
HAL Id: hal-04289176
https://hal.science/hal-04289176v1

Submitted on 16 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic CNN Model Partitioning for
GPU/FPGA-based Embedded Heterogeneous
Accelerators using Geometric Programming

Walther Carballo-Hernández, Maxime Pelcat, Maxime Pelcat, François Berry

To cite this version:
Walther Carballo-Hernández, Maxime Pelcat, Maxime Pelcat, François Berry. Automatic CNN Model
Partitioning for GPU/FPGA-based Embedded Heterogeneous Accelerators using Geometric Program-
ming. Journal of Signal Processing Systems, 2023, 95, pp.1203-1218. �10.1007/s11265-023-01898-0�.
�hal-04289176�

https://hal.science/hal-04289176v1
https://hal.archives-ouvertes.fr


Vol.:(0123456789)1 3

Journal of Signal Processing Systems 
https://doi.org/10.1007/s11265-023-01898-0

Automatic CNN Model Partitioning for GPU/FPGA‑based Embedded 
Heterogeneous Accelerators using Geometric Programming

Walther Carballo‑Hernández1  · Maxime Pelcat1,2 · François Berry1

Received: 6 December 2022 / Revised: 3 September 2023 / Accepted: 3 October 2023 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Graphics Processing Unit (GPU), dedicated Application Specific Integrated Circuit (ASIC) and Field Programmable Gate 
Array (FPGA) accelerators are currently platforms of choice for porting Convolutional Neural Networks (CNNs). In this 
work, an automated Central Processing Unit (CPU)-GPU-FPGA partitioning selection is proposed for a given CNN layer. It 
is shown that using a Generalized Geometric Programming (GGP) optimization problem formulation, the CPU-GPU-FPGA 
partitioning problem can be modeled by considering a set of system performance metrics and constraints. Each metric is 
expressed in a posynomial form depending on CNN hyperparameters and architecture resource models. As for the partition-
ing method, the state-of-the-art techniques covered are: tiling, grouped convolution and fused-layer. The proposed analytical 
formalization is then employed to derive a set of objective functions and constraints as a GGP problem. It is demonstrated 
that it is possible to relax some problem constraints by including a penalization term, and reduce the problem to multiple 
simpler Geometric Programming (GP) sub-problems. Experimental results targeting an embedded FPGA-GPU platform 
with CNN layer configurations from state-of-the-art CNN models (AlexNet, VGG16 and ResNet18) show that the simplified 
problem is solvable in polynomial time with a speed-up gain and energy reduction of around 20% and 15%, respectively, 
when compared against an arbitrary balanced partitioning. If the models for objective and constraints functions preserve 
the posynomial form and log-log convexity, it is demonstrated that GGP is an efficient optimization solution to the Design 
Space Exploration (DSE) problem.

Keywords Heterogeneous platform · Convolutional Neural Network · Geometric programming · Mathematical 
optimization · Embedded design

1 Introduction

CNN processing at the edge opens new challenges by requir-
ing embedded systems to support strong computational 
workloads. This rapid evolution fosters more complex hard-
ware architectures comprising interconnected heterogene-
ous elements. GPU, dedicated ASIC and FPGA accelerators 

are currently platforms of choice for porting CNNs, as their 
programmability and internal parallelism fit well the concur-
rency and the customization needs of modern CNNs. The 
hardware/software co-design intricacy increases when logic 
and memory constraints are taken into consideration concur-
rently in system DSE with the objective to optimize energy 
consumption and throughput. CNN inference deployment 
at the edge with high performance per Watt requires careful 
co-design of hardware architecture and algorithm. Systems 
are currently becoming more complex on both sides: archi-
tecturally and algorithmically. Embedded platforms include 
several asymmetrical processing elements and different lev-
els of memory hierarchies. Thus, design solution selection 
from DSE requires optimization techniques to choose an 
appropriate partition considering available resources and 
performance goals. To facilitate DSE on the edge with het-
erogeneous platforms, an optimization problem formula-
tion is formalized. The resulting objective and constraint 
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functions have the form of a GGP problem. This family of 
optimization problems are mostly non-convex, and thus do 
not have a unique optimal point. However, in some cases 
they can be reduced and solved as GP problems. Since GP 
problems are fast solvable, in polynomial time, and ensure 
a global optimal solution, it is strongly desired to transform 
a GGP into a GP problem when possible. Nevertheless, this 
is not a trivial task, as it requires a deep expertise on the 
nature of the problem at hand. In this work, the following 
contribution is presented:

Given a system performance objective and constraints, 
it is shown that a partitioning method of a CNN layer over 
a set of heterogeneous processing elements can be analyti-
cally described, expressing objective and constraints in a 
posynomial form for individual processing elements. A GGP 
optimization problem is formulated and a demonstration that 
the GGP equality constraints can be relaxed so as to solve 
the problem in the form of a set of simpler GP problems. 
This relaxation preserves the properties of GP problems, 
such as the existence of a global optimal solution and the 
polynomial solving time.

The paper is organized as follows: In Section 2, an analy-
sis of related state-of-the-art works is presented, focusing 
on system modeling for Deep Learning (DL), as well as on 
partitioning, scheduling and optimization techniques. Sec-
tion 3 explains the context of measurement-based system 
performance modeling of CNN inference and introduces the 
concepts of monomial and posynomial. In Section 4, the 
theory behind GGP and GP is presented and explained, how 
a GGP problem can be relaxed to a GP problem using a 
penalization technique based on the condensation solution. 
In Section 5, GP optimization is applied to common CNN 
layer configurations and find the optimal partitions. Finally, 
in Section 6, it is discussed the results and observations.

