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A B S T R A C T 

Jetted astrophysical phenomena with black hole engines, including binary mergers, jetted tidal disruption events, and X- 
ray binaries, require a large-scale vertical magnetic field for efficient jet formation. Ho we ver, a dynamo mechanism that could 

generate these crucial large-scale magnetic fields has not been identified and characterized. We have employed three-dimensional 
global general relativistic magnetohydrodynamical simulations of accretion discs to quantify, for the first time, a dynamo 

mechanism that generates large-scale magnetic fields. This dynamo mechanism primarily arises from the non-linear evolution 

of the magnetorotational instability (MRI). In this mechanism, large non-axisymmetric MRI-amplified shearing wave modes, 
mediated by the axisymmetric azimuthal magnetic field, generate and sustain the large-scale vertical magnetic field through their 
non-linear interactions. We identify the advection of magnetic loops as a crucial feature, transporting the large-scale vertical 
magnetic field from the outer regions to the inner regions of the accretion disc. This leads to a larger characteristic size of the, 
now advected, magnetic field when compared to the local disc height. We characterize the complete dynamo mechanism with 

two time-scales: one for the local magnetic field generation, t gen , and one for the large-scale scale advection, t adv . Whereas the 
dynamo we describe is non-linear, we explore the potential of linear mean field models to replicate its core features. Our findings 
indicate that traditional α-dynamo models, often computed in stratified shearing box simulations, are inadequate and that the 
ef fecti ve large-scale dynamics is better described by the shear current effects or stochastic α-dynamos. 

Key words: accretion, accretion discs – dynamo – black hole - neutron star mergers – neutron star mergers – transients: tidal 
disruption events. 
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 I N T RO D U C T I O N  

.1 Compact mergers, disruptions, and binaries 

he first direct detection of gra vitational wa ves from a binary
eutron star (BNS) merger occurred in 2017 with GW170817.
his remarkable event was accompanied by the detection of a
amma-ray burst (GRB) and a kilonova, marking a significant
ilestone in multimessenger observations (for reviews, see Nakar

020 ; Margutti & Chornock 2021 ). Black hole neutron star (BHNS)
ergers also hold promise for multimessenger astronomy, as they

re expected to exhibit similar electromagnetic emission components
s BNS mergers, including kilonovae and jet emissions (Paczynski
991 ; Mochkovitch et al. 1993 ; Janka et al. 1999 ; Rosswog 2005 ;
etzger et al. 2010 ; Fern ́andez et al. 2015 ; Foucart et al. 2015 ;
ompertz et al. 2023 ). 
GRBs are often associated with jet launching from the central

ngine (Rezzolla et al. 2011 ; Ruiz et al. 2016 ), be it a neutron
tar or a black hole (BH), during BHNS or BNS mergers (see
etzger 2019 , for a recent re vie w). The formation of a relativistic jet
 E-mail: jonatan.jacqueminide@northwestern.edu 

a  

c

Published by Oxford University Press on behalf of Royal Astronomical Socie
Commons Attribution License ( https:// creativecommons.org/ licenses/ by/ 4.0/ ), whi
uring a BHNS merger, contingent on the presence of an accretion
isc, depends on various system characteristics such as mass ratio,
eutron star radius, and orbital dynamics. Ho we ver, accretion discs
re anticipated to form post-merger for specific mass ratios and non-
 xcessiv ely compact neutron stars (Shibata & Ury ̄u 2006 , 2007 ;
oucart et al. 2011 ; Foucart 2012 ; Hayashi et al. 2021 ; Biscoveanu
t al. 2023 ). 

If the jet engine is a BH, it likely operates through the Blandford &
najek ( 1977 , hereafter BZ) mechanism. This mechanism, in turn,
ecessitates the presence of a large-scale vertical magnetic field
hreading the accretion disc. Magnetic fields also play a significant
ole in driving accretion and mass ejection within post-merger
iscs (Siegel & Metzger 2017 ; Christie et al. 2019 ; Fern ́andez
t al. 2019 ). Large-scale vertical fields are responsible for driving
agnetohydrodynamic (MHD) outflows that effectiv ely remo v e

ngular momentum and mass (Blandford & Payne 1982 ; Ferreira &
elletier 1995 ), while both small and large-scale magnetic fields fa-
ilitate angular momentum transport by generating MHD turbulence
hrough the magnetorotational instability (MRI; Balbus & Ha wle y
991 ). Consequently, understanding the emergence, regeneration,
nd evolution of magnetic fields is essential for understanding and
onstraining the dynamics of mergers. 
© 2024 The Author(s). 
ty. This is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 

provided the original work is properly cited. 
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In the context of BNS mergers, it is highly probable that magnetic
elds undergo significant amplification during the collision phase. 
his violent event likely establishes the initial magnetic field config- 
ration of the resulting accretion disc. The underlying mechanisms 
or this magnetic amplification are thought to primarily involve the 
elvin–Helmholtz instability (KHI) and magnetic winding processes 

Price & Rosswog 2006 ; Kiuchi et al. 2015 ; Aguilera-Miret et al.
020 ; Aguilera-Miret, Vigan ̀o & Palenzuela 2022 ; Aguilera-Miret 
t al. 2023 ). Increasingly, it is becoming clear that during the
nitial stages of the merger evolution ( t < 100 ms ), a dynamically
mportant toroidal magnetic field perpendicular to the axis of rotation, 
s generated. This phenomenon is observed not only in simulations 
f BNS mergers but also in those of BHNS mergers after the initial
isruption phase (Ruiz, Shapiro & Tsokaros 2018 ; Most et al. 2021 ).
o we ver, current simulations do not completely capture the magnetic 
eld amplification dynamics (Kiuchi et al. 2018 ) and often rely on
rbitrarily large magnetic fields, subgrid models, or prescription for 
he magnetic field amplification (Aguilera-Miret et al. 2023 ; Hayashi 
t al. 2023 ; Most & Quataert 2023 ; Gottlieb et al. 2023b ). 

The bulk of research efforts on magnetic field evolution in mergers 
as been concentrated on this initial phase. While the generated 
oroidal magnetic field can be exceptionally strong, it is incapable of
aunching jets. In this study, we aim to investigate the transformation 
f an initially toroidal magnetic field into a large-scale vertical 
agnetic field that can launch jets. 
The question of magnetic field generation is also rele v ant to

ther astrophysical sources with less constrained initial magnetic 
opologies. Jetted tidal disruption events (TDEs) share similarities 
ith BHNS mergers but occur on much larger spatial and temporal 

cales. These phenomena hav e receiv ed considerable attention, with 
wift J1644 + 57 serving as a prominent example (Bloom et al. 2011 ;
urrows et al. 2011 ). Tchekhovsk o y et al. ( 2014 ) suggested that

he broad-spectrum emission, spanning radio, X-rays, and γ -rays, 
bserved in Swift J1644 + 57, could be explained by a dynamically
ignificant magnetic flux anchored at the BH event horizon, resulting 
n remarkably efficient jet formation. However, the main challenge 
rises from the limited magnetic flux available on a stellar object 
o facilitate such highly efficient jet launching (Giannios & Metzger 
011 ; Kelle y, Tchekho vsk o y & Narayan 2014 ). Therefore, finding
he mechanism to amplify the magnetic field is imperative. During 
he tidal disruption process, the magnetic field of the disrupted star
an undergo significant amplification due to the strong shear, similar 
o BHNS mergers. Ho we ver, without the generation of a large-scale
ertical magnetic field, the resulting magnetic field configuration 
emains primarily radial or toroidal, and hence inadequate for jet 
aunching (Bonnerot et al. 2017 ). This underscores the critical 
mportance of generating large-scale vertical magnetic fields in TDEs 
o facilitate powerful jet formation to account jetted TDEs like Swift
1644 + 57. 

X-ray binaries undergo impressive outbursts where their luminos- 
ty changes by several orders of magnitude, and their spectrum is
ignificantly modified. At least some of this dramatic evolution is 
ssociated with changes in the accretion disc (Done, Gierli ́nski & 

ubota 2007 ). During these outbursts, the radio emission, a proxy 
or jet activity, is highly correlated with the X-ray luminosity, a 
roxy for the accretion rate, linking both processes (Corbel et al. 
003 , 2013 ). It is believed that the magnetic field plays a natural role
n connecting both mechanisms. Furthermore, the radio luminosity 
ramatically changes during the outbursts, suggesting that jets turn 
n and off. Models explaining this behaviour assume that the vertical 
agnetic field is advected and diffused during the outburst, mediating 

he change in jet luminosity (Ferreira et al. 2006 ; Marcel et al. 2019 ).
 mechanism generating a large-scale vertical magnetic field would 
omplement those models, as it could provide a source for the large-
cale vertical magnetic field necessary to power the jets. 

Finally, recent polarization observations of Sgr A ∗ during a bright 
ear-infrared flare have emphasized the necessity of a substantial 
oloidal magnetic field that has vertical component (Jim ́enez-Rosales 
t al. 2020 ). This magnetic field component is crucial for matching
he periodicity of the flare. Furthermore, observations from the 
vent Horizon Telescope focused on polarized emissions around 

he supermassive BH in M87 find better agreement with a strong and
rganized poloidal magnetic field (EHT Collaboration 2021 ). 

.2 The MRI dynamo 

n efficient mechanism that generates a large-scale poloidal mag- 
etic field from the dominant toroidal magnetic field could be the
RI. The MRI turbulence was investigated as a dynamo mechanism 

oon after its disco v ery (Brandenburg et al. 1995 ; Ha wle y, Gammie &
albus 1996 ). An initially zero net vertical flux magnetic field leads to

elf-sustaining extended duration turbulence with an ef fecti ve angu- 
ar momentum transport coefficient, of at most αν ∼ 0 . 01 (Shakura &
unyaev 1973 ; Fromang & Papaloizou 2007 ). The turbulence can be
ustained because the initial MRI-unstable magnetic field can self- 
enerate and self-sustain (Rincon, Ogilvie & Proctor 2007 ). 
This self-sustaining process has been studied in detail in non- 

tratified shearing box simulations (Lesur & Ogilvie 2008b ; Herault 
t al. 2011 ; Riols et al. 2013 , 2015 , 2017 ; Mamatsashvili et al. 2020 ;
eld & Mamatsashvili 2022 ). The self-sustaining process can be 
roken down into three main ingredients: (1) First, a large-scale 
xisymmetric toroidal field is generated through Keplerian shear 
ction on a weak large-scale poloidal field. (2) This large-scale 
oroidal field is unstable to the non-axisymmetric MRI, driving 
erturbations in the form of MHD shearing waves (Goldreich & 

ynden-Bell 1965 ; Balbus & Ha wle y 1992 ; Johnson 2007 ). (3) Non-
inear wave interactions generate a large-scale axisymmetric poloidal 

agnetic field. This large-scale poloidal can then be sheared again 
nto a toroidal field to restart the process. It must be stressed that
he MRI dynamo is intrinsically nonlinear and very different from 

 typical kinematic dynamo; a finite initial seed field is needed to
ick-start the whole process (Rincon 2019 ). 
In stratified shearing boxes, the MRI dynamo self-organizes into 

uasi-periodic reversals of the large-scale magnetic field (Bran- 
enb urg et al. 1995 ; Da vis, Stone & Pessah 2010 ; Gressel 2010 ;
ressel & Pessah 2015 ; Salvesen et al. 2016 ). These reversals
ropagate from the disc mid-plane to the disc corona and look
ualitatively similar to the butterfly diagram of the solar dynamo. 
ecently, the self-sustaining process described abo v e was e xtensiv ely
haracterized in stratified shearing boxes (Held, Mamatsashvili & 

essah 2024 ). To corroborate the rele v ance of the MRI dynamo
or mergers, the butterfly diagrams was also observed in dynamical 
eneral relativistic MHD simulations of BHNS mergers (Hayashi 
t al. 2022 , 2023 ). 

While there has been some discussion of the dynamo-generating 
echanism operating in global 3D simulations, most of the work has

ocused on finding reduced mean-field models (Flock et al. 2012 ;
ogg & Reynolds 2018 ; Dhang et al. 2020 ). While useful, mean field
odels linearize the dynamics and cannot capture the full nonlinear 

ynamo physics. Furthermore, it is crucial to understand the physical 
echanism before extrapolating mean field models to astrophysical 

egimes. 
We hope the analysis we present here can inform the construction

f mean-field models that could help computing merger simulations 
MNRAS 532, 1522–1545 (2024) 
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ith weaker initial magnetic fields. The rele v ance of this mechanism
or mergers and disruptions means that a quantitative analysis of
he self-sustaining MRI dynamo mechanism in global simulations
s long o v erdue. Recently, Liska, Tchekhovsk o y & Quataert ( 2020 )
imulated an accretion disc with an initially toroidal magnetic field
nd found that a large-scale poloidal field emerged naturally. Then,
his large-scale poloidal magnetic field accumulates into the central
H until it reaches the magnetically arrested state (MAD; Igumen-

hche v, Narayan & Abramo wicz 2003 ; Narayan, Igumenshche v &
bramowicz 2003 ; Tchekhovsk o y, Narayan & McKinney 2011 ), in
hich the vertical magnetic flux is dynamically important. Where
ADs can be thought of as the natural end state of magnetized

ccretion that possesses a large amount of large-scale vertical
agnetic flux (Jacquemin-Ide, Lesur & Ferreira 2021 ). 
This manuscript elucidates the self-sustaining MRI dynamo in

lobal 3D general relativistic MHD (GRMHD) simulations of
adiati vely inef ficient accretion flo ws (RIAFs). This mechanism
ppears to be a generic feature of thick and highly turbulent MHD
ccretion discs, making it applicable to a wide range of astrophysical
ources. In this study, we specifically concentrate on the mergers of
ompact objects, as they offer a compelling context for a dynamo
echanism capable of producing large-scale vertical magnetic fields.
he manuscript is organized as follows. Section 2 introduces the
umerical experiment and our Reynolds averaging method. Section 3
ualitatively describes the main features of the numerical experiment
nd their time evolution. Section 4 quantitatively describes the
agnetic field generation mechanism. Section 5 finds the best
ean-field model to describe the dynamo mechanism. Section 6

ummarizes and discusses our results. 

