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We derive the evolution equation of the average uncertainty energy for periodic/homogeneous7
incompressible Navier-Stokes turbulence and show that uncertainty is increased by strain8
rate compression and decreased by strain rate stretching. We use three different direct9
numerical simulations (DNS) of non-decaying periodic turbulence and identify a similarity10
regime where (a) the production and dissipation rates of uncertainty grow together in11
time, (b) the parts of the uncertainty production rate accountable to average strain rate12
properties on the one hand and fluctuating strain rate properties on the other also grow13
together in time, (c) the average uncertainty energies along the three different strain rate14
principal axes remain constant as a ratio of the total average uncertainty energy, (d) the15
uncertainty energy spectrum’s evolution is self-similar if normalised by the uncertainty’s16
average uncertainty energy and characteristic length and (e) the uncertainty production rate17
is extremely intermittent and skewed towards extreme compression events even though the18
most likely uncertainty production rate is zero. Properties (a), (b) and (c) imply that the19
average uncertainty energy grows exponentially in this similarity time range. The Lyapunov20
exponent depends on both the Kolmogorov time scale and the smallest Eulerian time scale,21
indicating a dependence on random large-scale sweeping of dissipative eddies. In the two22
DNS cases of statistically stationary turbulence, this exponential growth is followed by an23
exponential of exponential growth, which is in turn followed by a linear growth in the one24
DNS case where the Navier-Stokes forcing also produces uncertainty.25

Key words:26

1. Introduction27

It is basic textbook knowledge that turbulent flow realisations are not repeatable whereas28
statistics over many realisations of a turbulent flow are (Tennekes & Lumley 1972). This29
well-known empirical observation suggests the presence of some kind of chaotic attractor.30
The pioneering work of Lorenz has shown the presence of chaos and strange attractors and31
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their resulting high sensitivity to initial conditions in non-linear systems with a small number32
of degrees of freedom (Lorenz 1963; Sparrow 2012). Deissler (1986) demonstrated that33
similar extreme sensitivity to initial conditions is also present in fully developed turbulent34
solutions of the Navier-Stokes equation which is a non-linear system with a very large number35
of degrees of freedom, in fact asymptotically infinite with increasing Reynolds number. High36
sensitivity to initial conditions is at the root of non-repeatability and therefore uncertainty.37
Uncertainty is present in a wide range of non-linear systems with many degrees of freedom38
such as turbulent flows, magnetohydrodynamics (Ho et al. 2020) and plasma physics (Cheung39
& Wong 1987) and is also at the core of the problem of atmospheric predictability (Lorenz40
1963; Leith 1971). It may not be enough, however, to simply rely on the general concepts of41
chaos and strange attractors (and bifurcations) if one wants to understand uncertainty. This42
paper’s motivation is to understand uncertainty and its growth in the case of Navier-Stokes43
turbulence in some physically concrete terms.44

The solutions of the Navier-Stokes equation are velocity and pressure fields which evolve45
in time. The uncertainty of a time-dependent velocity field 𝒖 (1) (𝒙, 𝑡) is measured by its46
difference from a velocity field 𝒖 (2) (𝒙, 𝑡) with near-identical initial conditions: the velocity47
difference between these two fields at time 𝑡 is Δ𝒖 ≡ 𝒖 (2) − 𝒖 (1) . Based on this velocity-48
difference field, the average uncertainty in the system is measured in terms of its kinetic49
energy as ⟨𝐸Δ⟩ ≡

〈
|Δ𝒖 |2 /2

〉
, where ⟨·⟩ represents spatial average (over 𝒙). In the presence50

of a strange attractor, its chaotic nature is expected to lead to exponential growth of the51
difference between two fields initially very close together (Deissler 1986; Ruelle 1981), i.e.52

d
d𝑡

⟨𝐸Δ⟩ = 2𝜆 ⟨𝐸Δ⟩ , (1.1)53

where 𝜆 is the maximal Lyapunov exponent.54
To evaluate the Lyapunov exponent in the case of statistically stationary homogeneous55

turbulence, Ruelle (1979) argued that when the two fields 𝒖 (1) and 𝒖 (2) differ initially56
only at the very smallest scales, then 𝜆−1 should be the Kolmogorov time scale 𝜏𝜂 i.e.57

𝜆−1 ∼ 𝜏𝜂 ≡ (𝜈/𝜀)1/2 where 𝜈 is the fluid’s kinematic viscosity and 𝜀 is the turbulence58
dissipation rate. Kolmogorov equilibrium 𝜀 ∼ 𝑈3/𝐿 for statistically stationary homogeneous59
turbulence implies𝜆 ∼ 𝜏−1

𝜂 ∼ (𝐿/𝑈)−1Re1/2 in terms of the large eddy turnover time 𝐿/𝑈 and60
the Reynolds number Re = 𝑈𝐿/𝜈 where 𝑈 is the rms turbulence velocity and 𝐿 the integral61
length scale. Intermittency corrections have been considered in the form 𝜆 ∼ (𝐿/𝑈)−1Re𝑎62
where 𝑎 = 0.459 instead of 0.5 (Crisanti et al. (1993) derived this correction on the basis of63
a multi-fractal model). Whilst this correction agrees with numerical observations from the64
shell model (Aurell et al. 1997), neither 𝑎 = 0.459 nor 𝑎 = 0.5 agree with observations from65
direct numerical simulations (DNS) of Navier-Stokes statistically stationary homogeneous66
turbulence (Berera & Ho 2018; Boffetta & Musacchio 2017). In fact, the DNS results67
of Mohan et al. (2017) suggest that 𝜆𝜏𝜂 increases with Reynolds number, i.e. 𝑎 > 0.5,68
suggesting that time scales smaller than 𝜏𝜂 may be at play. Understanding the growth of69
uncertainty in some physically concrete terms, as stated above, must also involve shedding70
some light on the scalings of the maximal Lyapunov exponent which clearly remains an71
open question. In fact the question may be even more widely open as a superfast uncertainty72
growth may have been observed at very early times in some DNS results (Li et al. 2020). Such73
superfast growth is not ruled out by the rigorous constraint on the uncertainty growth derived74
from the Navier-Stokes equation by Li (2014): ⟨𝐸Δ(𝑡)⟩ /⟨𝐸Δ(0)⟩ ⩽ exp(𝜎

√
Re

√
𝑡 + 𝜎1𝑡)75

where 𝜎 and 𝜎1 are the coefficients depending on the perturbations.76
The difference between the velocity fields 𝒖 (1) and 𝒖 (2) may be expected to grow in a77

way that develops differences over length scales 𝑙 larger than the very smallest scales. When78
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this happens, one may assume equation (1.1) to remain valid but with a maximal Lyapunov79
exponent which reflects the characteristic time at length scale 𝑙, i.e. 𝜆−1 ∼ 𝜏𝑙 ≡ 𝐸𝑙/𝜀 where80
𝐸𝑙 is the kinetic energy characterising length scale 𝑙 (Lorenz 1969). It may then be natural to81
expect ⟨𝐸Δ⟩ ∼ 𝐸𝑙 (Aurell et al. 1997) which leads to a linear growth of ⟨𝐸Δ⟩ from equation82
(1.1) and 𝜆−1 ∼ 𝐸𝑙/𝜀. A linear growth has been widely reported in numerical experiments83
using the Eddy Damped Quasi-Normal Markovian (EDQNM) closure (Leith & Kraichnan84
1972), shell models (Aurell et al. 1997) and DNS (Berera & Ho 2018; Boffetta & Musacchio85
2017).86

There have already been some attempts at understanding uncertainty in physically concrete87
terms. Boffetta et al. (1997) investigated the growth of uncertainty in two-dimensional88
decaying homogeneous turbulence and found that the uncertainty growth is ruled by the89
error located in the positions of vortices. Mohan et al. (2017) found that much or most of90
the uncertainty is concentrated near vortex tubes in three-dimensional statistically stationary91
homogeneous turbulence and considered the possibility of local instability mechanisms92
reminiscent of pairing instabilities of corotating vortices as in mixing layers. Clark et al.93
(2021, 2022) investigated the dependence of uncertainty on spatial dimension (between 294
to 8) in DNS and in an EDQNM model of statistically stationary homogeneous turbulence.95
They found a critical dimension 𝑑𝑐 ≈ 5.88 which is close to the dimension of maximum96
enstrophy production and above which the turbulence uncertainty is no longer ruled by97
chaoticity. From these results, Clark et al. (2022) speculated that vortex stretching and strain98
self-amplification, which are responsible for enstrophy generation, may also be important99
for uncertainty generation. The present paper is an effort in the direction of understanding100
uncertainty growth in terms of vortex stretching and compression dynamics and statistics.101

In the following section we derive, from the Navier-Stokes equations, the evolution102
equation for the uncertainty energy ⟨𝐸Δ⟩ in the case of periodic/homogeneous turbulence.103
This uncertainty equation involves three different mechanisms: internal production resulting104
from interactions between the strain rate and the velocity-difference field, dissipation of105
the velocity-difference field and external force input. We use three different DNS of forced106
periodic/homogeneous turbulence to study these mechanisms and in section 3 we present107
their numerical setups. Our DNS results and their analysis are presented in section 4 and we108
conclude in section 5.109

2. Theoretical analysis of the uncertainty110

In the first part of this section we derive the evolution equation for the uncertainty energy111
⟨𝐸Δ⟩ and in the second part we discuss the production of uncertainty energy.112

2.1. Evolution equation of uncertainty113

The reference field 𝒖 (1) and the perturbed field 𝒖 (2) = 𝒖 (1) + Δ𝒖 are both governed by the114
incompressible Navier-Stokes equations115

𝜕
𝜕𝑡
𝑢
(𝑚)
𝑖

+ 𝑢 (𝑚)
𝑗

𝜕
𝜕𝑥 𝑗
𝑢
(𝑚)
𝑖

= − 𝜕
𝜕𝑥𝑖
𝑝 (𝑚) + 𝜈 𝜕2

𝜕𝑥 𝑗𝜕𝑥 𝑗
𝑢
(𝑚)
𝑖

+ 𝑓
(𝑚)
𝑖

,

𝜕
𝜕𝑥𝑖
𝑢
(𝑚)
𝑖

= 0,
(2.1)116

where 𝑝 is the pressure to density ratio, 𝒇 = ( 𝑓1, 𝑓2, 𝑓3) is the force per unit mass field, and117
the number 𝑚 = 1 or 2 in the superscript parentheses indicates whether the velocity/pressure118
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field is the reference or the perturbed one. The equation for Δ𝒖 ≡ 𝒖 (2) − 𝒖 (1) follows and is119

𝜕
𝜕𝑡
Δ𝑢𝑖 + 𝑢 (1)𝑗

𝜕
𝜕𝑥 𝑗

Δ𝑢𝑖 + Δ𝑢 𝑗
𝜕
𝜕𝑥 𝑗

Δ𝑢𝑖 + Δ𝑢 𝑗
𝜕
𝜕𝑥 𝑗
𝑢
(1)
𝑖

= − 𝜕
𝜕𝑥𝑖

Δ𝑝 + 𝜈 𝜕2

𝜕𝑥 𝑗𝜕𝑥 𝑗
Δ𝑢𝑖 + Δ 𝑓𝑖 ,

𝜕
𝜕𝑥𝑖

Δ𝑢𝑖 = 0,
(2.2)120

where Δ𝑝 ≡ 𝑝 (2) − 𝑝 (1) and Δ 𝒇 ≡ 𝒇 (2) − 𝒇 (1) are the pressure and forcing differences121
respectively. The divergence-free property of 𝒖 (𝑚) implies that Δ𝒖 is also divergence-free.122
Multiplying both sides of equation (2.2) with Δ𝑢𝑖 , summing over 𝑖 = 1, 2, 3 and using123
incompressibility we obtain124