2  Related Works

Since the early years of DL-oriented embedded hard-
ware platforms, research has dedicated large efforts on 
partitioning machine learning efficiently over several 
edge devices [1]. The partitioning solutions must take 
into consideration the hardware profiling, partitioning, 
scheduling and deployment. Fused-layer is a popular 
technique permitting two or several layers to be mapped 
on a same device, reducing inter-device communication. 
Similarly, a set of containers, such as Docker contain-
ers, can be instantiated to a model and treat partitions 
as cloud services. In [1], a layer-wise containerization 
of a Deep Neural Networks (DNN) with fused-layer is 
proposed by using analytical regression models of differ-
ent DNN configurations and optimizing analytically with 
dynamic programming. In [2], a DNN is partitioned at a 

finer granularity, mapping individual neurons to different 
Internet of Things (IoT) devices. However, the optimiza-
tion of [2] is focused on reducing inter-device communica-
tion using a similar heuristic as Kernighan-Lin heuristic 
[3], swapping partition nodes in a graph abstraction. This 
solution is tailored to very constrained resources where 
communication is a dominating bottleneck. In [4], the 
previous use case is extended to heterogeneous platforms 
with different devices including CPUs, FPGAs and GPUs. 
Therefore, communication channels with several latencies 
and throughputs are considered in the optimization prob-
lem. Vanishree et al., create a Roofline analytical model 
to choose the appropriate batch partitioning ratio of each 
device the platform. In [5], data redundancy is exploited 
on fused-layers for contiguous partitions with the objective 
to reduce inter-systems communication overhead. For this 
purpose, the optimization process decides when to allow 
or when to avoid layer fusing. In the same publication [5], 
a discussion on partition size and communication overhead 
is covered. Extending the work of [5], Stahl et al., dem-
onstrate that layer-wise partitioning can be found using 
Integer Linear Programming (ILP) optimization problems 
considering resource constraints and minimizing commu-
nication [6]. Finally, in [7], an assisting tool solution is 
introduced for embedded hardware characterization using 
computation and communication knowledge from hetero-
geneous platforms. The estimation precision is increased 
by introducing detailed information of the system for dif-
ferent CNN operations. Then, the scheduler uses a greedy 
layer-wise mapping as optimization strategy, selecting the 
most performing device iteratively for each layer. While 
this hardware-awareness is usually known to the designer, 
many internal parameters are difficult to acquire in prac-
tise or may be hidden to the designer. This solution from 
[7], however, does not require a performance-based meas-
urement database generation, which in many cases may 
save some development time.

Same authors in [8] add the consideration of weight-
dominated CNN layers for layer fuse. Their objective func-
tions seeks an even weight distribution on several edge 
devices. However, in heterogeneous systems, this may 
not be a desired property, since some elements are more 
efficient with memory access handling or embed more 
memory.

With respect to this state-of-the-art, the proposed method 
is less specific to a given deep learning solution. A resource 
and objective formulation are proposed for the fast opti-
mization of multi-system CNN partitioning that combines 
resource constraints, performance constraints and perfor-
mance objectives. The embarrassingly parallel nature of 
CNNs is exploited to simplify the problem formulation. The 
proposition is intended to be widely applicable and adapt-
able to a large set of CNN partitioning problems.
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3  Monomial and Posynomial Model 
Formulation

The convolution is the most common operation in convolu-
tional layers on CNN models, therefore it is also the most 
time consuming and most parameter intensive workload 
[9]. Many efforts on state-of-the-art works focus on obtain-
ing an analytical behavioural model for this operation on 
given devices, modeled together with a ReLU activation 
function. With the selection of the representative structural 
features, the computation and communication workloads are 
described. Afterwards, a dataset was created by stochasti-
cally exciting the heterogeneous system. Finally, a set of 
performance models were derived with modeling techniques 
from these data points. The obtained models are mostly rep-
resented in a monomial or posynomial form. It is discussed 
why this specific form is required to be solvable with GGP 
in Section 4. In this paper, two metrics or Key Performance 
Indicators (KPIs) are considered: processing latency (LAT) 
and processing energy (E). As many other physical models 
in electronic devices, these can represent a system in posy-
nomial form. The platform from Fig. 1 presents the experi-
mental setup. A custom embedded heterogeneous platform is 
employed incorporating an  Nvidia® Jetson  TX2® embedded 
CPU-GPU (green), and an  Intel® Cyclone 10 GX FPGA 
(blue) using a dataflow Direct Hardware Mapping (DHM) 
technique [10]. Interconnection is established by a Periph-
eral Component Interconnect Express (PCIe) Gen2 x4 (5 
GT/s) communication channel (gray). The communication 
link between CPU-GPU lie on the same System-on-Chip 
(SoC) die, therefore they share a common external memory. 
DHM technique offers an energy-efficient but resource-
hungry FPGA implementation. The results can however be 
extended to larger architectures and more constraints, with 
limited effort.

GP is a an optimization technique that is useful to solve 
large scale problems by formalizing them into not-too-
restrictive mathematical models. The system performance 
models must comply with GP specific analytical formulation 

based on two forms of expressions. The first form to con-
sider is the monomial. A monomial has the form presented 
in Eq. 1:

Where the function u ∶ ℝ
n
→ ℝ maps an input feature vector 

X (such as X in previous section) to a real value. c is strictly 
positive c > 0 , ai ∈ ℝ and the domain is also strictly positive 
D(u) = ℝ

n
++

 , or explained differently, the input feature vector 
X must be fully composed of non-zero positive real values. 
As a second condition, a posynomial is a linear combination 
of monomials as shown in Eq. 2:

Where, similarly to Eq. 1, each element ck is strictly posi-
tive, ck > 0 . To fully exploit the posynomials in the GP 
context, the performance system models for latency (LAT) 
and energy (E) must follow these rules. These performance 
metrics, when evaluated for CNNs, tend to fit well the GP 
theory. Indeed, as CNNs layers heavily parallelize, their cost 
in terms of energy and time tend to be proportional to the 
product of their structural dimensions, leading to monomial 
formulations. Moreover, the cost of a complete algorithm 
will tend to be the sum of individual layers costs, leading 
to posynomial formulations. These intuitions motivate the 
study of GP for CNN partitioning optimization.