 M E T H O D S  

.1 Numerical set-up 

e employ the H-AMR code (Liska et al. 2022 ) to solve the set of
deal GRMHD equations on a spherical polar grid ( r , θ , ϕ) in the
err-Schild coordinates (Gammie, McKinney & T ́oth 2003 ). We also
efine for convenience the cylindrical radius R and the vertical height
. We adopt dimensionless units such that G = M = c = 1, where M 

s the mass of the BH. This implies that in our units, the gravitational
adius is unity, r g = GM/c 2 = 1. For the magnetic field, we use
orentz-Heaviside units, such that the magnetic pressure is given by
 

2 / 2 in terms of the fluid-frame magnetic field strength, b. 
In this work, we reanalyse the simulation first presented by

iska et al. ( 2020 ). An accretion disc orbiting a nearly maximally
otating BH ( a = 0 . 9) is simulated. The disc is initialized with a
ub-Keplerian Chakrabarti ( 1985 ) torus, where the specific angular
omentum profile follows l ∝ R 

1 / 4 . The torus has an inner edge
t r in = 6 r g , a pressure maximum at r max = 13 . 792 r g , and an
uter edge at r out ≈ 4 × 10 4 r g . The grid extends to r = 10 5 r g and
he inner boundary is causally disconnected from the flow inside
he event horizon. We use a polytropic equation of state with
= 5 / 3, which gives a torus scale height of H /r ∼ 0 . 2 at r max 

nd ∼ 0 . 5 at r out . We use transmissive BCs at the poles, periodic
Cs in the ϕ-direction, and outflowing BCs at the inner and outer

adial boundaries are used. We use the piecewise parabolic method
Colella & Woodward 1984 ) for spatial reconstruction and second-
rder time-stepping. The simulation uses a base grid of resolution
 r × N θ × N ϕ = 1872 × 624 × 128 that is uniform in log r, θ , and
, respectively. On top of the base grid, we use three levels of
tatic mesh refinement (SMR) in the ϕ-direction: this progressively
ncreases the ef fecti ve ϕ-resolution from the pole to equator and
NRAS 532, 1522–1545 (2024) 
aintains the cell aspect ratio close to unity. This leads to an ef fecti ve
esolution, N r × N θ × N ϕ = 1872 × 624 × 1024, within 60 deg of
he equator that corresponds to 70–90 cells per disc scale height. The

RI is seeded with a strong large-scale and uniform toroidal field,
ith an initial plasma beta βini = 2 P /b 2 = 5; where P is the fluid-

rame gas pressure. We also analyse a supplementary simulation
dentical to the first, except that the toroidal magnetic field polarity
s inverted in the south hemisphere (see Appendix B ). 

An initially axisymmetric toroidal magnetic field might seem like
n unrealistic initial condition. Ho we ver, as described in Section 1 (a)
ominant toroidal magnetic field is naturally generated due to
zimuthal shear in dynamical space-time GRMHD simulations after
he early collision/disruption phase. Furthermore, Aguilera-Miret
t al. ( 2023 ) find that the strong toroidal magnetic fields organize
nto axisymmetric structures. 

Liska et al. ( 2020 ) evolved the simulation out to t = 120 , 000 r g /c
o verify that the emergent poloidal field was stable on long lived.
he analysis presented here focuses solely on the emergence of

he poloidal magnetic field, which happens at t < 10 , 000 r g /c. We
ecord the data snapshots at a cadence of 	t = 10 r g /c. At r = 20 r g ,
his provides ∼ 9 data snapshots per Keplerian time-scale, 
−1 

K 

=
 

3 / 2 , without the 2 π. 

.2 Averaging pr ocedur e 

hroughout this manuscript we use a Reynolds decomposition to
ecompose all quantities as 

 = 〈 X 〉 + δX, (1) 

here 〈 X 〉 is the average or large-scale component and δX is the
urbulent component. For equation ( 1 ) to be consistent, the turbulent
omponents must vanish under averaging, 〈 δX 〉 = 0. Only non-
inear terms, 〈 δXδY 〉 , do not vanish under averaging due to their
orrelations. Those correlation terms represent the backreaction of
he turbulence on the mean fields. 

The Reynolds decomposition is defined here with the azimuthal
verage, 

〈 X 〉 = 

1 

2 π

2 π∫ 
0 

Xd ϕ. (2) 

onsistent with this definition, we will also refer to average quantities
s axisymmetrized. The effect of MHD turbulence on large-scale
agnetic field generation is perceived by Reynolds averaging the

nduction equation. 
We also define a disc average in the latitudinal coordinate, 

 | d = 

1 ∫ θ2 
θ1 

√ −g d θ

θ2 ∫ 
θ1 

√ −g 〈 X 〉 d θ, (3) 

here g is the determinant of the metric. The disc average will only
e applied to already azimuthally averaged quantities ( 〈 X 〉 or 〈 XY 〉 ).
e choose 

1 , 2 = 

π

2 
± arctan 

(
3 

h 

R 

)
, (4) 

here h is the disc geometrical thickness, which is h/R 	 0 . 35 in
he regions of interest. This choice of disc average avoids including
he jet funnel and includes most of the turbulent signal. We verify
hat this choice captures most of the turbulent signal in Section 4 .

e experimented with other choices and found identical trends. 
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Figure 1. Snapshots of the axisymmetrized toroidal magnetic field, R 

〈
B ϕ 

〉
, in colour as a function of R and z. We also show the poloidal magnetic field lines 

through the poloidal magnetic flux (equation 9 ): dashed lines show ne gativ e polarity and solid lines show positive polarity. The magnetic field structures become 
larger and larger with time, reflecting the generation of large-scale poloidal magnetic flux. 
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We define the poloidal magnetic field as 

B p = B r e r + B θ e θ . (5) 

ithin this manuscript all quantities will be in physical units unless
tated otherwise, thus the polar field abo v e is actually B ˆ θ = 

√ 

g θθB 

θ .
hroughout the rest of the manuscript we drop the hats for clarity. 
The Reynolds decomposition can be readily performed on the 

ewtonian induction equation, 

∂ B 

∂ t 
= ∇ × ( u × B ) , (6) 

o make the analysis more tractable. As we will see the magnetic
eld is generated at large distances far from the BH, where this
pproximation is accurate. We check that energy is conserved, a 
osteriori, by comparing the left- and right-hand sides of equation 
 6 ). If energy is well conserved our Newtonian approximation is
ccurate at the radii in question and f arther aw ay. The average of
quation ( 6 ) gives 

∂ 〈 B 〉 
∂ t 

= ∇ × ( 〈 u 〉 × 〈 B 〉 + E ) , (7) 

here the gradient now only depends on r and θ . We define the
urbulent electromotive force (EMF) 

 = 〈 δu × δB 〉 . (8) 
he turbulent EMF is the feedback of turbulence on the mean
agnetic field, it dissipates or generates mean magnetic fields and 

s at the core of large-scale dynamo theory. For magnetic field
eneration and sustenance to be possible, there needs to be an energy
eedback loop connecting the mean toroidal and poloidal magnetic 
elds. The turbulent EMF plays a critical role connecting the two
agnetic field components. 

 DESCRI PTI ON  O F  T H E  SI MULATI ON  

n this section, we set the stage with a description of the qualitative
volution of the magnetic field during the simulation. We then quan-
itatively characterize the saturated turbulent state of the simulation. 

.1 Qualitati v e ev olution of the magnetic field 

ig. 1 shows R 

〈
B ϕ 

〉
in colour and the poloidal magnetic field lines

hrough the magnetic potential 

 ( r, θ, t) = 2 π

⎛ 

⎝ 

θNH ( θ ) ∫ 
0 

〈 B 

r 〉 √ −g d θ −
θSH ( θ ) ∫ 
π

〈 B 

r 〉 √ −g d θ

⎞ 

⎠ , (9) 

here B 

r is the contravariant component of the radial magnetic field,
nd θNH and θSH are the latitudinal variables in the north and south
emisphere, respectively (0 > θNH < π/ 2 and π > θSH > π/ 2). Fig.
MNRAS 532, 1522–1545 (2024) 
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M

Figure 2. Panel (a): Axisymmetrized poloidal magnetic flux (equation 9 ), 
� , e v aluated at θ = π/ 2 as a function of t and R. The vertical dashed lines 
show the times of the snapshots of Fig. 1 . Notice the large-scale advection 
of magnetic field structures. The dominant large-scale flux loop appears 
at R ∼ 60 r g and t ∼ 4 . 5 × 10 3 r g /c. The dashed vertical lines show the 
time at which the snapshots in Fig. 1 are shown. Panel (b): We show the 
MADness parameter, � BH / 

√ 

ṁ c 2 where � BH = � ( r = r H , θ = π/ 2 , t), as 
a function of time. Notice that the net magnetic field connects to the BH at 
t = 10 4 r g /c and the MAD state appears at t = 2 . 8 × 10 4 r g /c. Panel (c): We 
show the poloidal magnetic flux at late times, � ( r, θ = π/ 2 , t = 3 × 10 4 ), 
as a function of radii, we notice that there is not net polarity in the system 

taken as a whole, the net flux emerges only in the inner regions. 
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 (a) shows a space-time diagram of the magnetic flux through the
isc mid-plane, � ( r, θ = π/ 2 , t). At t = 4000 r g /c, the system has
lready formed axisymmetric poloidal magnetic fields, 

〈
B p 

〉
, in loop

tructures (see Fig. 1 a). The growth of the axisymmetric poloidal field
ccurs on a relatively short time-scale. 
In Fig. 3 , we show the local time-evolution of the different
agnetic energy components averaged in the disc (see Section 2.2 ),
 v aluated at r = 20 r g , as functions of the local shear time. As we will
ee below, the first large-scale poloidal magnetic loop that connects
o the BH is originally advected from r = 20 r g ; subsequent dominant
oloidal magnetic field polarities originate from even farther out. 
We can distinguish two clear phases: (1) an initial exponential

rowth of the turbulent field, 
〈
δB 

2 
〉
, and the axisymmetric poloidal

eld, 
〈
B p 

〉2 
. This exponential growth lasts up to t 	 15 
K 

( r =
0 r g ) −1 when the turbulent magnetic energy, 

〈
δB 

2 
〉
, reaches satu-

ation. (2) Afterwards, the magnetic fields at the local radius reach
 nonlinear statistically steady-state characterized by no net growth
nd a well-defined average. The axisymmetric poloidal magnetic
nergy, 

〈
B p 

〉2 
, saturates simultaneously with the turbulent magnetic

omponent, showing their dynamical link. The axisymmetric toroidal
agnetic energy, 

〈
B ϕ 

〉2 
, decreases once the turbulent magnetic

nergy becomes comparable to it. The backreaction of turbulence
n the seed field then erases the initial condition. 
On average, the poloidal loop structures have opposite polarities

n opposite sides of the disc mid-plane (see Fig. 1 a). Ho we ver, this
rend is only roughly true, and disappears at later times; the system is
NRAS 532, 1522–1545 (2024) 
uite stochastic. Within the inner regions the toroidal magnetic field
hanges signs through shearing of the poloidal magnetic field loops.
he topology of the magnetic field is analysed in greater detail in
ection 4.6 . 
We notice that at high latitudes abo v e the disc mid-plane the

oloidal field forms elongated structures in the form of escaping
ux tubes. These are reminiscent of the magnetic towers described
y Lynden-Bell ( 2003 , 2006 ) and show the vertical shedding of
agnetic-field structures. Lynden-Bell ( 2006 ) show that a poloidal
agnetic field line anchored at two distinct radii ( r 1 and r 2 , where

 2 > r 1 ) will undergo vertical expansion due to differential shear.
his expansion is driven by the differential rotation introducing a

wist in the field line (owing to 
( r 1 ) > 
( r 2 )), which results in
he formation of a strong toroidal field capable of buoyantly rising
nd piercing through the surrounding medium. Consequently, this
rocess forms vertically elongated poloidal magnetic flux structures
nown as magnetic towers, illustrated in Fig. 1 (a,b) (see also fig. 2
f Lynden-Bell 2006 ). We anticipate that similar ballooning effects
ill occur for field lines connecting the BH to the disc, analogous

o phenomena observed in interactions between stellar dipoles and
iscs (Lynden-Bell 2003 ; Zanni & Ferreira 2013 ). 
For t < 4000 r g /c, there is no coherent poloidal field connected to

he central BH but coherent poloidal loops are still present (Fig. 2 ).
t t ∼ 4000 r g /c, a coherent poloidal structure attaches to the BH.
his coherent poloidal loop originates far from the BH, at r ∼ 20 r g .
e show a zoom in on the axisymmetrized poloidal and toroidal

eld structures connected to the BH in Fig. 4 . The topology of
ow this magnetic field connects to the BH is distinct from the one
bserved in magnetically arrested discs (MAD; Tchekhovsk o y et al.
011 ). Fig. 4 shows open and closed field lines, with the closed field
ines threading the disc mid plane. This structure drives jets at low-
nergy efficiencies (Christie et al. 2019 ; Liska et al. 2020 ; Gottlieb
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Figure 4. Axisymmetrized toroidal magnetic field, R 

〈
B ϕ 

〉
in colour as a 

function of R and z at t = 8 × 10 3 r g /c. We also show the poloidal magnetic 
field lines through the poloidal magnetic flux (equation 9 ), dashed lines show 

ne gativ e polarity and solid lines show positive polarity. In the initial stages 
of evolution, t < 10 4 r g /c, the inner magnetic field structure is distinct from 

what is typically seen in MADs. 
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Figure 5. Panel (a): θ–t diagram of the axisymmetrized toroidal magnetic 
field, 

〈
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〉
, e v aluated at r = 20 r g , normalized to the initial toroidal field. 