𝜕

𝜕𝑡
𝐸Δ + 𝜕

𝜕𝑥 𝑗

(
𝑢
(1)
𝑗
𝐸Δ

)
+ 𝜕

𝜕𝑥 𝑗

(
Δ𝑢 𝑗𝐸Δ

)
+ Δ𝑢𝑖Δ𝑢 𝑗

𝜕

𝜕𝑥 𝑗
𝑢
(1)
𝑖

=125

− 𝜕

𝜕𝑥𝑖
(Δ𝑢𝑖Δ𝑝) + 𝜈

𝜕

𝜕𝑥 𝑗

(
𝜕𝐸Δ

𝜕𝑥 𝑗

)
− 𝜈 𝜕Δ𝑢𝑖

𝜕𝑥 𝑗

𝜕Δ𝑢𝑖

𝜕𝑥 𝑗
+ Δ 𝑓𝑖Δ𝑢𝑖 . (2.3)126

The second and third terms on the left-hand side of equation (2.3), as well as the first and127
second terms on the right-hand side, are in flux form. In the case of periodic/homogeneous128
turbulence, these four terms average to zero when a spatial average is applied to them, and129
therefore equation (2.3) leads to130

d
d𝑡

⟨𝐸Δ⟩ = ⟨𝑃Δ⟩ − ⟨𝜀Δ⟩ + ⟨𝐹Δ⟩ , (2.4)131

where132

𝑃Δ = −Δ𝑢𝑖𝑆 (1)𝑖 𝑗
Δ𝑢 𝑗 , 𝜀Δ = 𝜈

𝜕Δ𝑢𝑖

𝜕𝑥 𝑗

𝜕Δ𝑢𝑖

𝜕𝑥 𝑗
, 𝐹Δ = Δ 𝑓𝑖Δ𝑢𝑖 (2.5a, b, c)

and 𝑆 (1)
𝑖 𝑗

=

(
𝜕𝑢

(1)
𝑖

/𝜕𝑥 𝑗 + 𝜕𝑢 (1)𝑗
/𝜕𝑥𝑖

)
/2 is the reference field’s strain rate tensor.133

In periodic/homogeneous turbulence the average uncertainty energy evolves via (i) dissi-134
pation of uncertainty which always reduces uncertainty because the dissipation rate 𝜀Δ is135
always positive, (ii) external input/output of uncertainty with rate 𝐹Δ which depends on the136
force-difference field Δ 𝒇 , and (iii) internal production of uncertainty via the production rate137
𝑃Δ. In the absence of external force difference (i.e. Δ 𝒇 = 0), uncertainty can only grow138
because of internal production in which case ⟨𝑃Δ⟩ should be positive and greater than ⟨𝜀Δ⟩.139

Note that both fields 𝒖 (1) and 𝒖 (2) can be taken as the reference field and we therefore140

must have ⟨𝑃Δ⟩ = −
〈
Δ𝑢𝑖𝑆

(1)
𝑖 𝑗

Δ𝑢 𝑗

〉
= −

〈
Δ𝑢𝑖𝑆

(2)
𝑖 𝑗

Δ𝑢 𝑗

〉
in periodic/homogeneous turbulence.141

Indeed, defining Δ𝑆𝑖 𝑗 =
(
𝜕Δ𝑢𝑖/𝜕𝑥 𝑗 + 𝜕Δ𝑢 𝑗/𝜕𝑥𝑖

)
/2, we have 𝑆 (2)

𝑖 𝑗
= 𝑆

(1)
𝑖 𝑗

+Δ𝑆𝑖 𝑗 and ⟨𝑃Δ⟩ =142

−
〈
Δ𝑢𝑖𝑆

(1)
𝑖 𝑗

Δ𝑢 𝑗

〉
= −

〈
Δ𝑢𝑖𝑆

(2)
𝑖 𝑗

Δ𝑢 𝑗

〉
−

〈
Δ𝑢𝑖Δ𝑆𝑖 𝑗Δ𝑢 𝑗

〉
. Given that Δ𝒖 is divergence-free, we143

also have Δ𝑢𝑖Δ𝑆𝑖 𝑗Δ𝑢 𝑗 =
1
2

(
𝜕
𝜕𝑥 𝑗

(
Δ𝑢 𝑗𝐸Δ

)
+ 𝜕

𝜕𝑥𝑖
(Δ𝑢𝑖𝐸Δ)

)
which implies

〈
Δ𝑢𝑖Δ𝑆𝑖 𝑗Δ𝑢 𝑗

〉
= 0144

for periodic/homogeneous turbulence. Hence, ⟨𝑃Δ⟩ = −
〈
Δ𝑢𝑖𝑆

(1)
𝑖 𝑗

Δ𝑢 𝑗

〉
= −

〈
Δ𝑢𝑖𝑆

(2)
𝑖 𝑗

Δ𝑢 𝑗

〉
.145

2.2. Production of uncertainty146

To consolidate the interpretation of 𝑃Δ as internal production rate of uncertainty, we write147

𝐸Δ + 𝐸corr = 𝐸tot (2.6)148

where 𝐸tot = 𝐸 (1) + 𝐸 (2) =

(��𝒖 (1) ��2 + ��𝒖 (2) ��2) /2 and 𝐸corr = 𝒖 (1) · 𝒖 (2) . ⟨𝐸tot⟩ represents149

the average total kinetic energy of the reference and the perturbed velocity fields. Its rate of150

Focus on Fluids articles must not exceed this page length
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change follows from equation (2.1) and is151

d
d𝑡

⟨𝐸tot⟩ = −
2∑︁

𝑚=1

〈
𝜀 (𝑚)

〉
+

2∑︁
𝑚=1

〈
𝐹 (𝑚)

〉
, (2.7)152

where153

𝜀 (𝑚) ≡ 𝜈
𝜕𝑢

(𝑚)
𝑖

𝜕𝑥 𝑗

𝜕𝑢
(𝑚)
𝑖

𝜕𝑥 𝑗
, 𝐹 (𝑚) ≡ 𝑓

(𝑚)
𝑖

𝑢
(𝑚)
𝑖

. (2.8a, b)

If the two velocity fields 𝒖 (1) and 𝒖 (2) are so perfectly correlated that they are identical,154
then 𝐸corr = 𝐸tot and 𝐸Δ = 0. If, however, these two velocity fields are totally uncorrelated,155
then ⟨𝐸corr⟩ = 0 and ⟨𝐸Δ⟩ = ⟨𝐸tot⟩. The average internal production rate of uncertainty ⟨𝑃Δ⟩156
is an internal transfer rate between ⟨𝐸corr⟩ and ⟨𝐸Δ⟩, i.e. a transfer rate from correlation to157
decorrelation if it is positive and from decorrelation to correlation if it is negative. Indeed,158
from equations (2.6), (2.7) and (2.4), we have159

d
d𝑡

⟨𝐸corr⟩ = − ⟨𝑃Δ⟩ − ⟨𝜀corr⟩ + ⟨𝐹corr⟩ , (2.9)160

where161

𝜀corr = 𝜈
𝜕𝑢

(1)
𝑖

𝜕𝑥 𝑗

𝜕𝑢
(2)
𝑖

𝜕𝑥 𝑗
, 𝐹corr = 𝑓

(1)
𝑖
𝑢
(2)
𝑖

+ 𝑓
(2)
𝑖
𝑢
(1)
𝑖
. (2.10a, b)

so that ⟨𝑃Δ⟩ appears with opposite signs in equation (2.4) and in equation (2.9) and is absent162
from equation (2.7). If the two flows are identical, i.e. 𝒖 (1) = 𝒖 (2) , then 𝑃Δ = 𝜀Δ = 𝐹Δ = 0,163
and if they are totally uncorrelated, then ⟨𝑃Δ⟩ = ⟨𝜀corr⟩ = ⟨𝐹corr⟩ = 0.164

According to equation (2.4), the evolution of the average uncertainty energy depends on the165
reference field via its strain rate tensor in the uncertainty production term. The incompressible166
Navier-Stokes evolution of the strain rate tensor is given by167

𝜕

𝜕𝑡
𝑆𝑖 𝑗 + 𝑢𝑘

𝜕

𝜕𝑥𝑘
𝑆𝑖 𝑗 = −𝑆𝑖𝑘𝑆𝑘 𝑗 −

1
4

(
𝜔𝑖𝜔 𝑗 − 𝛿𝑖 𝑗 |𝝎 |2

)
− 𝑃𝑖 𝑗 + 𝜈

𝜕2

𝜕𝑥 𝑗𝜕𝑥 𝑗
𝑆𝑖 𝑗 + 𝐹𝑖 𝑗 , (2.11)168

where 𝝎 ≡ ∇×𝒖 is the vorticity, 𝛿𝑖 𝑗 is the Kronecker delta, 𝑃𝑖 𝑗 ≡ 𝜕2𝑝/𝜕𝑥𝑖𝜕𝑥 𝑗 is the pressure169
Hessian tensor and 𝐹𝑖 𝑗 ≡ (𝜕 𝑓𝑖/𝜕𝑥 𝑗+𝜕 𝑓 𝑗/𝜕𝑥𝑖)/2. The first and second terms in the right-hand170
side of equation (2.11) represent strain self-amplification and vortex-stretching respectively.171
They enhance the flow’s strain rate once and where it is non-negligibly present, while the172
pressure Hessian induces its initial growth where it is negligibly small but contributes less to173
its further development (Paul et al. 2017). Therefore, the internal production of uncertainty174
can be related to the strain self-amplification and vortex-stretching as speculated by Clark175
et al. (2022) in their conclusion, but also to the pressure Hessian. 𝐹𝑖 𝑗 in equation (2.11)176
represents the influence of the external forcing on the strain rate tensor. If the external forcing177
and its spatial gradients are not zero but there is no force difference in the system, i.e., Δ 𝒇 = 0178
and therefore 𝐹Δ = 0, then there is no direct external generation or depletion of uncertainty179
in equation (2.4) but the external forcing does nevertheless influence the strain rate tensor’s180
evolution because of 𝐹𝑖 𝑗 in equation (2.11) and thereby indirectly influences the evolution of181
the internal production of uncertainty in equation (2.4).182

The presence of the strain rate tensor in the internal uncertainty production reveals the183
critical and opposing roles of compression and stretching motions in the generation and184

reduction of uncertainty. Using the principal axes of 𝑆 (1)
𝑖 𝑗

(or 𝑆 (2)
𝑖 𝑗

) as a local orthonormal185
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reference frame, we can write186

𝑃Δ = −
(
Λ

(1)
1 Δ𝑤2

1 + Λ
(1)
2 Δ𝑤2

2 + Λ
(1)
3 Δ𝑤2

3

)
, (2.12)187

where Λ(1)
1 , Λ(1)

2 , Λ(1)
3 are the eigenvalues of 𝑆 (1)

𝑖 𝑗
and Δ𝑤1, Δ𝑤2, Δ𝑤3 are the components of188

the velocity-difference vector projected on the corresponding principal axes. Incompressibil-189

ity forces 𝑆 (1)
𝑖 𝑗

to be traceless, i.e., Λ(1)
1 + Λ

(1)
2 + Λ

(1)
3 = 0. Defining the order of eigenvalues190

as Λ
(1)
1 ⩽ Λ

(1)
2 ⩽ Λ

(1)
3 , we must have Λ

(1)
1 < 0 representing local compression and191

Λ
(1)
3 > 0 representing local stretching (Ashurst et al. 1987), while the sign of intermediate192

eigenvalue is uncertain but has been found to most likely be positive in DNS of turbulent flows193
(Ashurst et al. 1987). The important point which can now be made on the basis of equation194

(2.12) is that uncertainty is always produced in the compressive direction (Λ(1)
1 < 0) and195

always attenuated in the stretching direction (Λ(1)
3 > 0). In the absence of external input of196

uncertainty, the growth of average uncertainty energy can only occur through compression197
events, and only if compression overwhelms stretching in ⟨𝑃Δ⟩ and determines its sign.198
Spontaneous decorrelation of a flow from its perturbed flow in the absence of external inputs199
of uncertainty can only occur through local compressions.200

3. Numerical setups201

To study the growth of average uncertainty energy in periodic/homogeneous turbulence,202
we use a fully de-aliased pseudo-spectral code to perform DNS of forced incompressible203
Navier-Stokes turbulence in a periodic box of size L3 = (2𝜋)3. Time advancement is204
achieved with a second-order Runge-Kutta scheme. The code strategy is detailed by Vincent205
& Meneguzzi (1991). In all our simulations, the number of grid points is 𝑁3 = 5123 and206
the spatial resolution ⟨𝑘max𝜂⟩𝑡 (see definition in caption of Table 1) is between 1.6 and207
1.7. The time step is calculated by the CFL condition and the CFL number is 0.4. We first208
generate a reference field and copy it but generate randomly the velocity field in the perturbed209
wavenumber range to create the perturbed flow at a time which we refer to as 𝑡0 = 0, i.e.210
𝒖 (2) (𝒙, 𝑡0). In Fourier space, 𝒖̂ (2) (𝒌, 𝑡0) in each wavevector has six components:211

𝒖̂ (2) (𝒌, 𝑡0) =
©­­«
𝑢
(2)
𝑥0 (𝒌)𝑒𝑖𝜙𝑥0 (𝒌 )

𝑢
(2)
𝑦0 (𝒌)𝑒𝑖𝜙𝑦0 (𝒌 )

𝑢
(2)
𝑧0 (𝒌)𝑒𝑖𝜙𝑧0 (𝒌 )

ª®®¬ , (3.1)212

which follow three constraints213
(i) Incompressibility :214

𝚤𝒌 · 𝒖̂ (2) (𝒌, 𝑡0) = 0 . (3.2)215

(ii) The initial energy spectra of the reference flow and the perturbed flow are identical:216

𝐸̂ (1) (𝑘, 𝑡0) =
∫
|𝒌 |=𝑘

��𝒖̂ (1) (𝒌, 𝑡0)
��2

2
d2𝒌 =

∫
|𝒌 |=𝑘

��𝒖̂ (2) (𝒌, 𝑡0)
��2

2
d2𝒌 = 𝐸̂ (2) (𝑘, 𝑡0). (3.3)217

(iii) The difference initially only exists in the smallest scales, i.e. |𝒌 | > 𝑘0 where 𝑘0 =218
0.9𝑘𝑚𝑎𝑥 and 𝑘𝑚𝑎𝑥 = 𝑁/3 is the maximum resolvable wavenumber after de-aliasing (see219
however Appendix A for different perturbed wavenumber ranges):220

𝒖̂ (2) (𝒌, 𝑡0) =
{

𝒖̂ (1) (𝒌, 𝑡0) if |𝒌 | < 𝑘0,
Randomly generated if |𝒌 | ⩾ 𝑘0.

