
HAL Id: hal-04289176
https://hal.science/hal-04289176

Submitted on 16 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic CNN Model Partitioning for
GPU/FPGA-based Embedded Heterogeneous
Accelerators using Geometric Programming

Walther Carballo-Hernández, Maxime Pelcat, Maxime Pelcat, François Berry

To cite this version:
Walther Carballo-Hernández, Maxime Pelcat, Maxime Pelcat, François Berry. Automatic CNN Model
Partitioning for GPU/FPGA-based Embedded Heterogeneous Accelerators using Geometric Program-
ming. Journal of Signal Processing Systems, 2023, 95, pp.1203-1218. �10.1007/s11265-023-01898-0�.
�hal-04289176�

https://hal.science/hal-04289176
https://hal.archives-ouvertes.fr

Vol.:(0123456789)1 3

Journal of Signal Processing Systems
https://doi.org/10.1007/s11265-023-01898-0

Automatic CNN Model Partitioning for GPU/FPGA‑based Embedded
Heterogeneous Accelerators using Geometric Programming

Walther Carballo‑Hernández1  · Maxime Pelcat1,2 · François Berry1

Received: 6 December 2022 / Revised: 3 September 2023 / Accepted: 3 October 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Graphics Processing Unit (GPU), dedicated Application Specific Integrated Circuit (ASIC) and Field Programmable Gate
Array (FPGA) accelerators are currently platforms of choice for porting Convolutional Neural Networks (CNNs). In this
work, an automated Central Processing Unit (CPU)-GPU-FPGA partitioning selection is proposed for a given CNN layer. It
is shown that using a Generalized Geometric Programming (GGP) optimization problem formulation, the CPU-GPU-FPGA
partitioning problem can be modeled by considering a set of system performance metrics and constraints. Each metric is
expressed in a posynomial form depending on CNN hyperparameters and architecture resource models. As for the partition-
ing method, the state-of-the-art techniques covered are: tiling, grouped convolution and fused-layer. The proposed analytical
formalization is then employed to derive a set of objective functions and constraints as a GGP problem. It is demonstrated
that it is possible to relax some problem constraints by including a penalization term, and reduce the problem to multiple
simpler Geometric Programming (GP) sub-problems. Experimental results targeting an embedded FPGA-GPU platform
with CNN layer configurations from state-of-the-art CNN models (AlexNet, VGG16 and ResNet18) show that the simplified
problem is solvable in polynomial time with a speed-up gain and energy reduction of around 20% and 15%, respectively,
when compared against an arbitrary balanced partitioning. If the models for objective and constraints functions preserve
the posynomial form and log-log convexity, it is demonstrated that GGP is an efficient optimization solution to the Design
Space Exploration (DSE) problem.

Keywords  Heterogeneous platform · Convolutional Neural Network · Geometric programming · Mathematical
optimization · Embedded design

1  Introduction

CNN processing at the edge opens new challenges by requir-
ing embedded systems to support strong computational
workloads. This rapid evolution fosters more complex hard-
ware architectures comprising interconnected heterogene-
ous elements. GPU, dedicated ASIC and FPGA accelerators

are currently platforms of choice for porting CNNs, as their
programmability and internal parallelism fit well the concur-
rency and the customization needs of modern CNNs. The
hardware/software co-design intricacy increases when logic
and memory constraints are taken into consideration concur-
rently in system DSE with the objective to optimize energy
consumption and throughput. CNN inference deployment
at the edge with high performance per Watt requires careful
co-design of hardware architecture and algorithm. Systems
are currently becoming more complex on both sides: archi-
tecturally and algorithmically. Embedded platforms include
several asymmetrical processing elements and different lev-
els of memory hierarchies. Thus, design solution selection
from DSE requires optimization techniques to choose an
appropriate partition considering available resources and
performance goals. To facilitate DSE on the edge with het-
erogeneous platforms, an optimization problem formula-
tion is formalized. The resulting objective and constraint

 *	 Walther Carballo‑Hernández
	 walcarher@gmail.com

	 Maxime Pelcat
	 mpelcat@insa-rennes.fr

	 François Berry
	 francois.berry@uca.fr

1	 Université Clermont Auvergne, CNRS, Clermont Auvergne
INP, Institut Pascal, Clermont‑Ferrand F‑63000, France

2	 IETR, UMR CNRS 6164, UMR CNRS 6602, Univ Rennes,
INSA Rennes, Rennes 43017‑6221, France

http://orcid.org/0000-0002-2765-0228
http://crossmark.crossref.org/dialog/?doi=10.1007/s11265-023-01898-0&domain=pdf

	 Journal of Signal Processing Systems

1 3

functions have the form of a GGP problem. This family of
optimization problems are mostly non-convex, and thus do
not have a unique optimal point. However, in some cases
they can be reduced and solved as GP problems. Since GP
problems are fast solvable, in polynomial time, and ensure
a global optimal solution, it is strongly desired to transform
a GGP into a GP problem when possible. Nevertheless, this
is not a trivial task, as it requires a deep expertise on the
nature of the problem at hand. In this work, the following
contribution is presented:

Given a system performance objective and constraints,
it is shown that a partitioning method of a CNN layer over
a set of heterogeneous processing elements can be analyti-
cally described, expressing objective and constraints in a
posynomial form for individual processing elements. A GGP
optimization problem is formulated and a demonstration that
the GGP equality constraints can be relaxed so as to solve
the problem in the form of a set of simpler GP problems.
This relaxation preserves the properties of GP problems,
such as the existence of a global optimal solution and the
polynomial solving time.

The paper is organized as follows: In Section 2, an analy-
sis of related state-of-the-art works is presented, focusing
on system modeling for Deep Learning (DL), as well as on
partitioning, scheduling and optimization techniques. Sec-
tion 3 explains the context of measurement-based system
performance modeling of CNN inference and introduces the
concepts of monomial and posynomial. In Section 4, the
theory behind GGP and GP is presented and explained, how
a GGP problem can be relaxed to a GP problem using a
penalization technique based on the condensation solution.
In Section 5, GP optimization is applied to common CNN
layer configurations and find the optimal partitions. Finally,
in Section 6, it is discussed the results and observations.

2 � Related Works

Since the early years of DL-oriented embedded hard-
ware platforms, research has dedicated large efforts on
partitioning machine learning efficiently over several
edge devices [1]. The partitioning solutions must take
into consideration the hardware profiling, partitioning,
scheduling and deployment. Fused-layer is a popular
technique permitting two or several layers to be mapped
on a same device, reducing inter-device communication.
Similarly, a set of containers, such as Docker contain-
ers, can be instantiated to a model and treat partitions
as cloud services. In [1], a layer-wise containerization
of a Deep Neural Networks (DNN) with fused-layer is
proposed by using analytical regression models of differ-
ent DNN configurations and optimizing analytically with
dynamic programming. In [2], a DNN is partitioned at a

finer granularity, mapping individual neurons to different
Internet of Things (IoT) devices. However, the optimiza-
tion of [2] is focused on reducing inter-device communica-
tion using a similar heuristic as Kernighan-Lin heuristic
[3], swapping partition nodes in a graph abstraction. This
solution is tailored to very constrained resources where
communication is a dominating bottleneck. In [4], the
previous use case is extended to heterogeneous platforms
with different devices including CPUs, FPGAs and GPUs.
Therefore, communication channels with several latencies
and throughputs are considered in the optimization prob-
lem. Vanishree et al., create a Roofline analytical model
to choose the appropriate batch partitioning ratio of each
device the platform. In [5], data redundancy is exploited
on fused-layers for contiguous partitions with the objective
to reduce inter-systems communication overhead. For this
purpose, the optimization process decides when to allow
or when to avoid layer fusing. In the same publication [5],
a discussion on partition size and communication overhead
is covered. Extending the work of [5], Stahl et al., dem-
onstrate that layer-wise partitioning can be found using
Integer Linear Programming (ILP) optimization problems
considering resource constraints and minimizing commu-
nication [6]. Finally, in [7], an assisting tool solution is
introduced for embedded hardware characterization using
computation and communication knowledge from hetero-
geneous platforms. The estimation precision is increased
by introducing detailed information of the system for dif-
ferent CNN operations. Then, the scheduler uses a greedy
layer-wise mapping as optimization strategy, selecting the
most performing device iteratively for each layer. While
this hardware-awareness is usually known to the designer,
many internal parameters are difficult to acquire in prac-
tise or may be hidden to the designer. This solution from
[7], however, does not require a performance-based meas-
urement database generation, which in many cases may
save some development time.