We observed the ejection of inverting toroidal structures, reminiscent of the 
typical butterfly diagram of MRI turbulence. Ho we ver, the structures in our 
simulation are more stochastic than those typically seen in MRI turbulence. 
Panel (b): r –t diagram for the axisymmetrized toroidal magnetic field, 

〈
B ϕ 

〉
, 

e v aluated at the surface of the disc, θ = π/ 2 + arctan (3 h/R), normalized to 
the initial field. Large-scale (as large as ∼ 70 r g ) toroidal field structures of 
differing polarity are ejected from the system. There are inversions in the 
polarity of the field, but no clear periodicity is observed. 
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t al. 2023b ). A similar structure was studied in 2D GR particle in
ell simulations by El Mellah et al. ( 2022 ), who showed that it can
ri ve ef ficient particle acceleration. The fundamental reason for this
ifferent field structure is that the magnetic field loop connected to 
he BH has a smaller size, leading to less magnetic flux opening
p through the action of the light cylinder (see Section 4.5 and
hashkina, Bromberg & Levinson 2021 ). 
The system continues to evolve, for t > 4000 r g /c, and forms

oops of larger and larger size (see the movie and Fig. 1 b). A large-
cale loop emerges at R ∼ 50 r g and t ∼ 5000 r g /c (see Fig. 2 ) and
t t ∼ 8000 r g /c, this poloidal field structure is threading the disc
id-plane (Fig. 1 b). The ballooning instability (Lynden-Bell 2003 ) 

an then take hold on both hemispheres. This instability expands the 
oloidal loop, which pushes away all other magnetic loops, leading 
o a dominant polarity that connects to the BH (see Fig. 1 c). Fig. 2 (b)
epicts the Madness parameter, � BH / 

√ 

ṁ c 2 , where � BH = � ( r =
 H 

, θ = π/ 2 , t), as a function of time. We note that although a large-
cale magnetic field structure connects to the BH at t = 10 4 , r g /c,
he system only reaches the MAD state at t ∼ 2 . 8 × 10 4 r g /c. The
olarity emerging at t ∼ 10 4 r g /c then persists for the remainder of
he simulation and is still present at t ∼ 1 . 5 × 10 5 r g /c (Liska et al.
020 ). In this study, we will focus on the emergence of this large-
cale polarity, t < 10 4 r g /c. Fig. 2 (c) representing � ( r, θ = π/ 2 , t)
t t = 2 . 8 × 10 4 shows that there is not net polarity in the system
aken as a whole (i.e. out to large radii). Only in the vicinity of the
H does a net polarity appear. This is more clearly shown in Section
.6 , where we show the transport of field polarity. 
Even though the ballooning instability can naturally explain the 

unaway growth of a magnetic field loop whose vertical length scale,
 loop , is larger than the disc scale height, h , it cannot explain how a
oloidal magnetic field larger than the disc scale height appears in
he first place. Furthermore, it is surprising that the loop that connects
o the BH at t ∼ 4000 r g /c does not become the dominant polarity,
hile the one that connects at t ∼ 10 4 r g /c does. In Section 4 , we
iscuss the mechanism that generates the poloidal magnetic field and 
ow the dominant polarity takes hold. 

.2 Butterfly diagram 

ig. 5 (b) shows a θ - t diagram, also called the butterfly diagram,
f the toroidal magnetic field at r = 20 r g . The toroidal magnetic
eld is ejected from the system and the ejection happens in cycles
ith polarity inversions. Shearing box simulations show similar flux 

nversions with a vertical propagation (Gressel & Pessah 2015 ). 
o we v er, periodic c ycles in shearing box simulations are far more

egular than those observed in Fig. 5 (a). This is consistent with
MNRAS 532, 1522–1545 (2024) 
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Figure 6. Inverse plasma betas for the different magnetic field components, 
β−1 

δ for the turbulent field, β−1 
p for the axisymmetrized poloidal field, β−1 

ϕ 

for the axisymmetrized toroidal field, and the angular momentum transport 
αν coefficient. They are vertically averaged in the disc and temporally 
averaged between t = 5000 r g /c and t = 8000 r g /c. The shaded regions 
highlights the non-saturated outer radii, r > 70 r g . For r < 70 r g the plasma 
betas are relatively constant and have reached a saturated quasi-steady state. 
The vertical dashed line highlights the point where 〈 u r 〉 = 0, as shown in 
Fig. 10 (b). 
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ogg & Reynolds ( 2018 ), who showed that thicker discs have a
ore incoherent dynamo cycle. 
In Fig. 5 (a), we show an r- t diagram for the toroidal magnetic field

 v aluated at the surface of the disc, θ = π/ 2 + arctan (3 h/R). We see
agnetic flux inversions, as in the butterfly diagram. Ho we ver, in this

ase the inversions show a certain degree of coherence for multiple
adii. We believe that these eruptions of magnetic field are due to
he ballooning instability discussed abo v e. As the poloidal magnetic
eld loops grow, they can shed larger loop structures vertically. This

eads to the radially coherent field structures seen in Fig. 5 (b). 

.3 Turbulent steady state of the system 

n the quasi-statistically steady state, we have an energetic ordering,
δB 

2 
〉 
 〈

B ϕ 

〉2 
 〈
B p 

〉2 
, with about an order of magnitude differ-

nce between each component (see Fig. 3 ). The turbulent magnetic
nergy saturates at roughly the energy of the initial condition. We
efine different plasma betas for every energetic component 

δ = 

8 π 〈 P 〉 〈
δB 

2 
〉 , (10) 

p = 

8 π 〈 P 〉 〈
B p 

〉2 , (11) 

ϕ = 

8 π 〈 P 〉 〈
B ϕ 

〉2 , (12) 

nd the average turbulent stress 

ν = −
〈
δB ϕ δB r 

〉
4 π 〈 P 〉 , (13) 

here we only compute the Maxwell stress because the Reynolds
tress is negligible in our simulations. In Fig. 6 , we show the inverse
f the different plasma betas and the turbulent stress vertically
veraged in the disc (equation 3 ) and temporally averaged between
 = 5000 r g /c and t = 8000 r g /c. The vertical average is computed
fter squaring the magnetic field or else opposite polarity fields would
ancel out, leading to an artificially small measurement (see Fig. 1 ).
he shaded region highlights the regions that have not converged and
o not follow the same trend as the inner radii. 
We measure βp 	 300 and βϕ 	 40. The toroidal field lost an order

f magnitude in magnetic energy; most of that energy was converted
nto or dissipated by the turbulent fluctuations, which saturate at a
δ 	 4, of the order of βini = 5. At large radii, r > 50 r g , the different
omponents trend towards their initial values ( β−1 

δ −→ 0, β−1 
p −→ 0,

−1 
ϕ −→ β−1 

ini ) as the dynamo has not reached saturation at those radii.
We measure an αν 	 0 . 1 a factor of 10 larger than in typical zero-

et flux shearing box simulations (Ha wle y et al. 1996 ). We attribute
his large value to the initially strong toroidal field. Ha wle y et al.
 1995 ) measured the following scalings for fully developed MRI
urbulence in shearing boxes with an initially toroidal field (see also
ection 8.1.1 in Lesur 2020 ) 

H95 	 0 . 51 β−1 
δ , (14) 

H95 	 0 . 35 β−1 / 2 
ini . (15) 

or our initial condition equation ( 15 ) gives αH95 	 0 . 16 which is
emarkably close to the value we compute. Equation ( 14 ) implies
 factor of 2 difference between β−1 

δ and αν that can be read from
ig. 6 . Overall, we find that the saturated turbulent configuration of
ur simulation is consistent with scalings derived from shearing box
imulations of MRI. The large value of αν could instead be attributed
o the generated axisymmetric poloidal magnetic field driving its own
NRAS 532, 1522–1545 (2024) 
xisymmetric MRI, as proposed by Bai & Stone ( 2013 ) to explain
he large αν in global zero net flux simulations. Indeed, the turbulent
ransport driven by axisymmetric MRI and mediated by a vertical
agnetic field is much more efficient than non-axisymmetric MRI
ediated by a toroidal field. For a vertical magnetic field, the scaling

or αν yields (Salvesen et al. 2016 ; Lesur 2020 ) 

S16 	 10 β−1 / 2 
p ∼ 0 . 14 , (16) 

hich is also consistent with the magnitude of the turbulent transport
isplayed in Fig. 6 . The fact that αH95 ( βini ) 	 αS16 ( βp ) is remarkable
nd may be an interesting feature to investigate for lower initial fields.

 ANALYSI S  O F  T H E  DY NA MO  MECHANIS M  

e now proceed to analyse the dynamical mechanism underlying
he magnetic evolution described abo v e. 

.1 Toroidal magnetic field budget 

o better track the dynamics and sources of magnetic energy we
erform a Reynolds average decomposition of the magnetic energy
nduction equation. First, we dot equation ( 8 ) with the average
oroidal field to find 

1 

2 

∂ 
〈
B ϕ 

〉2 

∂ t 
= S ϕ + A ϕ + δA ϕ , (17) 

here 

 ϕ = 

〈
B ϕ 

〉 · ∇ × (〈
u ϕ 

〉 × 〈
B p 

〉)
, (18) 
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Figure 7. Different contributions to the toroidal magnetic energy equation (equation 17 ), averaged within the disc and e v aluated at r = 20 r g , and are normalized 
to the initial magnetic energy and the Keplerian disc frequency at that radius. Toroidal magnetic energy is only generated through shear of the poloidal field, S ϕ . 
The turbulent component, δA ϕ , al w ays dissipates the toroidal field through turbulent mixing, while the contribution of the, poloidal fluid motions, A ϕ , is to eject 
the toroidal field from the disc. That the black and grey dotted lines agree, validates the accuracy of our Newtonian approximation and Reynolds decomposition 
(equation 17 ). 
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s the stretching of poloidal into toroidal field by the large-scale shear
 
-effect), 

 ϕ = 

〈
B ϕ 

〉 · ∇ × (〈
u p 

〉 × 〈
B ϕ 

〉)
, (19) 

escribes the large-scale axisymmetric advection of toroidal field, 
nd 

A ϕ = 

〈
B ϕ 

〉 · ∇ × (
E p 

)
, (20) 

aptures the turbulent generation or dissipation, depending on the 
ign, of axisymmetric magnetic field. 

We show the time dependence of the different, vertically averaged, 
omponents of equation ( 17 ) e v aluated at r = 20 r g in Fig. 7 (the
ifferent terms in Fig. 7 are v ertically av eraged within the disc and
ormalized to the initial toroidal magnetic field and the Keplerian fre-
uency). The right- and left-hand sides of equation ( 17 ) are observed
o be equal, validating the use of the Newtonian approximation and 
howing that our Reynolds decomposition is accurate. 

We notice that after 10 
−1 
k ( r = 20 r g ) the system reaches a quasi-

tatistically steady state, consistent with Fig. 3 . The only component 
hat produces toroidal magnetic energy is the shear, as in shearing 
ox simulations of the MRI dynamo (Lesur & Ogilvie 2008b ; Riols
t al. 2017 ). The turbulent term, δA ϕ , al w ays dissipates toroidal
agnetic energy. Shearing box simulations also find that turbulence 

l w ays dissipates toroidal magnetic energy via turbulent mixing. The 
dv ectiv e term, absent in shearing boxes, transports toroidal magnetic 
nergy outwards. 

To better understand the vertical profile of the magnetic field 
ource terms, we compute the time average of the different com- 
onents of equation ( 17 ) and e v aluate them at r = 20. We average
hem between 20 
−1 

k ( r = 20 r g ) and 110 
−1 
k ( r = 20 r g ) and show

hem as functions of θ in Fig. 8 , normalized to the initial magnetic
nergy and Keplerian frequency. The turbulent magnetic component 
s only important on the disc mid-plane and tends to 0 outwards. The
haded regions in Fig. 8 show the bounds of the disc average defined
n Section 2.2 . We see that our choice of integral bounds includes

ost of the turbulent signal. 
Overall, the 
-effect compensates for the dissipation due to 

urbulence and outward advection present within the body of the disc. 
bo v e the disc, in the shaded region, shear and avection balance each
ther. 
.2 Poloidal magnetic field budget 

e have found that the sustainment of toroidal field is only possible
hanks to the shearing of a large-scale poloidal field. Thus, the
ynamics and generation of the poloidal field is essential to the
ynamo mechanism as a whole. In particular, since the only term
hat produces toroidal magnetic energy is the 
-effect, poloidal 
eld generation is necessary for toroidal field production abo v e the
isc. 
MNRAS 532, 1522–1545 (2024) 
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We derive an equation for the energetics of the axisymmetrized
oloidal field 

1 

2 

∂ 
〈
B p 

〉2 

∂ t 
= A p + δA p , (21) 

here 

 p = 

〈
B p 

〉 · ∇ × (〈
u p 

〉 × 〈
B p 

〉)
(22) 

escribes the large-scale or axisymmetric advection of poloidal field,
nd 

A p = 

〈
B p 

〉 · ∇ × (
E ϕ e ϕ 

)
, (23) 

epresents the turbulent generation or dissipation of poloidal mag-
etic field. 
In Fig. 9 (a), we show the different components of equation ( 21 ).
e average all components within the disc and e v aluate them at

 = 20 r g . We normalize them to the initial magnetic energy and
he Keplerian disc frequency at that radius. We notice that our
ewtonian Reynolds decomposition is also accurate for the poloidal
agnetic energy equation. At r = 20 r g , the large-scale advection of

he magnetic field is positive, i.e. it locally brings poloidal magnetic
nergy. We explore below how this quantity varies with radius. We
how the turbulent EMF term in Fig. 9 (b). This turbulent term is
ncoherent; it stochastically changes sign, producing and dissipating
arge-scale magnetic energy. To understand the mechanism gener-
ting the magnetic field, we must go a step further, and make a
ourier decomposition of the different modes contributing to the

urbulent magnetic production/dissipation. Using Parse v al’s theorem,
e decompose the turbulent term as follows: 

A p = 

∞ ∑ 

m = 1 

δA 

( m ) 
p , (24) 

here 

A 

( m ) 
p = 

〈
B p 

〉 · ∇ × (
E ( m ) 

ϕ e ϕ 
)
, (25) 

nd 

 

( m ) 
ϕ e ϕ = R 

[
u p 

m × B p 
m | ∗] , (26) 

 represents taking the real part, X| ∗ is the complex conjugate of X,
nd u p 

m and B p 
m are the spectral coefficients of the m -mode in the

ourier expansion of u p and B p , 

u p = 

∞ ∑ 

m = 0 

u p 
m e imϕ (27) 

B p = 

∞ ∑ 

m = 0 

B p 
m e imϕ . (28) 

ote that E ( m ) 
ϕ represent the axisymmetric effect of nonlinear inter-

ction of non-axisymmetric m -modes. 1 The ( m ) superscript denotes
onlinear-correlations on the mean ( ϕ-averaged) EMF due to non-
ero m fluctuations of u p and B p . This notation should not be
onfused with the superscript m (no parenthesis) denoting the spectral
oefficients of the fields u and B in the Fourier expansions (equations
 27 , 28 ). We stress that the Fourier modes B p 

m , u p 
m and their non-

inear correlation E ( m ) 
ϕ are solely functions of r and θ . When referring

o the complete m -mode non-axisymmetric motion, we will explicitly
nclude the ϕ dependence as u p 

m e imϕ . 
NRAS 532, 1522–1545 (2024) 

 In practice, we never compute the Fourier modes of the EMF. We only 
xtract the Fourier modes of the velocity and magnetic fields to calculate 
 

( m ) 
ϕ in equation ( 26 ). 