(3.4)221



7

For the generation of 𝒖̂ (2) (𝒌, 𝑡0) in the perturbed wavnumber range, these three constraints222
a priori couple all the 𝒖̂ (2) (𝒌, 𝑡0) on the sphere of Fourier space such that |𝒌 | = 𝑘 . For223
simplicity of implementation, we use a version of equation (3.3) restricted to each 𝒌,224
such that the sum of the resulting 𝒖̂ (2) (𝒌, 𝑡0) over |𝒌 | = 𝑘 verifies equation (3.3). This225
means that for each wavevector 𝒌 we compute six random values, three moduli and three226

phases
[
𝑢
(2)
𝑥0 (𝒌), 𝑢 (2)𝑦0 (𝒌), 𝑢 (2)𝑧0 (𝒌), 𝜙𝑥0 (𝒌), 𝜙𝑦0 (𝒌), 𝜙𝑧0 (𝒌)

]
∈ [0,

√︁
2𝐸̂ (1) (𝑘, 𝑡0)]3 × [0, 2𝜋)3227

that follow two constraints coming from the real and imaginary part of the imcompressibility228
condition (equation (3.2)) and one constraint from the spectrum (equation (3.3)). This means229
that only three independent components have to be drawn and the three others will follow. In230
practice:231
• In the general case of 𝑘𝑥 ≠ 0, 𝑘𝑦 ≠ 0 and 𝑘𝑧 ≠ 0, two uniform random numbers are232

drawn in [0, 1) yielding 𝜙𝑥0 (𝒌) and 𝜙𝑦0 (𝒌) after rescaling and one uniform random number233

in [0, 1) yielding 𝑢 (2)𝑥0 (𝒌) after rescaling. The moduli 𝑢 (2)𝑦0 (𝒌) and 𝑢 (2)𝑧0 (𝒌) are successively234
computed using equation (3.3). The sine and the cosine of the phase 𝜙𝑧0 (𝒌) are finally235
computed respectively using the real and imaginary part of the incompressibility condition236
(equation (3.2)).237
• In the case where only one component of the wavevector is equal to zero: the modulus and238

the phase in the direction of the zero component of the wavevector are drawn first uniformly239

from [0,
√︁

2𝐸̂ (1) (𝑘, 𝑡0)] × [0, 2𝜋). The two other moduli are computed using (equation (3.3)),240
one phase is drawn from [0, 2𝜋) and the other is deduced from incompressibility.241
• In the case where two components of the wavevector are equal to zero: the real242

and imaginary parts of incompressibility impose that the modulus of the corresponding243
component of 𝒖̂ (2) is zero, and that the corresponding phase is irrelevant. As a consequence,244
out of the four remaining values to be determined, one is constrained by equation (3.3). In245
practice the two remaining phases are drawn uniformly in [0, 2𝜋)2, one modulus is drawn246

uniformly in [0,
√︁

2𝐸̂ (1) (𝑘, 𝑡0)] and the other is determined using (equation (3.3)).247
In this way, the initial perturbations, defined as Δ𝒖(𝒙, 𝑡0) = 𝒖 (2) (𝒙, 𝑡0) − 𝒖 (1) (𝒙, 𝑡0),248

are also incompressible and exist only in the perturbed wavenumber range. Furthermore, the249
perturbed flow is generated randomly in its perturbed wavenumber range, hence the reference250
flow and the perturbed flow are initially completely decorrelated in this wavenumber range,251
which implies.252

𝐸̂Δ(𝑘, 𝑡0) =
∫
|𝒌 |=𝑘

|Δ𝒖̂(𝒌, 𝑡0) |2

2
d2𝒌 =

{
0 if |𝒌 | < 𝑘0,

𝐸̂tot(𝑘, 𝑡0) if |𝒌 | ⩾ 𝑘0,
(3.5)253

where 𝐸̂tot(𝑘, 𝑡0) = 𝐸̂ (1) (𝑘, 𝑡0) + 𝐸̂ (2) (𝑘, 𝑡0).254
Three different cases (F1, F2 and F3) are simulated by applying different external forcings255

and initial conditions. In the first case, labelled F1, a negative damping forcing is applied to256
both the reference and the perturbed turbulent fields and the force-difference field does not257
vanish. The forcing function is divergence-free as it depends on the low wavenumber modes258
of the velocity in Fourier space as follows259

𝒇̂
(𝑚) (𝒌, 𝑡) =

{
𝜀0

2𝐸 (𝑚)
𝑓

𝒖̂ (𝑚) (𝒌, 𝑡) if 0 < |𝒌 | ⩽ 𝑘 𝑓 ,

0 otherwise,
(3.6)260

where 𝒇̂ and 𝒖̂ are the Fourier transforms of 𝒇 and 𝒖 respectively, 𝜀0 is the preset average261
turbulence dissipation rate and 𝐸 𝑓 is the kinetic energy contained in the forcing bandwidth262
0 < |𝒌 | ⩽ 𝑘 𝑓 . This forcing has been widely used to simulate statistically steady homogeneous263
isotropic turbulence (HIT) on the computer (Ho et al. 2020; Berera & Ho 2018; Boffetta264
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& Musacchio 2017; Mohan et al. 2017; Clark et al. 2022, 2021). It offers the advantage of265
setting the average turbulence dissipation a priori for statistically steady turbulence. In the266
present work, we set 𝜀0 = 0.1 and 𝑘 𝑓 = 2.5.267

To generate the reference flow we use a von Kármán initial energy spectrum with the same268
coefficients as Yoffe (2012) and random initial Fourier phases. We integrate the reference269
flow till it reaches a statistically steady state and then seed it with perturbations to create the270
perturbed flow at a time which we refer to as 𝑡0 = 0. One can see from equation (3.6) that271
the external forcings are determined separately by the two fields and therefore Δ 𝒇 ≠ 0. F1272
is the only one of our three cases where 𝐹Δ is not identically zero and some uncertainty is273
introduced by the forcing in equation (2.4).274

The case F2 is identical to F1 except for the external forcing which is such that 𝐹Δ = 0.275
The forcing in the perturbed field is determined by the velocity in the reference field as276

𝒇̂
(2) (𝒌, 𝑡) = 𝒇̂

(1) (𝒌, 𝑡) =
{

𝜀0

2𝐸 (1)
𝑓

𝒖̂ (1) (𝒌, 𝑡) if 0 < |𝒌 | ⩽ 𝑘 𝑓 ,

0 otherwise,
(3.7)277

where 𝜀0 = 0.1 and 𝑘 𝑓 = 2.5. Therefore, there is no forcing difference between the two fields278
and all the uncertainty in equation (2.4) is generated exclusively by the internal production.279

The case F3 differs in one essential way from F1 and F2: rather than force the turbulence280
into a stationary steady state and then introduce the uncertainty after stationarity has set281
in (as in F1 and F2), in F3 we introduce the uncertainty well before stationarity has set282
in, i.e. at a very initial time when the initial velocity field has very little energy and the283
simulation starts running with a forcing which eventually brings the turbulence into an284
energetic stationary state. We chose a forcing for F3 that is independent of the velocity field285
to ensure steady buildup of the turbulence during a long yet finite time. The initial velocity286
fields are randomly generated with the same energy spectrum 𝐸̂ (𝑘) = 0.3 × 10−4𝑘−1 for287
the reference and the perturbed fields and the initial perturbations are seeded in the high288
wavenumber Fourier phases in the exact same way as in F1 and F2. Both flows are forced by289
an identical single-mode divergence-free force290

𝒇 (2) (𝒙, 𝑡) = 𝒇 (1) (𝒙, 𝑡) = ©­«
cos (𝑘0𝑦) sin (𝑘0𝑧)
cos (𝑘0𝑧) sin (𝑘0𝑥)
cos (𝑘0𝑥) sin (𝑘0𝑦)

ª®¬ , (3.8)291

where 𝑘0 = 4. This forcing differs from F1 but is similar to F2 in that 𝐹Δ identically vanishes292
and there is no uncertainty input from the forcing in equation (2.4). We repeat, however,293
that the main distinguising feature of F3 compared to F1 and F2 is that, in F3, the reference294
and the perturbed fields are statistically non-stationary during their initial growth (driven by295
the forcing) and the concurrent initial growth of uncertainty. This non-stationarity affects296
equation (2.4) through the resulting non-stationarity of the strain rate field in the internal297
production rate.298

In summary, F1 is the case that is widely used in previous works (Ho et al. 2020; Berera299
& Ho 2018; Boffetta & Musacchio 2017; Mohan et al. 2017; Clark et al. 2022, 2021) and F2300
differs from it only in terms of Δ 𝒇 which is zero in F2 and non-zero in F1. In both F1 and301
F2 the perturbation is made to a fully developed statistically stationary turbulence whereas302
in F3 we follow the evolution of two velocity fields which are initially very weak in terms of303
energy and very close to each other, i.e. very highly correlated. Both flows are progressively304
intensified by the same spatially sinusoidal time-independent forcing field and evolve towards305
statistical stationary fully developed turbulence while, at the same time, diverging from each306
other.307

The main parameters characterising the reference flows are given in table 1 where ⟨·⟩308
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Case 𝑁3 𝜈 ⟨⟨𝜀⟩⟩𝑡 ⟨𝑈⟩𝑡 ⟨𝐿⟩𝑡 ⟨𝑇0⟩𝑡 ⟨Re⟩𝑡 ⟨Re𝜆⟩𝑡 ⟨𝑘max𝜂⟩𝑡

F1 5123 0.0010 0.0981 0.622 1.101 1.771 684.9 151.6 1.70
F2 5123 0.0010 0.0988 0.622 1.102 1.772 685.4 151.2 1.70
F3 5123 0.0015 0.4096 0.643 0.345 0.537 148.2 63.8 1.62

Table 1: Parameters of the reference flows, where ⟨·⟩ represents the spatial average; ⟨·⟩𝑡
represents the temporal average and ⟨⟨·⟩⟩𝑡 represents the average in both space and time.
𝑁 is the resolution of the simulations, 𝜈 is the kinematic viscosity, 𝜀 is the dissipation.
𝑈 ≡

√︁
2 ⟨𝐸⟩ /3 is the rms velocity and 𝐿 ≡ (3𝜋/4 ⟨𝐸⟩)

∫
𝑘−1𝐸̂ (𝑘)d𝑘 is the integral

length scale. 𝑇0 ≡ 𝐿/𝑈 is the large eddy turnover time. Re ≡ 𝑈𝐿/𝜈 is the Reynolds
number. Re𝜆 ≡ 𝑈𝑙𝜆/𝜈 is the Reynolds number defined by the Taylor length scale

