waves in such

active porous media. The upscaled model is verified numerically for the cases of single and double

porosity media, and shows that the general properties of the effective parameters of the porous

media are not altered by the inner heat sources. Instead, the inner heat sources contribute to the

non-homogeneous term in the upscaled wave equation. This paper also explores the potential of using

active inner heat sources in porous media for controlling incident sound waves in a practical scenario.

1. INTRODUCTION

Acoustics of rigid-frame porous media with active inner heat sources is studied in this paper. These

heterogeneous media, in their simplest form, comprise a solid frame and a single fluid-saturated pore

network in which externally-actuated volumetric heat sources are placed. More complex materials,

such as double porosity composites with heat sources in the pore fluid network of the most permeable

constituent, are also investigated. The two-scale asymptotic method of homogenisation [1] is used

to establish the macroscopic description of emission and propagation of sound waves in rigid-frame

periodic porous media with active inner volumetric heat sources.
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The phenomenon of sound directly produced by heat is the subject of study of thermoacoustics [2].

A great deal of research has reported theoretical and/or experimental results on the acoustic emission,

due to heat sources, by thermophones made of either solid or porous materials [3–7]. Several attempts

to correctly model this acoustic emission phenomenon in porous media have been reviewed in [8].

However, none of the reviewed models reduces to the classical upscaled model of wave propagation

in rigid-frame porous media [1, 9–11] when the heat sources are off. Another instance in which heat

sources are of use is in photoacoustic spectrometry [12]. This is a technique in which a modulated

light beam impinging a sample can heat it up and cool it down in a cycle and, depending on how fast

the cycle is, sound can be produced. Well established applications of photoacoustic spectrometry are

trace gas analysis and spectroscopy of solid surfaces [12]. This non-exhaustive account of literature,

together with recent investigations on sound propagation in metamaterials in which the changes in or

gradients of temperature affect their acoustical properties, e.g. [13,14], provide further motivation for

the present study.

This work generalises the theories of acoustic wave propagation in rigid-frame single porosity [1,

9–11] and double porosity composite materials [15, 16] by accounting for active inner heat sources

in such materials. For the sake of simplicity, only local volumetric heat sources as forcing terms are

considered in this work. However, other internal mechanisms of thermal excitation are possible and

their study is a matter of future work.

The format of the paper is as follows. The upscaled theory of wave emission and propagation

in porous media with volumetric heat sources is presented in § 2. This includes the analysis of the

effective parameters and sources arising in the upscaling process. In § 3, the acoustic properties

of a novel effective parameter and those of the different effective sources are discussed, along with

the numerical verification of the theory and some examples of acoustic descriptors of rigidly-backed

layers of active porous media. Concluding remarks are presented in the last section of the paper.

2. THEORY

2.1. Geometry and general assumptions

Figure 1 shows a schematic diagram of the geometry of a single porosity air-saturated porous

medium with identical volumetric heat sources Q placed in the pore fluid network Ω f . The porosity

of the material is φ = Ω f /Ω, where Ω is the total volume of the material, Γ is the fluid-solid interface,

and n is the outward-pointing vector normal to Γ. The period of the material is ℓ and the macroscopic

characteristic size L is related to the sound wavelength λ through λ = 2πL. Long-wavelength regime

is considered, which means that λ ≫ ℓ. This ensures a large separation of scale, quantified through a

small parameter ε = ℓ/L ≪ 1, and the existence of a representative elementary volume Ω. Harmonic

dependence of the type ejωt, where ω is the angular frequency and t represents the time, is adopted.

Figure 1: Scheme of the geometry of a porous medium with active inner heat sources in the pore fluid

network.