T  

i  
To a v oid double counting of the m = 0 advection term, A p , we
nly sum modes with m ≥ 1 in equation ( 24 ). This approach yields
 definition of δA p that aligns perfectly with equation ( 23 ). 

This procedure is inspired by work done in shearing box sim-
lation, where only the large-scale, low m modes contribute to
oloidal field production (Lesur & Ogilvie 2008b ; Riols et al. 2015 ).
ere too we measure that only the correlations of the largest scale
odes, m = 1 , 2 , 3, generate ϕ-average poloidal magnetic energy at

ll radii; we refer to these modes as active (see also Appendix A ).
ll correlations of modes with m > 3 dissipate ϕ-averaged poloidal
agnetic energy on average, we refer to them as turbulent dissipative

r passive. In Fig. 9 (b), we show the sum of active, magnetic field-

enerating, 
3 ∑ 

m = 1 
δA 

( m ) 
p v ersus dissipativ e/passiv e modes, 

∞ ∑ 

m = 4 
δA 

( m ) 
p . 

The sum of active modes al w ays generates axisymmetric poloidal
agnetic fields. The passive modes have a more complicated be-

aviour, generating magnetic energy for t < 20 
−1 
k but dissipating

t for t > 20 
−1 
k . The time-scale when this term goes from generating

o dissipating is equal to the saturation time scale shown in Fig. 3 .
herefore, we infer that this early behaviour is related to the initial

inear growth phase of such modes, while the later one is associated
ith their dissipative-action through a non-linear turbulent cascade.
ue to the short duration of this phase, it does not affect the general

rends; the non-linear effect of m > 3 modes is to dissipate the energy
f the axisymmetric poloidal field. Furthermore, for t < 20 
−1 

k the
ctive component ( m < 3) is comparable or larger than the turbulent
assive component. Therefore, we conclude that the active modes
enerate basically all the axisymmetric poloidal magnetic energy. 
We have also computed the mode decomposition for the toroidal

eld. In Appendix A , we show that the nonlinear effect of all modes
ith m ≥ 1 is to dissipate ϕ-averaged toroidal magnetic energy. In
articular, the ϕ-averaged toroidal field loses energy to the non-
inear correlations of active modes, m = 1 , 2 , 3. We also show in
ppendix A that the active modes transport angular momentum. We

an therefore interpret the active modes as MRI-driven perturbations
ediated by the axisymmetrized toroidal field. 
We now look at the large-scale global behaviour of the poloidal

nergy equation, equation ( 21 ), by vertically and temporally av-
raging it. The temporal average is performed between 5000 r g /c
nd 8000 r g /c. Fig. 10 (a) shows the vertical average of the different

erms of equation ( 21 ) divided by the vertical average of 
〈
B p 

〉2 
and

ormalized to the local Keplerian frequency. Note that here, we show
he opposite of the magnetic energy dissipation term (e.g. multiplied
y −1). The three terms have similar magnitudes, 0 . 1 
−1 

K 

, and are
oughly constant for r < 30 r g but follow different trends at large
adii. First, let us note that in the inner regions of the disc, r < 50,
heir signs are consistent with Fig. 9 . The magnetic generation term
s roughly constant for the inner radii, only increasing for large
adii, r > 70. We attribute this increase to a lack of saturation in
he outer regions, leading to a lower average axisymmetric poloidal

agnetic energy (see Fig. 6 ). By dividing by the axisymmetric
oloidal magnetic energy, we can interpret the magnitude of the

uantity, 2 
3 ∑ 

m = 1 
δA 

( m ) 
p / 

〈
B p 

〉2 
, as the typical frequency of magnetic

eld regeneration. We define a regeneration time scale, 

 gen = 

1 
2 

〈
B p 

〉2 

3 ∑ 

m = 1 
δA 

( m ) 
p 

	 10 
−1 
K 

. (29) 

his time-scale is consistent with Fig. 3 up to a factor of ∼ 2,
t is also roughly consistent with the cycles of Fig. 5 . The time-
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Figure 9. Panel (a): Different contributions to the poloidal magnetic energy equation (equation 21 ) averaged within the disc and e v aluated at r = 20 r g , and 
normalized to the initial magnetic energy and the Keplerian disc frequency at that radius. Panel (b): The sum, δA p , (in red) of magnetic field-producing (or 

acti ve, sho wn in blue), 
3 ∑ 

m = 1 
δA 

( m ) 
p , and dissipative (or passive, shown in orange), 

∞ ∑ 

m = 4 
δA 

( m ) 
p , modes. The sum of active modes is al w ays positive, while the 

passive term is mostly negative. Large-scale non-axisymmetric structures, m = 1 , 2 , 3, therefore generate axisymmetric poloidal magnetic fields through their 
non-linear self-interactions. 

Figure 10. Panel (a): Vertically and temporally averaged poloidal energy equation (equation 21 ), normalized to the local Keplerian frequency. The temporal 

average is performed between 5000 r g /c and 8000 r g /c. The different terms of equation ( 21 ) are divided by the vertical and temporal average of 
〈
B p 

〉2 
. The 

opposite of the magnetic energy dissipation term is shown. Advection, A p , and dissipation, 
∞ ∑ 

m = 4 
δA 

( m ) 
p , of axisymmetric poloidal field balance each other in the 

inner regions. The vertical dashed line highlights the point, where 〈 u r 〉 = 0. Panel (b): Vertically and temporally averaged radial velocity 〈 u r 〉 /V K 

, notice that 
the trends of A p are well explained by the behaviour of the radial velocity (see the text). We also show an afine fit of the normalized radial velocity . Finally , we 
show the magnitude of the magnetic field generating velocity, u sw . 
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cale, t gen , should not be interpreted as a growth rate, as it possesses
ore information than a growth rate, and encapsulates the saturation 

nergy of the axisymmetric poloidal field. 
The large-scale axisymmetric poloidal advection term is positive 

n the inner regions of the disc, consistent with the inward advection
f the poloidal magnetic field (Fig. 10 a). We have checked that the
dvection term, A p , is dominated by radial advection and radial
 elocity div ergence. In Fig. 10 (b), we show the disc and temporal
verage (between 5000 r g /c and 8000 r g /c) of the radial velocity, 〈 u r 〉 .
his velocity is negative in the inner regions, consistent with inward
MNRAS 532, 1522–1545 (2024) 
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Figure 11. Poloidal velocity streamlines, R ( u m = 2 p e i2 ϕ ), of the m = 2 mode 

at φ = 

4 
3 π and t = 6 . 5 × 10 3 r g /c superimposed on the axisymmetrized 

cylindrical radial field, 〈 B R 〉 . They take the form of rolling structures, 
whose centres are well correlated with the regions where 〈 B R 〉 = 0. Poloidal 
magnetic-field generating motions thus takes the form of spiral rolling 
motions, which should not to be interpreted as axisymmetric eddies, as 
visualized here. 
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At the distance, r rev ∼ 50, the radial velocity changes sign. The
nversion of the radial velocity is a fossil feature of our initial
ondition. In standard accretion theory, the radial velocity first
o v es outwards in the outer regions and then changes sign after
 few viscous time-scales (Lynden-Bell & Pringle 1974 ). Hence, this
eature is related to the outer regions not being in inflow equilibrium.
he radii at which we have 〈 u r 〉 = 0, viscously moves out over the
ourse of our simulation, starting at r rev = 13 r g and moving out to
 rev ∼ 50 by t ∼ 6 × 10 3 r g /c. 

At r 	 r rev ∼ 50, the advection term, A p , begins to trend towards
e gativ e values. As expected, the advective flux depends on the radial
 elocity. The adv ection term is ne gativ e for radii 50 < r < 100, even
hough the radial velocity is positive at those radii. This is because
he radial dependency of the radial velocity a v oids a pile-up of the

agnetic field in those regions. Magnetic field bundles farther away
rom r rev travel faster than bundles closer to r rev , leading to a chase.
he chase of magnetic bundles leads to a net depletion of the magnetic
eld at those radii, 50 < r < 100. In the outer regions ( r > 10 2 ), the
adial velocity can become quite large, with u r ∼ 0 . 1 V K 

, resulting
n efficient ejection of axisymmetric poloidal magnetic fields. This
eature will be revisited in Section 4.4 . 

In the inner regions, r < 50, the opposite of the turbulent dissi-
ation term ( −∑ ∞ 

4 δA 

( m ) 
p ) closely tracks the large-scale advection

erm. The two terms roughly balance each other, indicating a
tatistically steady state of advection and diffusion. This equilibrium
oes not imply that the axisymmetric poloidal magnetic field is
tatic, but rather that any reconnecting or escaping field is constantly
eplenished by advection and the local regeneration of axisymmetric
oloidal magnetic field. 
Turbulent dissipation plays a different role for small-scale mag-

etic field loops than it does for a large-scale vertical magnetic field.
or a large-scale vertical magnetic field, local dissipation in the disc
an only diffuse the field towards larger radii (Lubow, Papaloizou &
ringle 1994 ; Guilet & Ogilvie 2012 ). In contrast, for magnetic field

oops smaller than the disc, dissipation acts as a local reconnecting
gent. 

In the outer regions, r > 50, the turbulent term 

∑ ∞ 

4 δA 

( m ) 
p is

ositive; this sign change is attributed to the linear growth shown in
ig. 9 (b). During the linear growth stage, before the local saturation

ime-scale and a turbulent cascade develops, the ‘passive’ modes
enerate magnetic energy. Ho we ver, it is clear that the outer regions
re not yet in a statistical steady state at this stage for r > 50 (see
ig. 6 ). 

.3 Shearing wave structures 

s shown abo v e, the dynamo mechanism relies on non-linear
orrelations of non-zero- m -modes, that are the result of shearing
ave structures, and it is thus interesting to analyse these structures

n more detail. Fig. 11 shows the poloidal velocity streamlines,
 ( u 

m = 2 
p e i2 ϕ ), of the m = 2 mode at φ = 

4 
3 π and t = 6 . 5 × 10 3 r g /c

uperimposed on the axisymmetrized cylindrical radial field, 〈 B R 〉 .
otice that the m = 2 mode takes the form of rolling structures

n the poloidal plane. These structures should not be interpreted as
xisymmetric turbulent eddies; they are the rolling poloidal motions
f traveling non-axisymmetric shearing waves. The centres of the
olling structures are well correlated with the places where the radial
agnetic field changes sign. We interpret this rolling motion of the

hearing modes as the field-generating action (Herault et al. 2011 ).
ig. 11 can also be compared to Fig. 7 of Riols et al. ( 2017 ), who
ound similar poloidal plane structures for the field-generating waves
n local shearing box simulations (without the complexity of a global
NRAS 532, 1522–1545 (2024) 
tructure). They also found a correlation between the centre of the
ave structures and the radial magnetic field. 
In the previous section, we estimated the regeneration time scale

f the poloidal field as a function of radius, t gen = 10 
−1 
k ( R). To

how the self-consistency of our analysis, we compute t gen using the
mplitude of the wave velocities. We use the following estimate, 

 sw = 

m = 3 ∑ 

m = 1 

√ 

〈 (R ( u 

m 

p e 
imϕ ) | d 

)2 〉 , (30) 

here X| d represents the disc average defined in Section 2.2 , R
epresents taking the real value. We square u 

m 

p e 
imϕ before taking

ts azimuthal average because, 〈 u 

m 

p e 
imϕ 〉 = 0, due to it being a non-

xisymmetric quantity. 
Fig. 10 (b) shows the estimate for the average wave amplitude,

 sw , normalized to the local Keplerian velocity and time averaged
etween t = 5 × 10 3 r g /c and t = 8 × 10 3 r g /c as function of radius.
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Figure 12. Axisymmetrized poloidal magnetic field flux (equation 9 ), 
� , e v aluated at θ = π/ 2, as a function of t and R. We also show 

the growth time-scale of the magnetic-field loop structures, t gen = 10 
−1 
k 

(equation 29 ) and the magnetic field advection and ejection trajectories 
(see the text). The largest poloidal magnetic field structures appear along 
the growth time-scale line, then clearly follow the advection and ejection 
trajectories. 
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e see that in the inner regions, which are in quasi-steady state, 2 

 sw 	 2 . 3 × 10 −2 V K 

( r) . (31) 

f we assume that the wave structures generate magnetic fields on 
ength scales the size of half the disc vertical thickness (see Fig. 1 a),
e get 

 sw = 

h/ 2 

u sw 
∼ 10 
−1 

k ( r) . (32) 

his time-scale is completely consistent with t gen computed in the 
revious section. This consistency is satisfying, as we can predict 
he field regeneration rate based on the amplitude of the waves. A
omputation using the vorticity, 

 sw = 

1 

2 

m = 3 ∑ 

m = 1 

√ 

〈 ∇ × (
R ( u p 

m e imϕ ) 
) | 2 d 〉 	 0 . 2 
k (33) 

f the wave structures yields a similar time-scale, t vort = 1 /ω sw 	
0 
−1 

k . Ho we ver, this calculation does not show the role of the
ength scale in the dynamics. 