𝑙𝜆 ≡
√︁

10 ⟨𝐸⟩ 𝜈/⟨𝜀⟩. 𝑘max is the maximum resolvable wavenumber and 𝜂 ≡
(
𝜈3/⟨𝜀⟩

)1/4

is the Kolmogorov scale.

represents the spatial average, ⟨·⟩𝑡 represents the temporal average and ⟨⟨·⟩⟩𝑡 represents the309
average in both space and time. For F1 and F2, this time average is over all time 𝑡 ⩾ 0310
when the reference and perturbed fields are statistically stationary in the simulations. For311
F3, the time average is over the time when the reference flow’s turbulent kinetic energy312
and dissipation rate are statistically stationary, i.e. the standard deviations of

〈
𝐸 (1) 〉 (𝑡)313

and
〈
𝜀 (1)

〉
(𝑡) are smaller than 8% of

〈〈
𝐸 (1) 〉〉

𝑡
and

〈〈
𝜀 (1)

〉〉
𝑡

respectively. This leads to314

𝜏 ≡ 𝑡/
〈
𝑇
(1)

0

〉
𝑡
∈ [9.4, 30.0] (Note that the dimensionless time 𝜏 ≡ 𝑡/

〈
𝑇
(1)

0

〉
𝑡

is defined for315

all three cases F1, F2 and F3.).316

4. DNS results317

In this section we present our DNS results concerning equation (2.4), starting in subsection318
4.1 with the time evolution of ⟨𝐸Δ⟩ during the decorrelation process and an analysis of the319
three mechanisms at play and of the uncertainty’s energy spectrum. In subsection 4.2 we320
relate the growth rate of ⟨𝐸Δ⟩ to detailed properties of the production and dissipation of321
uncertainty, of the strain rate eigenvalues and of the distribution of uncertainty energy in the322
three principal axes of the strain rate tensor. In particular, we derive the chaotic exponential323
growth of ⟨𝐸Δ⟩ from similarity behaviours of these quantities. In subsection 4.3 we go beyond324
the average production of uncertainty and report probability density functions of 𝑃Δ.325

4.1. Time evolution of uncertainty326

4.1.1. Uncertainty energy327

Figure 1 shows the time evolutions of ⟨𝐸Δ⟩ for each case F1, F2 and F3. The very first thing328
that happens immediately after the perturbations are seeded is a decrease of ⟨𝐸Δ⟩ in all three329
cases. This initial correlating action is caused by the concentration of the initial perturbations330
at the highest wavenumbers where dissipation is high. The insets of figure 2 show that ⟨𝜀Δ⟩ is331
orders of magnitude higher than ⟨𝑃Δ⟩ at the earliest times in all three cases. As time proceeds,332
the uncertainty’s dissipation rate decreases and its production rate increases till production333
overtakes dissipation (see figure 2) and ⟨𝐸Δ⟩ begins to grow. This initial growth is shown in334
the insets of figure 1 and it differs for F1 and F2 on the one hand and F3 on the other. For F1335
and F2, ⟨𝐸Δ⟩ is observed to grow exponentially in the approximate time-range 𝜏 ∈ [0.2, 2.9].336
Previous DNS studies have already observed such exponential growth (Berera & Ho 2018;337
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(d) comparison F1 - F2

Figure 1: Time evolutions of average uncertainty energy for different cases. Inset: the
initial time evolution of average uncertainty energy in semilogarithmic plot. The

uncertainty evolutions of F1 and F2 are presented together in (d). Inset: the uncertainty
evolutions during 𝜏 ∈ [2.9, 6.5]. The exponential of exponential function fit is indicated

by a solid black line.

Boffetta & Musacchio 2017). For F3, the initial growth is from 𝜏 ≈ 2.5 to 𝜏 ≈ 12.6 and is338
subdivided in two parts. In the time range 𝜏 ∈ [2.5, 7.5], the turbulence and its strain rate339
are not statistically stationary and the time evolution of ⟨𝐸Δ⟩ is not exponential. Indeed, the340
plot of the logarithm of ⟨𝐸Δ⟩ versus time in the inset of figure 1(c) has a positive curvature341
in that time range. An exponential growth of ⟨𝐸Δ⟩ appears to set in at 𝜏 ≈ 7.5 and lasts till342
about 𝜏 ≈ 12.6. It is noteworthy that an exponential growth of uncertainty also exists in F3343
and that it starts a little earlier than when stationarity sets in. (The exponential regime’s time344
range is longer for F3 than for F1 and F2 mainly because of F3’s lower Reynolds number as345
argued in Appendix B). The results and analysis in the remainder of this paper confirm these346
interpretations.347

The growths of ⟨𝐸Δ⟩ are identical in F1 and F2 (see figure 1(d)) till the time when ⟨𝐹Δ⟩348
becomes significantly non-zero in F1 (see figure 2(a)). The regime of exponential growth349
is followed by what appears to be an exponential of exponential regime from 𝜏 ≈ 2.9 to350
𝜏 ≈ 6.5. This exponential of exponential growth is the same in F1 and F2 and is highlighted351
by the fit in the inset of figure 1(d). A similar growth range has been observed in previous352
DNS that are similar to F1 and go up to even higher Reynolds numbers (Berera & Ho 2018;353
Boffetta & Musacchio 2017). This exponential of exponential growth is confirmed by our354
analysis and further DNS results in subsection 4.2.355

Rapids articles must not exceed this page length
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(c) case F3

Figure 2: Time evolutions of each term in equation (2.4) for different cases, where
𝜀tot = 𝜀 (1) + 𝜀 (2) is the total dissipation of the reference and perturbed fields. Inset: the
initial time evolution of the internal production, dissipation and external input/output in

semilogarithmic plot.

After time 𝜏 = 6.5, the uncertainty growths for F1 and F2 deviate from each other as shown356

in figure 1(d) ( | ⟨𝐸Δ ⟩𝐹1−⟨𝐸Δ ⟩𝐹2 |
⟨𝐸Δ ⟩𝐹1

> 5% and growing as 𝜏 grows above 6.5) because ⟨𝐹Δ⟩ starts357

growing significantly above zero (⟨𝐹Δ⟩ /⟨𝜀Δ⟩ = 0.06 at 𝜏 = 6.5) in F1 whereas it is identically358
zero in F2 for all time (see figure 2). The reference and perturbed fields achieve significant359
decorrelation after the exponential growth of ⟨𝐸Δ⟩ for both F1 and F2, resulting, in case F1,360
in non-zero values of ⟨𝐹Δ⟩ which eventually grow significantly above the reference field’s361
turbulence dissipation rate, but only after 𝜏 = 6.5. The additional external decorrelating362
action of the forcing leads to eventually fully decorrelated reference and perturbed fields in363
case F1 as the ratio ⟨𝐸Δ⟩ /⟨𝐸tot⟩ stops growing and saturates at 0.97± 0.07 after 𝜏 = 10.6. In364
case F2 the identical forcing in both fields acts as a perpetual partially correlating (rather than365
decorrelating) action of the two fields and to a resulting eventual saturation of ⟨𝐸Δ⟩ /⟨𝐸tot⟩366
at 0.59 ± 0.05 for 𝜏 ⩾ 8.9 (In Appendix A we provide evidence showing that the early- and367
mid-time evolutions (i.e. the exponential regime and the exponential of exponential regime)368
of the average uncertainty energy are not very sensitive to the form and amplitude of the369
initial perturbations.).370

For case F3, the growth of ⟨𝐸Δ⟩ following the exponential regime ending at about 𝜏 ≈ 12.6371
can be seen in figure 1(c) and cannot be fitted by the exponential of exponential function372
detected in cases F1 and F2 nor any clear linear or power-law growth functions. As in F2,373
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Case Uncertainty regime Time interval 𝜏

F1

Initial decrease [0, 0.2]
Exponential growth [0.2, 2.9]

Exponential of exponential growth [2.9, 6.5]
Linear growth [6.5, 10.6]

Saturation [10.6, +∞]

F2

Initial decrease [0, 0.2]
Exponential growth [0.2, 2.9]

Exponential of exponential growth [2.9, 6.5]
Transient growth [6.5, 8.9]

Saturation [8.9, +∞]

F3

Initial decrease [0, 2.5]
Unsteady initial growth [2.5, 7.5]

Exponential growth [7.5, 12.6]
Nonlinear growth [12.6, 25.3]

Saturation [25.3, +∞]

Table 2: Time ranges of different uncertainty growth regimes.

the correlating action of the identical external forcing in both the reference and perturbed374
fields leads to them remaining partially correlated at all times and to an eventual saturation375
of ⟨𝐸Δ⟩ /⟨𝐸tot⟩ at 0.66 ± 0.01 for 𝜏 ⩾ 25.3.376

We close this subsection by pointing out that the only case of linear growth that we may377
have detected in our DNS is for F1 in the time range 𝜏 ∈ [6.5, 10.6]. A linear growth regime378
has been predicted by Aurell et al. (1997), however our simulations suggest that it may379
depend on the type of forcing. Furthermore, the Reynolds number of our DNS may not be380
high enough to observe it clearly and the very level of Reynolds number required may itself381
depend on the external forcing. We examine this issue again in the following subsections.382
The time ranges of the different uncertainty growth regimes in each case F1, F2 and F3 are383
summarized in table 2.384

4.1.2. Mechanisms of the uncertainty evolution385

The time evolutions of each term in equation (2.4), including the growth rate d ⟨𝐸Δ⟩ /d𝑡386
obtained directly from the DNS, are shown in figure 2. As can be seen in the figure, we387
started by checking that d ⟨𝐸Δ⟩ /d𝑡 agrees well with its value obtained from equation (2.4).388
In all cases F1, F2 and F3, ⟨𝑃Δ⟩ > ⟨𝜀Δ⟩ when d ⟨𝐸Δ⟩ /d𝑡 > 0. In cases F2 and F3 where389
⟨𝐹Δ⟩ = 0 at all times, the eventual saturation when d ⟨𝐸Δ⟩ /d𝑡 ≈ 0 is characterised by the390
balance ⟨𝑃Δ⟩ ≈ ⟨𝜀Δ⟩. This balance reflects the long-time partial correlation between the391
reference and perturbed fields and the long-time saturation of ⟨𝐸Δ⟩ /⟨𝐸tot⟩ at a value smaller392
than 1 reported in the previous subsection.393

We also observe in figure 2 for all cases F1, F2 and F3 that the long-time saturation is394
such that ⟨𝜀Δ⟩ ≈ ⟨𝜀tot⟩ ≡

〈
𝜀 (1) + 𝜀 (2)

〉
which implies ⟨𝜀corr⟩ ≈ 0. In cases F2 and F3,395

this means that the long-time saturated non-zero steady state of ⟨𝑃Δ⟩ is such that ⟨𝑃Δ⟩ ≈396 〈
𝜀 (1) + 𝜀 (2)

〉
≈

〈
𝐹 (1) + 𝐹 (2) 〉 (recall ⟨𝐹Δ⟩ = 0 and ⟨𝐹corr⟩ = 0 in F2, F3): the correlating397

action by the identical forcing in both statistically stationary reference and perturbed fields398
is directly balanced by the decorrelating action of the internal production of uncertainty.399

The uncertainty dissipation rate ⟨𝜀Δ⟩ reaches its long-time asymptotic balance with ⟨𝜀tot⟩,400
i.e. ⟨𝜀Δ⟩ /⟨𝜀tot⟩ > 0.95, at about 𝜏 = 16.1 for F3 and at about 𝜏 = 5.6 for both F1 and F2.401
This is slightly before but close to the time 𝜏 = 6.5 when ⟨𝐹Δ⟩ /⟨𝜀Δ⟩ = 0.06 stops being402
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Figure 3: Time evolutions of ratio ⟨𝑃Δ⟩ /⟨𝜀Δ⟩ for different cases. Inset: the evolution of
the ratio in the time range of the exponential growth of the average uncertainty.