4  Optimization Problem Formulation

After selecting analytical modeling and partitioning 
technique, the methodology further proceeds with the 
formal definition of the problem formulation of a CNN 
layer. The solution of the optimization problem heavily 
depends on the nature of the objective function and con-
straint choice. Mathematical properties, such as, curvature 

(1)u(X) = c

n∏
i=1

x
ai

i

(2)v(X) =

K∑
k=1

c
k
u(X) =

K∑
k=1

c
k

n∏
i=1

x
aik

ik

Figure  1  Architecture model as for the heterogeneous setup with 
three computing elements: A  Nvidia® Jetson  TX2® CPU-GPU 
(green) SoC and an  Intel® Cyclone10GX FPGA (blue) interconnected 
through x4 lanes of a PCIe Gen2 link (gray). Each processing element 

and communication node has an Input Feature Map (IFM) and a Out-
put Feature Map (OFM) associated to it required for metric perfor-
mance measuring on each device.
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and monotonicity have a critical role on the analytical or 
numerical tools to be exploited. Furthermore, expertise  
and a-priori knowledge on the problem is key to math-
ematically manipulate the problem and transform it from a 
non-convex to a convex function [11].

In this section, it is described how the posynomial mod-
els of Section 3 are used to formulate the optimization 
problem as a set of GP problems. Nevertheless, because 
GP does not allow monomial expressions as equality con-
straints, this violates GP problem formulation. Therefore, a 
relaxation technique based on objective function penaliza-
tion is proposed. The added penalization term is obtained 
by the transformation of the equality constraints to posy-
nomials, this technique is known as condensation [12]. 
This reformulation provides a quick numerical solution in 
tenths of iterations, being each iteration solvable in poly-
nomial time with interior-point methods using CVXPY 1.0 
library [13]. Interior-point methods approximate a numeri-
cal solution by implicitly adding the inequality constraints 
to the objective function. Some mathematical transforma-
tions are applied to convert the problem to a convex and 
differentiable one and solvable by Newton’s method. The 
solution converges to a set of solutions towards the optimal 
solution per each iteration, this trajectory is known as the 
central path [11].

4.1  GGP Formulation of the Heterogeneous CNN 
Layer Partitioning

GP problems are used in multiple domains for their great 
versatility. Because usually GP are non-convex but easily 
transformed into convex problems, they have gained inter-
est in optimization formulation, since GP convex problems 
have been proven to be fast solvable [11]. The fact that the 
GP solution is analytically found makes it highly desirable 
but the formulation of the problem can be difficult. The 
strict mathematical conditions on the objective and con-
straint functions require specific analytical forms. A GP 
problem has the form of Eq. 3:

Where the objective function f0(X) and the inequality con-
straint functions fi(X) shall be posynomials (Eq. 2 from Sec-
tion 3), and the equality constraints hi(X) shall be monomials 
(Eq. 1 from Section 3) [11]. If the problem is non-convex, 
it is possible to perform mathematical transformations to 
convert it to the convex form [11].

The GGP formulation of the GPU-FPGA partitioning of 
a CNN layer can be formalized below in Eq. 4:

(3)
minimize f0(X)

subject to fi(X) ≤ 1; i = 1, 2,⋯ , p

hi(X) = 1; i = 1, 2,⋯ ,m

Where X is the input feature vector containing the structural 
features of a CNN layer. These are HI (height of the IFM), 
WI (width of the IFM), C (channels of the IFM), k (size of 
kernel filter) and N (number of kernel filters). X

F
 and X

G
 are 

the structural input feature vectors and sub sets of X to be 
allocated on the FPGA and GPU, respectively. LATHet(X) is 
the posynomial model of the execution latency. ALMF(XF

) , 
ALUTF(XF

) , LABF(XF
) and M20KF(XF

) are posynomial 
resource model inequalities for the target FPGA, respect-
ing the maximum logic and memory element count of the 
device. In the experiments (Section 5), the  Intel® FPGA 
resources were selected: Adaptive Logic Modules (ALMs), 
Adaptive Look-Up Tables (ALUTs), Logic Array Blocks 
(LABs) and M20K memories.

Not only does the objective function directly depend 
on the taken partitioning strategy, but also the constraints 
last equality. With the purpose of forcing the algorithm 
to converge to non-trivial solutions (e.g. executing noth-
ing), the equality constraint X

F
+ X

G
= X is added. As 

an example, for the grouped convolution, the number of 
channels on the FPGA ( CF ) and the number of channels 
on the GPU ( CG ) must match the total number of channels 
before splitting, while keeping other features constant, or 
C
F
+ C

G
= C . Unfortunately, this equality constraint is a 

sum of monomials, therefore a posynomial. For GP, this 
definition violates the monomial equality constraint from 
Eq. 3. A GP is a particular case of GGP, which accepts 
posynomials as equality constraints, but the GGP prob-
lem is no longer convex nor a method to find an optimal 
solution is known. In this case, multiple heuristics have 
been proposed to convert a GGP to a GP using penaliza-
tion terms [14]. In next section, a condensation solution 
to relax the posynomial equality constraints to the given 
use-case is proposed.

4.2  GGP Penalization by Equality Constraints 
Condensation

As discussed in previous section, Eq. 4 includes equality 
constraints that violate the conditions of GP. Nevertheless, 
these expressions can be transformed from posynomials 
to single set of monomials of the following form using 
the condensation technique proposed in [12]. These new 
expressions h̄ are computed following the function 5:

(4)

minimize LATHet(X)

subject to ALMF(XF
) ≤ ALMmax

ALUTF(XF
) ≤ ALUTmax

LABF(XF
) ≤ LABmax

M20KF(XF
) ≤ M20Kmax

X
F
+ X

G
= X
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Where X̂ is a feasible solution starting point. For example, 
an a-priori solution X̂ can be a naive partitioning that 
respects the problem constraints. ut, t ∈ T  are each of the T 
monomial terms (Eq. 1) in all posynomial equality con-
straints hi (in the form v of Eq. 2). Finally, the exponent 
�t(X̂) =

ut(X̂)

hi(X̂)
 is the result of the arithmetic–geometric ine-

quality approximation, transforming any posynomial to a 
monomial. Since �t is a ratio, then the basic property 
h̄(X, X̂) ≤ h(X) of the arithmetic–geometric inequality 
applies. h̄ is known as a posynomial condensed to a mono-
mial. Notice that, because h̄ has all the properties of a mono-
mial, these constraints cab be relaxed by including a penali-
zation term in the objective function, while keeping the 
posynomial conditions and changing the equality to inequal-
ity constraints:

Where each �k is the penalization weight of the original 
objective function. Note that these weights add parameters 
to be tuned in the optimization process. Now fi and hi con-
straint functions are both posynomial inequalities, as a result 
of the relaxation by condensation. Although now the prob-
lem is GP-compliant, a new problem arises. The penaliza-
tion weights �k must be carefully selected for each equality 
constraint. For this purpose, several heuristics exist [14]. 
In simple cases, �k selection can be solved numerically by 
incrementally changing the weight values, this process is 
known as tightening [12]. When the tightened condensed 
constraints approximate the desired value, the solution is 
accepted, and that value for �k is selected. This technique is 
similar to other primal-dual optimization problems (duality), 
like Lagragian-based optimization techniques [11]. Where, 
in order to solve the primal formulation of a possibly non-
convex problem without any modification, the dual problem 

(5)h̄(X, X̂) =

T∏
t=1

[
u
t
(X)

𝜖
t
(X̂)

]𝜖t(X̂)

(6)
minimize f0(X) +

m∑
k=1

𝛼kh̄k(X, X̂)
−1

subject to fi(X) ≤ 1; i = 1, 2,⋯ , p

hi(X) ≤ 1; i = 1, 2,⋯ ,m

must be first formulated. These dual optimization problems 
incorporate, after some manipulation or transformation, the 
constraints into the objective function as penalization. For 
dual problem formulation, the posynomial condensation into 
a monomial from the penalization is based on the result of 
an approximation using the algebraic manipulation of the 
arithmetic–geometric inequality. Solving the dual problem 
is more tractable than solving the primal problem [15].

In the following Section 5, we empirically demonstrate 
that it is possible to find the penalization parameters within a 
few iterations for different CNN layer configurations. Since 
each iteration is a GP problem, it is solvable in polynomial 
time. Thus, the final solution remains upper-bounded by 
the polynomial time complexity for the selected partition-
ing techniques.

5  Experimental Results

In this section, the results of the optimization problem defi-
nition of Section 4 with different CNN layer configurations 
are presented. The first results presented here consider a 
platform with only an embedded FPGA with a GPU, after-
wards the objective function is easily modified to include 
more compute elements with different communication 
links between a CPU-GPU-FPGA platform. This is also the 
case for the constraints functions, which can be extended to 
include other embedded devices constraints.

5.1  Single Layer Optimization

Exploiting the heterogeneity of an embedded platform with a 
single FPGA-GPU coupling and a single communication link, 
an optimization problem is formulated in the form of Eq. 7 
with the models of Section 3 and the objective function. Fig-
ure 2 depicts the setup test for allocation of the obtained parti-
tions on a single CNN layer. This setup considers a sequential 
execution of the FPGA and GPU workloads to minimize the 
latency of an individual CNN layer. That is, the objective func-
tion is the sum of processing times on each device, consider-
ing the transfer time of the intermediate Feature Maps (FMs) 

Figure 2  Setup 1: Single layer setup of a single CNN layer allocation.
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from one node to the other ( LATComm ). Since the host shares 
the same memory between the CPU and GPU, but not for the 
FPGA; the FM with the structural features X

F
 must be trans-

ferred to the FPGA accelerator. Therefore, the communica-
tion latency depends on the shape of this partitioned IFM, or 
LATComm(XF

).
In Eq.  7, the selected partitioning technique is the 

grouped convolution. Therefore, the equality constraint only 
considers the channels on each device ( CF and CG ) to match 
the total number of channels on the layer (C).

As discussed in Section 4, the posynomial equality con-
straint violates the requirement for a GP solution. However, 
the constraint can be relaxed to an inequality by adding the 
penalization term based on the condensed posynomial. By 
incorporating this penalization term, the latency objective 
function increases smoothly when the grouped convolution 
constraints are not met. This is, when the solution chosen 
from the optimization problem does not compute the number 
of channels in the convolution layer. If the equality con-
straints are relaxed to inequality constraints, some solutions 
that were not originally feasible are now possible, and even 
optimal. In the case of the grouped convolution, if a con-
straint equality is relaxed to a less or equal, the obvious 
and most trivial solution to minimize the latency, would 
simply be processing the fewest number of IFM channels 
as possible. Namely, processing one single channel on the 
FPGA ( CF = 1 ) and one on the GPU ( CG = 1 ). Evidently, 
this is not a desired solution, since the IFM tensor is not 
fully processed. First, for this purpose, the condensed penali-
zation term h̄(CF,CG, ĈF, ĈG) must be obtained. Then, the 
equality constraint on the number of channels is removed. 
Using Eq. 5, with T = 2 , since the constraint consists of two 
monomials, the posynomial is condensed to a monomial in 
the following Eq. 8:

This penalization term is a monomial that includes the channel 
parameters of each device. Thus by adding it to the objective 
function, it preserves its posynomial form. To incorporate this 

(7)

minimize LATF(XF
) + LATG(XG

) + LATComm(XF
)

subject to ALMF(XF
) ≤ ALMmax

ALUTF(XF
) ≤ ALUTmax

LABF(XF
) ≤ LABmax

M20KF(XF
) ≤ M20Kmax

CF + CG = C

(8)h̄(CF,CG, ĈF, ĈG) =

⎡
⎢⎢⎢⎣

CF

C

ĈF

ĈF+ĈG

⎤
⎥⎥⎥⎦

ĈF

ĈF+
̂CG ⎡
⎢⎢⎢⎣

CG

C

ĈG

ĈF+ĈG

⎤
⎥⎥⎥⎦

̂CG
ĈF+

̂CG

term in the objective function, it is only necessary to add the 
penalization with a penalization weight, 𝛼h̄ . As for an instance, 
LAT

F
(X

F
) + LAT

G
(X

G
) + LAT

Comm
(X

F
) + 𝛼h̄(C

F
,C

G
, Ĉ

F
, Ĉ

G
) . 