2.2. Local description

The local equations that govern the propagation of sound waves in a single porosity rigid-frame

material are the linearised equations of conservation of momentum (Equation 1), mass (Equation 2),

and energy (Equation 3), and the equation of state (Equation 4), i.e.

div(2ηD(v)) − ∇p = jωρ0v in Ω f , (1)

jω
ρ

ρ0

+ ∇ · v = 0 in Ω f , (2)

∇ · κ∇τ − jωρ0cpτ = −jωp − Q in Ω f , (3)

p

P0

=
ρ

ρ0

+
τ

τ0

in Ω f . (4)

In these equations, p, τ, and ρ represent, respectively, the excess of pressure, temperature, and density,

while v is the fluid velocity and D(v) = (∇v + (∇v)T )/2 is the strain rate tensor. The Fourier-

transformed volumetric heat source in Ω f is Q. This can represent, for example, a modulated laser

beam injecting energy in the system and working at an angular frequency ω. The subscript 0 denotes

mean values of the physical quantities in the fluid. For example, τ0 is the mean value of the fluid

temperature over an acoustic cycle. The saturating air has a dynamic viscosity η, thermal conductivity

κ, and specific heat capacity at constant pressure cp. Due to the varying temperature of the saturating

fluid, these are taken as the mean value of the respective quantities.

To close the system, the conditions of adherence and impenetrability as well as zero excess

temperature are formulated on the impervious solid boundary Γ, i.e.

v = 0 on Γ, (5)

τ = 0 on Γ. (6)

2.3. Outline of the homogenisation procedure

The homogenisation procedure is outlined in this section. The details of the derivation will be

reported elsewhere.

The long-wavelength regime imposes that the pressure and the divergence of the velocity vary

macroscopically [1, 9, 10], while the fluid velocity and its rate of deviatoric strain fluctuate locally.

The latter is also the case for the excess temperature. Furthermore, it is assumed that the volumetric

heat source term Q varies locally. Considering these assumptions, a dimensional analysis then leads to

|∇p| = O( p̌/L), |∇ · v| = O(v̌/L), |div(2ηD(v))| = O(ηv̌/ℓ2), and |κ∇ · ∇τ| = O(κτ̌/ℓ2), where the accent

·̌ indicates a characteristic value of the variable it is applied to. For example, τ̌ is a characteristic value

of the excess temperature. Regarding the relative order of magnitude of the terms in Equations 1 to

4, the case of interest is where all the terms in each equation are of the same order of magnitude.

In turn, this leads to the following estimates O(ηv̌/ℓ2) = O(ωρ0v̌) = O(p̌/L), O(v̌/L) = O(ωρ̌/ρ0),

O(p̌/P0) = O(τ̌/τ0) = O(ρ̌/ρ0), and O(κτ̌/ℓ2) = O(ωρ0cpτ̌) = O(ω p̌) = O(Q̌). The latter estimates

reflect that the thermal conduction and inertial terms balance the source due to pressure and the

volumetric heat source.

Introducing two independent spatial variables, i.e. x and y = ε−1x, which respectively account for

macroscopic and local fluctuations, noting that the differential operator becomes ∇ = ∇x + ε
−1∇y, and

following the usual rescaling procedure, the differential operators in the first terms on the left-hand

sides of Equations 1 and 3 are rescaled by ε2 to reflect that both the velocity and excess temperature

vary locally. Then, inserting into the rescaled equations the unknown variables written as expansion



series in terms of the small parameter ε and further matching the terms with the same ε powers,

one obtains a series of local boundary-value problems. The resolution of these problems enables the

calculation of the effective parameters and sources of the active material.

With regard to fluid flow, it is found that the leading-order pressure p(0) is a macroscopic variable

since ∇y p(0) = 0, and the leading-order velocity v(0) and p(1) are governed by the same classical

oscillatory Stokes problem, formulated in the pore fluid network, as that for porous media without

heat sources.

The equations that govern the leading-order excess temperature τ(0) are Equations 3 and 6 with

∇ → ∇y, τ → τ(0) and p → p(0). The solution of this linear boundary-value problem forced by

two terms, i.e. the locally constant leading-order pressure and the locally fluctuating volumetric heat

source, is given by a linear combination of the solutions of the problem when the sources separately

excite the fluid saturating the material, that is

τ(0) = τp + τq, with τp =
θ̃p(y, ω)

κ
(jωp(0)) and τq =

θ̃q(y, ω)

κ
(〈Q〉 f ), (7)

where τp and τq are the excess temperatures generated by the pressure and volumetric heat sources,

respectively; the averaging operator is defined as 〈·〉 f =
1
Ω f

∫

Ω f
· dΩ, and the local fields θ̃ι (with

ι = p, q) are the solution of the following boundary-value problems

∇2
y θ̃ι − jδ−2

t θ̃ι =















−1 for ι = p

− Q

〈Q〉 f for ι = q.
in Ω f , (8)

θ̃ι = 0 on Γ, (9)

where δt =
√

κ/ωρ0cp is the thermal boundary layer thickness.