Same authors in [8] add the consideration of weight-
dominated CNN layers for layer fuse. Their objective func-
tions seeks an even weight distribution on several edge
devices. However, in heterogeneous systems, this may
not be a desired property, since some elements are more
efficient with memory access handling or embed more
memory.

With respect to this state-of-the-art, the proposed method
is less specific to a given deep learning solution. A resource
and objective formulation are proposed for the fast opti-
mization of multi-system CNN partitioning that combines
resource constraints, performance constraints and perfor-
mance objectives. The embarrassingly parallel nature of
CNNs is exploited to simplify the problem formulation. The
proposition is intended to be widely applicable and adapt-
able to a large set of CNN partitioning problems.

Journal of Signal Processing Systems	

1 3

3 � Monomial and Posynomial Model
Formulation

The convolution is the most common operation in convolu-
tional layers on CNN models, therefore it is also the most
time consuming and most parameter intensive workload
[9]. Many efforts on state-of-the-art works focus on obtain-
ing an analytical behavioural model for this operation on
given devices, modeled together with a ReLU activation
function. With the selection of the representative structural
features, the computation and communication workloads are
described. Afterwards, a dataset was created by stochasti-
cally exciting the heterogeneous system. Finally, a set of
performance models were derived with modeling techniques
from these data points. The obtained models are mostly rep-
resented in a monomial or posynomial form. It is discussed
why this specific form is required to be solvable with GGP
in Section 4. In this paper, two metrics or Key Performance
Indicators (KPIs) are considered: processing latency (LAT)
and processing energy (E). As many other physical models
in electronic devices, these can represent a system in posy-
nomial form. The platform from Fig. 1 presents the experi-
mental setup. A custom embedded heterogeneous platform is
employed incorporating an Nvidia® Jetson TX2® embedded
CPU-GPU (green), and an Intel® Cyclone 10 GX FPGA
(blue) using a dataflow Direct Hardware Mapping (DHM)
technique [10]. Interconnection is established by a Periph-
eral Component Interconnect Express (PCIe) Gen2 x4 (5
GT/s) communication channel (gray). The communication
link between CPU-GPU lie on the same System-on-Chip
(SoC) die, therefore they share a common external memory.
DHM technique offers an energy-efficient but resource-
hungry FPGA implementation. The results can however be
extended to larger architectures and more constraints, with
limited effort.

GP is a an optimization technique that is useful to solve
large scale problems by formalizing them into not-too-
restrictive mathematical models. The system performance
models must comply with GP specific analytical formulation

based on two forms of expressions. The first form to con-
sider is the monomial. A monomial has the form presented
in Eq. 1:

Where the function u ∶ ℝ
n
→ ℝ maps an input feature vector

X (such as X in previous section) to a real value. c is strictly
positive c > 0 , ai ∈ ℝ and the domain is also strictly positive
D(u) = ℝ

n
++

 , or explained differently, the input feature vector
X must be fully composed of non-zero positive real values.
As a second condition, a posynomial is a linear combination
of monomials as shown in Eq. 2:

Where, similarly to Eq. 1, each element ck is strictly posi-
tive, ck > 0 . To fully exploit the posynomials in the GP
context, the performance system models for latency (LAT)
and energy (E) must follow these rules. These performance
metrics, when evaluated for CNNs, tend to fit well the GP
theory. Indeed, as CNNs layers heavily parallelize, their cost
in terms of energy and time tend to be proportional to the
product of their structural dimensions, leading to monomial
formulations. Moreover, the cost of a complete algorithm
will tend to be the sum of individual layers costs, leading
to posynomial formulations. These intuitions motivate the
study of GP for CNN partitioning optimization.

4 � Optimization Problem Formulation

After selecting analytical modeling and partitioning
technique, the methodology further proceeds with the
formal definition of the problem formulation of a CNN
layer. The solution of the optimization problem heavily
depends on the nature of the objective function and con-
straint choice. Mathematical properties, such as, curvature

(1)u(X) = c

n∏
i=1

x
ai

i

(2)v(X) =

K∑
k=1

c
k
u(X) =

K∑
k=1

c
k

n∏
i=1

x
aik

ik

Figure 1   Architecture model as for the heterogeneous setup with
three computing elements: A Nvidia® Jetson TX2® CPU-GPU
(green) SoC and an Intel® Cyclone10GX FPGA (blue) interconnected
through x4 lanes of a PCIe Gen2 link (gray). Each processing element

and communication node has an Input Feature Map (IFM) and a Out-
put Feature Map (OFM) associated to it required for metric perfor-
mance measuring on each device.

	 Journal of Signal Processing Systems

1 3

and monotonicity have a critical role on the analytical or
numerical tools to be exploited. Furthermore, expertise
and a-priori knowledge on the problem is key to math-
ematically manipulate the problem and transform it from a
non-convex to a convex function [11].

In this section, it is described how the posynomial mod-
els of Section 3 are used to formulate the optimization
problem as a set of GP problems. Nevertheless, because
GP does not allow monomial expressions as equality con-
straints, this violates GP problem formulation. Therefore, a
relaxation technique based on objective function penaliza-
tion is proposed. The added penalization term is obtained
by the transformation of the equality constraints to posy-
nomials, this technique is known as condensation [12].
This reformulation provides a quick numerical solution in
tenths of iterations, being each iteration solvable in poly-
nomial time with interior-point methods using CVXPY 1.0
library [13]. Interior-point methods approximate a numeri-
cal solution by implicitly adding the inequality constraints
to the objective function. Some mathematical transforma-
tions are applied to convert the problem to a convex and
differentiable one and solvable by Newton’s method. The
solution converges to a set of solutions towards the optimal
solution per each iteration, this trajectory is known as the
central path [11].

4.1 � GGP Formulation of the Heterogeneous CNN
Layer Partitioning

GP problems are used in multiple domains for their great
versatility. Because usually GP are non-convex but easily
transformed into convex problems, they have gained inter-
est in optimization formulation, since GP convex problems
have been proven to be fast solvable [11]. The fact that the
GP solution is analytically found makes it highly desirable
but the formulation of the problem can be difficult. The
strict mathematical conditions on the objective and con-
straint functions require specific analytical forms. A GP
problem has the form of Eq. 3:

Where the objective function f0(X) and the inequality con-
straint functions fi(X) shall be posynomials (Eq. 2 from Sec-
tion 3), and the equality constraints hi(X) shall be monomials
(Eq. 1 from Section 3) [11]. If the problem is non-convex,
it is possible to perform mathematical transformations to
convert it to the convex form [11].