For one equality constraint condensation, only one penali-
zation weight � is required ( m = 1 for Eq. 6). Consequently,  
it is feasible to sweep over different values of � and tighten 
the relaxed inequality constraint, until CF+CG

C
 approximates the 

unity.
Figure 3, shows an example with an input tensor sequen-

tial processing with grouped convolution partitioning of 
configuration size of HI = WI = 112 , CI = 16 , k = 1 and 
N = 32 for latency minimization. For a grouped convolu-
tion partitioning, all features equal for each device are kept, 
except for the number of channels. Resource constraints are 
taken into account. Each bar represents a partitioning itera-
tion chosen by the solution of the GP solver with a given � 
value. The blue bars are the channels mapped on the FPGA, 
while the green bars are mapped to the GPU. By increasing 
the value of � , the constraint (red line) is tightened at each 
iteration, penalizing the objective function until the normal-
ized relaxed constraint function approximates 1. For this 
instance, α = 170, represented by the orange dashed line, 
is the first value to satisfy the constraint with C

F
= 14 and 

C
G
= 2 . Additionally, for this test a balanced feasible solu-

tion is chosen for the constraint condensation. This is, the 
number of channels is equally distributed for both process-
ing devices ( Ĉ

F
= Ĉ

G
= 8 ). An important observation from 

Fig. 3 is that multiple solutions fulfill the tightened equality 
constraint. Therefore, there are infinite feasible solutions 
after iteration 17. However, as shown in Fig. 4, since the 
latency (solid purple line) has a non-decreasing monotonous 
nature, the following solutions perform worse than the first 
accepted iteration (dashed orange line). The solutions found 
on each iteration are found in polynomial time with respect 
of the inputs X , X

F
 and X

G
 . As a consequence, the solution 

of each GP problem remains bounded by polynomial time 
and, fixing a step size on � , so is the iterative solution.

The GGP objective function can be easily modified to 
incorporate several computing devices with their respec-
tive communication bus linked to the other devices. Equa-
tion 9 shows an example of an objective function reformu-
lation with the CPU latency model inclusion ( LAT

C
(X

C
) ). 

Where X
C
 are the features of the CNN layer deployed on 

the CPU. Also communication links LATC−G
Comm

(X
C−G) and 

LAT
C−F
Comm

(X
C−F) are incorporated to consider the latency 

of the communication overhead of inter-device FM trans-
fers between CPU and both the other devices. Additionally, 
the condensation and penalization term ( ̄h ) in the objec-
tive function must also include the features of the modified 
equality constrain ( C

C
+ C

F
+ C

G
= C).
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Computation LAT

C
(X

C
) + LAT

F
(X

F
) + LAT

G
(X

G
)+

Communication LAT
F−G
Comm

(X
F−G) + LAT

C−G
Comm

(X
C−G) + LAT

C−F
Comm

(X
C−F)+

Penalization 𝛼h̄(C
C
,C

F
,C

G
, Ĉ

C
, Ĉ

F
, Ĉ

G
)

Figure 3  First iterations of a 
relaxed GGP sequential grouped 
convolution partitioning of an 
input tensor with 16 channels 
( C = 16 ) with an increasing � . 
The problem is solved as a set 
of GP problems and he tighten-
ing only takes a few iterations 
(iteration 17 with � = 170 ) to 
find an acceptable solution. 
Each step is in polynomial time 
and total optimisation lasts less 
than a couple of hundred of 
milliseconds.

Figure 4  Heterogeneous 
objective function per iteration 
(without penalization term) 
from problem in Eq. 7.
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Figure 5 shows an example of a partitioning by relaxation 
and tightening over the same channel-wise layer partitioning 
of the Fig. 3. The red bars represent the partition hosted in 
the CPU, the green bars those on the GPU and finally, the 
blue bars represent the channels. The found solution fits the 
partitions mostly on the FPGA, until the equality constraint 
is tight enough to fulfill the desired value ( C = 16).

5.2  Full CNN Model Optimization

In previous Subsection, the limited size of the problem still 
allowed greedy methods to solve single-layer optimization 
partitioning and scheduling. An approximate solution can be 
found by simply mapping the biggest partition to the fastest 
device with available resources. In this specific use-case, 
the FPGA dominates in both execution time and energy 
consumption. Therefore, GGP will find an optimal solution 
similar to greedy algorithms. However, this claim does not 
take into consideration the complexity of partition mapping 
in deeper layers. If the algorithm chooses to fit the whole 
first layer in one device, deeper layers are not considered 
to be mapped on that device. Since the device has already 
exhausted its resources or at least until it multiplexes in time, 
it is not available until it finishes its scheduled workload. 
Unfortunately, one of the main limitations of DHM is that 
layers can not be multiplexed in time. Therefore, each layer 
on full CNN models are individually mapped theoretically 
on several FPGA accelerators, simulating time-multiplex-
ing with reduced resources. This can be simulated due to 
the analytical modeling and the presented formulation of 

layer-wise optimization presented in this section. The setup 
from the Fig. 6 is analyzed as use-case scenario.

Being L the number of convolutional layers in a CNN 
model, Eq. 10 represents the optimization problem reformu-
lation for a complete network. The objective function now 
adds the individual performance model (latency for this 
example) of each layer l ( l = 1, 2, 3,… , L ). The resource 
inequality constraints are also modified to include the mem-
ory and computing elements utilization on each layer.

The summation and scaling (linear combination) of posy-
nomial functions is also a posynomial [11, 15]. Thus, the 
objective and constraint functions are still posynomial and 
can be solved with GGP. Additionally, notice that from 
Eq. 10, the number equality constraints also increases lin-
early with respect to the number of layers in the CNN model. 