Then, i) spatially averaging the leading-order equation of conservation of mass, ii) applying the

divergence theorem together with the conditions of periodicity and zero velocity on Γ, and iii) making

use of the equation of state and the expression of the leading-order excess temperature, one obtains

a macroscopic non-homogeneous mass balance equation. This equation and the classical dynamic

Darcy’s law govern the emission and propagation of sound waves in an air-saturated porous medium

with volumetric heat sources actuating in the pore fluid network. This macroscopic description is now

detailed.

2.4. Macroscopic description

The macroscopic description is given by the macroscopic non-homogeneous mass balance

equation and the dynamic Darcy’s law, i.e. (with φ〈·〉 f = 〈·〉)

∇x · 〈v(0)〉 + jωp(0)
C = H(ω), (10)

〈v(0)〉 = −k(ω)

η
· ∇x p(0) or jωρ(ω) · 〈v(0)〉 = −∇x p(0), (11)

where k(ω) is the dynamic viscous permeability, ρ(ω) is the effective density, and C(ω) is the effective

compressibility which is given by (with θp = 〈θ̃p〉)

C(ω) = Cp(ω) =
φ

P0

(

1 − γ − 1

γ

( θp(ω)

−jφδ2
t

)

)

, (12)

where θp = 〈θ̃p〉 is the classical dynamic thermal permeability [10].

The macroscopic effective volumetric source H(ω) is defined as

H(ω) = 〈Q〉 f

φ

P0

γ − 1

γ

( θq(ω)

−jφδ2
t

)

. (13)



Here, θq = 〈θ̃q〉 acts as a filter of the volumetric heat source and represents the thermal response of the

saturating fluid to a locally varying, instead of constant, source.

Remarks:

- The general properties of the effective parameters, i.e. the dynamic viscous permeability and

effective compressibility, are not altered by the volumetric heat sources. The latter only contribute

to the effective volumetric source term H(ω).

- The microstructure of the material acts as a filter, represented by the novel effective parameter θq,

of the volumetric heat source. Moreover, the homogenisation process reveals that the volumetric heat

source Q is transformed into a macroscopic effective volumetric source H(ω) acting as a forcing term

in the macroscopic mass balance equation.

- The emission of sound by the active porous medium is driven by the effective source term H(ω).

The physical origin of such emission is not related to the usual generation of sound by fluid flux but

rather to acoustic density variations induced by the extra local temperature field, i.e. τq, generated by

the volumetric heat sources.

- Consistently, the macroscopic description of wave propagation in a porous medium without heat

sources is retrieved when H(ω) = 0.

- The effective parameter θp is the classical dynamic thermal permeability [10]. Its behaviour in

frequency is as follows. At frequencies much lower than the thermal characteristic frequency ωt =

φκ/ρ0cpθp0, where θp0 is the static thermal permeability, θp tends to θp0 while for ω ≫ ωt, one has

that θp = −jφδ2
t . These correspond to leading-order asymptotic values.

- The limiting leading-order values of θq have the same mathematical form than those of θp. However,

it is stressed that, in general, θq , θp. Consequently, θq0 , θp0 and the ratio ωq/ωt, where ωq is a

specific thermal characteristic frequency, can be estimated as O(θp0/θq0).

- The macroscopic description of emission and propagation of sound waves in a double porosity

composite with both highly contrasted matrix and inclusion permeabilities and inner heat sources

placed in the pore fluid network of the most permeable matrix has the same mathematical form

as that of Equations 10 and 11. However, i) the dynamic viscous permeability is given by k =

ϕmkm ·α−1
∞ , where ϕm is the volume fraction of the matrix of permeability km and α∞ is the tortuosity

tensor induced by the presence of the highly resistive inclusions [15, 16]; ii) the effective source

term is ϕmH(ω); and iii) the effective compressibility C becomes ϕmCm + (1 − ϕm)CiF , where Ci

(respectively Cm) is the effective compressibility of the much less (respectively more) permeable

inclusion (respectively matrix), and F , defined as the ratio between the averaged pressures in the less

and much permeable pore fluid networks, accounts for pressure diffusion [15–18].