The GGP formulation of the GPU-FPGA partitioning of
a CNN layer can be formalized below in Eq. 4:

(3)
minimize f0(X)

subject to fi(X) ≤ 1; i = 1, 2,⋯ , p

hi(X) = 1; i = 1, 2,⋯ ,m

Where X is the input feature vector containing the structural
features of a CNN layer. These are HI (height of the IFM),
WI (width of the IFM), C (channels of the IFM), k (size of
kernel filter) and N (number of kernel filters). X

F
 and X

G
 are

the structural input feature vectors and sub sets of X to be
allocated on the FPGA and GPU, respectively. LATHet(X) is
the posynomial model of the execution latency. ALMF(XF

) ,
ALUTF(XF

) , LABF(XF
) and M20KF(XF

) are posynomial
resource model inequalities for the target FPGA, respect-
ing the maximum logic and memory element count of the
device. In the experiments (Section 5), the Intel® FPGA
resources were selected: Adaptive Logic Modules (ALMs),
Adaptive Look-Up Tables (ALUTs), Logic Array Blocks
(LABs) and M20K memories.

Not only does the objective function directly depend
on the taken partitioning strategy, but also the constraints
last equality. With the purpose of forcing the algorithm
to converge to non-trivial solutions (e.g. executing noth-
ing), the equality constraint X

F
+ X

G
= X is added. As

an example, for the grouped convolution, the number of
channels on the FPGA ( CF ) and the number of channels
on the GPU ( CG ) must match the total number of channels
before splitting, while keeping other features constant, or
C
F
+ C

G
= C . Unfortunately, this equality constraint is a

sum of monomials, therefore a posynomial. For GP, this
definition violates the monomial equality constraint from
Eq. 3. A GP is a particular case of GGP, which accepts
posynomials as equality constraints, but the GGP prob-
lem is no longer convex nor a method to find an optimal
solution is known. In this case, multiple heuristics have
been proposed to convert a GGP to a GP using penaliza-
tion terms [14]. In next section, a condensation solution
to relax the posynomial equality constraints to the given
use-case is proposed.

4.2 � GGP Penalization by Equality Constraints
Condensation

As discussed in previous section, Eq. 4 includes equality
constraints that violate the conditions of GP. Nevertheless,
these expressions can be transformed from posynomials
to single set of monomials of the following form using
the condensation technique proposed in [12]. These new
expressions h̄ are computed following the function 5:

(4)

minimize LATHet(X)

subject to ALMF(XF
) ≤ ALMmax

ALUTF(XF
) ≤ ALUTmax

LABF(XF
) ≤ LABmax

M20KF(XF
) ≤ M20Kmax

X
F
+ X

G
= X

Journal of Signal Processing Systems	

1 3

Where X̂ is a feasible solution starting point. For example,
an a-priori solution X̂ can be a naive partitioning that
respects the problem constraints. ut, t ∈ T are each of the T
monomial terms (Eq. 1) in all posynomial equality con-
straints hi (in the form v of Eq. 2). Finally, the exponent
�t(X̂) =

ut(X̂)

hi(X̂)
 is the result of the arithmetic–geometric ine-

quality approximation, transforming any posynomial to a
monomial. Since �t is a ratio, then the basic property
h̄(X, X̂) ≤ h(X) of the arithmetic–geometric inequality
applies. h̄ is known as a posynomial condensed to a mono-
mial. Notice that, because h̄ has all the properties of a mono-
mial, these constraints cab be relaxed by including a penali-
zation term in the objective function, while keeping the
posynomial conditions and changing the equality to inequal-
ity constraints:

Where each �k is the penalization weight of the original
objective function. Note that these weights add parameters
to be tuned in the optimization process. Now fi and hi con-
straint functions are both posynomial inequalities, as a result
of the relaxation by condensation. Although now the prob-
lem is GP-compliant, a new problem arises. The penaliza-
tion weights �k must be carefully selected for each equality
constraint. For this purpose, several heuristics exist [14].
In simple cases, �k selection can be solved numerically by
incrementally changing the weight values, this process is
known as tightening [12]. When the tightened condensed
constraints approximate the desired value, the solution is
accepted, and that value for �k is selected. This technique is
similar to other primal-dual optimization problems (duality),
like Lagragian-based optimization techniques [11]. Where,
in order to solve the primal formulation of a possibly non-
convex problem without any modification, the dual problem

(5)h̄(X, X̂) =

T∏
t=1

[
u
t
(X)

𝜖
t
(X̂)

]𝜖t(X̂)

(6)
minimize f0(X) +

m∑
k=1

𝛼kh̄k(X, X̂)
−1

subject to fi(X) ≤ 1; i = 1, 2,⋯ , p

hi(X) ≤ 1; i = 1, 2,⋯ ,m

must be first formulated. These dual optimization problems
incorporate, after some manipulation or transformation, the
constraints into the objective function as penalization. For
dual problem formulation, the posynomial condensation into
a monomial from the penalization is based on the result of
an approximation using the algebraic manipulation of the
arithmetic–geometric inequality. Solving the dual problem
is more tractable than solving the primal problem [15].

In the following Section 5, we empirically demonstrate
that it is possible to find the penalization parameters within a
few iterations for different CNN layer configurations. Since
each iteration is a GP problem, it is solvable in polynomial
time. Thus, the final solution remains upper-bounded by
the polynomial time complexity for the selected partition-
ing techniques.

5 � Experimental Results

In this section, the results of the optimization problem defi-
nition of Section 4 with different CNN layer configurations
are presented. The first results presented here consider a
platform with only an embedded FPGA with a GPU, after-
wards the objective function is easily modified to include
more compute elements with different communication
links between a CPU-GPU-FPGA platform. This is also the
case for the constraints functions, which can be extended to
include other embedded devices constraints.

5.1 � Single Layer Optimization

Exploiting the heterogeneity of an embedded platform with a
single FPGA-GPU coupling and a single communication link,
an optimization problem is formulated in the form of Eq. 7
with the models of Section 3 and the objective function. Fig-
ure 2 depicts the setup test for allocation of the obtained parti-
tions on a single CNN layer. This setup considers a sequential
execution of the FPGA and GPU workloads to minimize the
latency of an individual CNN layer. That is, the objective func-
tion is the sum of processing times on each device, consider-
ing the transfer time of the intermediate Feature Maps (FMs)

Figure 2   Setup 1: Single layer setup of a single CNN layer allocation.

	 Journal of Signal Processing Systems

1 3

from one node to the other ( LATComm ). Since the host shares
the same memory between the CPU and GPU, but not for the
FPGA; the FM with the structural features X

F
 must be trans-

ferred to the FPGA accelerator. Therefore, the communica-
tion latency depends on the shape of this partitioned IFM, or
LATComm(XF

).
In Eq. 7, the selected partitioning technique is the

grouped convolution. Therefore, the equality constraint only
considers the channels on each device ( CF and CG) to match
the total number of channels on the layer (C).

