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1 Experimental protocol

1.1 Sample Preparation

In our experiments, we cool a balanced mixture of fermionic 6Li atoms in the |F = 1/2,mF =
±1/2⟩(≡ |1⟩ − |2⟩, blue circles in Fig. 2, main text) or |F = 1/2,mF = 1/2⟩ − |F = 3/2,mF =
−3/2⟩(≡ |1⟩ − |3⟩, green squares) hyperfine states in a 100 W, 1075 nm single beam optical dipole
trap. Degeneracy is reached through evaporative cooling by smoothly lowering the trap laser
power at the magnetic field where the s-wave scattering length diverges, a → ∞. Subsequently,
the atom cloud is transferred to an oblate harmonic potential, formed by a combination of optical
and magnetic fields. The oblate trap is formed between two anti-nodes of a cylindrically focused,
532-nm (blue-detuned), TEM01 mode laser beam [1–3], where the two anti-nodes are separated by
≈ 90 µm propagating along the y-direction and the 1/e2 radius in the x-direction is ≈ 1.0 mm. The
optical potential produces the confinement in the z direction and a very weak anti-confinement
in the x-y plane. The residual magnetic field curvature from the Feshbach coils provides highly
harmonic and cylindrically symmetric confinement in the x-y plane, which dominates the anti-
trapping of the optical potential. The measured trapping frequencies are ωz/2π = 105 Hz(1) and
(ωx, ωy) = 2π × (24.5, 24.5) Hz at a magnetic field of B = 832.2 G (corresponding to the |1⟩ − |2⟩
Feshbach resonance [4]). The asymmetry in the trapping potential is |ωx − ωy|/ωr ≲ 0.01. Note

that ωr ∝
√
B so the radial confinement also changes when we tune interactions. Typically, we

produce clouds with temperatures of 0.09 T/TF, where TF is the Fermi temperature and N =
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3×105 atoms per spin state.
To determine the temperature of the atom clouds (horizontal axis of Figs. 2 and 3 in the

main text) we follow the quench procedure as described in the main text, however, instead of
probing the clouds with Bragg lasers following the quench the cloud is held for 500 ms and an
in− situ absorption image is taken (after this hold time, no dynamics in the density distribution
are detected [5]). The temperature can be determined by fitting the known equation of state
(EoS) for the pressure of a unitary Fermi gas [6] to the line densities of a trapped atom cloud at
equilibrium. Throughout this study we probe temperatures ranging from 0.1 to 0.18 T/TF. The
higher temperatures are obtained by varying the endpoint of the initial evaporative cooling process,
which loads a higher temperature cloud into the oblate trapping potential and the temperature is
extracted following the same procedure described above.

1.2 Bragg Spectroscopy Calibration

The post-quench dynamics are probed using two tightly-focused Bragg laser beams, as shown in
Fig. 1(a), that intersect in the centre of the cloud where the density is near-uniform [7, 8]. Two-
photon Bragg spectroscopy is both energy and momentum selective thus, by setting the frequency
difference to half of the atomic recoil frequency (ωr/2 = ℏk2/4m), pairs with zero center-of-mass
momentum are resonantly excited [8, 9]. These pairs then begin moving with a velocity ℏk/m
where, k = ka − kb is the difference of the wave-vectors of the two Bragg lasers. We use k ≃ 4kF
to ensure that ω is large compared to EF, and the pulse duration (50 µs) is relatively short
with respect to the dynamics. The center of mass displacement ∆XCoM following time-of-flight
expansion, reveals the momentum imparted to the atoms by the Bragg lasers. Fig. 1(b) shows an
absorption image of an atom cloud following the experimental sequence described in the main text.
A large number of atoms are seen to be displaced from the centre of the cloud towards the right
of the image. The crescent shape in Fig. 1(b) is a result of collisions between scattered atoms and
the unperturbed atoms in the cloud which occur following the Bragg pulse [10].