negligible in F1 and the perturbation evolutions start diverging between F1 and F2. The403
presence of positive ⟨𝐹Δ⟩ in F1 delays the decay towards 0 of d ⟨𝐸Δ⟩ /d𝑡 which is reached404
at about 𝜏 = 10.6 for F1 but 𝜏 = 8.9 for 𝐹2. In the case of 𝐹1 one might even argue that405
an approximate steady state has resulted for d ⟨𝐸Δ⟩ /d𝑡 between 𝜏 = 6.5 and 𝜏 = 10.6, the406
time range corresponding to the linear growth regime perhaps observed in figure 1(a) for407
F1 and also in some previous DNS (Berera & Ho 2018; Boffetta & Musacchio 2017). After408
𝜏 = 10.6, ⟨𝑃Δ⟩ oscillates around zero, corresponding to the saturation of ⟨𝐸Δ⟩ /⟨𝐸tot⟩ at a409
value 0.97±0.07 in figure 1(a). This reflects the total decorrelation between the F1 reference410
and perturbed fields and leads to a long-time saturation balance ⟨𝐹Δ⟩ ≈ ⟨𝜀Δ⟩ in F1 which is411
to be contrasted with ⟨𝑃Δ⟩ ≈ ⟨𝜀Δ⟩ in F2 and F3. Note that the long-time saturation is such412
that ⟨𝐹corr⟩ ≈ 0 and ⟨𝐹Δ⟩ ≈

〈
𝐹 (1) + 𝐹 (2) 〉 in all cases, including F1. Hence, the long-time413

saturation balance between ⟨𝐹Δ⟩ and ⟨𝜀Δ⟩ in case F1 simply reflects ⟨𝜀tot⟩ ≈
〈
𝐹 (1) + 𝐹 (2) 〉.414

In figure 3 we concentrate on the time-evolution of the production-dissipation ratio415
⟨𝑃Δ⟩ /⟨𝜀Δ⟩ in all three cases F1, F2 and F3. As highlighted in the insets of this figure’s plots,416
there is, in all three cases, a time range when ⟨𝑃Δ⟩ /⟨𝜀Δ⟩ is about constant, i.e. a time range417
when the evolutions of ⟨𝑃Δ⟩ and ⟨𝜀Δ⟩ are similar. In all three cases this time range includes418
the time range of exponential growth of ⟨𝐸Δ⟩ identified in the previous subsection; in fact,419
in case F3 it more or less exactly coincides with it. To be specific, ⟨𝑃Δ⟩ /⟨𝜀Δ⟩ = 1.61 ± 0.03420
from 𝜏 = 0.6 to 𝜏 = 2.5 for F1 and F2, and ⟨𝑃Δ⟩ /⟨𝜀Δ⟩ = 1.61±0.08 from 𝜏 = 7.2 to 𝜏 = 12.8421
for F3. These two values are very close (and the additional case F4 in Appendix B returns a422
similar value for ⟨𝑃Δ⟩ /⟨𝜀Δ⟩ in F4’s similarity regime), indicating that the similarity value of423
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Figure 4: Early-time evolution of uncertainty energy spectrum for different cases. The
spectra are normalized by ⟨𝐸Δ⟩ and 𝐿Δ.

the production-dissipation ratio ⟨𝑃Δ⟩ /⟨𝜀Δ⟩ might be universal and independent of Reynolds424
number, as the presence of a strange attactor might perhaps imply.425

4.1.3. Uncertainty spectrum426

The uncertainty dissipation rate is the integral over all wavenumbers 𝑘 of 𝑘2𝐸̂Δ(𝑘) where427
𝐸̂Δ(𝑘) is the uncertainty spectrum, i.e. the energy spectrum of the velocity difference field.428
The similarity in the evolutions of uncertainty production and dissipation rates raises the429
question whether the uncertainty spectrum evolves in some self-similar manner over the430
time range of that similarity. We answer this question in terms of the integral length scale431
of the velocity-difference fields considered here which is 𝐿Δ = (3𝜋/4 ⟨𝐸Δ⟩)

∫
𝑘−1𝐸̂Δ(𝑘)d𝑘432

(see Batchelor (1953) for an introduction to this length scale for any statistically homoge-433
neous/periodic velocity field). 𝐿Δ is a measure of the length over which the velocity difference434
field is correlated, i.e. a characteristic length scale of uncertainty containing eddies.435

Soon after the initial decay of ⟨𝐸Δ⟩, the uncertainty spectra collapse with ⟨𝐸Δ⟩ (𝑡) and436
𝐿Δ(𝑡) at wavenumbers larger than 2/𝐿Δ as shown in figure 4, i.e. 𝐸̂Δ(𝑘, 𝑡) = ⟨𝐸Δ⟩ 𝐿Δ 𝑓 (𝑘𝐿Δ)437
for 𝑘𝐿Δ ⩾ 2, where 𝑓 is a dimensionless function of dimensionless wavenumber. At438
wavenumbers 𝑘𝐿Δ < 1 the energy spectra have an approximately power law dependence439
on 𝑘 but do not collapse till soon after the time when the exponential growth of ⟨𝐸Δ⟩ (𝑡) and440
the uncertainty’s production-dissipation similarity (⟨𝑃Δ⟩ /⟨𝜀Δ⟩ ≈ 1.6− 1.7) sets in. Over the441
time range when ⟨𝑃Δ⟩ /⟨𝜀Δ⟩ ≈ 1.6−1.7, the uncertainty spectrum is self-similar, i.e. evolves442
as 𝐸̂Δ(𝑘, 𝑡) = ⟨𝐸Δ⟩ 𝐿Δ 𝑓 (𝑘𝐿Δ) for all wavenumbers (see figure 5). The peak of the spectrum443
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Ê Δ
(k
)/(

⟨E
Δ
⟩L

Δ
)

k 3.3

τ=����
τ=	���

τ=����
τ=
���

τ=�����
τ=���	�

� 	 �� �� ��
����

����

���

(c) case F3

��	� ��� ���

kLΔ

��	�

��	


��	�

��	�

���
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Figure 5: Uncertainty energy spectra for cases (a) F1, (b) F2 and (c) F3 in the similarity
regime. The spectra are normalized by ⟨𝐸Δ⟩ and 𝐿Δ. Inset: semilogarithmic plot of the

uncertainty spectra in the wavenumber range higher than 2/𝐿Δ. The collapse of the
normalized uncertainty spectra for cases F1, F2 and F3 in the similarity regime is shown

in (d).

is at 𝑘 ≈ 2/𝐿Δ in all three cases F1, F2 and F3. At wavenumbers below 2/𝐿Δ the uncertainty444
spectra have an approximately 𝑘3.3 power law shape, while at wavenumbers above 2/𝐿Δ,445
they appear to have an exponential shape. Similar uncertainty spectrum shapes have been446
found in a previous DNS study (Berera & Ho 2018).447

It is remarkable that the uncertainty spectrum is self-similar in case F3 in the exact same448
way that it is self-similar in cases F1 and F2 over the time range where ⟨𝑃Δ⟩ /⟨𝜀Δ⟩ is449
approximately constant. In fact, the self-similar uncertainty spectrum even seems to be the450
same for F3, F1 and F2 as seen by the collapse in figure 5(d), suggesting a universal shape451
for the self-similar uncertainty spectrum in HIT. This is remarkable not only because 𝐹3 has452
a very different Reynolds number and forcing than F1 and F2, but more importantly because453
the F3 reference field is not statistically stationary in that time range whereas the F1 and F2454
reference fields are. In the F3 case, the uncertainty spectrum reaches its self-similar state at455
𝜏 ≈ 5.8 and the reference field becomes statistically stationary at 𝜏 = 9.4.456

After the time-range where ⟨𝑃Δ⟩ /⟨𝜀Δ⟩ is approximately constant, the uncertainty spectrum457
is no longer self-similar (see figure 6). This happens at 𝜏 = 3.5 for cases F1 and F2 and458
at 𝜏 = 12.6 for case F3 when 𝐸̂Δ(𝑘𝑚𝑎𝑥)/𝐸̂tot(𝑘𝑚𝑎𝑥) > 0.95. These are the times when the459
reference and perturbed fields decorrelate at the largest resolvable wavenumber (see figure460
6). The process of decorrelation between the two fields proceeds by decorrelating them at461
progressively smaller wavenumbers, causing the uncertainty spectrum to collapse with the462
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(c) case F3

Figure 6: Uncertainty spectra (dash lines) for different cases after the times when the
reference and perturbed fields decorrelate at the largest resolvable wavenumber. The

uncertainty spectra are normalized by ⟨𝐸tot⟩. The dots on the uncertainty spectra represent
𝑘 = 2/𝐿Δ. The solid line represents the energy spectrum of the reference field when it is

statistically steady. The energy spectrum is normalized by
〈
𝐸 (1)

〉
. The uncertainty

spectrum shifts gradually along with the arrows representing the direction of time advance.

reference field’s energy spectrum over a progressively wider range of the higher wavenumbers463
(see figure 6). This progressive decorrelation process from high to small wavenumbers and464
the uncertainty spectrum’s progressive convergence towards the reference field’s spectrum465
prevents the uncertainty spectrum from being self-similar. For F1, the uncertainty spectrum466
finally collapses with the reference field’s energy spectrum at all wavenumbers, indicating467
that the two fields eventually decorrelate completely at all wavenumbers (see figure 6(a)).468
The same happens for F2 and F3 except over the wavenumbers acted by the forcing where a469
gap always remains between the uncertainty and the reference field spectra, indicating that470
the two fields retain a degree of correlation at these large scales (see figure 6(b), 6(c)).471

4.1.4. Characteristic length of uncertainty472

The growth of 𝐿Δ is evident in figure 6. We therefore plot its time evolution in figure 7 and473
compare it with the integral and Taylor length scales (𝐿 and 𝑙𝜆 respectively) of the reference474
field for each case F1, F2 and F3. At the very early times when uncertainty dissipation475
dominates, the velocity-difference field decays and its integral length scale normalised by476
𝐿 is, correspondingly, increasing. In the stationary turbulence F1 and F2 cases, this time477

regime is followed by the chaotic regime where ⟨𝐸Δ⟩ grows exponentially and where 𝐿Δ/𝑙 (1)𝜆
478
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Figure 7: Time evolution of 𝐿Δ/𝑙
(1)
𝜆

for different cases. Inset: time evolution of 𝐿Δ/𝐿 (1) .
The time evolutions of 𝐿Δ/𝑙

(1)
𝜆

in cases F1 and F2 are plotted together in (d). Inset: the
log-log plot of the time evolutions of 𝐿Δ/𝑙

(1)
𝜆

.

remains relatively constant at 0.38 ± 0.01. A constant 𝐿Δ/𝑙 (1)𝜆
(though a different constant,479

𝐿Δ/𝑙 (1)𝜆
= 0.64 ± 0.03) is also observed in the non-stationary F3 case during the chaotic480

regime even though 𝑙 (1)
𝜆

grows in time for some of that regime and even though this time481
regime does not follow immediately after the dissipation-dominated regime. In fact, 𝐿Δ482
decreases between the dissipation-dominated and the chaotic regime in the F3 case. It is483

noteworthy that 𝐿Δ reaches 𝑙 (1)
𝜆

at 𝜏 = 4.9 for cases F1 and F2 and at 𝜏 = 14.5 for case F3,484
a little before the average uncertainty dissipation rate reaches its stationary value in figure485
2, i.e. 𝜏 ≈ 5.6 for F1 and F2 and 𝜏 ≈ 16.1 for F3. The link between 𝐿Δ and the Taylor486
length of the reference field is potentially interesting as the Taylor length is the mean distance487
between stagnation points in a homogeneous isotropic turbulence (Goto & Vassilicos 2009)488
and therefore tends to represent the average size of turbulent eddies which is highly weighted489
towards the more numerous smallest ones.490

Following the exponential growth of ⟨𝐸Δ⟩, three consecutive time regimes follow for F1491
and F2. First, one observes an approximately power-law growth of 𝐿Δ, identical for both F1492
and F2 as shown in figure 7(d), more or less coinciding with the exponential of exponential493
growth of ⟨𝐸Δ⟩ till 𝜏 = 6.5. In this time regime, 𝐿Δ ∼ 𝑡3/2 is a good fit. This fit is reminiscent494
of the power-law growth of the predictability scale 𝑘−1

𝐸
∼ 𝑡3/2 obtained in previous numerical495

simulations (Boffetta & Musacchio 2017; Leith & Kraichnan 1972) and theoretical arguments496
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(Boffetta & Musacchio 2017; Lorenz 1969; Frisch 1995), as a companion conclusion to the497
linear growth of ⟨𝐸Δ⟩. However, 𝐿Δ and 𝑘−1

𝐸
are not equivalent: the predictability scale is498

defined as the inverse of the minimum wavenumber 𝑘𝐸 such that 𝐸Δ(𝑘𝐸)/𝐸̂tot(𝑘𝐸) = 1,499
and 𝑘−1