As discussed in Section 4, the posynomial equality con-
straint violates the requirement for a GP solution. However,
the constraint can be relaxed to an inequality by adding the
penalization term based on the condensed posynomial. By
incorporating this penalization term, the latency objective
function increases smoothly when the grouped convolution
constraints are not met. This is, when the solution chosen
from the optimization problem does not compute the number
of channels in the convolution layer. If the equality con-
straints are relaxed to inequality constraints, some solutions
that were not originally feasible are now possible, and even
optimal. In the case of the grouped convolution, if a con-
straint equality is relaxed to a less or equal, the obvious
and most trivial solution to minimize the latency, would
simply be processing the fewest number of IFM channels
as possible. Namely, processing one single channel on the
FPGA ( CF = 1 ) and one on the GPU ( CG = 1 ). Evidently,
this is not a desired solution, since the IFM tensor is not
fully processed. First, for this purpose, the condensed penali-
zation term h̄(CF,CG, ĈF, ĈG) must be obtained. Then, the
equality constraint on the number of channels is removed.
Using Eq. 5, with T = 2 , since the constraint consists of two
monomials, the posynomial is condensed to a monomial in
the following Eq. 8:

This penalization term is a monomial that includes the channel
parameters of each device. Thus by adding it to the objective
function, it preserves its posynomial form. To incorporate this

(7)

minimize LATF(XF
) + LATG(XG

) + LATComm(XF
)

subject to ALMF(XF
) ≤ ALMmax

ALUTF(XF
) ≤ ALUTmax

LABF(XF
) ≤ LABmax

M20KF(XF
) ≤ M20Kmax

CF + CG = C

(8)h̄(CF,CG, ĈF, ĈG) =

⎡
⎢⎢⎢⎣

CF

C

ĈF

ĈF+ĈG

⎤
⎥⎥⎥⎦

ĈF

ĈF+
̂CG ⎡
⎢⎢⎢⎣

CG

C

ĈG

ĈF+ĈG

⎤
⎥⎥⎥⎦

̂CG
ĈF+

̂CG

term in the objective function, it is only necessary to add the
penalization with a penalization weight, 𝛼h̄ . As for an instance,
LAT

F
(X

F
) + LAT

G
(X

G
) + LAT

Comm
(X

F
) + 𝛼h̄(C

F
,C

G
, Ĉ

F
, Ĉ

G
) .

For one equality constraint condensation, only one penali-
zation weight � is required ( m = 1 for Eq. 6). Consequently,
it is feasible to sweep over different values of � and tighten
the relaxed inequality constraint, until CF+CG

C
 approximates the

unity.
Figure 3, shows an example with an input tensor sequen-

tial processing with grouped convolution partitioning of
configuration size of HI = WI = 112 , CI = 16 , k = 1 and
N = 32 for latency minimization. For a grouped convolu-
tion partitioning, all features equal for each device are kept,
except for the number of channels. Resource constraints are
taken into account. Each bar represents a partitioning itera-
tion chosen by the solution of the GP solver with a given �
value. The blue bars are the channels mapped on the FPGA,
while the green bars are mapped to the GPU. By increasing
the value of � , the constraint (red line) is tightened at each
iteration, penalizing the objective function until the normal-
ized relaxed constraint function approximates 1. For this
instance, α = 170, represented by the orange dashed line,
is the first value to satisfy the constraint with C

F
= 14 and

C
G
= 2 . Additionally, for this test a balanced feasible solu-

tion is chosen for the constraint condensation. This is, the
number of channels is equally distributed for both process-
ing devices ( Ĉ

F
= Ĉ

G
= 8 ). An important observation from

Fig. 3 is that multiple solutions fulfill the tightened equality
constraint. Therefore, there are infinite feasible solutions
after iteration 17. However, as shown in Fig. 4, since the
latency (solid purple line) has a non-decreasing monotonous
nature, the following solutions perform worse than the first
accepted iteration (dashed orange line). The solutions found
on each iteration are found in polynomial time with respect
of the inputs X , X

F
 and X

G
 . As a consequence, the solution

of each GP problem remains bounded by polynomial time
and, fixing a step size on � , so is the iterative solution.

The GGP objective function can be easily modified to
incorporate several computing devices with their respec-
tive communication bus linked to the other devices. Equa-
tion 9 shows an example of an objective function reformu-
lation with the CPU latency model inclusion ( LAT

C
(X

C
) ).

Where X
C
 are the features of the CNN layer deployed on

the CPU. Also communication links LATC−G
Comm

(X
C−G) and

LAT
C−F
Comm

(X
C−F) are incorporated to consider the latency

of the communication overhead of inter-device FM trans-
fers between CPU and both the other devices. Additionally,
the condensation and penalization term ( ̄h ) in the objec-
tive function must also include the features of the modified
equality constrain ( C

C
+ C

F
+ C

G
= C).

Journal of Signal Processing Systems	

1 3

(9)
Computation LAT

C
(X

C
) + LAT

F
(X

F
) + LAT

G
(X

G
)+

Communication LAT
F−G
Comm

(X
F−G) + LAT

C−G
Comm

(X
C−G) + LAT

C−F
Comm

(X
C−F)+

Penalization 𝛼h̄(C
C
,C

F
,C

G
, Ĉ

C
, Ĉ

F
, Ĉ

G
)

Figure 3   First iterations of a
relaxed GGP sequential grouped
convolution partitioning of an
input tensor with 16 channels
( C = 16 ) with an increasing � .
The problem is solved as a set
of GP problems and he tighten-
ing only takes a few iterations
(iteration 17 with � = 170 ) to
find an acceptable solution.
Each step is in polynomial time
and total optimisation lasts less
than a couple of hundred of
milliseconds.

Figure 4   Heterogeneous
objective function per iteration
(without penalization term)
from problem in Eq. 7.

	 Journal of Signal Processing Systems

1 3

Figure 5 shows an example of a partitioning by relaxation
and tightening over the same channel-wise layer partitioning
of the Fig. 3. The red bars represent the partition hosted in
the CPU, the green bars those on the GPU and finally, the
blue bars represent the channels. The found solution fits the
partitions mostly on the FPGA, until the equality constraint
is tight enough to fulfill the desired value ( C = 16).

5.2 � Full CNN Model Optimization

In previous Subsection, the limited size of the problem still
allowed greedy methods to solve single-layer optimization
partitioning and scheduling. An approximate solution can be
found by simply mapping the biggest partition to the fastest
device with available resources. In this specific use-case,
the FPGA dominates in both execution time and energy
consumption. Therefore, GGP will find an optimal solution
similar to greedy algorithms. However, this claim does not
take into consideration the complexity of partition mapping
in deeper layers. If the algorithm chooses to fit the whole
first layer in one device, deeper layers are not considered
to be mapped on that device. Since the device has already
exhausted its resources or at least until it multiplexes in time,
it is not available until it finishes its scheduled workload.
Unfortunately, one of the main limitations of DHM is that
layers can not be multiplexed in time. Therefore, each layer
on full CNN models are individually mapped theoretically
on several FPGA accelerators, simulating time-multiplex-
ing with reduced resources. This can be simulated due to
the analytical modeling and the presented formulation of

layer-wise optimization presented in this section. The setup
from the Fig. 6 is analyzed as use-case scenario.

Being L the number of convolutional layers in a CNN
model, Eq. 10 represents the optimization problem reformu-
lation for a complete network. The objective function now
adds the individual performance model (latency for this
example) of each layer l ( l = 1, 2, 3,… , L ). The resource
inequality constraints are also modified to include the mem-
ory and computing elements utilization on each layer.

The summation and scaling (linear combination) of posy-
nomial functions is also a posynomial [11, 15]. Thus, the
objective and constraint functions are still posynomial and
can be solved with GGP. Additionally, notice that from
Eq. 10, the number equality constraints also increases lin-
early with respect to the number of layers in the CNN model.