(10)

minimize

Computation

���������������
L�
l=1

LAT
D
(Xl

D
) +

Communication

���������������������
L�
l=1

LAT
Comm

(Xl

D
) +

Penalization

�����������������������
L�
l=1

𝛼
l
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l
(Xl

D
, ̂
X
l

D
)−1
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L∑
l=1

ALM
F
(Xl

F
) ≤ ALM

max

L∑
l=1

ALUT
F
(Xl

F
) ≤ ALUT

max

L∑
l=1

LAB
F
(Xl

F
) ≤ LAB

max

L∑
l=1

M20K
F
(Xl

F
) ≤ M20K

max

L∑
l=1

X
l

D
= Xl

Figure 5  Relaxed GGP sequen-
tial grouped convolution parti-
tioning of an input tensor with 
16 channels ( C = 16 ) with an 
increasing � over a CPU-GPU-
FPGA network.
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Therefore, several penalization weights ( �
l
 ) and penaliza-

tion function ( h̄
l
 ) must be handled to iterative tighten the 

reformulated objective function. Each parameter �
l
 can be 

individually tightened as presented in previous subsection, 
until each constraint is fulfilled. Similarly, it is possible to 
increase simultaneously all the parameters on each step and 
individually stop each one when that specific equality con-
straint is fulfilled.

Although most of partitioning techniques are covered 
with the formulation of Eq. 10 (tiling, grouped convolu-
tion or channel-wise loop unrolling and depth-wise sepa-
rable convolution), there is still one that can not be adapted 
to this formulation. The fused-layer considers that some 
FMs are not transferred between devices, in both sequen-
tial and concurrent execution. However, in Eq. 10, every 
single layer is considered to output an OFM that is inter-
communicated between devices. The fused-layer technique 
consists in selecting which OFMs remain on the device to 
be computed as IFMs for the next layer, eliminating this 
way, the need of communication overhead. Consequently, 
a strategy must be chosen to reduce some terms of com-
munication models LAT

Comm
(Xl

D
) . Since communication 

links are usually modelled with linear functions, ILP is 
a simple enough solution to explore all the combinations 
in polynomial time [6, 8]. In Eq. 11, each communica-
tion term in the heterogeneous objective function from 
Eq. 10 is multiplied by the Heaviside function S(x) ∈ � , 
also known as step function. This way, the optimization 

technique chooses between keeping the FM in the device 
and skip communication ( S(x) = 0 ) or to transfer the tensor 
( S(x) = 1 ) on each layer.

Although the formulation from Stahl et al. [6, 8] is simple 
and solvable with ILP, it does not consider the execution 
computation time. Therefore, this is only useful in cases 
where the Computation-to-Communication Ratio (CCR) is 
low, result of a hardware platform heavily bounded by com-
munication. On the other hand, while Eq. 11, is a generaliza-
tion and extension of their work it is, from a GGP perspec-
tive, unsolvable. This is because the formulation from Eq. 11 
presents several drawbacks. The most important being, that 
the shifted Heaviside function H(x), from Eq. 12, is not a 
smooth differentiable function. Thus, it can not be solvable 
using interior-point algorithms, that depend on iterative gra-
dient evaluation [15].

As a consequence, analytical approximations of the step 
function must be used. Well-known sigmoid-like functions, 
such as the logistic function or trigonometric functions like 

(11)

minimize

L∑
l=1

LATD(X
l

D
) +

L∑
l=1

S(Xl

D
) ⋅ LATComm(X

l

D
)

(12)H(x) =

{
0 x < 1

1 x ≥ 1

Figure 6  Setup 2: Multi-layer setup of a full CNN model with several layers allocated. The heterogeneous architecture is theoretically simulated.
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arctan and tanh, are suitable candidates [11]. Approxima-
tion techniques such as, cubic and spline interpolations are 
also commonly employed to smooth and clip or bound the 
proposed function [16]. Nevertheless, as discussed in Sec-
tion 3, to preserve the posynomial properties, both terms in 
the product S(x) and LAT(X

D
) , must be also posynomials. 

Furthermore, convexity and monotonicity must be also pre-
served to be solvable with GGP. This restricts the number 
of usable functions for fused-layer formulation, since they 
must follow the algebraic form. Thus, in Eq. 13, a simple 
exponential algebraic function is defined as communication 
weight function.

Figure 7 shows many algebraic communication weight func-
tions (blue solid line) for different values of k ∈ ℕ . Notice 
that, the bigger the value of k is, the better the approximation 
is to the Heaviside function H(x) (red solid line). Addition-
ally, using a symmetrical algebraic function (like with an 
even exponent) k can take also negative integer values. For 
simplicity purposes, we restrict k to take only natural num-
bers, ℕ . Another important remark is that, this is only true 
for the interval 0 ≤ x ≤ 1 . Therefore, these newly introduced 
interval constraints must be also considered on the full CNN 
optimization problem formulation.

(13)S(x) = x2k, k ∈ ℕ

Although, formulation from Eq. 13 solves the approxi-
mation problem in a posynomial form that can be solved 
by GGP, it introduces a new heuristic value k. As shown in 
Fig. 8, the choice of this value has a direct impact on the 
function approximation. The L2-Norm is chosen to visually 
and numerically evaluate the error difference between the 
Heaviside function and the communication weight function 
( ||H(x) − S(x)|| ). For the full CNN model optimization for-
mulation, a value of k = 100 is selected with an L2-Norm 
error of around 0.12. It is important to considerate that a big 
value of k can cause numerical issues that complicates con-
vergence with no substantial difference between solutions.

Finally, the communication weight function S(x) is 
included in the GGP formulation for the full model optimi-
zation. Equation 14 shows the modified objective function 
with the interval constraints of the approximation domain 
of S(x). Since, S(x) is a smooth differentiable posynomial, 
the weighted communication terms are still posynomials 
[11, 15]. Thus, this can be solved with the interior-point 
techniques, typical of GGP solutions. Considering that the 
derivative is mostly 0 for almost any value, except for values 
close to 1, any gradient-based function is heavily penalized 
by choosing features around 1. Additionally, the objective 
function also increases with the number of S(Xl

D
) for each 

layer that the features are transferred to another device.