𝐸
∼ 𝑡3/2 is obtained on the assumption that the decorrelation process happens in500

the inertial range. 𝐿Δ ∼ 𝑡3/2 is observed without concurrent linear growth of ⟨𝐸Δ⟩ but a501
concurrent exponential of exponential ⟨𝐸Δ⟩ growth instead.502

The second consecutive regime which follows for F1 and F2 is an apparently linear growth503
of 𝐿Δ that lasts till the time when 𝐿Δ saturates to a constant. The third and final regime is this504
approximately constant 𝐿Δ regime where 𝐿Δ ≈ 𝐿 (1) for F1 (see figure 7(a)) in agreement505
with the eventual complete decorrelation of the reference and perturbed fields and where506
𝐿Δ ≈ (0.70 ± 0.06)𝐿 (1) (smaller than 𝐿 (1) ) for F2 (see figure 7(b)) in agreement with the507
eventual partial correlation between these two fields in this case.508

In the F3 case, the chaotic regime where ⟨𝐸Δ⟩ grows exponentially and 𝐿Δ/𝑙 (1)𝜆
= 0.64 ±509

0.03 is followed by an intermediate regime where 𝐿Δ grows to eventually reach the final510
constant regime where 𝐿Δ = (0.81 ± 0.03)𝐿 (1) (smaller than 𝐿 (1) ) characterising the final511
saturation (see figure 7(c)). As for F2, the fact that 𝐿Δ is significantly lower than 𝐿 in the512
eventual saturation regime reflects the partial long-time correlation imposed by the identical513
forcing in the reference and perturbed fields.514

4.2. Quantitative analysis of the uncertainty growth515

4.2.1. From similarity to exponential growth516

When ⟨𝐹Δ⟩ is identically zero (as in F2 and F3) or negligibly small compared to ⟨𝑃Δ⟩ and517
⟨𝜀Δ⟩ (as in F1 for 𝜏 smaller than about 6.5) the evolution equation for ⟨𝐸Δ⟩ becomes518

d
d𝑡

⟨𝐸Δ⟩ = ⟨𝑃Δ⟩ − ⟨𝜀Δ⟩ . (4.1)519

To estimate ⟨𝑃Δ⟩ in terms of ⟨𝐸Δ⟩ and obtain an equation of the same form as equation (1.1),520
we apply a Reynolds decomposition to equation (2.12) and write521

⟨𝑃Δ⟩ = −
3∑︁
𝑖=1

〈
Λ

(1)
𝑖

Δ𝑤2
𝑖

〉
= −

3∑︁
𝑖=1

〈
Λ

(1)
𝑖

〉 〈
Δ𝑤2

𝑖

〉
︸                   ︷︷                   ︸

⟨𝑃Δ ⟩Ave

−
3∑︁
𝑖=1

〈
Λ

(1)′
𝑖

Δ𝑤2
𝑖

′〉
︸                 ︷︷                 ︸

⟨𝑃Δ ⟩Fluc

, (4.2)522

where Λ
(1)′
𝑖

≡ Λ
(1)
𝑖

−
〈
Λ

(1)
𝑖

〉
and Δ𝑤2

𝑖

′ ≡ Δ𝑤2
𝑖
−

〈
Δ𝑤2

𝑖

〉
. In all cases F1, F2 and F3, and523

at times after the similarity regime, the first term on the right hand side of equation (4.2)524
dominates over the second term and contributes the most to ⟨𝑃Δ⟩ (see figure 8). During525
the part of the similarity regime when ⟨𝐸Δ⟩ grows exponentially, 𝛽 ≡ ⟨𝑃Δ⟩Ave /⟨𝑃Δ⟩ is526
constant in time and so is 1 − 𝛽 = ⟨𝑃Δ⟩Fluc /⟨𝑃Δ⟩ (see insets of figure 8): 𝛽 is a constant527
equal to 0.53 ± 0.02 for F1 and F2 and equal to a slightly different value 0.66 ± 0.02 for F3528
where the Taylor length-based Reynolds number is significantly lower than for F1 and F2.529
One may indeed expect the fluctuation contribution ⟨𝑃Δ⟩Fluc to increase in magnitude with530
increasing Reynolds number relative to the mean contribution ⟨𝑃Δ⟩Ave in equation (4.2), and531
𝛽 to therefore be a decreasing function of Reynolds number.532

Defining 𝛾 (1)
𝑖

≡ Λ
(1)
𝑖

/

√︄〈���𝑆 (1)𝑖 𝑗

���2〉 (where
��𝑆𝑖 𝑗 �� ≡ √︁

𝑆𝑖 𝑗𝑆𝑖 𝑗) and 𝜃𝑖 ≡ Δ𝑤2
𝑖
/2 ⟨𝐸Δ⟩, and533
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Figure 8: Time evolution of ⟨𝑃Δ⟩ and its decomposition into average and fluctuation parts
for different cases. Inset: the early-time evolution of the ratio of average term/total

production and fluctuation term/total production.

using 𝛽 ≡ ⟨𝑃Δ⟩Ave /⟨𝑃Δ⟩, we have534

⟨𝑃Δ⟩ = −2

∑3
𝑖=1

〈
𝛾
(1)
𝑖

〉
⟨𝜃𝑖⟩

𝛽

√︄〈���𝑆 (1)𝑖 𝑗

���2〉 ⟨𝐸Δ⟩ . (4.3)535

We now examine the behaviours of
〈
𝛾
(1)
𝑖

〉
and ⟨𝜃𝑖⟩.536

We start with
〈
𝛾
(1)
𝑖

〉
which, unlike 𝛽 and ⟨𝜃𝑖⟩, are properties of the reference field and537

not of the velocity-difference field:
〈
𝛾
(1)
𝑖

〉
are the average strain rates along the principal538

axes of the reference field’s strain rate tensor and they are plotted versus time in figure 9.539

Note the constraints
∑3

𝑖=1

〈
𝛾
(1)
𝑖

〉
= 0 and

∑3
𝑖=1

〈
𝛾
(1)2
𝑖

〉
= 1. In cases F1 and F2, where the540

reference flow is statistically stationary,
〈
𝛾
(1)
𝑖

〉
are constant in time and

〈
𝛾
(1)
1

〉
:
〈
𝛾
(1)
2

〉
:541 〈

𝛾
(1)
3

〉
≈ −0.65 : 0.12 : 0.53 in agreement with Betchov (1956)’s theoretical demonstration542

that there must be one principal axis direction which is compressive on average and two543
which are on average stretching. In case F3, the reference flow is not statistically stationary544

till about 𝜏 = 9.4 but
〈
𝛾
(1)
𝑖

〉
acquire a stable value before that and are already constant545

during the similarity period 𝜏 ≈ 5.8 to 𝜏 ≈ 12.60 (see figure 9(c)). In case F3, we observe546
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Figure 9: Time evolution of ⟨𝛾𝑖⟩ in the reference flows for different cases.〈
𝛾
(1)
1

〉
:
〈
𝛾
(1)
2

〉
:
〈
𝛾
(1)
3

〉
≈ −0.68 : 0.13 : 0.55, which is very close to F1 and F2, also in547

agreement with Betchov (1956)’s prediction.548
The average uncertainty energy ⟨𝐸Δ⟩ consists of three average uncertainty energies549 〈
Δ𝑤2

𝑖
/2

〉
in the principal axes of the reference field’s strain rate tensor: ⟨𝐸Δ⟩ =

∑3
𝑖=1

〈
Δ𝑤2

𝑖
/2

〉
.550

The ratios ⟨𝜃𝑖⟩ represent the proportion of average uncertainty energy in each principal551
direction and they of course sum up to 1. Their time evolution is shown in figure 10. Most552
of the uncertainty energy is concentrated in the compressive direction until 𝜏 ≈ 8 − 9 in553
cases F1 and F2 and for all time in case F3, in agreement with our observation at the554
end of subsection 2.2 that the production of uncertainty occurs by compressive motions.555
At saturation times there is a tendency for equipartition of average uncertainty energy in556
the three principal directions, in particular for F1 where the reference and principal fields557
completely decorrelate in the long term. The tendency remains for F2 and F3 but the average558
uncertainty energy in the most stretching direction remains significantly below the average559
uncertainty energy in the other two directions thereby ensuring that ⟨𝑃Δ⟩ remains positive and560
the reference and perturbation fields remain partially correlated during eventual saturation.561

In all three cases F1, F2 and F3, ⟨𝜃𝑖⟩ are approximately constant during the similarity562
regime where 𝛽 is also constant in time. During the similarity regime, the ⟨𝜃𝑖⟩ values are563
⟨𝜃1⟩ : ⟨𝜃2⟩ : ⟨𝜃3⟩ ≈ 0.58 : 0.19 : 0.23 for cases F1 and F2 and ⟨𝜃1⟩ : ⟨𝜃2⟩ : ⟨𝜃3⟩ ≈ 0.59 :564
0.18 : 0.23 for case F3. The values of ⟨𝜃𝑖⟩ appear to be universal during the similarity regime565
whereas 𝛽 seems to be dependent on Reynolds number.566

Finally we discuss the relation between ⟨𝜀Δ⟩ and ⟨𝑃Δ⟩. The self-similar uncertainty567
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Figure 10: Time evolution of ⟨𝜃𝑖⟩ for different cases. Inset: the time evolution of ⟨𝜃𝑖⟩
during the similarity regime.
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Figure 11: Time evolution of 1/Re𝜆 in case F3.

spectrum 𝐸̂Δ(𝑘, 𝑡) = ⟨𝐸Δ⟩ 𝐿Δ 𝑓 (𝑘𝐿Δ) implies that the uncertainty dissipation is568

⟨𝜀Δ⟩ = 2𝜈
∫

𝑘2𝐸̂Δ(𝑘)d𝑘 = 2𝜈 ⟨𝐸Δ⟩ 𝐿Δ
∫

𝑘2 𝑓 (𝑘𝐿Δ)d𝑘 = 2𝜈
⟨𝐸Δ⟩
𝐿2
Δ

∫
𝑥2 𝑓 (𝑥)d𝑥, (4.4)569
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Figure 12: Time evolution of Γ and 2
√

2𝜆𝜏𝜂for different cases. Inset: the time evolution of
Γ during the similarity regime in semilogarithmic plot. The exponential function fit is

indicated by a dash-dot line for F1 and F2.
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Figure 13: Schematic log-log plot of 𝜆𝜏𝜂 with the Taylor length-based Reynolds number
Re𝜆 according to the numerical results (in blue) and models calibrated with Bayesian

inference (in red) of Mohan et al. (2017). The Lyapunov exponents and the coefficient Γ
obtained in the present work (in green crosses and red points) are also plotted.
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where
∫
𝑥2 𝑓 (𝑥)𝑑𝑥 is a time-constant. Defining 𝛼 ≡ ⟨𝜀Δ⟩ /⟨𝑃Δ⟩, we obtain, from equation570

(4.3) and (4.4)571

𝛼 = −

𝛽
∫
𝑥
𝑥2 𝑓 (𝑥)d𝑥∑3

𝑖=1

〈
𝛾
(1)
𝑖

〉
⟨𝜃𝑖⟩


𝜈

𝐿2
Δ

√︄〈���𝑆 (1)𝑖 𝑗

���2〉 . (4.5)572

As shown above in this sub-section, the term in square brackets in equation (4.5) is constant573

in time. Figure 7 suggests that 𝐿Δ and 𝑙 (1)
𝜆

have the same dependence on time but not the same574

dependence on viscosity. Therefore, the time dependence of

(
𝐿2
Δ

√︄〈���𝑆 (1)𝑖 𝑗

���2〉) is the same as575

the time dependence of
( (
𝜂 (1)

)2
(
𝜏
(1)
𝜂

)−1
Re(1)

𝜆

)
∼ Re(1)

𝜆
. For cases F1 and F2, the reference576

field, and therefore Re(1)
𝜆

are statistically steady, and it therefore follows from equation (4.5)577
that 𝛼 is constant in time during the similarity regime. For the same reason, 𝛼 is constant578
in time after 𝜏 = 9.4 in the similarity regime of case F3 because this is when the reference579

flow reaches the statistically steady state. During 𝜏 ∈ [7.5, 9.4] for F3, 1/Re(1)
𝜆

decreases580
monotonically from 0.0187 to 0.0156 as shown in figure 11. This 20% decrease is small581

compared to the variations of 1/Re(1)
𝜆

at normalised times 𝜏 smaller than 7.5 and results in a582
small decrease of 𝛼 in the corresponding time period (i.e. a slow increase of 1/𝛼, as shown583
in figure 3). Therefore, 𝛼 can be considered to be approximately constant in the similarity584
period 𝜏 ∈ [7.5, 12.5] of F3.585