(10)

minimize

Computation

���������������
L�
l=1

LAT
D
(Xl

D
) +

Communication

���������������������
L�
l=1

LAT
Comm

(Xl

D
) +

Penalization

�����������������������
L�
l=1

𝛼
l
h̄
l
(Xl

D
, ̂
X
l

D
)−1

subject to
L∑
l=1

ALM
F
(Xl

F
) ≤ ALM

max

L∑
l=1

ALUT
F
(Xl

F
) ≤ ALUT

max

L∑
l=1

LAB
F
(Xl

F
) ≤ LAB

max

L∑
l=1

M20K
F
(Xl

F
) ≤ M20K

max

L∑
l=1

X
l

D
= Xl

Figure 5   Relaxed GGP sequen-
tial grouped convolution parti-
tioning of an input tensor with
16 channels ( C = 16 ) with an
increasing � over a CPU-GPU-
FPGA network.

Journal of Signal Processing Systems	

1 3

Therefore, several penalization weights ( �
l
 ) and penaliza-

tion function ( h̄
l
 ) must be handled to iterative tighten the

reformulated objective function. Each parameter �
l
 can be

individually tightened as presented in previous subsection,
until each constraint is fulfilled. Similarly, it is possible to
increase simultaneously all the parameters on each step and
individually stop each one when that specific equality con-
straint is fulfilled.

Although most of partitioning techniques are covered
with the formulation of Eq. 10 (tiling, grouped convolu-
tion or channel-wise loop unrolling and depth-wise sepa-
rable convolution), there is still one that can not be adapted
to this formulation. The fused-layer considers that some
FMs are not transferred between devices, in both sequen-
tial and concurrent execution. However, in Eq. 10, every
single layer is considered to output an OFM that is inter-
communicated between devices. The fused-layer technique
consists in selecting which OFMs remain on the device to
be computed as IFMs for the next layer, eliminating this
way, the need of communication overhead. Consequently,
a strategy must be chosen to reduce some terms of com-
munication models LAT

Comm
(Xl

D
) . Since communication

links are usually modelled with linear functions, ILP is
a simple enough solution to explore all the combinations
in polynomial time [6, 8]. In Eq. 11, each communica-
tion term in the heterogeneous objective function from
Eq. 10 is multiplied by the Heaviside function S(x) ∈ � ,
also known as step function. This way, the optimization

technique chooses between keeping the FM in the device
and skip communication ( S(x) = 0 ) or to transfer the tensor
( S(x) = 1 ) on each layer.

Although the formulation from Stahl et al. [6, 8] is simple
and solvable with ILP, it does not consider the execution
computation time. Therefore, this is only useful in cases
where the Computation-to-Communication Ratio (CCR) is
low, result of a hardware platform heavily bounded by com-
munication. On the other hand, while Eq. 11, is a generaliza-
tion and extension of their work it is, from a GGP perspec-
tive, unsolvable. This is because the formulation from Eq. 11
presents several drawbacks. The most important being, that
the shifted Heaviside function H(x), from Eq. 12, is not a
smooth differentiable function. Thus, it can not be solvable
using interior-point algorithms, that depend on iterative gra-
dient evaluation [15].

As a consequence, analytical approximations of the step
function must be used. Well-known sigmoid-like functions,
such as the logistic function or trigonometric functions like

(11)

minimize

L∑
l=1

LATD(X
l

D
) +

L∑
l=1

S(Xl

D
) ⋅ LATComm(X

l

D
)

(12)H(x) =

{
0 x < 1

1 x ≥ 1

Figure 6   Setup 2: Multi-layer setup of a full CNN model with several layers allocated. The heterogeneous architecture is theoretically simulated.

	 Journal of Signal Processing Systems

1 3

arctan and tanh, are suitable candidates [11]. Approxima-
tion techniques such as, cubic and spline interpolations are
also commonly employed to smooth and clip or bound the
proposed function [16]. Nevertheless, as discussed in Sec-
tion 3, to preserve the posynomial properties, both terms in
the product S(x) and LAT(X

D
) , must be also posynomials.

Furthermore, convexity and monotonicity must be also pre-
served to be solvable with GGP. This restricts the number
of usable functions for fused-layer formulation, since they
must follow the algebraic form. Thus, in Eq. 13, a simple
exponential algebraic function is defined as communication
weight function.

Figure 7 shows many algebraic communication weight func-
tions (blue solid line) for different values of k ∈ ℕ . Notice
that, the bigger the value of k is, the better the approximation
is to the Heaviside function H(x) (red solid line). Addition-
ally, using a symmetrical algebraic function (like with an
even exponent) k can take also negative integer values. For
simplicity purposes, we restrict k to take only natural num-
bers, ℕ . Another important remark is that, this is only true
for the interval 0 ≤ x ≤ 1 . Therefore, these newly introduced
interval constraints must be also considered on the full CNN
optimization problem formulation.

(13)S(x) = x2k, k ∈ ℕ

Although, formulation from Eq. 13 solves the approxi-
mation problem in a posynomial form that can be solved
by GGP, it introduces a new heuristic value k. As shown in
Fig. 8, the choice of this value has a direct impact on the
function approximation. The L2-Norm is chosen to visually
and numerically evaluate the error difference between the
Heaviside function and the communication weight function
( ||H(x) − S(x)|| ). For the full CNN model optimization for-
mulation, a value of k = 100 is selected with an L2-Norm
error of around 0.12. It is important to considerate that a big
value of k can cause numerical issues that complicates con-
vergence with no substantial difference between solutions.

Finally, the communication weight function S(x) is
included in the GGP formulation for the full model optimi-
zation. Equation 14 shows the modified objective function
with the interval constraints of the approximation domain
of S(x). Since, S(x) is a smooth differentiable posynomial,
the weighted communication terms are still posynomials
[11, 15]. Thus, this can be solved with the interior-point
techniques, typical of GGP solutions. Considering that the
derivative is mostly 0 for almost any value, except for values
close to 1, any gradient-based function is heavily penalized
by choosing features around 1. Additionally, the objective
function also increases with the number of S(Xl

D
) for each

layer that the features are transferred to another device.

Figure 7   Communication
weight function S(x) = x

2k for
different values of k.

Journal of Signal Processing Systems	

1 3

To evaluate the full model optimization partitioning, Fig. 9
shows the resulting partitions per layer from Eq. 14 formula-
tion on three CNN model configurations. For instance, the
partitioning was processed channel-wise with the hetero-
geneous GConv partitioning on a full model. For visuali-
zation purposes, the normalized number of channels com-
puted per device is presented instead of the actual number
of channels per layer. The channel layer-wise partitioning

(14)

minimize

Computation

���������������
L�
l=1

LAT
D
(Xl

D
) +

Weighted Communication

�����������������������������������
L�
l=1

S(Xl

D
) ⋅ LAT

Comm
(Xl

D
) +

Penalization

�����������������������
L�
l=1

𝛼
l
h̄
l
(Xl

D
, ̂
X
l

D
)−1

subject to
L∑
l=1

ALM
F
(Xl

F
) ≤ ALM

max

L∑
l=1

ALUT
F
(Xl

F
) ≤ ALUT

max

L∑
l=1

LAB
F
(Xl

F
) ≤ LAB

max

L∑
l=1

M20K
F
(Xl

F
) ≤ M20K

max

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

FPGA Resource Constraints

L∑
l=1

X
l

D
= Xl

�
Partitioning Constraints

0 ≤

X
l

D

Xl

�
Interval Constraints

for AlexNet [17] is presented in Subfigure 9a. Subfigure 9b
shows the channel distribution for VGG16 [18]. Finally, in
Subfigure 9c, the resulting partitioning for ResNet18 [19] is
presented. The latency of each device and the heterogeneous
platform are compared against a single-device solution. The
single-device is the CPU on the embedded platform with
neither inter-device communication nor partitioning. This
means, that the results of the dashed gray line represent

Figure 8   Approximation error
function based on L2-Norm.