Figure 7  Communication 
weight function S(x) = x

2k for 
different values of k.
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To evaluate the full model optimization partitioning, Fig. 9 
shows the resulting partitions per layer from Eq. 14 formula-
tion on three CNN model configurations. For instance, the 
partitioning was processed channel-wise with the hetero-
geneous GConv partitioning on a full model. For visuali-
zation purposes, the normalized number of channels com-
puted per device is presented instead of the actual number 
of channels per layer. The channel layer-wise partitioning 

(14)
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FPGA Resource Constraints

L∑
l=1

X
l

D
= Xl

�
Partitioning Constraints

0 ≤

X
l

D

Xl

�
Interval Constraints

for AlexNet [17] is presented in Subfigure 9a. Subfigure 9b 
shows the channel distribution for VGG16 [18]. Finally, in 
Subfigure 9c, the resulting partitioning for ResNet18 [19] is 
presented. The latency of each device and the heterogeneous 
platform are compared against a single-device solution. The 
single-device is the CPU on the embedded platform with 
neither inter-device communication nor partitioning. This 
means, that the results of the dashed gray line  represent  

Figure 8  Approximation error 
function based on L2-Norm.
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the full layer execution on CPU, while the purple solid line 
with diamond markers  represents the obtained het-
erogeneous solution. The solid red line with star markers  

 represents the speed-up factor of the heterogeneous 
platform for each accelerated layer partition; compared 
against the single-device with no partition optimization nor 
acceleration. CPU partition is represented with an orange 
solid line with circle markers , while the GPU parti-
tion performance is represented with a green solid line with 
square markers  and the FPGA partition performance is 
represented with a blue solid line with triangle markers .  
The model configurations are based on ImageNet dataset 
[20] with an input image with dimensions 3 × 224 × 224 . 
From these results it can be observed that, compared against 

single layer channel optimization from previous Subsection, 
the resource utilization on the FPGA is distributed through 
all layers. Instead of mapping all channels of the first layers 
on the custom logic, as greedy-based algorithm, GGP opti-
mization maps channel through deeper layers. However, as 
seen in the three Subfigures from Fig. 9, the GGP optimiza-
tion formulation favors the first CNN layers to be directly 
mapped on the FPGA, which have a higher CCR. In the three 
cases, the input image was mapped over 80% on the FPGA 
(i.e. 61 channels from 64 for ResNet18). Deeper layers are 
bound by the communication overhead, which is a critical 
part of inter-device tensor transfers on heterogeneous plat-
forms. Similarly, as evidence of this high CCR preference 
scalability, the three models present a different number of 

Table 1  Optimization state-of-the-art comparison.

a Open-source software for automatic large graph partitioning
b Using theoretical architecture from Setup 2

Work Edge platform Optimization 
method

Partitioning 
Technique

Objective 
function

Constraints Models Gain

Zhao et al. [5] 6 Raspberry Pi 3 
Model B (CPU)

Work stealing/
sharing

Fused tile Latency 
minimization

Memory 
footprint

YOLOv2 1.7× ∼ 3.5×)

Communication 
overhead

de Oliveira and 
Borin [2]

Up to 63  CPU-
based IoT 
clusters

Graph 
partitioning and 
swapping

Layer-wise Inference rate 
maximization

Memory 
footprint

LeNet 1.8×)

Greedy Communication 
minimization

Load balance

METISa

Stahl et al. [6] Simulation of up 
to 7 devices 

ILP Layer-wise Communication 
minimization

Partitioning 
selection

YOLOv2 1.15×)

Fused layer
Zhou et al. [25] 8 Raspberry Pi 

3 Model B+ 
(CPU)

DP Layer-wise Comp/comm 
minimization

- YOLOv2 1.5× ∼ 3.4×)

Stahl et al. [8] 6 Raspberry Pi 4 
(CPU)

ILP Layer-wise Communication 
minimization

Partitioning 
selection

YOLOv2 Up to 2.8×)

AlexNet Up to 1.2×)
Fused layer VGG16 Up to 2.4×)

GoogLeNet Up to 1.7×)
Zeng et al. [26] 4 Raspberry Pi 

Jetson TX2 
GPU Desktop 
CPU

Relaxed ILP to 
LP

Single- and 
Multi-layer

Energy 
minimization

Latency 
deadlines

AlexNet 0.66×)

VGG16 0.64×)
GoogLeNet 0.46×)
MobileNet 0.25×)

Thisb Jetson TX2 
(CPU-GPU) + 
Cyclone10 GX 
(FPGA)

Relaxed GGP 
to GP

Tile-wise Latency or 
Energy 
comp/comm 
minimization

Resources and 
partitioning

AlexNet 3.1× ∼ 5.7×)

Channel-wise VGG16 2.8× ∼ 6.4×)
Fused layer ResNet18 2.8× ∼ 6.3×)
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Figure 9  Resulting GConv channel-wise optimized partitions for AlexNet Fig. 9a, VGG16 Fig. 9b and ResNet Fig. 9c.
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layers, but also a similar result. This is, smaller partition 
percentages for deeper layers on FPGA accelerator and a 
workload dominated mostly by GPU (round 70% i.e. 352 
channels from 512 for ResNet18). It is also important to 
mention, that in some cases a feasible solution can not be 
found if the resource constraints are too strict [6, 8]. Nev-
ertheless, because of the mathematical properties of GGP, 
when a solution is found, this one is the optimal solution.