We have seen at the end of subsection 4.1.2 and figure 3 that 𝛼 = ⟨𝑃Δ⟩ /⟨𝜀Δ⟩ seems586
to be independent of viscosity but we also noted two paragraphs above that 𝛽 is not. The587

dependencies on viscosity of 𝛽𝜈 and

(
𝐿2
Δ

√︄〈���𝑆 (1)𝑖 𝑗

���2〉) in equation (4.5) must therefore be the588

same and cancel each other.589
Substituting equations (4.3) and equation (4.5) into equation (4.1), we obtain590

d
d𝑡

⟨𝐸Δ⟩ = Γ

√︄〈���𝑆 (1)𝑖 𝑗

���2〉 ⟨𝐸Δ⟩ , (4.6)591

where592

Γ = −2
1 − 𝛼
𝛽

3∑︁
𝑖=1

〈
𝛾
(1)
𝑖

〉
⟨𝜃𝑖⟩ . (4.7)593

This is a general rewriting of equation (4.1) with particularly interesting consequences for594

the similarity regime when 𝛼, 𝛽,
〈
𝛾
(1)
𝑖

〉
and ⟨𝜃𝑖⟩ are constant in time. The dimensionless595

coefficient Γ defined by equation (4.7) is therefore constant in time during the similarity596
regime but may depend on Reynolds number (i.e. viscosity) via the dependence of 𝛽 on597
Reynolds number.598

Looking at equation (4.6), an exponential growth of ⟨𝐸Δ⟩ with a well-defined Lyapunov599
exponent 𝜆 can be derived during the similarity regime because Γ is constant in time:600

2𝜆 = Γ

√︄〈���𝑆 (1)𝑖 𝑗

���2〉 =
1
√

2
Γ𝜏−1

𝜂 . (4.8)601
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The exponential growth of average uncertainty energy is, therefore, a consequence of602
similarity. How similarity (time-independent 𝛼, 𝛽, ⟨𝜃𝑖⟩ and self-similar evolution of the603
uncertainty spectrum in terms of ⟨𝐸Δ⟩ and 𝐿Δ) may be a consequence of the presence of604
a strange attractor is, however, beyond this paper’s scope but the question is now posed for605
future investigations.606

The dimensionless coefficient Γ obtained from equation (4.7) and the Lyapunov exponent607
directly obtained from equation (1.1) are plotted in figure 12: for all cases F1, F2 and F3, Γ is608
about constant in the time range where exponential growth is present. The actual value of Γ in609
this time range is the same for F1 and F2 but it is different for F3 which has a lower Reynolds610
number. The scaling 𝜆𝜏𝜂 ∼ Γ(Re) suggests that the Lyapunov exponent may not scale with611
the Kolmogorov time 𝜏𝜂 (as claimed by Ruelle (1979)) if Γ depends on Reynolds number,612
which it may do on account of a Reynolds number dependence of 𝛽. The coefficient Γ, as613
well as the Lyapunov exponent, are also plotted in figure 13 to compare with previous data by614
Mohan et al. (2017). The ratio of Γ values in the F1 and F3 cases is ΓF1/ΓF3 = 1.29 during615
the exponential growth time range, while 𝛽F3/𝛽F1 = 1.25 in the same regime. The data of616
Mohan et al. (2017) lead to ΓF1/ΓF3 ≈ 1.30 purely on the basis of the Reynolds numbers of617
F1 and F3 (see figure 13). This confirms the hypothesis that the different values of Γ in F1618
and F2 on the one hand and F3 on the other are caused by the difference in Reynolds number619
and nothing else.620

The regime of approximate constancy of Γ is followed by a time range 𝜏 ∈ [2.9, 6.5]621
where Γ appears to decay exponentially in the F1 and F2 cases (it is not clear whether such622
a range does or does not exist in the F3 case), see figure 12. Specifically, the exponential623
curve fit gives Γ = 0.73 exp(−1.26(𝜏−2.9)). Using ⟨𝐸tot⟩ and

〈
𝑇 (1) 〉

𝑡
to non-dimensionalise624

equation (4.6), we write625

d
d𝜏

⟨𝐸Δ⟩
⟨𝐸tot⟩

= Γ

〈
𝑇 (1)

〉
𝑡

√︄〈���𝑆 (1)𝑖 𝑗

���2〉 ⟨𝐸Δ⟩
⟨𝐸tot⟩

. (4.9)626

For statistically stationary cases F1 and F2 we find
〈
𝑇 (1) 〉

𝑡

√︄〈���𝑆 (1)𝑖 𝑗

���2〉 = 12.77 ± 0.56 in the627

time range 𝜏 ∈ [2.9, 6.5]. Therefore, equation (4.9) and our fitting of Γ imply ⟨𝐸Δ⟩ /⟨𝐸tot⟩ ∼628
exp(−9.32 exp(−1.26(𝜏 − 2.9))), which is approximately consistent with the direct curve629
fitting in the inset of figure 1(d). Eventually Γ tends to 0 and the average uncertainty energy630
stops growing in all cases F1, F2 and F3.631

4.2.2. Scaling of the Lyapunov exponent during similarity632

Our analysis in section 4.2.1 and the data of (Mohan et al. 2017) presented in figure 13633
question the view that 𝜆 scales with 𝜏𝜂 (Ruelle 1979). If 𝜆 does not scale with 𝜏𝜂 which is the634
smallest Lagrangian time scale of the turbulence, it may scale with 𝜏𝐸 = 𝜂/𝑈, the shortest635

Eulerian time scale of the turbulence (Tennekes 1975), in which case 𝜆𝜏𝜂 ∼ 𝜏𝜂/𝜏𝐸 ∼ Re1/2
𝜆

.636

The data of Mohan et al. (2017) in figure 13 suggests that 𝜆 grows faster than 𝜏−1
𝜂 but slower637

than 𝜏−1
𝐸

as Reynolds number increases, perhaps𝜆 ∼ 𝜏−(1−𝑐)/2
𝜂 𝜏

−(1+𝑐)/2
𝐸

, i.e.𝜆𝜏𝜂 ∼ Re(1+𝑐)/4
𝜆

,638

where 𝑐 ∈ (−1, 1]. In fact, the results of Mohan et al. (2017) suggest that 𝜆𝜏𝜂 ∼ Re(1+𝑐)/4
𝜆

639
where the most likely values of 𝑐 are between 0 and 1/3. The large scale random sweeping640
of the smallest eddies represented in the Eulerian time scale 𝜏𝐸 appears to influence the641
growth of uncertainty even though the uncertainty exists only at the the smallest scales642
during the chaotic exponential growth. Interestingly, this large-scale random-sweeping effect643
is reflected in the decreasing dependence of 𝛽 on Reynolds number (see equations (4.7)644
and (4.8)) which implies that ⟨𝑃Δ⟩ should be increasingly dominated by ⟨𝑃Δ⟩Fluc rather645
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Figure 14: Early-time evolution of PDFs of 𝑃Δ for different cases. PDFs are plotted versus
𝑃Δ/𝜎𝑃Δ

where 𝜎𝑃Δ
is the standard deviation of 𝑃Δ, defined as

𝜎2
𝑃Δ

≡
∫ 𝑃Δmax
𝑃Δmin

(𝑃Δ − ⟨𝑃Δ⟩)2P(𝑃Δ)d𝑃Δ.

than ⟨𝑃Δ⟩Ave in equation (4.2) as Reynolds number increases. There seems to be a relation646
between large-scale random sweeping and uncertainty production, and in particular between647
random sweeping and the way that compression and stretching affect average uncertainty648
production either through average compression/stretching rates or through the correlations649
of their fluctuations with uncertainty energy fluctuations in specific stretching/compressive650
directions. A Lagrangian or some combined Eulerian-Lagrangian description of uncertainty651
(e.g. see Boffetta et al. (1997)) as advocated by Leith & Kraichnan (1972) in the introduction652
might have advantages over the present purely Eulerian approach as it may naturally account653
for the large-scale sweeping’s effect on uncertainty and thereby return a reduced average654
uncertainty production. The large-scale sweeping’s effect on uncertainty might also have655
some relation with the error in positions of local flow structures that Boffetta et al. (1997)656
identified.657

4.3. The probability distribution of the uncertainty production658

Even though the average uncertainty production rate is positive, the most likely value of 𝑃Δ659
is zero at all times. In figures 14 and 15 we plot instantaneous probability density functions660
(PDF) of 𝑃Δ sampled through all space and we examine how these PDFs evolve with time. An661
immediate observation is that the PDFs of 𝑃Δ do not seem to match a well-known standard662
distribution (e.g. Gaussian, exponential, power-law) at any time and for any case F1, F2 and663
F3. Another immediate observation is that the early time PDFs of 𝑃Δ for F3 differ from those664
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(c) case F3

Figure 15: Evolution of PDFs of 𝑃Δ after the similarity regime for different cases. PDFs
are plotted versus 𝑃Δ/𝜎𝑃Δ

where 𝜎𝑃Δ
is the standard deviation of 𝑃Δ.

for F1 and F2 as their tails on the negative side are much shorter than on the positive side.665
These are times when the F3 reference flow is not statistically stationary.666

Given that the most likely value of 𝑃Δ is 𝑃Δ = 0, the non-zero values of ⟨𝑃Δ⟩ result667
from the positive skewnesses and the heavy tails of these PDFs (see figures 14 and 15). The668
positive skewness and heavy tails, i.e. high kurtosis, set in from very early times and reveal669
an intermittent spatial distribution of co-existing uncertainty generation and depletion events670
where high generation events are more intense than high depletion events.671

This spatial intermittency becomes increasingly acute and increasingly favourable to672
uncertainty generation rather than depletion events as the skewness and the kurtosis grow673
to extremely high positive values which fluctuate around a constant during the chaotic674
exponential growth in all F1, F2 and F3 cases (see figure 16). This happens within the675
similarity regime where 𝛼, 𝛽 and 𝜃𝑖 are constant and the uncertainty spectrum is self-similar676
if scaled with ⟨𝐸Δ⟩ and 𝐿Δ. In fact, as shown in figure 14, the PDFs of 𝑃Δ also approximately677
collapse during the time range of extreme skewness and kurtosis if normalised by the678
PDF’s maximum value and standard deviation. During this time range where similarity and679
exponential uncertainty growth coexist, the kurtosis and the skewness fluctuate around 105680
and 200 respectively, suggesting that ⟨𝑃Δ⟩ is predominantly determined by rare yet powerful681
events of uncertainty generation and depletion.682

After the similarity and chaotic growth stage, both the skewness and the kurtosis of the683
PDFs continuously decrease with time indicating that more points in the flow participate in684
the uncertainty generation and depletion and in the overall value of ⟨𝑃Δ⟩. The way these685
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(c) case F3

Figure 16: Time evolution of the sample kurtosis and skewness of PDF for different cases,

which is defined as 𝐾 =

∫ 𝑃Δmax
𝑃Δmin

(𝑃Δ−⟨𝑃Δ ⟩)4P(𝑃Δ )d𝑃Δ

𝜎4
𝑃Δ

and

𝑆 =

∫ 𝑃Δmax
𝑃Δmin

(𝑃Δ−⟨𝑃Δ ⟩)3P(𝑃Δ )d𝑃Δ

𝜎3
𝑃Δ

.