We have measured the sensitivity of the centre of mass displacement, ∆XCoM at unitarity as
the pair condensate fraction varies. To determine the centre of mass displacement, ∆XCoM, we
prepare clouds at a range of initial temperatures by varying the endpoint of the evaporation and
then applying a Bragg pulse (to the clouds at equilibrium) and measure the response as described
above. To determine the pair condensate fraction a degenerate cloud at 832.2 G is produced
at a given temperature and in equilibrium. Subsequently, we jump the magnetic field far onto
the BEC side of the Feshbach resonance in ≈ 50 µs and simultaneously turn off the optical (z)
confinement. The weakly bound pairs are converted to tightly bound molecules, whose centre
of mass momentum is preserved [11]. The weakly interacting molecules then expand ballistically
along z before the magnetic field is ramped back to 832.2 G in 2.5 ms to dissociate the molecules.
The total expansion time is approximately one quarter of the radial trapping period, to best reveal
the momentum distribution. Finally, an absorption image is taken and fitted with a bi-modal
distribution to determine the condensate fraction.

Fig. 1(c) shows the response of the ∆XCoM of the cloud as the pair condensate fraction, and
therefore the temperature, is varied. As the condensate fraction is reduced, the centre of mass
displacement, ∆XCoM also decreases. The Bragg signal shows a clear dependence on the condensate
fraction, which reflects the change in the number of condensed pairs available to take part in the
scattering process.

1.3 Determination of Density

To observe the Higgs oscillation most clearly the Bragg scheme addresses atoms at the centre of
the trap, where the density is near homogeneous, as in previous studies [7, 8]. We define the mean
density n̄ in the Bragg volume as

n̄ =

∫
ΩBr(r)n(r)d

3r∫
ΩBr(r)d3r

, (1)

where ΩBr(r) is the spatially dependent two-photon Rabi frequency, which is proportional to the
geometric mean of the intensities of the two laser beams

√
Ia(r)Ib(r) and n(r) is the 3D density

distribution. The mean density sets the relevant energy scale and the Higgs oscillation frequency
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Figure 1: (Color online) (a) Schematic of the experimental setup for focused beam Bragg spectroscopy.
Two laser beams with wave vectors ka and kb and frequencies ωa and ωb are focused into the center of a
trapped atom cloud. The beams have a 1/e2 radius of 15 µm and intersect at an angle of 2θ = 72.6◦ (b)
Absorption image of an atom cloud following an excitation with a Bragg frequency ω/(2π) = +50 kHz.
The dashed rectangle indicates the region used for determination of the centre of mass displacement. (c)
Measured center of mass displacement, ∆XCoM as a function of measured pair condensate fraction.

via Fermi energy EF = ℏ
2m (3π2n̄)2/3, and the normalized frequency ℏωH/2EF, where m is the

atomic mass and ωH is the Higgs oscillation frequency.
To determine the mean density, the true (3D) density distribution n(r) of the trapped cloud

and the intensity product of the Bragg laser beams with their intersecting Gaussian spatial profiles
are combined. The 3D density n(r) is extracted through applying an inverse Abel transform to
absorption images of unperturbed trapped clouds. Images of trapped clouds are taken using a high
intensity (I/Isat > 10) and short imaging pulse length of 1 µs. The inverse Abel transform method
uses a Fourier decomposition where the radial density distribution is expanded in a Fourier series.
This method requires no direct differentiation and allows reconstruction of the central density
without singularities. From this, we are able to determine n̄ with an error of approximately 7.5 %,
which leads to a 5 % error in the Fermi energy.

In Fig. 2, we plot the direct measured centre of mass displacement (∆XCoM) vs. time along
with the fitted sinusoid, for the same data as in Fig. 2 of the main text. These traces show how
the total Bragg signal decreases with increasing temperature, the magnitude of the oscillations
falls off with increasing temperatures and the frequency changes for clouds prepared at different
temperatures. In Fig 2(a) the hold time is in ms and in 2(b) in units of the local Fermi time
τF = ℏ/EF . The absolute oscillation frequency is set by the local Fermi energy, which in turn
is set by the local density. Clouds at different temperatures may have different densities due
to changes in the preparation sequence. This leads to the variations in the absolute oscillation
frequency in (a), which become more consistent when plotted as a function of the scaled time in
(b).
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Figure 2: (Color online) A selection of measured centre of mass displacement (∆XCoM) vs hold time,
th in absolute units of µs in (a) and relative to the local Fermi time τF = ℏ/EF in (b) for atom clouds
prepared at different temperatures. Also plotted are the fitted sinusoidal functions used to determine
the frequency and damping of the amplitude oscillation. Different temperature clouds can have different
densities leading to the different absolute oscillation frequencies, (a). When the time axis is taken relative
to the Fermi time, (b) the relative frequencies agree more closely, as seen in the main text.