	 Journal of Signal Processing Systems

1 3

the full layer execution on CPU, while the purple solid line
with diamond markers represents the obtained het-
erogeneous solution. The solid red line with star markers

 represents the speed-up factor of the heterogeneous
platform for each accelerated layer partition; compared
against the single-device with no partition optimization nor
acceleration. CPU partition is represented with an orange
solid line with circle markers , while the GPU parti-
tion performance is represented with a green solid line with
square markers and the FPGA partition performance is
represented with a blue solid line with triangle markers .
The model configurations are based on ImageNet dataset
[20] with an input image with dimensions 3 × 224 × 224 .
From these results it can be observed that, compared against

single layer channel optimization from previous Subsection,
the resource utilization on the FPGA is distributed through
all layers. Instead of mapping all channels of the first layers
on the custom logic, as greedy-based algorithm, GGP opti-
mization maps channel through deeper layers. However, as
seen in the three Subfigures from Fig. 9, the GGP optimiza-
tion formulation favors the first CNN layers to be directly
mapped on the FPGA, which have a higher CCR. In the three
cases, the input image was mapped over 80% on the FPGA
(i.e. 61 channels from 64 for ResNet18). Deeper layers are
bound by the communication overhead, which is a critical
part of inter-device tensor transfers on heterogeneous plat-
forms. Similarly, as evidence of this high CCR preference
scalability, the three models present a different number of

Table 1   Optimization state-of-the-art comparison.

a Open-source software for automatic large graph partitioning
b Using theoretical architecture from Setup 2

Work Edge platform Optimization
method

Partitioning
Technique

Objective
function

Constraints Models Gain

Zhao et al. [5] 6 Raspberry Pi 3
Model B (CPU)

Work stealing/
sharing

Fused tile Latency
minimization

Memory
footprint

YOLOv2 1.7× ∼ 3.5×)

Communication
overhead

de Oliveira and
Borin [2]

Up to 63 CPU-
based IoT
clusters

Graph
partitioning and
swapping

Layer-wise Inference rate
maximization

Memory
footprint

LeNet 1.8×)

Greedy Communication
minimization

Load balance

METISa

Stahl et al. [6] Simulation of up
to 7 devices

ILP Layer-wise Communication
minimization

Partitioning
selection

YOLOv2 1.15×)

Fused layer
Zhou et al. [25] 8 Raspberry Pi

3 Model B+
(CPU)

DP Layer-wise Comp/comm
minimization

- YOLOv2 1.5× ∼ 3.4×)

Stahl et al. [8] 6 Raspberry Pi 4
(CPU)

ILP Layer-wise Communication
minimization

Partitioning
selection

YOLOv2 Up to 2.8×)

AlexNet Up to 1.2×)
Fused layer VGG16 Up to 2.4×)

GoogLeNet Up to 1.7×)
Zeng et al. [26] 4 Raspberry Pi

Jetson TX2
GPU Desktop
CPU

Relaxed ILP to
LP

Single- and
Multi-layer

Energy
minimization

Latency
deadlines

AlexNet 0.66×)

VGG16 0.64×)
GoogLeNet 0.46×)
MobileNet 0.25×)

Thisb Jetson TX2
(CPU-GPU) +
Cyclone10 GX
(FPGA)

Relaxed GGP
to GP

Tile-wise Latency or
Energy
comp/comm
minimization

Resources and
partitioning

AlexNet 3.1× ∼ 5.7×)

Channel-wise VGG16 2.8× ∼ 6.4×)
Fused layer ResNet18 2.8× ∼ 6.3×)

Journal of Signal Processing Systems	

1 3

Figure 9   Resulting GConv channel-wise optimized partitions for AlexNet Fig. 9a, VGG16 Fig. 9b and ResNet Fig. 9c.

	 Journal of Signal Processing Systems

1 3

layers, but also a similar result. This is, smaller partition
percentages for deeper layers on FPGA accelerator and a
workload dominated mostly by GPU (round 70% i.e. 352
channels from 512 for ResNet18). It is also important to
mention, that in some cases a feasible solution can not be
found if the resource constraints are too strict [6, 8]. Nev-
ertheless, because of the mathematical properties of GGP,
when a solution is found, this one is the optimal solution.

Table 1 displays the results from Fig. 9 using the Setup
2 from Fig. 6. These results are compared to state-of-the-
art related works addressing partitioning optimization for
CNNs models on the edge, for both simulated/theoretical
and real-world case scenarios. Many approaches have been
proposed for optimization formulation depending on the
objective and constraint functions. Additionally, different
partitioning schemes have an impact on the partition selec-
tion. Zhao et al. [5] propose a workload sharing and stealing
for a Raspberry Pi 3 CPU cluster based on the memory capa-
bilities of each node. The memory footprint and communi-
cation overhead are treated as constraints in the scheduling
problem formulation, achieving a time execution speed-up
from 1.7× ∼ 2.5× for YOLOv2 [21]. As seen in Table 1, this
technique, as many other partitioning methods, is inspired
by the fused-layer [22]. For bigger edge device networks,
de Oliveira and Borin [2], proposed the treatment of the
hardware architecture network as a graph, taking advan-
tage this way, of graph theory and operations to modify the
graph. The authors in [2] demonstrate that their technique is
less effective while using greedy techniques and hand-made
layer-wise partitions. The graphs include a form of com-
munication heterogeneity by allowing different bandwidths
on the WIFI link between nodes. In [2], authors optimize
the latency of inference by balancing the workload on LeNet
[23] with a speed up of 1.8× . Stahl et al. [6] present a con-
vex ILP optimization formulation aiming for communica-
tion overhead reduction. The authors obtained from this for-
mulation a binary selection of layers to fuse for a platform
simulation. Authors test the partitioning on YOLOv2 with
a speed-up of 15%. Stahl et al. [8] extended their work for
a physical platform consisting of multiple Raspberry Pis 4
on YOLOv2, AlexNet [17], VGG16 [18] and GoogLeNet
[24] with a speed-up factor up to 2.8× , 1.2× , 2.4× and 1.7× ;
respectively Dynamic Programming (DP). With a similar
hardware network on the edge, Zhou et al. [25] proposed an
unconstrained DP problem formulation that also includes
the computation in the objective function achieving for
YOLOv2 and VGG16a speed-up of around 1.5× ∼ 3.4× and
1.1× ∼ 2.3× , respectively. Relaxing objective and constraint
functions are a common method to accelerate solution evalu-
ation and selection. In [26], Zeng et al. reduce a ILP to a Lin-
ear Programming (LP) problem by modifying some integer
variables to continuous variables. Approximating this way,
to a local minima solution. Additionally, in [26], the authors

address the energy consumption of their heterogeneous plat-
form by integrating direct energy measurements constrained
to latency deadlines.