By choosing h/ 2 as the length scale, we have illuminated a subtle
ssue. In Section 3 , we described that for one polarity to take hold,
ne magnetic field loop needs to be larger than the size of the disc
cale height. Hence, if every magnetic field loop generated is of
aximal size ∼ h ( r) / 2 there is no way for one polarity to take hold.
 secondary mechanism is required to enhance the size of magnetic 
eld structures. In Section 4.5 , we argue that the advection serves

his purpose. 

.4 Field transport 

s demonstrated earlier, advection plays a crucial role in shaping the 
arge-scale dynamics of the poloidal magnetic field by transporting 

agnetic flux from outer to inner regions. In this section, we provide a
uantitative analysis of the velocities and time-scales associated with 
his field transport, elucidating their interaction with local magnetic 
eld regeneration. 
A simple afine fit for the radial velocity gives, 

〈 u r 〉 
V K 

( r) 
= a 1 r − a 2 , (34) 

here a 1 = 7 . 8 × 10 −4 and a 2 = 4 . 1 × 10 −2 (see Fig. 10 b). The
alue of a 2 is around a factor of 4 larger than the value predicted by
tandard accretion theory 3 , −〈 u r 〉 

V k 
	 αν

(
h 
r 

)2 ∼ 10 −2 . We extrapolate 
quation ( 34 ) into two simpler limits for the radial velocity 

〈 u r 〉 	 a 1 rV K 

for r 
 r rev , (35) 

〈 u r 〉 	 −a 2 V K 

for r � r rev . (36) 

ollowing Jacquemin-Ide et al. ( 2021 ), we use the expressions above
o compute the trajectory of magnetic field lines. To do this we solve
or the characteristics of field transport, given by d R � 

/ d t = 〈 u r 〉 . 
This leads to the following trajectories 

 eje = 

2 

a 1 

(
R 

1 / 2 
� 

− R 

1 / 2 
0 

)
+ t 0 for r 
 r rev , (37) 

 adv = − 2 

3 a 

(
R 

3 / 2 
� 

− R 

3 / 2 
0 

)
+ t 0 for r � r rev , (38) 
2 

 Other estimates for u sw lead to similar values, for example u sw = 

 E ϕ | d | / 
〈
B p 

〉2 | d ∼ 10 −2 V K 

. 
 We note that this approximation ignores the radial gradient of R 

2 〈 P 〉 . 

i  

t  

e
t
a

here t adv represents the poloidal field advection time-scale, t ejec is 
he poloidal field ejection time-scale, R � 

is the anchoring radii of
he field line at time t adv (or t eje ) and R 0 is the initial anchoring
adii at time t 0 . Using the e xpressions abo v e, we can compute
he transport of the large-scale loop that emerges as the dominant
olarity at t ∼ 10 4 r g /c. In Fig. 12 , we show an r−t diagram
or the poloidal magnetic flux (equation 9 ), same as Fig. 2 . We
how the regeneration time-scale computed in equation ( 29 ) on
ig. 10 , t gen 	 10 
−1 

k . The large-scale poloidal field structures
ppear along the line following the regeneration time-scale; t gen 

s a good estimate for the growth of large-scale structures. After
xisymmetric poloidal field loop forms, it advects either inwards or 
utwards. 
The ejection of poloidal magnetic flux explains the exis- 

ence of magnetic field structures at large radii within time- 
cales t < t gen . Specifically, at large radii, t eje < t gen , poloidal
eld structures originate at smaller radii before being ejected 
utwards. 
We show the trajectories of inwards and outwards advecting loops 

n Fig. 12 . We compute the trajectory of the inwards (outwards)
dvecting loop for R 0 = 50 r g ( R 0 = 70 r g ) and t 0 = 4 . 5 × 10 3 r g /c.
t is clear that our simple model, equations ( 37 )–( 38 ), reproduces the
arge-scale advection of the magnetic field. Furthermore, magnetic 
eld loops at earlier times, for t < 4 × 10 4 r g /c, follow the same kind
f trajectories. We find that the flux is constantly advected at a veloc-
ty that follows a Keplerian scaling, in the inner regions, and a velocity
hat follows 〈 u r 〉 ∝ R 

1 / 2 , in the outer regions. We conclude that the
volution of the axisymmetric poloidal flux and the emergence of 
he large-scale field are well described by the two time-scales t gen 

nd t adv . 
MNRAS 532, 1522–1545 (2024) 
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.5 Advection and size of poloidal field structures 

s the poloidal magnetic field is generated within the disc, the size
f the magnetic field structures will be limited to the local disc
cale height, ∼ h ( r) / 2. A simple way to build field structures larger
han the local scale height without invoking a reverse cascade is
rovided by the large-scale transport, A p . Within the disc the poloidal
agnetic field is advected towards the inner regions by the large-

cale accretion flow, 〈 u r 〉 . Hence, if a loop is born at r 	 60 r g 
t needs to get advected to r 	 30 r g to be larger than the disc
hickness. We can see this happen in Fig. 12 , a magnetic field loop
enerated at r 	 60 r g slowly gets advected towards r 	 20 r g , and
hen e xperiences runa way growth by the ballooning instability (see
ection 3 and Lynden-Bell 2003 , 2006 ). A additional complication

s that, if there are two or more loops of different polarities, they will
ompete o v er which can be advected. This competition will add some
tochasticity to the evolution of the system as imbalances determine
he dominant magnetic field polarity. The reason why the dominant
olarity emerges at r = 60 r g , instead of r < 60 r g , is unclear, but we
ropose three complementary arguments: 
(1) Magnetic field loops born before t ∼ t gen (60 r g ) ∼ 4 . 5 ×

0 4 r g /c do not have enough runway to be advected before being
ttached to the BH (see Fig. 4 ). If a loop appears at r = 30 r g it is
arger than the disc scale height at r ∼ 15 r g . Ho we ver, at this distance
he loop might already be too close to the ISCO and is thus doomed
o connect to the BH before becoming larger. Thus there is a critical
adius where the large-scale field is large enough to experience the
allooning instability without being trapped by the BH. 
(2) We define the poloidal magnetic flux that the MRI dynamo

an generate, � loop 	 

〈
B p 

〉
l 2 loop , where l loop is the typical size of the

oop. We have 〈
B p 

〉 = 

√ 

8 πβ−1 
p 

√ 

〈 P 〉 ∝ r −1 , (39) 

ince 〈 P 〉 ∝ r −2 , and with l loop ∼ h/ 2 we find that 

 loop 	 

√ 

8 πβ−1 
p 

√ 

〈 P 〉 ( h/ 2 ) 2 ∝ r, (40) 

n increasing function of radius. Thus, the farther from the BH the
enerated loop is, the larger the magnetic flux it contains. While
quation ( 40 ) is an approximation, we have verified its ef fecti veness
n describing the time-averaged flux. 4 From this it is clear that
here will be a critical radius that depends on the initial magnetic
eld profile, where the magnetic flux generated will be sufficient

o saturate to a MAD. The previous argument implies that while a
arge-scale magnetic field (larger than the disc scale height) might be
nevitable, the maximal magnetic flux that can be generated might
epend on the subtle details like disc scale-height, radial extent of
he disc and initial magnetic field strength. The consequences of the
aximal magnetic flux depending on disc geometry is discussed in
ection 6.2 . 
(3) Using GRMHD simulations initialized with multiple poloidal

eld loops, Chashkina et al. ( 2021 ) argue that for the jet to have
ignificant power, the advected poloidal loops need to be larger than

10 r g so that a sufficient amount of magnetic flux opens due to the
ction of the light cylinder. We compute that for poloidal field loops of
ize l loop ∼ h/ 2, a loop of size ∼ 10 r g must be generated at r ∼ 60 r g ,
hich is consistent with the description abo v e and Fig. 12 . Thus, the

nalysis of Chashkina et al. ( 2021 ) corroborates the existence of a
ritical poloidal field loop size (or equi v alent poloidal flux strength)
t which the system transitions into the MAD state. 
NRAS 532, 1522–1545 (2024) 

 Where the time average allows to reduce the contribution from advection. 

s
 

s  
For our simulation, the large-scale field then advects into the BH
ntil it reaches the MAD state (Tchekhovsk o y et al. 2011 ). This
dvection phase can be seen in Fig. 2 (b) for t > 10 4 r g /c. The dynamo
echanism then probably shuts off once the large-scale poloidal
agnetic field is large enough (Salvesen et al. 2016 ). 

.6 Advection of large-scale magnetic field symmetries 

o illustrate the impact of advection on the large-scale magnetic
eld structure more clearly, we compute the polarity of the poloidal
nd toroidal magnetic fields. Following the approach outlined by
lock et al. ( 2012 ), we perform a latitudinal averaging of the
agnetic field components in the Southern hemisphere, denoted as
 

SH 
i , and the Northern hemisphere, denoted as B 

NH 
i . Subsequently,

e define the symmetric component, B 

S 
i = 

1 
2 

(
B 

NH 
i + B 

SH 

i 

)
, and

he antisymmetric component, B 

AS 
i = 

1 
2 

(
B 

NH 
i − B 

SH 
i 

)
, contributing

o the magnetic field structure. Dipolar and quadrupolar magnetic
nergies can then be constructed for both the toroidal and poloidal
agnetic fields: 

 

D 

p = ( B 

AS 
r ) 2 + ( B 

S 
θ ) 2 (41) 

 

D 

ϕ = ( B 

AS 
ϕ ) 2 , (42) 

 

Q 

p = ( B 

S 
r ) 

2 + ( B 

AS 
θ ) 2 , (43) 

 

Q 

ϕ = ( B 

S 
ϕ ) 

2 . (44) 

he dipolar configuration, with its energy denoted as E 

D , exhibits
he following topology: a vertical magnetic field that has the same
ign abo v e and below the disc mid-plane, in contrast to the radial
nd toroidal fields which display anti-symmetry. This configuration
esembles a MAD (Tchekhovsk o y et al. 2011 ) and also self-similar
olutions (Ferreira & Pelletier 1995 ). 

On the other hand, the quadrupolar configuration, with its energy
abelld as E 

Q , represents the converse arrangement. It features an
ntisymmetric latitudinal field, while B r and B ϕ exhibit symmetric
onfigurations. This configuration can be visualized as comprising
wo poloidal field loops with opposite polarities located, respectively,
n the Northern and Southern hemispheres of the disc. 
Finally, we define the parity of the poloidal and toroidal magnetic

eld 

 i = 

E 

D 

i − E 

Q 

i 

E 

D 

i + E 

Q 

i 

. (45) 

f P i = 1 the configuration is dipolar, while if P i = −1 the config-
ration is quadrupolar. 
Fig. 13 (a) shows the parity, P p , of the poloidal magnetic field as

 function of radius and time. Similar to Fig. 12 , we display the
eld generating time-scale, t gen , derived previously, along with the
dvection ( t adv ) and ejection ( t eje ) trajectories. At large radii and short
ime-scales, we observe that the magnetic field structures emerge
n a quadrupolar configuration, as depicted in Fig. ( 1 )(a), which
llustrates pairs of poloidal field loops with opposite polarities abo v e
nd below the disc mid-plane. Fig. 13 (a) indicates that the inner
egions swiftly, t 	 2 . 5 × 10 3 r g /c, transition to a dipolar topology
also observed in Figs A3 and 1 b), resulting from the advection of
arger-scale structures into the inner regions. Consistent with the
ndings abo v e, we conclude that the initial parity, and thus the initial
ertical structure of the poloidal magnetic field, is broken by large-
cale transport. 

At t = 10 4 r g /c within the inner regions, a larger poloidal field
tructure is advected from the outer regions. This briefly results in a
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Figure 13. Panel (a): Polarity of the poloidal magnetic field (equation 45 ) as a function of t and R. Quadrupolar topology is associated with P p = −1, while 
dipolar topology is associated with P p = 1. We also show the growth time-scale of the magnetic-field loop structures, t gen = 10 
−1 

k (equation 29 ) and the 
magnetic field advection and ejection trajectories (see Section 4.4 and Fig. 12 ). The large-scale symmetries of the poloidal field are determined by its large-scale 
adv ection. P anel (b): Polarity of the toroidal magnetic field (equation 45 ) as a function of t and R. While the toroidal polarity shows no clear signs of advection, 
the polarity of the toroidal field changes once the large-scale poloidal fields are advected inwards. 

q
o  

d  

A
g
4  

r  

t

T  

c
m
s  

s
l  

b  

t  

w
 

c
t
p  

l
 

t

t
a  

b  

t
a
i

5

M
c  

d  

m
l  

fi  

I  

h

t  

m
fi  

a  

t
m  

o  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/532/2/1522/7701801 by guest on 26 Septem
ber 2024
uadrupolar configuration as the newly advected larger loop and the 
ld smaller loop co-exist. Ho we ver, e ventually, the smaller loop is
isplaced, returning the configuration to a dipolar state (see Fig. 1 c).
t large radii, quadrupolar field structures emerge faster than the 
eneration time-scale t gen . This phenomenon is elaborated in Section 
.4 , stemming from the ejection of these structures from the inner
egions to the outer scales. They travel outward at a pace exceeding
he generation time-scale, as indicated by t eje < t gen for large R. 