PDFs lead to the average values of 𝑃Δ is subtle. The long time saturation value of ⟨𝑃Δ⟩ is686
zero for F1 and non-zero for F2, yet the long time PDFs of 𝑃Δ are similar in both cases, as687
are the long time values of kurtosis and skewness.688

5. Conclusion689

In the present work, we obtained the evolution equation (2.4) for the average uncertainty690
energy ⟨𝐸Δ⟩ (𝑡) in three-dimensional, incompressible and periodic/homogeneous Navier-691
Stokes turbulence. The average uncertainty energy evolves because of internal production,692
dissipation and external input/output of uncertainty. The internal production of uncertainty693
is a transfer from the correlation between the reference and perturbed fields to the average694
uncertainty energy and is determined by the eigenvalues of reference field’s strain rate695
tensor and the distribution of uncertainty energy along its three eigenvectors. As shown by696
equation (2.12), stretching events decrease uncertainty while the compression events increase697
uncertainty.698

We used DNS of periodic Navier-Stokes turbulence to study the gradual decorrelation699
process of two initially highly correlated flows. Three different DNS were run, F1, F2 and700
F3: two where the perturbation is seeded to a statistically stationary turbulence and where the701
forcing does (F1) or does not (F2) contribute directly to the progressive decorrelation between702
the reference and perturbed fields; and one (F3) where the reference and perturbed fields703



28

are both initially very weak and grow together to eventually become statistically stationary704
without the external forcing contributing directly to their gradual decorrelation. In all three705
cases and at times when ⟨𝐸Δ⟩ (𝑡) is still small, a similarity time-range was found where the706
growth of the uncertainty spectrum is self-similar if scaled by ⟨𝐸Δ⟩ (𝑡) and the characteristic707
length 𝐿Δ(𝑡) of uncertainty, and where all the following quantities are constant in time: (i)708
the ratio 𝛼 of average uncertainty dissipation to average uncertainty production, (ii) the ratio709
𝛽 characterising how much of the average uncertainty production rate is accountable to the710
average around which it fluctuates in space, and (iii) the distribution of uncertainty energy711
in the three eigen-directions of the reference field’s strain rate tensor. These three similarity712
constancies and the constancy in time of the three average eigenvalues of the reference field’s713
strain rate tensor imply an exponential growth in time for ⟨𝐸Δ⟩ with Lyapunov exponent714
𝜆 ∼ Γ𝜏−1

𝜂 . The dimensionless coefficient Γ is given by equation (4.7) and grows with715
Reynolds number because 𝛽 decreases with Reynolds number. This exponential growth for716
⟨𝐸Δ⟩ is observed in the earlier part of the time range of the similarity regime when the PDF717
of 𝑃Δ collapses for different times if scaled by its maximum value and standard deviation.718
As a result, the kurtosis and skewness of this PDF are about constant in this time range. In719
fact, the value of this constant kurtosis is extremely large indicating extreme intermittency720
of 𝑃Δ. The value of the constant skewness is also large and positive indicating that rare high721
uncertainty generation events are more intense than rare high uncertainty depletion events.722
The average value of 𝑃Δ is controlled by this intermittency in this time range. Note that the723
most probable value of 𝑃Δ is zero at all times.724

During the chaotic exponential growth regime, the ratio of 𝐿Δ to 𝑙𝜆 is roughly constant. In725
agreement with previous observations (Mohan et al. 2017), the Lyapunov exponent does not726
scale with the Kolmogorov time 𝜏𝜂 , but it also does not scale with the smallest Eulerian time727

scale 𝜏𝐸 (Tennekes 1975). It appears to depend on both as 𝜆 ∼ 𝜏
−(1−𝑐)/2
𝜂 𝜏

−(1+𝑐)/2
𝐸

with 𝑐728
between 0 and 1/3, implying that large scale random sweeping of the smallest length-scales729
influences the growth of uncertainty even though uncertainty only exists in the smallest730
eddies in the time range of chaotic exponential growth.731

The chaotic growth time-range is followed by a time-range in the F1 and F2 cases where732
Γ decays exponentially and ⟨𝐸Δ⟩ grows as an exponential of an exponential. In turn, this733
exponential of exponential time-range may be followed by a linear time range in the F1 case734
consistently with previous DNS studies (Berera & Ho 2018; Boffetta & Musacchio 2017),735
but not in the F2 case, at least for our present DNS Reynolds numbers. The linear growth736
of uncertainty seems to be sensitive to the direct presence (F1) or absence (F2) of external737
forcing in the evolution of ⟨𝐸Δ⟩. We did not detect a linear time growth of ⟨𝐸Δ⟩ in F3 either,738
however the F3 Reynolds number is even lower.739

Finally, the exponential growth of ⟨𝐸Δ⟩ is usually attributed to the presence of a strange740
attractor whereas it has been obtained here from similarity. Future research should attempt to741
shed light on the relations between similarity and strange attractors, and on how similarity may742
be a consequence of the presence of a such an attractor and underlying chaos. Future research743
may also consider how this paper’s approach to uncertainty in homogeneous turbulence can744
be extended to a wider range of turbulent flows. In general, the governing equation for Navier-745
Stokes uncertainty is (2.3) rather than (2.4). Hence, turbulent as well as viscous diffusion746
and also pressure effects will need to be taken into account explicitely in the evolution747
of uncertainty. Various boundary conditions and errors on boundary conditions in case of748
complex turbulent flows will also be an issue, not to mention various body forces and the749
presence in many turbulent flows of turbulent/non-turbulent or turbulent/turbulent or other750
(e.g. density) interfaces. The identification of local compression and stretching events as key751
to the development of uncertainty means that future prediction methods may benefit from752
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Case ⟨𝐸Δ (𝑡0)⟩ /⟨𝐸tot (𝑡0)⟩ Perturbed range

Standard (F1 or F2) 8.077 × 10−6 [0.9𝑘𝑚𝑎𝑥 , 1.0𝑘𝑚𝑎𝑥]
K08K09 8.077 × 10−6 [0.8𝑘𝑚𝑎𝑥 , 0.9𝑘𝑚𝑎𝑥]
K07K08 8.077 × 10−6 [0.7𝑘𝑚𝑎𝑥 , 0.8𝑘𝑚𝑎𝑥]
Amp01 8.077 × 10−7 [0.9𝑘𝑚𝑎𝑥 , 1.0𝑘𝑚𝑎𝑥]

Table 3: Numerical configurations for different cases. The two standard cases correspond
to F1 and F2 in the manuscript. There are two cases K08K09, one for F1 and one for F2,
and similarly for cases K07K08 and Amp01. For the standard F1 and F2 cases, the initial

perturbations are generated randomly under constraints (1), (2) and (3) mentioned in
section 3, but for the other six cases the initial perturbations are generated partially

randomly under constraints (1) and (2) in order to precisely control the initial uncertainty
energy.

strategies for early detection of such events so as to concentrate maximum accuracy on the753
compression events and less accuracy on the stretching events. However, the roles of all the754
other aforementioned effects should not be understimated and future research is needed to755
show whether they are subdominant or not and in which flows.756
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Appendix A. Sensitivity of the uncertainty energy to the initial perturbation763

To investigate the sensitivity of the evolution of average uncertainty energy to the initial764
perturbation, a series of simulations have been executed, of which the configurations are765
presented in table 3. By checking the evolution of the average uncertainty energy, the766
influence of the perturbed range (cases “standard”, “K07K08” and “K08K09”) and of the767
amplitude (cases “standard” and “Amp01”) of the initial perturbation is investigated. During768
the similarity period, the changes in the amplitude and the perturbed range have very little769
effect on the evolution of the average uncertainty energy, other than giving the evolution an770
offset (explained below). At late times, the difference between average uncertainty energies771
induced by different initial perturbations becomes more obvious for F1 where the external772
forcing causes an eventual decorrelation between the perturbed and the unperturbed velocity773
fields.774

Figure 17 presents the time evolutions of the average uncertainty energy for different per-775
turbed wavenumber ranges. A higher wavenumber perturbed range implies higher uncertainty776
dissipation rate for the seeded uncertainty at the earliest times, which causes lower value of777
⟨𝐸Δ⟩ /⟨𝐸tot⟩ at very early times and during the similarity period. The effect appears in the778
log-linear inset of figure 17 as a vertical offset of the curves for the different cases. The average779
uncertainty energy grows exponentially in all three cases with the same Lyapunov exponent.780
These different vertical offsets lead to slightly different exit times from the similarity regime.781
The regime of exponential growth is followed by what appears to be an exponential of782
exponential regime, where the difference of wavenumber perturbed range has little influence783
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(b) case F2

Figure 17: Time evolution of average uncertainty energy with different perturbed
wavenumber range. Inset: the initial time evolution of average uncertainty energy in

semilogarithmic plot.
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(b) case F2

Figure 18: Time evolution of average uncertainty energy with different initial uncertainty
energy. Inset: the initial time evolution of average uncertainty energy in semilogarithmic

plot.

on the evolution of average uncertainty energy since the lines in figure 17 are very close to784
each other albeit with a persisting small offset.785

Figure 18 presents the time evolution of the average uncertainty energy for the different786
initial uncertainty energy levels. As can be seen in the figure, the change in the amplitude787
of initial perturbation has the same effect as the change in the perturbed wavenumber range,788
i.e., no significant influence on the evolution of uncertainty energy other than creating an789
offset.790

We also checked the uncertainty spectra in the self-similar regime for our various cases791
with different initial perturbations, as shown in figure 19. All the self-similar spectra with792
different initial perturbations collapse together.793

As an overall conclusion, the early- and mid-time evolutions of the average uncertainty794
energy are not very sensitive to the form and amplitude of the initial perturbations, other795
than giving the evolution an offset.796
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(b) case F2

Figure 19: Uncertainty energy spectra in the similarity regime. The spectra are normalized
by ⟨𝐸Δ⟩ and 𝐿Δ.

Case 𝑁3 𝜈 ⟨⟨𝜀⟩⟩𝑡 ⟨𝑈⟩𝑡 ⟨𝐿⟩𝑡 ⟨𝑇0⟩𝑡 ⟨Re⟩𝑡 ⟨Re𝜆⟩𝑡 ⟨𝑘max𝜂⟩𝑡

F4 1283 0.0060 0.0996 0.598 1.197 2.003 119.2 56.7 1.61

Table 4: Parameters of the reference flows for case F4.

Appendix B. Reynolds-number dependence of the time range of the exponential797
regime798

To investigate the relation between the time range of the exponential regime and the Reynolds799
number, we have run another simulation which has the same external forcing as F2 with initial800
perturbations which, like standard F1, F2 and F3, obey the three constraints mentioned in801
section 3. Table 4 presents the main parameters of this extra case F4, as well as cases F2/F3802
discussed in the manuscript. As shown in table 1 and table 4, the Taylor Reynolds number of803
case F4 is close to that of case F3. Figure 20 presents the growths of average uncertainty in804
a semilogarithmic plot. In figure 20(a) we compare the evolution in cases F2 and F4. As can805
be seen in the figure, the exponential regime in F4 is longer than in F2, and also has a slower806
growth rate than F2, which is (see equation (4.9))807

Γ

〈
𝑇 (1)

〉
𝑡

√︄〈���𝑆 (1)𝑖 𝑗

���2〉 ∼ Γ(Re𝜆) · Re𝜆. (B 1)808

The lower Reynolds number case has a lower growth rate. Furthermore, as shown in figure809
6, the exit time from the similarity regime corresponds to the moment when the velocities810
at the largest wavenumbers become completely decorrelated, i.e. 𝐸̂Δ(𝑘𝑚𝑎𝑥) = 𝐸̂tot(𝑘𝑚𝑎𝑥).811
Therefore, as the Reynolds number increases, the energy spectrum’s inertial range also812
increases towards smaller scales, causing a decreasing threshold value ⟨𝐸Δ⟩ /⟨𝐸tot⟩ that813
needs to be overcome for the exit time from the exponential growth regime. As a result, the814
lower Reynolds number case has a longer time-range of exponential growth.815

In figure 20(b) we compare the exponential growths in cases F3 and F4. It is observed that816
cases F3 and F4 have similar exponential growth rates. The slight difference in exponential817
growth rates is caused by the small difference in Reynolds numbers. To verify this point,818
equation (B 1) is applied, along with the observation of Mohan et al. (2017) that Γ(Re𝜆) ∼819
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Figure 20: Time evolution of average uncertainty energy in semilogarithmic plot. In the
inset of (b), we plot (⟨𝐸Δ⟩ /⟨𝐸tot⟩)1.17 for F4 and (⟨𝐸Δ⟩ /⟨𝐸tot⟩) for F3 translated in the

horizontal axis by 2.7 𝜏-units to the left.

Re1/3
𝜆

. Therefore, we predict that the ratio of exponential growth rates of F3 and F4 is820

(63.8/56.7)4/3 = 1.17, which is verified by our simulations as shown in the inset of figure821
20(b). Although cases F3 and F4 have similar exponential growth rates, case F4 has a longer822
exponential regime. This may have something to do with the fact that F3 is not statistically823
stationary until 𝜏 = 9.3 whereas F4 is statistically stationary from the start of the perturbation.824
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