From Fig. 9, it has been demonstrated that by relaxing
the problem formulation, similarly to [26]), it is possible to
obtain a speed-up gain similar to the state-of-the-art works.
As many of the discussed works [5, 6, 8, 26], the partition-
ing techniques include a mixture of layer-wise schemes with
fused layer selection. However, the constraint function, for
this section includes the logic and memory resources of the
programmable logic of the FPGA. These considerations
extend the capabilities of the partitioning optimization for
hardware DSE. This custom logic awareness contrasts to
other approaches for heterogeneous platforms. For instance,
in the above discussed solutions, it is mostly focused on
a fixed amount of memory resources, which is a common
decision for CPU-GPU edge platforms. Furthermore, since
not only latency can be modeled as a posynomial, but also
the energy, the modification of the objective function is fea-
sible for energy optimization. As observed in Fig. 9, the
optimization solution tends to map shallower CNN layers
on the FPGA for the three models. These layers are not
only the most computational intensive in terms of number
of Multiply and ACcumulates (MACs), but also the tensor
to communicate are lighter [2]. This means, that these lay-
ers have a high CCR, which allow a suitable mapping on
custom logic. However, since the communication overhead
on heterogeneous systems is substantial, the first memory
transfers without layer fusion introduces a considerable
latency in the first layer to FPGA accelerator. Nevertheless,
even considering this slow transfer the optimized heteroge-
neous partition solution still outperforms the single-device
CPU solution. The speed-up factor is then reduced for
deeper layers with values that ranges between 3.1× ∼ 5.7× ,
2.8× ∼ 6.4× , and 2.8× ∼ 6.3× for AlexNet, VGG16 and
ResNet18, respectively.

Although, the previous examples mostly focus on latency
performance, it is possible to obtain the energy metric per-
formance in Joules ( E(⋅) ) by simply integrating power in
Watts ( P(⋅) ) over the processing or latency time window in
seconds ( LAT(⋅) ) of one single FM. If power is constant,
this is simplified to E(⋅) = P(⋅) × LAT(⋅) . As demonstrated
in a previous work from the authors, constant power is often
the case for power performance estimation at when maxi-
mum computing or communication capabilities are capped
[27]. Therefore, any speed-up in latency translates in a direct
reduction of energy consumption by the same factor. This
is specially true for embedded devices, since layers from
models like AlexNet, VGG16 and ResNet18, contain enough
computation and communication to cap power dissipation
of each accelerator. In cases where the accelerated partition
is small enough that the power model ( P(⋅) ) is not constant,
then a similar analysis must be done. While the constrains

Journal of Signal Processing Systems	

1 3

remain the same from Eq. 14, the objective function must
be updated as show in Eq. 15:

Assuming then constant power dissipation, the energy reduc-
tion factors remain similar to the latency speed-up factor:
3.1× ∼ 5.7× , 2.8× ∼ 6.4× , and 2.8× ∼ 6.3× for AlexNet,
VGG16 and ResNet18, respectively.

6 � Conclusions

This work has proposed an automated method for CPU-
GPU-FPGA partition selection of a given CNN layer. It has
been shown that the partitioning problem can be modeled
within the GGP framework, modeling each system perfor-
mance metric in a posynomial form depending on CNN
hyperparameters and architecture resource modeling. Well-
known partitioning techniques in the state-of-the-art have
been analyzed for layer-wise partitioning: tiling, grouped
convolution, depth-wise separable convolutions and fused
layers. An analytical formalization is then employed to
derive a set of objective functions and constraints as a GGP
problem, solvable in polynomial time without requiring a
heuristic. It has been demonstrated that it is possible to relax
some equality constraints by including a penalization term
based on posynomial condensation, and reduce it as multiple
simpler GP sub-problems. Experimental results targeting an
embedded CPU-FPGA-GPU platform with state-of-the-art
CNN layer configurations have demonstrated that the simpli-
fied problem is solvable in polynomial time.

Funding  This project has received funding from the European Union’s
Horizon 2020 research and innovation program under the Marie
Skłodowska-Curie grant agreement No 765866.

Data Availability  Authors declare that the data within this article can
be generated from: https://​zenodo.​org/​doi/​10.​5281/​zenodo.​10055​869.
Available data from a specific hardware platform has been described in:
https://​doi.​org/​10.​1145/​35948​70.

Declarations 

Competing Interests  All authors certify that they have no conflicts of
interest to declare relevant to the content of this article.

References

	 1.	 Zhou, L., Wen, H., Teodorescu, R., & Du, D. H. C. (2019). Dis-
tributing deep neural networks with containerized partitions at the

(15)

minimize

Computation

���������
L∑
l=1

E
D
(Xl

D
) +

Weighted Communication

�����������������������������
L∑
l=1

S(Xl

D
) ⋅ E

Comm
(Xl

D
) +

Penalization

�����������������������
L∑
l=1

𝛼
l
h̄
l
(Xl

D
, ̂
X
l

D
)−1

edge. In 2nd USENIX Workshop on Hot Topics in Edge Computing
(HotEdge 19). USENIX Association, Renton, WA. https://​www.​
usenix.​org/​confe​rence/​hoted​ge19/​prese​ntati​on/​zhou

	 2.	 de Oliveira, F. M. C., & Borin, E. (2019). Partitioning convolu-
tional neural networks to maximize the inference rate on con-
strained IoT devices. Future Internet 2019: Innovative Topologies
and Algorithms for Neural Networks 11(10), 209. https://​doi.​org/​
10.​3390/​fi111​00209

	 3.	 Kernighan, B. W., & Lin, S. (1970). An efficient heuristic proce-
dure for partitioning graphs. Bell System Technical Journal, 49(2),
291–307. https://​doi.​org/​10.​1002/j.​1538-​7305.​1970.​tb017​70.x

	 4.	 Vanishree, K., George, A., Gunisetty, S., Subramanian, S.,
Kashyap, S., & Purnaprajna, M. (2020). CoIn: Accelerated CNN
co-inference through data partitioning on heterogeneous devices.
In 6th International Conference on Advanced Computing and
Communication Systems (ICACCS). https://​doi.​org/​10.​1109/​
ICACC​S48705.​2020.​90744​44

	 5.	 Zhao, Z., Barijough, K. M., & Gerstlauer, A. (2018). DeepThings:
Distributed adaptive deep learning inference on resource-constrained
IoT edge clusters. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 37(11), 2348–2359. https://​doi.​org/​
10.​1109/​tcad.​2018.​28583​84

	 6.	 Stahl, R., Zhao, Z., Mueller-Gritschneder, D., Gerstlauer, A., &
Schlichtmann, U. (2019). Fully distributed deep learning infer-
ence on resource-constrained edge devices. In Lecture Notes in
Computer Science (Vol. 11733, pp. 77–90). Springer International
Publishing. https://​doi.​org/​10.​1007/​978-3-​030-​27562-4_6

	 7.	 Busia, P., Minakova, S., Stefanov, T., Raffo, L., & Meloni, P. (2021).
ALOHA: A unified platform-aware evaluation method for CNNs
execution on heterogeneous systems at the edge. IEEE Access, 9,
133289–133308. https://​doi.​org/​10.​1109/​access.​2021.​31152​43

	 8.	 Stahl, R., Hoffman, A., Mueller-Gritschneder, D., Gerstlauer,
A., & Schlichtmann, U. (2021). DeeperThings: Fully distributed
CNN inference on resource-constrained edge devices. Interna-
tional Journal of Parallel Programming. https://​doi.​org/​10.​1007/​
s10766-​021-​00712-3

	 9.	 Cong, J., & Xiao, B. (2014). Minimizing computation in convolu-
tional neural networks. In Artificial Neural Networks and Machine
Learning – ICANN 2014 (pp. 281–290). Springer International
Publishing. https://​doi.​org/​10.​1007/​978-3-​319-​11179-7_​36