Fig. 13 (b) shows an analogous figure for the toroidal field. 
he parity of the toroidal field, P ϕ , exhibits a different evolution
ompared to the poloidal field. Our initial condition for the toroidal 
agnetic field is quadrupolar, which is evident at large radii and 

hort times. The evolution of, P ϕ , contrary to P p shows no clear
igns of advection. It is clear that different dynamics command the 
arger scales of the toroidal field, one of the being the shear and the
uoyancy shown in Fig. ( 5 ). The lack of inward advection for the
oroidal magnetic field was also shown in Fig. 7 (see also Fig. A b),
here the advection term, A ϕ , is shown to be negative. 
For t < 10 4 , we observe a combination of dipolar and quadrupolar

onfigurations in the toroidal field, with rapid oscillations between 
he two. We attribute these oscillations to the large-scale oscillatory 
atterns depicted in Fig. ( 5 )(b), which are caused by the escape of
arge-scale toroidal flux from the accretion disc. 

For t > 10 4 , the toroidal field in the inner regions abruptly shifts
o a radially coherent dipolar configuration. We attribute this change 
o the advection of the large-scale poloidal magnetic loop occurring 
t that moment. Given that the large-scale toroidal field is generated
y the poloidal field, it follows its e volution. Therefore, e ven though
he toroidal field exhibits a distinct evolution without clear inward 
dvection, its final state is ultimately determined by the large-scale 
nward advection of the poloidal field. 

 POSSIBLE  DY NA MO  CLOSURES  

ean-field models are useful tools to simplify the dynamics of 
omplex systems by linearizing them. Ho we ver, the MRI dynamo
escribed in Section 4 is inherently non-linear, so mean field models
ay be inadequate for accurately describing its dynamics. None the 

ess, we attempt here to distinguish which of two common mean
eld models may be the most accurate for our non-linear dynamics.
n this section, we focus on specific radii, but the trends described
ave been verified to be independent of this choice. 
The toroidal magnetic field is only generated by the 
-effect, while 

he turbulence only acts as a dissipating agent of it and could be
odelled as a turbulent resistivity. In contrast, the poloidal magnetic 
eld can be generated by turbulence and requires a more careful
nalysis. As we showed in Section 4 , in statistical steady state only
he non-linear correlations of the large-scale MRI-unstable waves, 
 = 1 , 2 , 3, generate magnetic fields, while non-linear correlations

f smaller scale modes dissipate the magnetic field. Thus, we only
MNRAS 532, 1522–1545 (2024) 
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ttempt to find a mean-field model for 

 

sw 
ϕ = 

3 ∑ 

m = 1 

E ( m ) 
ϕ . (46) 

ocusing on large-scale field structures helps filter out turbulent
ixing and small-scale dynamos, aiding on the construction of

he meanfield model. Similarly, recent shearing box computations
se frequency filtering to remo v e small-scale dynamos, reducing
ontamination (Dhang, Bendre & Subramanian 2024 ). 

.1 Alpha versus shear-current effects 

here are two main competing mechanisms for mean-field models
f the MRI dynamo. First, the classical alpha effect that has the
ollowing form, 

 

sw 
ϕ = αd 

〈
B ϕ 

〉
, (47) 

here αd is the alpha effect. This effect has been measured in various
tratified shearing box simulations (Brandenburg et al. 1995 ; Gressel
010 ; Gressel & Pessah 2015 ) and global simulations (Flock et al.
012 ; Hogg & Reynolds 2018 ; Dhang et al. 2020 ). Although all
uthors agree that the sign changes between the upper and lower
emispheres, there is no clear consensus on which sign should be
easured in which hemisphere. The rough maximum magnitude
easured in simulations is roughly consistent in the literature, αd ∼
5 × 10 −3 h
K 

. 
An alternative version of the αd effect is the stochastic αst effect

Moffatt 1978 ). In this model, the mean αst = 0 but large fluctuations

n 
√ 

α2 
st can lead to magnetic-field growth (Brandenburg et al.

008 ), where X is a temporal average of X. This effect involves
uctuations in the mean field itself, which are thought to naturally
ccur when there is not a large-scale separation between the mean-
eld generating structures and the mean field (Brandenburg 2018 ).
einemann, McWilliams & Schekochihin ( 2011 ) showed that a

ollection of shearing waves could excite a stochastic dynamo
nd generate large-scale magnetic field. Although the dynamo they
omputed is completely kinematic, and there is no backreaction of
he magnetic field on the flow, the main features are reminiscent of the
ynamics of our simulation. The fact that the dynamo is dominated
y large-scale shearing waves might also explain its stochasticity. 
The shear current effect is another possible model for the MRI

ynamo, it is expressed as 

 

sw 
ϕ = −ηsc 〈 J r 〉 , (48) 

here 〈 J r 〉 is the electric current. 5 This effect was identified analyt-
cally (Lesur & Ogilvie 2008a ) and also measured in non-stratified
hearing boxes (Lesur & Ogilvie 2008b ; Squire & Bhattacharjee
015 ; Shi, Stone & Huang 2016 ; Squire & Bhattacharjee 2016 )
nd statistical models of MRI turbulence (Mondal & Bhat 2023 ).
rucially, ηsc < 0 is a necessary condition for this dynamo to operate

Squire & Bhattacharjee 2015 , 2016 ; Rincon 2019 ). 
Lesur & Ogilvie ( 2008b ) found that the shear current effect

equires a time delay, τ , to model the dynamo cycle. This time delay
s understood as the time it takes for the mean field to excite waves
hat will amplify the magnetic field: they assumed τ ∼ 
−1 

k . 
To determine the model that fits our non-linear dynamo, we

ntroduce the following time-delayed mo ving-av eraged Pearson
NRAS 532, 1522–1545 (2024) 

 We compute 〈 J 〉 in its Newtonian approximation, neglecting the displace- 
ent current, a valid approximation at r = 20 r g . 

6

t

orrelation function: 

 p ( X , Y ( t − τ )) = 

t ∫ 
t−δt 

X ( t ′ ) Y ( t ′ − τ ) d t ′ √ 

t ∫ 
t−δt 

X 

2 ( t ′ ) d t ′ 
t ∫ 

t−δt 

Y 

2 ( t ′ − τ ) d t ′ 
, (49) 

here τ is the time delay and δt = n
−1 
K 

+ τ is the averaging
indow. 6 We choose n = 4 to ensure that we average over a few
eplerian shear time-scales, we find no perceptible differences for
if ferent v alues of n as long as 1 < n < 10. 
We show the time-averaged Pearson correlations of equation ( 49 )

n Fig. 14 (a), between t = 20 
−1 
K 

( r = 20 r g ) and t = 100 
−1 
K 

( r =
0 r g ), for r = 20 r g . In practice, the correlation function C p is com-
uted for all θ and then averaged within the Northern hemisphere of
he disc, between θ1 = 

π
2 − arctan 

(
h 
R 

)
and θ2 = 

π
2 − arctan 

(
0 . 1 h 

R 

)
.

he order of operations is crucial because computing the correlation
n the θ -averaged data could lead to error. We first compute the
orrelation functions for all angles θ and then average it. We
how the correlations of both models equations ( 47 ) and ( 48 ) and
he correlation of 〈 B r 〉 and 

〈
B ϕ 

〉
, which we use as a baseline of

omparison. 
We see that the correlation of the radial and toroidal fields peaks

t τ = 0 with a maximum value of −0 . 5. The position of the peak
t τ = 0 is consistent with zero-lag shear, which is what is expected
rom the induction equation, as the 
-effect does not include any lag.
o we ver, the maximum amplitude of only −0 . 5 shows how difficult

t is to find correlations in global GRMHD simulations, a perfect
orrelation would lead to value of C p = ±1. Other global GRMHD
imulations also find correlations of the order of 0.3, although for
eutron star dynamos (Kiuchi et al. 2024 ). 
The correlation for a shear-current-effect-like prescription (equa-

ion 48 ) shows a peak at τ = 0 . 5 
−1 
K 

( r = 20 r g ), consistent with
esur & Ogilvie ( 2008b ). In other words, the E sw 

ϕ reacts to the
adial current with a time delay τ of the order of the MRI growth
ime-scale. The maximal value of C p ( E ϕ ( t) , 〈 J r 〉 ( t − τ )) is 0.25, a

arginally significant correlation. Ho we ver, the correlation for an αd 

ffect prescription (equation 47 ) is far smaller, showing a maximum
mplitude of only −0 . 05, and it also shows a maximum at a time lag
f τ = 
−1 

K 

( r = 20 r g ). 
Fig. 14 (b) shows the time variability of the Pearson correlation

unctions, v ertically av eraged in the north hemisphere of the disc for
 = 20 r g for their respective τ maximum measured in Fig. 14 (a): 

(i) shear: τ = 0 for C p ( 〈 B r 〉 ( t) , 
〈
B ϕ 

〉
( t − τ )) 

(ii) shear current: τ = 0 . 5 
−1 
K 

( r = 20 r g ) for
 p ( E ϕ sw ( t) , 〈 J r 〉 ( t − τ )) 
(iii) α-effect: τ = 1 . 1 
−1 

K 

( r = 20 r g ) for C p ( E ϕ sw ( t) , 
〈
B ϕ 

〉
( t −

)) 

All correlations are large, with C p > 0 . 4, and show strong vari-
bility. We notice that even though the average correlation between
he mean toroidal field 

〈
B ϕ 

〉
and the electromotive force E ϕ sw ,

 p ( E ϕ ( t) , 
〈
B ϕ 

〉
( t − τ )), is small, it can reach high correlation values

n shorter time-scales. This large deviation from the average could
e a sign of a stochastic αst dynamo effect. We find identical trends
or the Northern hemisphere of the disc. For the sake of conscience,
e show the t- τ diagram in Appendix C (see Fig. C1 ). 
 The inclusion of τ in δt is to ensure that our average window is al w ays larger 
han the time shift. 
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Figure 14. Panel (a): Time and vertically averaged Pearson correlations at r = 20 r g . The averages are computed between t = 20 
−1 
K 

( r = 20) and t = 

100 
−1 
K 

( r = 20), and between θ1 = π/ 2 − arctan ( h 
R 

) and θ2 = π/ 2 − arctan (0 . 1 h 
R 

). The correlations are shown for both models, equations ( 47 ) and ( 48 ), and 
for the 
-effect which is used as a baseline of comparison. Only the αd -effect does not show a significant time average correlation. [Panel (b)]: Time variability 
of the Pearson correlation function, v ertically av eraged in the north hemisphere of the disc for r = 20 r g . F or ev ery correlation, we show the t dependence at the 
τ maximum measured in panel (a). Notice that on short time-scales the αd effect is comparable to the shear-current effect. 
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Figure 15. Panel (a): Time evolution of the full E sw 
ϕ , compared to mean- 

field EMFs using αst and ηsc ; coefficients computed from equations ( 50 ) 
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.2 Mean-field EMFs 

or large enough correlations, it makes sense to approximate the αst 

nd ηsc coefficient with 

st 	 

t ∫ 
t−δt 

E sw 
ϕ ( t ′ ) 

〈
B ϕ 

〉
( t ′ − τ ) d t ′ 

t ∫ 
t−δt 

〈
B ϕ 

〉2 
( t ′ ) d t ′ 

, (50) 

sc 	 

t ∫ 
t−δt 

E sw 
ϕ ( t ′ ) 〈 J r 〉 ( t ′ − τ ) d t ′ 

t ∫ 
t−δt 

〈 J r 〉 2 ( t ′ ) d t ′ 
. (51) 

ue to variability of C p , this equation only makes sense for small
t > τ . We choose δt = 5 
−1 

k ( r = 20 r g ). We use the same values
f τ as the ones described abo v e (see also Fig. 14 b). 
Fig. 15 (a) shows the time evolution of the full E sw 

ϕ , compared to
he two different models. With αst and ηsc coefficients computed 
rom equations ( 50 ) and ( 51 ), respectively. We compute αst and ηsc 

s functions of θ and t before computing latitudinal or temporal 
verages. Both models roughly reproduce E sw 

ϕ ; the αst model appears 
o do a better job at reproducing the solid curve. We tried different
alues of δt : the fit deteriorates for larger values of δt , but the αst 

odel is al w ays a marginally better fit to the full E sw 
ϕ . 

Fig. 15 (b) shows the θ -time diagram of αst e v aluated at r = 20 r g .
s expected, the alpha coefficient is highly variable and does not 

how a clear top down symmetry, in contrast with other works (Flock
t al. 2012 ; Hogg & Reynolds 2018 ). We do not show the temporal
volution ηsc , as it shows similar variability to the stochastic αst . 