2.5. Non-homogeneous wave equation

For simplicity, macro-isotropy is considered, meaning that k = KI and ρ = ρI, where I is the

identity tensor. Inserting Equation 11 into Equation 10 results in the following non-homogeneous

Helmholtz equation

∇2
x p(0) + k2

c(ω)p(0) = S(ω), (14)

where the effective wave number is given by kc = ω
√

ρ(ω)C(ω) and the source term S(ω) reads as

(with c0 =
√

γP0/ρ0 being the adiabatic speed of sound in air)

S(ω) = −jωρ(ω)H(ω) = −jω〈Q〉ρ(ω)

ρ0

γ − 1

c2
0

( θq(ω)

−jφδ2
t

)

. (15)

Using the asymptotic values for the parameters θq, θp and ρ(ω ≪ ωv) = η/jωK0 and ρ(ω ≫ ωv) =

ρ0α∞/φ, where ωv = φη/ρ0K0α∞ is the Biot frequency, K0 is the static viscous permeability, and α∞
is the tortuosity, the following limiting values for the wave number and source term can be derived



(with NPr = ηcp/κ being the Prandtl number andD0 = P0K0/φη the pressure diffusivity)

kc(ω ≪ ωv) =

√

−jω

D0

and S(ω ≪ ωv) = −jω
γ − 1

c2
0

NPr

θq0

K0

〈Q〉 f , (16)

kc(ω ≫ ωv) =
ω

c0/
√
α∞

and S(ω ≫ ωt) = −jω
γ − 1

c2
0
/α∞
〈Q〉 f . (17)

Equation 16 shows that, at low frequencies, Equation 14 becomes a non-homogeneous diffusion

equation with diffusivity D0 and effective source term S(ω ≪ ωv). On the other hand, Equation 17

reveals that at high frequencies, where the effects of viscosity and heat conduction can be disregarded,

Equation 14 is a non-homogeneous wave equation with effective speed of sound c0/
√
α∞ and source

term S(ω ≫ ωt). This resulting equation becomes the classical non-homogeneous wave equation in

free space with a heat source since, in such a case, α∞ = 1 (see equation 7.1.23 in [19] with 〈Q〉 f = ρǫ

in their notation).

Since S is constant with respect to the macroscopic spatial variable, a particular solution of

Equation 14 determining the acoustic pressure p(ω) emitted by the active porous medium is found

as

p(ω) =
S(ω)

k2
c

=
H(ω)

jωC(ω)
=

1

jωC(ω)

〈Q〉
P0

γ − 1

γ

θq(ω)

−jφδ2
t

=
〈Q〉 f

jω

γ−1

γ

θq(ω)

−jφδ2t

1 − γ−1

γ

θp(ω)

−jφδ2t

. (18)

Hence, the following limiting values are obtained

p(ω ≪ ωq) =
〈Q〉 f

jω

γ−1

γ

θq0

−jφδ2t

1 − γ−1

γ

θp0

−jφδ2t

≈ 〈Q〉 f

θq0

φ

γ − 1

γ

ρ0cp

κ
, and p(ω ≫ ωt) =

〈Q〉 f

jω
(γ − 1). (19)

These equations predict a constant magnitude of the pressure emitted by the porous medium at low

frequencies and a 1/ω decrease at high frequencies.

3. RESULTS

Figure 2 shows the geometry of a regularly-arranged array of cylinders, which serves as a model

for a fibrous material with fibre radius a and porosity φ = 1 − πa2/b2, where b is the cell size. A

volumetric heat source, representing a modulated Gaussian beam, is placed in the pore fluid network

of the unit cell. In cylindrical coordinates, this is given by Q = Qaejϕe−r2/s2

, where s is a parameter

that controls the width of the beam, Qa is the amplitude of the heat source, and ϕ is the relative phase

between the local temperature fields τp and τq. A value of ϕ = 0 means that τp and τq are in phase,

while ϕ = π indicates that τp and τq are out of phase.