	10.	 Abdelouahab, K., Pelcat, M., Sérot, J., Bourrasset, C., & Berry, F.
(2017). Tactics to directly map CNN graphs on embedded FPGAs.
IEEE Embedded Systems Letters, 9(4), 113–116. https://​doi.​org/​
10.​1109/​LES.​2017.​27432​47

	11.	 Boyd, S., Vandenberghe, L. (2004). Convex optimization. Cambridge
University Press, Lieven Vandenberghe. https://​doi.​org/​10.​1017/​
cbo97​80511​804441

	12.	 Rountree, D. H., & Rigler, A. K. (1982). A penalty treatment of
equality constraints in generalized geometric programming. Jour-
nal of Optimization Theory and Applications, 38(2), 169–178.
https://​doi.​org/​10.​1007/​bf009​34080

	13.	 Agrawal, A., Diamond, S., & Boyd, S. (2019). Disciplined geo-
metric programming. Optimization Letters, 13(5), 961–976.
https://​doi.​org/​10.​1007/​s11590-​019-​01422-z

	14.	 Burns, S. A. (1987). Generalized geometric programming with
many equality constraints. International Journal for Numerical
Methods Engineering, 24(4), 725–741. https://​doi.​org/​10.​1002/​
nme.​16202​40406

	15.	 Boyd, S., Kim, S.-J., Vandenberghe, L., & Hassibi, A. (2007). A
tutorial on geometric programming. Optimisation and Engineer-
ing, 8(1), 67–127. https://​doi.​org/​10.​1007/​s11081-​007-​9001-7

	16.	 Auquiert, P., Gibaru, O., & Nyiri, E. (2007). On the cubic l 1 spline
interpolant to the heaviside function. Numerical Algorithms,
46(4), 321–332. https://​doi.​org/​10.​1007/​s11075-​007-​9140-0

https://zenodo.org/doi/10.5281/zenodo.10055869
https://doi.org/10.1145/3594870
https://www.usenix.org/conference/hotedge19/presentation/zhou
https://www.usenix.org/conference/hotedge19/presentation/zhou
https://doi.org/10.3390/fi11100209
https://doi.org/10.3390/fi11100209
https://doi.org/10.1002/j.1538-7305.1970.tb01770.x
https://doi.org/10.1109/ICACCS48705.2020.9074444
https://doi.org/10.1109/ICACCS48705.2020.9074444
https://doi.org/10.1109/tcad.2018.2858384
https://doi.org/10.1109/tcad.2018.2858384
https://doi.org/10.1007/978-3-030-27562-4_6
https://doi.org/10.1109/access.2021.3115243
https://doi.org/10.1007/s10766-021-00712-3
https://doi.org/10.1007/s10766-021-00712-3
https://doi.org/10.1007/978-3-319-11179-7_36
https://doi.org/10.1109/LES.2017.2743247
https://doi.org/10.1109/LES.2017.2743247
https://doi.org/10.1017/cbo9780511804441
https://doi.org/10.1017/cbo9780511804441
https://doi.org/10.1007/bf00934080
https://doi.org/10.1007/s11590-019-01422-z
https://doi.org/10.1002/nme.1620240406
https://doi.org/10.1002/nme.1620240406
https://doi.org/10.1007/s11081-007-9001-7
https://doi.org/10.1007/s11075-007-9140-0

	 Journal of Signal Processing Systems

1 3

	17.	 Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet
classification with deep convolutional neural networks. Neural
Information Processing Systems (NIPS).

	18.	 Simonyan, K., & Zisserman, A. (2014). Very deep convolutional
networks for large-scale image recognition. Preprint retrieved
from https://​doi.​org/​10.​48550/​ARXIV.​1409.​1556

	19.	 He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual learn-
ing for image recognition. Preprint retrieved from https://​doi.​org/​
10.​48550/​ARXIV.​1512.​03385

	20.	 Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L.
(2009). ImageNet: A large-scale hierarchical image database. In
2009 IEEE Conference on Computer Vision and Pattern Recogni-
tion. IEEE. ISSN: 1063–6919. https://​doi.​org/​10.​1109/​cvpr.​2009.​
52068​48

	21.	 Redmon, J., & Farhadi, A. (2016). Yolo9000: Better, faser,
stronger. Computer Vision and Pattern Recognition (CVPR 2016).

	22.	 Alwani, M., Ferdman, M., & Milder, P. (2016). Fused-layer CNN
accelerators. 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). https://​doi.​org/​10.​1109/​micro.​2016.​
77837​25

	23.	 LeCun, Y., Haffner, P., Bottou, L., Bengio, Y. (1999). Object
Recognition with Gradient-Based Learning. In: Shape, Contour
and Grouping in Computer Vision. Lecture Notes in Computer
Science, vol 1681. Springer, Berlin, Heidelberg. https://​doi.​org/​
10.​1007/3-​540-​46805-6_​19

	24.	 Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov,
D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2014). Going
deeper with convolutions. Preprint retrieved from https://​doi.​org/​
10.​48550/​ARXIV.​1409.​4842

	25.	 Zhou, L., Samavatian, M.H., Bacha, A., Majumdar, S., &
Teodorescu, R. (2019). Adaptive parallel execution of deep
neural networks on heterogeneous edge devices. In Proceed-
ings of the 4th ACM/IEEE Symposium on Edge Comput-
ing. ACM, IEEESymposium on Edge Computing. https://​doi.​
org/​10.​1145/​33182​16.​33633​12

	26.	 Zeng, L., Chen, X., Zhou, Z., Yang, L., & Zhang, J. (2021).
CoEdge: Cooperative DNN inference with adaptive workload
partitioning over heterogeneous edge devices. IEEE/ACM Trans-
actions on Networking, 29(2), 595–608. https://​doi.​org/​10.​1109/​
tnet.​2020.​30423​20

	27.	 Carballo-Hernández, W., Pelcat, M., Bhattacharyya, S. S., Galán,
R. C., & Berry, F. (2023). Flydeling: Streamlined performance
models for hardware acceleration of CNNs through system identi-
fication. ACM Transactions on Modeling and Performance Evalu-
ation of Computing Systems, 8(3), 1–33. https://​doi.​org/​10.​1145/​
35948​70

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

https://doi.org/10.48550/ARXIV.1409.1556
https://doi.org/10.48550/ARXIV.1512.03385
https://doi.org/10.48550/ARXIV.1512.03385
https://doi.org/10.1109/cvpr.2009.5206848
https://doi.org/10.1109/cvpr.2009.5206848
https://doi.org/10.1109/micro.2016.7783725
https://doi.org/10.1109/micro.2016.7783725
https://doi.org/10.1007/3-540-46805-6_19
https://doi.org/10.1007/3-540-46805-6_19
https://doi.org/10.48550/ARXIV.1409.4842
https://doi.org/10.48550/ARXIV.1409.4842
https://doi.org/10.1145/3318216.3363312
https://doi.org/10.1145/3318216.3363312
https://doi.org/10.1109/tnet.2020.3042320
https://doi.org/10.1109/tnet.2020.3042320
https://doi.org/10.1145/3594870
https://doi.org/10.1145/3594870

	Automatic CNN Model Partitioning for GPUFPGA-based Embedded Heterogeneous Accelerators using Geometric Programming
	Abstract
	1 Introduction
	2 Related Works
	3 Monomial and Posynomial Model Formulation
	4 Optimization Problem Formulation
	4.1 GGP Formulation of the Heterogeneous CNN Layer Partitioning
	4.2 GGP Penalization by Equality Constraints Condensation

	5 Experimental Results
	5.1 Single Layer Optimization
	5.2 Full CNN Model Optimization

	6 Conclusions
	References