Instead, we show in Fig. 16 the temporal average ( αst , ηsc ) and rms

alue ( 
√ 

α2 
st , 

√ 

η2 
sc ) of both coefficients, computed between t 1 = 20

nd t 2 = 110 
−1 
k . We find no clear trends for the polar profile of αst ,

lthough there might be a slight change of sign around the disc mid-
lane. This signal is likely o v erwhelmed by the large fluctuations,
s the rms value is around a factor of 5 larger. We compute a rms
MNRAS 532, 1522–1545 (2024) 
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M

Figure 16. Time-averaged αst and ηsc coefficients as functions of the polar 
coordinate, normalized to h
k and h 2 
k , respectively, and e v aluated at r = 

20 r g . We also show their respective rms values 
√ 

α2 
st and 

√ 

η2 
sc . For the sake 

of visibility, the shear current coefficients are multiplied by 5. The coefficients 
are computed using equations ( 50 ) and ( 51 ), respectively. No clear trend is 
observed in the polar profile of αst and its rms value is about a factor of 
2 larger. The shear-current prescription, ηsc , shows a clearer trend hitting a 
maximum just abo v e the disc mid-plane. 
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alue for the stochastic α prescription of 
√ 

α2 
st 	 10 −3 h
k , which is

oughly constant in θ . 
Our computation of αst is around an order of magnitude smaller

han fiducial values found in the literature in stratified shearing boxes
Brandenburg et al. 1995 ; Gressel 2010 ; Gressel & Pessah 2015 ;
hang et al. 2024 ) or global simulations (Flock et al. 2012 ; Hogg &
eynolds 2018 ; Dhang et al. 2020 ). 
As far as the shear-current effect is concerned, we compute a

learly ne gativ e shear-current coefficient ηsc 	 −2 × 10 −4 h
2 
k at

ts maximal amplitude; the sign of the ηsc coefficient thus allows
or magnetic field amplification (Rincon 2019 ). In contrast with
st , the shear current effect shows a slight trend in θ , reaching its
aximum slightly abo v e the disc mid-plane. Furthermore, in this

ase the maximal value is of the same order as the rms fluctuations.
ur computed value of ηsc aligns with findings from non-stratified

hearing box simulations (Lesur & Ogilvie 2008b ; Shi et al. 2016 ).
o we ver, it is inconsistent with results from stratified shearing box

imulations, which find positive shear current effects (Gressel 2010 ;
ressel & Pessah 2015 ; Dhang et al. 2024 ). 
From the previous analysis, it is difficult to conclude which model

s the better fit for the MRI dynamo. While the stochastic alpha model
etter fits the behaviour of the EMF when compared the shear current
ffect, it has a worse av erage correlation. Howev er, the stochastic
lpha model is more intuitively appealing as it is reminiscent of the
ave phenomenology detailed in Section 4 (Heinemann et al. 2011 ).
The other main conclusion of this mean-field analysis is that the

ntisymmetric (with respect to the disc mid-plane) alpha coefficient
omputed in stratified shearing box simulations is incompatible with
ur 3D global simulations (Brandenburg et al. 1995 ; Gressel 2010 ).
here are two possible explanations for this discrepancy: (1) Strati-
ed shearing boxes are known to have too many symmetries (Lesur,
erreira & Ogilvie 2013 ; Lesur 2020 ). The additional symmetries of
hearing boxes could lead to the organization of the large-scale wave
tructures, which could lead to a more coherent α effect. Furthermore,
oth global simulations where a coherent alpha effect was measured
ad a limited latitudinal extent (Flock et al. 2012 ; Hogg & Reynolds
NRAS 532, 1522–1545 (2024) 
018 ). This limited latitudinal extent could lead to a similar effect of
rganizing the wave structures. (2) A thinner disc could also lead to
 more coherent α effect by vertically confining the wave structures.
ndeed, Hogg & Reynolds ( 2018 ) found that thicker discs had more
rregular dynamo cycles. Future work will focus on how this dynamo
hanges in thinner discs. 

Finally, Dhang et al. ( 2020 ) used singular value decomposition to
easure mean field dynamo coefficients in RIAFs. Although they

se a different initial field, the o v erall structure looks similar to ours
efore t = 8 × 10 3 r g /c. They were only able to fit αd coefficient at
he surface of the disc, and not within the interior of the disc, and
ttributed this lack of convergence to the disc being too turbulent.
his observation might be related to the intrinsic variability that we
how in Fig. 15 (b). 

 C O N C L U S I O N S  A N D  DI SCUSSI ON  

.1 Main conclusions 

inary mergers are theorized to drive jets as a component of the
RB and afterglow emission. If the central engine is a BH, the jet
ill be driven by the Blandford & Znajek ( 1977 ) process. However,

he BZ mechanism requires a large-scale poloidal magnetic field.
n this paper, we analysed simulations of GRMHD accretion disc
o investigate the dynamical mechanism underlying the generation,
ransport and self-organization of the magnetic field. We have here
solated a mechanism that can generate the large-scale poloidal

agnetic fields required for jet launching. 
We elucidated that, excluding large-scale transport, the production

nd dissipation of magnetic energy relies on the following ingredi-
nts: (1) The toroidal magnetic field is generated through the shear
f the poloidal field (Fig. 7 ). (2) Large-scale non-axisymmetric MRI
ave structures of wavenumber, m = 1 , 2 , 3, non-linearly generate

he poloidal field (Fig. 9 ). (3) The toroidal field loses energy to
hose non-axisymmetric field fluctuations (Fig. 7 and Appendix A ).
4) Finally, both field components lose energy to the small-scale,
 > 3, non-axisymmetric structures through turbulent dissipation.
his behaviour is highly reminiscent of previous results obtained in
impler shearing box simulations (Lesur & Ogilvie 2008b ; Herault
t al. 2011 ; Riols et al. 2015 , 2017 ). 

As described in the introduction, this dynamo mechanism is inter-
reted as an interplay between the non-axisymetric MRI and large-
cale axisymmetric dynamics of the magnetorotational instability.
he low- m modes are (non-)linear non-axisymmetric MRI modes

hat feed on the shear and develop on the axisymmetric toroidal
agnetic field. The low m -modes take the form of MRI-amplified

hearing waves (see Fig. 11 ), which are sheared spiral waves
Goldreich & Lynden-Bell 1965 ; Johnson 2007 ). In the statistical
teady state, the large- m modes ( m > 4) are non-linearly generated
y the turbulent cascade and mix the large-scale field, dissipating
t all small scales. We computed a local growth time scale for the
agnetic-field-generation mechanism and found t gen 	 10 
−1 

k . The
elocity of the spiral modes, u sw , can the be used to predict this
aturation time-scale, t gen ∼ t sw = h/u sw , with good precision (see
ig. 10 b). Hence, magnetic field loops are generated locally at a
pecific radii with a frequency 10 times slower than the Keplerian
requency. 

We also found that large-scale advection of the magnetic field,
oloidal or toroidal, is an essential feature of the full magnetic-
eld dynamics. We showed that the toroidal magnetic field vertically
scapes the accretion disc (Figs 5 and 8 ). Most importantly, the
oloidal magnetic field is advected inwards by the accretion flow. The
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dv ection serv es as a scale amplification mechanism by transporting
he larger-scale loops, generated in the outer regions of the accretion 
isc, towards the inner regions, with a smaller disc scale height. 
hus, advection can transport a magnetic field larger than the local 
isc scale height. We computed the advection time-scale, t adv , over 
hich this happens using a simple fit for the accretion flow velocity

see equation 38 ). We have determined that this straightforward 
alculation of the advection time-scale is remarkably consistent 
ith magnetic field transport and, as a result, possesses predictive 

apabilities. When putting everything together we can formulate 
 description for the emergence of a dominant large-scale vertical 
agnetic field using only two time-scales, t gen and t adv . We have also

pproximated the magnitude and profile of the magnetic flux and 
ound that it depends mostly on the geometry of the disc. 

We have corroborated the role of advection in transporting the 
arge-scale fields by examining the transport of polarity in the ax- 
symmetrized poloidal and toroidal magnetic fields. We demonstrate 
hat advection, acting on the time-scale t adv , plays a crucial role
n breaking the initial quadrupolar symmetry of the system and 
enerating a dipolar symmetry by advecting the large-scale poloidal 
eld structures from the outer regions (see Fig. 13 ). Furthermore, 
lthough the toroidal field is not advected by the accretion flow, its
volution is ultimately dictated by the advection of the poloidal field. 
ndeed, the polarity of the toroidal field is controlled by the shear
f the poloidal field, thus once the poloidal field reaches a dipolar
ymmetry, the toroidal field swiftly follows. 

Finally, even though the dynamo described here is completely 
on-linear, for the purpose of global modelling and better closures, 
e attempted to determine which linear mean-field model is capable 
f reproducing the main features of our simulations. We found that a
imple antisymmetric α dynamo model, often computed in stratified 
hearing box simulations, cannot reproduce the dynamo mechanism 

bserved in our simulation. Ho we ver, a shear current effect or a
tochastic α dynamo could reproduce some of the main features. 
e believe this discrepancy with shearing box simulations is due 

o the thickness of our accretion disc. Thinner disc, which are well
odelled by shearing boxes, might confine and organize the field- 

enerating structures, and the organization of such structures might 
ead to a more coherent α effect. 

.2 Discussion 

.2.1 Dependence on initial field geometry and strength 

n this work, we have only considered an initially axisymmetric 
oroidal magnetic field. It is not entirely clear ho w sensiti ve our
esults are to these initial conditions. Ho we ver, as noted earlier in
ection 2.1 , an approximately axisymmetric toroidal field seems 

o emerge in the initial phase of evolution of BHNS mergers, 
 < 100 ms (Aguilera-Miret et al. 2023 ). This is encouraging, as
his axisymmetric toroidal field plays a key meadiating role in 

RI mechanism described in this work. Furthermore, Gottlieb 
t al. ( 2023b ) found that their non-axisymmetric initial condition, 
onsisting of two large-scale toroidal field features with opposite 
olarities, still led to the generation of large-scale poloidal fields. 
he authors have verified that the main features of the mechanism 

escribed in this manuscript are also present in the simulation of
ottlieb et al. ( 2023b , pri v ate communication). This suggests that the
RI dynamo described in this work is robust to non-axisymmetric 

nitial conditions. 
We also found no difference in the magnetic field generation mech- 

nism between a net large-scale toroidal field and an antisymmetric, 
ero net flux toroidal field (Appendix B ). This independence on the
et toroidal flux is encouraging, as it could be that the mechanism
an be excited with smaller scale toroidal field structures. 

Dhang, Bai & White ( 2023 ) found that for an initial weak, βini =
00, zero net flux poloidal field, the accretion disc was unable to
each the MAD state after 120 000 r g /c. Although no MAD was
resent, a coherent large-scale magnetic field appeared, as shown 
n their Fig. 7 and the last panels of Fig. 2 . Ho we ver, this field did
ot have enough flux to reach the MAD state. Similarly, Rodman &
eynolds ( 2024 ) recently found that initially weak toroidal magnetic
eld, βini = 200, would not enter the MAD state after 120000 r g /c.
heir results show that weaker magnetic fields might substantially 
eaken the efficiency of the non-linear magnetic field generation 
echanism shown here. 
Ho we ver, in both studies the authors either imposed a null field for

 > 200 r g or considered a limited radial domain size r max < 300 r g .
s was argued on Section 4.5 the maximal magnetic flux that can be
enerated is set by the size of the accretion disc, including its radial
xtent. It would be interesting to consider more weakly magnetized 
iscs like the ones simulated by Rodman & Reynolds ( 2024 ) and
hang et al. ( 2023 ), but with a larger radial e xtent. F ollowing the

rguments of Section 4.5 , this could lead to the formation of an
AD. Rodman & Reynolds ( 2024 ) also ran a simulation with a

tronger initial magnetic field, βini = 5, that reached a state more
eminiscent of an MAD and might be qualitatively similar to the
imulation presented here. 

.2.2 Reaching the MAD state 

n intriguing implication of our study is that the maximum magnetic
ux generated is determined by the radial extent and geometrical 

hickness of the accretion disc (see e.g. Rodman & Reynolds 2024 ;
hang et al. 2023 , where different final steady states are computed).
his constraint on the maximal magnetic flux that can be generated

s specially rele v ant for mergers, where the radial extent of the disc
s limited. At first glance this might be bad news for the MAD state.
o we ver, it should be noted that the transition to this MAD state

lso depends on the accretion rate. For a finite mass reservoir, ṁ will
rop, and the MAD state will be eventually reached regardless of the
aximal magnetic flux that can be generated (Tchekhovsk o y 2015 ;
chekhovsk o y & Giannios 2015 ; Gottlieb et al. 2023b ). Ho we ver, it

s crucial to note that if the system attains the MAD state towards the
nd of its existence, then the MAD state becomes irrele v ant to the
ystem’s dynamics. 

The study by Gottlieb et al. ( 2023a ) suggests that the X-ray power-
a w decay observ ed in the e xtended emission of compact merger
RBs may be attributed to the system transitioning to the MAD

tate. If this hypothesis holds, the maximal poloidal magnetic flux 
hat can be generated becomes the primary controlling parameter, 
long with the initial mass of the disc, for the duration of the GRB
v ent. An e xploration of the potential maximal magnetic flux es
ased on various parameters of the binary merger, such as the
entral engine, disc mass and size, could be approximated using our
ork as a foundation (see Section 4.5 ). This analysis is deferred to

uture investigations but has the potential to provide complementary 
nsights into understanding the unified evolution of merger GRBs 
Gottlieb et al. 2023a ). This analysis could also be useful for models
f TDEs (Teboul & Metzger 2023 ). In such models, the jet efficiency
s free parameter, one could use our prescriptions for the generation
nd transport of magnetic flux to self-consistent compute the jet 
fficiency. 
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Finally, the dynamo mechanism outlined in this study, relying
eavily on advection, may encounter challenges when the accretion
isc becomes geometrically thin. Thinner discs are notably less
roficient in the advection of magnetic fields (Lubow et al. 1994 ;
acquemin-Ide et al. 2021 ). It is a well-established fact that thin discs,
uch as those found during the soft state in X-ray binaries (Done
t al. 2007 ), exhibit reduced tendencies to launch relativistic jets.
onsequently, it becomes imperative to investigate the mechanism’s
ependence on the disc’s thickness, as this insight may shed light on
hy thinner discs tend to be less predisposed to jet launching. 