Figure 2: Scheme of the geometry (left) and unit cell (right) of an air-saturated array of regularly-

arranged solid circular cylinders (in grey) with volumetric heat sources (in black) in the pore space.

The arrow indicates the direction of sound propagation.



3.1. Effective parameter θq

Figure 3a shows the ratios Θ∗ = θq0θ
−1
p0

and Q∗Θ∗ = 〈Q〉 f Q
−1
a θq0θ

−1
p0

as a function of b∗ = b/s for

ϕ = 0. Small values of b∗ mean that the heat source tends to be constant over the whole pore space

while larger values indicate that the beam is narrow and therefore the excitation is more localised.

The plot shows that when b∗ → 0, the static value of the effective parameter θq tends to the static

thermal permeability. As b∗ increases, θq0 becomes larger than θp0. However, the product between θq0

and the spatially averaged heat source 〈Q〉 f decreases as b∗ augments, which reflects that narrower

beams would lead to a smaller mean local static temperature field 〈τq〉. Figure 3b shows the behaviour

of θq/θq0 in frequency. It is clear that θq scales with its static value at low frequencies, while at high

frequencies, it tends, in a leading order approximation, to −jφδ2
t . Also, as expected, the behaviour of

θq in frequency is similar to that of the classical dynamic thermal permeability.
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Figure 3: Left – Ratios Θ∗ = θq0/θp0 and Q∗Θ∗ = 〈Q〉 f θq0/θp0Qa as a function of b∗ = b/s. Right

– Normalised effective parameter θq/θq0 as a function of frequency for b∗ = 4. The fibre radius is

a = 100 µm, ϕ = 0 , and the porosities are φ = 0.65 (blue lines) and φ = 0.95 (red lines).

3.2. Effective sources H(ω) and S(ω)

Figure 4 shows the effective sources H(ω) and S(ω) as a function of frequency. The parameters

of the material are as in Figure 3. As the frequency increases, the effective source term in the

macroscopic mass balance equation, i.e. H(ω), increases in magnitude until reaching a plateau region

for ω ≫ ωtq. When keeping the fibre radius constant, Such a a plateau region starts at a lower

frequency in more permeable fibrous media.

The behaviour of the effective source term in the non-homogeneous wave equation, that is S(ω),

is shown in Figure 4b. Its magnitude increases with frequency while its phase is nearly constant

at −π/2, which is consistent with the asymptotic expressions given by Equations 16 and 17. It is

worth mentioning that the effective source S(ω) of the material with lower porosity presents higher

magnitude. This is because of the larger magnitude of its dynamic density (calculated using the model

introduced in [20]) which acts as a filter to the effective source H(ω).

3.3. Numerical verification

Figure 5 shows the spatially averaged magnitude and phase of the pressure in an air-saturated array

of cylinders (with inner heat sources) placed in a 3b × 3b rigid-wall box. In one type of simulations,

namely DNS, the pressure was calculated from the solution of the local equations presented in

§ 2. The other type of simulation, i.e. SUM, consisted in numerically solving the upscaled non-

homogeneous wave equation 14, formulated in a 3b × 3b rigid-wall box saturated with a forced

effective fluid characterised by its dynamic density ρ(ω) and compressibility C(ω). A good agreement
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Figure 4: Effective sources H(ω) (left) and S(ω) (right) as a function of frequency. The parameters

of the active materials are as in Figure 3.

is found between the results obtained with the two types of simulations, which allows concluding that

the developed upscaled theory has been verified. In addition, it is highlighted that the plots show that

the sound pressure level Lp is constant at low frequencies and decreases at high frequencies. These

trends are well described by Equation 19, which also explains that, when keeping the fibre radius

constant, materials with higher porosity emit louder sound at low frequencies due to their larger θq0,

while in denser materials a constant Lp is obtained in a wider frequency range because of their higher

ωq.
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Figure 5: Spatially averaged sound pressure level (left) and phase of pressure (middle) in a 3b × 3b

rigid-wall box with an air-saturated array of cylinders with inner heat sources and different porosities.