Table 1 displays the results from Fig. 9 using the Setup 
2 from Fig. 6. These results are compared to state-of-the-
art related works addressing partitioning optimization for 
CNNs models on the edge, for both simulated/theoretical 
and real-world case scenarios. Many approaches have been 
proposed for optimization formulation depending on the 
objective and constraint functions. Additionally, different 
partitioning schemes have an impact on the partition selec-
tion. Zhao et al. [5] propose a workload sharing and stealing  
for a Raspberry Pi 3 CPU cluster based on the memory capa-
bilities of each node. The memory footprint and communi-
cation overhead are treated as constraints in the scheduling 
problem formulation, achieving a time execution speed-up 
from 1.7× ∼ 2.5× for YOLOv2 [21]. As seen in Table 1, this 
technique, as many other partitioning methods, is inspired 
by the fused-layer [22]. For bigger edge device networks, 
de Oliveira and Borin [2], proposed the treatment of the 
hardware architecture network as a graph, taking advan-
tage this way, of graph theory and operations to modify the 
graph. The authors in [2] demonstrate that their technique is 
less effective while using greedy techniques and hand-made 
layer-wise partitions. The graphs include a form of com-
munication heterogeneity by allowing different bandwidths 
on the WIFI link between nodes. In [2], authors optimize  
the latency of inference by balancing the workload on LeNet 
[23] with a speed up of 1.8× . Stahl et al. [6] present a con-
vex ILP optimization formulation aiming for communica-
tion overhead reduction. The authors obtained from this for-
mulation a binary selection of layers to fuse for a platform 
simulation. Authors test the partitioning on YOLOv2 with 
a speed-up of 15%. Stahl et al. [8] extended their work for 
a physical platform consisting of multiple Raspberry Pis 4 
on YOLOv2, AlexNet [17], VGG16 [18] and GoogLeNet 
[24] with a speed-up factor up to 2.8× , 1.2× , 2.4× and 1.7× ; 
respectively Dynamic Programming (DP). With a similar 
hardware network on the edge, Zhou et al. [25] proposed an 
unconstrained DP problem formulation that also includes 
the computation in the objective function achieving for 
YOLOv2 and VGG16a speed-up of around 1.5× ∼ 3.4× and 
1.1× ∼ 2.3× , respectively. Relaxing objective and constraint 
functions are a common method to accelerate solution evalu-
ation and selection. In [26], Zeng et al. reduce a ILP to a Lin-
ear Programming (LP) problem by modifying some integer 
variables to continuous variables. Approximating this way, 
to a local minima solution. Additionally, in [26], the authors 

address the energy consumption of their heterogeneous plat-
form by integrating direct energy measurements constrained 
to latency deadlines.

From Fig. 9, it has been demonstrated that by relaxing 
the problem formulation, similarly to [26]), it is possible to 
obtain a speed-up gain similar to the state-of-the-art works. 
As many of the discussed works [5, 6, 8, 26], the partition-
ing techniques include a mixture of layer-wise schemes with 
fused layer selection. However, the constraint function, for 
this section includes the logic and memory resources of the 
programmable logic of the FPGA. These considerations 
extend the capabilities of the partitioning optimization for 
hardware DSE. This custom logic awareness contrasts to 
other approaches for heterogeneous platforms. For instance, 
in the above discussed solutions, it is mostly focused on 
a fixed amount of memory resources, which is a common 
decision for CPU-GPU edge platforms. Furthermore, since 
not only latency can be modeled as a posynomial, but also 
the energy, the modification of the objective function is fea-
sible for energy optimization. As observed in Fig. 9, the 
optimization solution tends to map shallower CNN layers 
on the FPGA for the three models. These layers are not 
only the most computational intensive in terms of number 
of Multiply and ACcumulates (MACs), but also the tensor 
to communicate are lighter [2]. This means, that these lay-
ers have a high CCR, which allow a suitable mapping on 
custom logic. However, since the communication overhead 
on heterogeneous systems is substantial, the first memory 
transfers without layer fusion introduces a considerable 
latency in the first layer to FPGA accelerator. Nevertheless, 
even considering this slow transfer the optimized heteroge-
neous partition solution still outperforms the single-device 
CPU solution. The speed-up factor is then reduced for 
deeper layers with values that ranges between 3.1× ∼ 5.7× , 
2.8× ∼ 6.4× , and 2.8× ∼ 6.3× for AlexNet, VGG16 and 
ResNet18, respectively.

Although, the previous examples mostly focus on latency 
performance, it is possible to obtain the energy metric per-
formance in Joules ( E(⋅) ) by simply integrating power in 
Watts ( P(⋅) ) over the processing or latency time window in 
seconds ( LAT(⋅) ) of one single FM. If power is constant, 
this is simplified to E(⋅) = P(⋅) × LAT(⋅) . As demonstrated 
in a previous work from the authors, constant power is often 
the case for power performance estimation at when maxi-
mum computing or communication capabilities are capped 
[27]. Therefore, any speed-up in latency translates in a direct 
reduction of energy consumption by the same factor. This 
is specially true for embedded devices, since layers from 
models like AlexNet, VGG16 and ResNet18, contain enough 
computation and communication to cap power dissipation 
of each accelerator. In cases where the accelerated partition 
is small enough that the power model ( P(⋅) ) is not constant, 
then a similar analysis must be done. While the constrains 
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remain the same from Eq. 14, the objective function must 
be updated as show in Eq. 15:

Assuming then constant power dissipation, the energy reduc-
tion factors remain similar to the latency speed-up factor: 
3.1× ∼ 5.7× , 2.8× ∼ 6.4× , and 2.8× ∼ 6.3× for AlexNet, 
VGG16 and ResNet18, respectively.

6  Conclusions

This work has proposed an automated method for CPU-
GPU-FPGA partition selection of a given CNN layer. It has 
been shown that the partitioning problem can be modeled 
within the GGP framework, modeling each system perfor-
mance metric in a posynomial form depending on CNN 
hyperparameters and architecture resource modeling. Well-
known partitioning techniques in the state-of-the-art have 
been analyzed for layer-wise partitioning: tiling, grouped 
convolution, depth-wise separable convolutions and fused 
layers. An analytical formalization is then employed to 
derive a set of objective functions and constraints as a GGP 
problem, solvable in polynomial time without requiring a 
heuristic. It has been demonstrated that it is possible to relax 
some equality constraints by including a penalization term 
based on posynomial condensation, and reduce it as multiple 
simpler GP sub-problems. Experimental results targeting an 
embedded CPU-FPGA-GPU platform with state-of-the-art 
CNN layer configurations have demonstrated that the simpli-
fied problem is solvable in polynomial time.
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