.2.3 Stochasticity and flares 

ue to the stochastic nature of the dynamo mechanism, simulations
nitially set with toroidal magnetic fields exhibit an initial bursty
ehaviour in jet power and efficiency, preceding the emergence of a
ominant polarity (see Fig. 12 and Christie et al. 2019 ; Gottlieb et al.
023b ). This early activity mirrors the quasi-periodic precursor flares
bserved in short Kilonova gamma-ray bursts (GRBs; Xiao et al.
022 ). Our findings indicate that this behaviour is attributed to the
arly attachment of a magnetic loop to the BH (see Fig. 4 ). Although
he topology of this attached loop differs from that observed in

agnetically arrested discs (MADs), it still facilitates the launching
f a Blandford −Znajek (BZ) jet. It is worth noting that the jet
roduced by this small-scale loop is less efficient compared to
hose driven by MADs (Christie et al. 2019 ). The cancellations of
agnetic flux on the BH event horizon occur as additional magnetic

oops of opposite polarities are advected, like the simulations of
 arfre y, Giannios & Beloborodo v ( 2015 ). These cancellations giv e
ise to oscillations in magnetic flux, which may explain the quasi-
eriodic precursor flares observed in short GRBs. Such variability
ould also explain the initially bursty X-ray luminosity curve of the
DE Swift J1644 + 57, that is normally modelled with precession
f the accretion disc (Tchekhovsk o y et al. 2014 ; Teboul & Metzger
023 ). 
As time progresses, a truly large-scale magnetic field is generated

nd the MAD state is reached. This large-scale magnetic flux
ay be responsible for the extended emission observed for t > 1s

n short GRBs (Norris & Bonnell 2006 ; Gottlieb et al. 2023a ).
urther investigation of this scenario is warranted, particularly with
imulations initialized with weaker magnetic fields. 

El Mellah et al. ( 2022 ) examined a hybrid magnetic topology,
ith closed and open field lines connected to the BH, as shown

n Fig. 4 . They used 2D GR particle-in-cell simulations to find
hat this hybrid configuration could dri ve ef ficient jets and particle
cceleration through reconnection sheets. In this work, we showed
hat such a configuration naturally emerges in the early stages of the
volution of the MRI dynamo. This provides a natural justification
or their previously ad-hoc configuration. 

Overall, the work presented here, anchored in a detailed analysis
f 3D GRMHD dynamics, provides new insights into the physical
echanism underlying the global magnetized dynamics and mag-

etic field generation in black-hole accretion. In particular, simula-
ions of mergers are usually initialized with artificially large magnetic
elds due to constrains on resolving the magnetized turbulence.
hile subgrid models might alleviate some of the issues related

o resolution, they rely on assumptions and fine-tuned coefficients.
nderstanding the complicated nonlinear dynamics therefore paves

he way towards better mean-field models that are complementary to
he subgrid approaches. Overall, the work presented here provides a
ontribution to better global large-scale models of BH accretion. 
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PPENDI X  A :  E N E R G Y  G E N E R AT I O N  O R  

ISSIPATION  O F  T H E  FIRST  E I G H T  

ON-AXI SYMMETRI C  M O D E S  

In this appendix, we confirm that the first three non-zero m -modes,
eferred to as active modes, are the sole contributors to the generation
f poloidal magnetic energy. Furthermore, we show that these modes 
issipate toroidal magnetic energy and facilitate angular momentum 
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Figure A1. Vertically and temporally averaged poloidal (a) (equation 21 ), 
and toroidal (equation 17 ), (b) energy equation normalized to the local 
Keplerian frequency. The temporal average is performed between 5000 r g /c 
and 8000 r g /c. The different terms are divided by the vertical and temporal 

average of 
〈
B p 

〉2 
(a) or 

〈
B ϕ 

〉
(b). (a) The coloured solid lines show the 

first eight non-axisymetric m -modes, δA 

( m ) 
p (a) or δA 

( m ) 
ϕ (b). The dotted line 

shows the large-scale axisymmetric transport of poloidal (a) or toroidal (b) 
field. The dashed line shows the small-scale turbulent transport without the 
first eight non-axisymetric modes, δA 

small 
p (a) or δA 

small 
ϕ . The dotted–dashed 

line shows the shear of poloidal into toroidal field, S ϕ . 
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ransport. In essence, the active modes are identified as MRI-driven
hearing waves, mediated by the axisymmetric toroidal field. 

1 Poloidal magnetic energy 

n Fig. A1 (a), we present the various source terms for axisymmetric
oloidal magnetic energy (equation 21 ). These terms are vertically
veraged within the disc, temporally averaged between 5000 r g /c 
nd 8000 r g /c, and normalized by the averaged axisymmetric

oloidal magnetic energy, 1 
2 

〈
B p 

〉2 
. The sources of axisymmetric

oloidal magnetic energy are categorized into three components:
1) The contributions of the first eight non-linear correlations of m -
odes, denoted as δA 

( m ) 
p , as defined in equations ( 25 ) and ( 26 ). (2)

he large-scale axisymmetric transport of ϕ-averaged poloidal field,
epresented by A p . (3) The small-scale turbulent transport, excluding
NRAS 532, 1522–1545 (2024) 
he first eight non-linear correlations of m -modes, 

A 

small 
p = δA p −

8 ∑ 

m = 1 

δA 

( m ) 
p . (A1) 

Fig. A1 (a) confirms that the only m -mode correlations that generate
xisymmetric poloidal magnetic energy on average are m = 1 , 2 , 3,
here m = 1 , 2 are the main contributors. We notice that δA 

small 
p 	

∞ ∑ 

 = 3 
δA 

( m ) 
p , as this term is dominated by the more numerous large

 -mode correlations (see Fig. 10 ). Consequently, we refrain from
roviding a detailed analysis of the magnitude and behaviour of A p 

nd δA 

small 
p , as this information is discussed in Section 4 . 

2 Toroidal magnetic energy 

e analyse the sources of axisymmetric toroidal magnetic energy by
ecomposing them into their non-linear correlations of non-zero- m -
odes. Extending the same decomposition applied to the poloidal
agnetic field, we obtain 

A ϕ = 

∞ ∑ 

m = 1 

δA 

( m ) 
ϕ , (A2) 

here 

A 

( m ) 
ϕ = 

〈
B ϕ 

〉
e ϕ · ∇ × (

E p 
( m ) 

)
, (A3) 

nd 

 p 
( m ) = E ( m ) − E ϕ ( m ) (A4) 

ith E ϕ 
( m ) defined in equation ( 26 ), or more explicitly 

 p 
( m ) = R 

[
u 

m × B 

m | ∗] − R 

[
u p 

m × B p 
m | ∗] . (A5) 
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Figure A3. Snapshots of the axisymmetrized toroidal magnetic field, R 

〈
B ϕ 

〉
in colour as a function of R and z. We also show the poloidal magnetic field lines 

through the poloidal magnetic flux (equation 9 , dashed lines show ne gativ e polarity and solid lines show positive polarity). Magnetic field structures become 
larger and larger with time. Notice that in this case the initial condition, visible at large radii in panel (a) is antisymmetric with respect to the disc mid-plane. 
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e also define the small scale, large m , non-linear correlations as 

A 

small 
ϕ = δA ϕ −

8 ∑ 

m = 1 

δA 

( m ) 
ϕ . (A6) 

n Fig. A1 (b), we present the same decomposition as shown in
ig. A1 (a), but now for the source terms of toroidal magnetic energy.
hese terms are calculated using equations ( 17 –A2 - A4 ), and all of

hem are subject to vertical averaging within the disc. Temporal 
veraging is performed between 5000 , , r g /c and 8000 , , r g /c, and
he values are normalized by the averaged axisymmetric toroidal 

agnetic energy, 1 
2 

〈
B ϕ 

〉2 
. 

In line with Section 4 , we demonstrate that the sole term respon-
ible for generating axisymmetric toroidal magnetic energy is Sϕ, 
ssociated with the large-scale shear of the axisymmetric poloidal 
eld. The large-scale advection term, A ϕ, results in a loss of magnetic
nergy throughout the entire disc, corresponding to the vertical 
ransport described in Sections 4 and 3 . All large-scale non-linear m -
ode correlations dissipate axisymmetric toroidal magnetic energy, 

n contrast to the decomposition of axisymmetric poloidal magnetic 
nergy, here even the large-scale active modes ( m = 1 , 2 , 3) consume
oroidal magnetic energy. This observation aligns with findings from 

hearing box simulations (Lesur & Ogilvie 2008b ; Riols et al. 2015 ,
017 ). Once again, we observe that dissipation of the large scales is
rimarily driven by the more numerous small-scale m -modes, leading 
o the approximation that δA ϕ 

small 	 δA ϕ. 

3 Angular momentum transport 

o show that the active modes transport angular momentum, we 
ecompose the Maxwell stress using Parse v al’s theorem 

ν = 

∞ ∑ 

m = 1 

α( m ) 
ν , (A7) 

here 

( m ) 
ν = − 1 

4 π 〈 P 〉 R 

[
B 

m 

r × B 

m 

ϕ | ∗
]
. (A8) 

hen, we define the large-scale laminar stress (Jacquemin-Ide et al. 
021 ; Manikantan et al. 2024 ) 

la 
ν = − 1 

4 π 〈 P 〉 〈 B r 〉 
〈
B ϕ 

〉
. (A9) 

In Fig. A2 , we present the m -mode decomposition of the magnetic
ngular momentum stresses using equations ( 17 , A2 , A4 ). All terms
re subjected to vertical averaging within the disc and temporal 
veraging between 5000 r g /c and 8000 r g /c; the division between
ressure and stress tensor is performed after both averages. The active 
MNRAS 532, 1522–1545 (2024) 
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igure B1. Vertically and temporally averaged poloidal (a) (equation 21 ),
nd toroidal (equation 17 ) (b) energy equation normalized to the local
eplerian frequency. The temporal average is performed between 4000 r g /c

nd 7000 r g /c. The different terms are divided by the vertical and temporal

verage of 
〈
B p 

〉2 
(a) or 

〈
B ϕ 

〉
(b). (a) The coloured solid lines show the

rst eight non-axisymetric m -modes, δA 

( m ) 
p (a) or δA 

( m ) 
ϕ (b). The dotted line

hows the large-scale axisymmetric transport of poloidal (a) or toroidal (b)
eld. The dashed line shows the small-scale turbulent transport without the
rst eight non-axisymetric modes, δA 

small 
p (a) or δA 

small 
ϕ . The dotted-dashed

ine shows the shear of poloidal into toroidal field, S ϕ . 

odes ( m = 1 , 2 , 3) contrib ute to angular momentum transport, b ut
hey are not the dominant stress term. The turbulent stress is primarily
riven by the more numerous small-scale modes, this observation
ligns with the contribution of the latter to turbulent dissipation. 

PPENDIX  B:  SIMULATION  WITH  A N  

NTISYMMETRIC  TO RO IDA L  FIELD  
NRAS 532, 1522–1545 (2024) 
In this appendix, we describe the simulation initialized with an
ntisymmetric, with respect to the disc mid-plane, toroidal magnetic
eld. This simulation shows identical features to the one described

n the main body of the manuscript. 
Fig. A3 shows the axisymmetrized poloidal magnetic field lines

nd the axisymmetric toroidal magnetic field. We observe very
imilar evolution to that presented in Fig. 1 , even though the
nitial condition is very different: (1) large-scale magnetic fields are
enerated and vertically shed (see Fig. A3 a). (2) With time the size of
he largest magnetic field structure increases, we notice advection of
he larger field from the outer radii into the inner regions (Fig. A3 b,c).

Fig. A3 illustrates the axisymmetrized poloidal magnetic field
ines alongside the axisymmetric toroidal magnetic field. Despite the
ontrasting initial condition, we observe a very similar evolution to
hat depicted in Fig. 1 : (1) The generation of large-scale magnetic
elds, which are vertically expelled through ballooning instability
Lynden-Bell 2003 , see also Fig. A3 a). (2) Over time, an increase in
he size of the magnetic field structures, with noticeable advection
f the larger field from outer radii into the inner regions (see Fig. A3
 −c). 
Fig. B1 (a) shows the source terms for axisymmetric poloidal
agnetic energy for the simulation initiated with an antisymmetric

oroidal field, mirroring the content of Fig. A1 (a) or the symmetric
ase. The trends observed in the generation of poloidal magnetic field
ource terms align with the descriptions in Section 4 and Appendix A .

Specifically, the findings reveal that in this case too only the
argest non-linear correlations of m -modes ( m = 1 , 2 , 3) generate
xisymmetric poloidal magnetic fields. Large-scale advection, A p ,
acilitates the transport of flux from outer regions, while the smaller
on-linear correlations of m modes ( m > 3) contribute to the dis-
ipation of the poloidal magnetic field. Moreo v er, the amplitudes
f these terms exhibit striking similarity with the symmetric case,
ielding an identical regeneration timescale of approximately t gen =

1 
2 

〈
B p 

〉2 
/ 

3 ∑ 

m = 1 
A 

( m ) 
p 	 10 
−1 

K 

. 

The patterns and amplitudes are also consistent for axisymmet-
ic toroidal magnetic energy generation, as shown in Fig. B1 (b).
imilarly to the poloidal magnetic energy case, the observations
emain unchanged: all non-linear correlations of m modes contribute
o magnetic energy dissipation, magnetic energy generation primarily
esults from the shear of the poloidal field, and the toroidal magnetic
eld is shed vertically through the advective term. 
We conclude that the dynamo mechanism is independent of the

lobal symmetry of initial conditions. 

PPENDI X  C :  TIME  A N D  LAG  D I AG R A M  F O R  

O R R E L AT I O N S  
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Figure C1. Vertically averaged lag-time diagram of the Pearson correlations at r = 20 r g . The averages are computed between t = 20 
−1 
K 

( r = 20) and 
t = 100 
−1 

K 

( r = 20), and between θ1 = π/ 2 − arctan ( h 
r 

) and θ2 = π/ 2 − arctan (0 . 1 h 
r 

). The correlations are shown for (a) the 
-effect which is used as a 
baseline and both models, (b) equations ( 47 ), and (c) equation ( 48 ). Notice that on short time-scales both models (b,c) show strong correlations, but the shear 
current effect (c) shows a more consistent correlation for τ = 0 . 5 
−1 

k . 
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