DNS – Direct numerical solution of the local description. SUM – Solution of the upscaled model (i.e.

solution of the non-homogeneous Helmholtz equation). The fibre radius is a = 100 µm, Qa = 1000

W/m3 and b∗ = 4. The local temperature field generated by the inner sources at f = 100 Hz in the

material with φ = 0.65 is shown on the right-hand side image.

3.4. Acoustic descriptors

Figure 6 shows the reflection and sound absorption coefficients, i.e. R and A = 1 − |R|2, of 6-

cm-thick rigidly-backed layers of an active single porosity material (SPM), an active double porosity

composite material (DPM), and their passive counterparts. For the active SPM, the heat sources are

placed in the single pore fluid network while for the active DPM the sources are located in the pore

fluid network of the porous matrix (subscript m), which is much more permeable than the material the

inclusions (subscript i) are made of. In both cases, the inner heat source has parameters Qa = 4000

W/m3, b/s = 4, and ϕ is varied. As in [15,16], the matrix is modelled as a fibrous material [20] (with



fibre radius am = 100 µm and porosity φm = 0.85), while the inclusions are made of a highly resistive

granular material [21, 22] (with particle radius ai = 28 µm and φi = 0.32, leading to a permeability

ratio in the order of 10−4). The reflection coefficient was calculated as detailed in [16, 23], with the

difference being that the non-homogeneous wave equation 14, instead of the homogeneous Helmholtz

equation, was formulated either in the whole effective fluid for the active SPM or in the porous matrix

for the active DPM. The amplitude of the incident wave is 0.1 Pa.

The phase of the reflection coefficient for the active and passive materials have similar behaviour.

Instead, the magnitude of the reflection for the active SPM with a heat source with qa = Qaej0 shows

values larger than 1 at low frequencies. This means that the amplitude of the reflected wave has a

larger magnitude than that of the incident wave. In consequence, a negative apparent sound absorption

coefficient is obtained. A similar trend is observed in the active DPM but |R| < 1 occurs at a lower

frequency. At higher frequencies, the apparent sound absorption coefficient of the active materials is

higher than that of the their passive counterparts. This is primarily attributed to the interaction between

the incident and emitted wave which allows obtaining surface impedance values that are closer to

those that satisfy the known impedance matching condition. The active materials having qa = Qaejπ,

which physically means that the local temperature fields are out of phase, exhibit higher low frequency

apparent sound absorption coefficient than their passive counterparts. While it is undeniable that a

practical implementation of this phase control concept appears challenging, the presented results do

provide evidence of a new mechanism for low frequency sound absorption.

Finally, it is worth highlighting that both R and A are also highly dependent on the ratio between

the amplitude of the incident wave and that of the sound emitted by the porous medium, despite the

fact that the introduced upscaled theory is formulated within the framework of linear acoustics.
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Figure 6: Reflection coefficient (top) and apparent sound absorption coefficient (bottom) of 6-cm

rigidly-backed layers of single porosity material (left, dashed lines) and double porosity composite

material (right, continuous lines) with active inner volumetric heat sources.



4. CONCLUSIONS

This paper investigated emission and propagation of sound waves in periodic rigid-frame porous

media with active inner heat sources. Applying the two-scale asymptotic method of homogenisation

to the upscaling of the Stokes-Fourier system with a volumetric heat source as a forcing term in

the Fourier’s equation, it was found that a macroscopic non-homogeneous wave equation describes

the emission and propagation of long sound waves in such active porous media. The analysis of

the upscaled model revealed that the general properties of the effective parameters of the effective

medium, namely the dynamic density and compressibility, are not altered by the inner heat sources.

However, these sources contribute to the effective source term of the upscaled wave equation.

Moreover, the developed theory was verified numerically, which allowed evidencing the spectral

characteristics of the sound emitted by the porous medium. This work also highlighted the effect

of inner heat sources on the acoustic descriptors of single and double porous rigidly-backed active

layers, thereby exploring the potential of using the said sources for controlling incident sound waves

in a practical configuration.

The results of this work correspond to a first approach to the understanding of the physics of

acoustic waves in active multiscale porous media and offer new perspectives for the development of

novel active materials for wave engineering in general and noise control in particular.
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