2 Order parameter dynamics within time-dependent BCS
theory

We recall here what is theoretically expected for the time evolution of a superfluid Fermi gas
after a rapid change of the interatomic interactions at zero temperatures. We consider a two-
component (↑ and ↓) Fermi gas interacting through a pairwise single-channel s-wave interaction,
which captures broad, entrance-channel dominated Feshbach resonances [12]. Assuming the gas is
homogeneous in a cubic volume V (see Sec. 3 for consideration of inhomogeneities in the trapped
gas) the momentum representation of the Hamiltonian for this system is

Ĥ =
∑
kσ

k2

2m
â†kσâkσ +

g0
V

∑
k,k′,q

â†k+q,↑â
†
−k,↓â−k′,↓âk′+q,↑, (2)

where the interaction strength g0 is renormalized to reproduce the correct s-wave scattering length
a of the two-body problem. In the remaining sections, we use the convention ℏ = 1 throughout.

The equations of motion for the momentum distribution nk and pairing function ck (Eqs. (1)
and (2) in the main text) are derived from the Hamiltonian in Eq. (2), using the BCS mean-field
approximation. At t = 0 the system is at equilibrium at scattering length ai and temperature
T < Tc,i, we can therefore fix the initial conditions for nk and ck using the BCS ground-state
solutions, as discussed in the main text

nk(t = 0) =
1

2

(
1− ξk,i

ϵk,i
Fβ(ϵk,i)

)
, (3)

ck(t = 0) = − ∆i

2ϵk,i
Fβ(ϵk,i), (4)

where ξk,i = k2/2m − µi, ϵk,i =
√

ξ2k,i +∆2
i , µi and ∆i are calculated at the initial scattering

length ai, and where Fβ(ϵ) = tanh(βϵ/2) = 1− 2(exp(βϵ) + 1)−1 is the thermal distribution with
β = 1/kBT . The limit of zero temperature corresponds to Fβ(ϵ) → 1 for ϵ > 0. Conversely, the
regime of temperatures close to the critical temperature Tc is found by taking the limit ∆ → 0 [13].
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2.1 Analytical solution in the small-amplitude regime

For shallow quenches, that is, small deviations of nk and ck from their equilibrium values, the
time-dependent BCS equations (Eqs. (1) and (2) of the main text) can be solved analytically. At
zero-temperature, this is a well-studied problem [14–16]. Here we only detail the expression of the
normalized amplitude Ath of the oscillations (see Eq. (4) of the main text).

In the final equilibrium state (at a = af and T = 0) and in the modulus-phase basis [17], the
linear-response matrix of the order-parameter is given by

M(ω) =

(
ω2f(ω) ωg(ω)
ωg(ω) (ω2 − 4∆2

f )f(ω)

)
, (5)

where ∆f and µf are the gap and chemical potential, respectively, of the final equilibrium state,
and we have introduced the functions:

f(ω) =
∆f

V

∑
k

1

2ϵk(ω2 − 4ϵ2k)
, (6)

g(ω) =
∆f

V

∑
k

Ek − µf

ϵk(ω2 − 4ϵ2k)
. (7)

The amplitude-amplitude response function introduced in Eq. (3) of the main text follows
directly from M through the relation

χ|∆||∆|(ω) = (M−1(ω))22 =
f(ω)

(ω2 − 4∆2
f )f

2(ω)− g2(ω)
. (8)

As mentioned in the main text, the imaginary part χ′′
|∆||∆| of this function has a squareroot

divergence in ω = 2∆ for µf > 0 and a square root cancellation for µf < 0. We denote by fl the
spectral weight of this squareroot singularity:

χ′′
|∆||∆|(ω) ∼

ω→ωth

fl
√

ωth

ω−ωth
when µf > 0 and ωth = 2∆f

fl

√
ω−ωth

ωth
when µf < 0 and ωth = 2

√
∆2

f + µ2
f

. (9)

In general, linear response theory expresses time-dependent quantities as Laplace transforms
of frequency responses. For the evolution of the amplitude of the order parameter, with initial
conditions Eqs. (3) and (4), this gives

∆(t)−∆f

∆i −∆f
= 1− 1

χ|∆||∆|(0)

∫ −∞+iη

+∞+iη

e−izt

2iπz
χ|∆||∆|(z). (10)

This integral is deformed to a contour enclosing the branch cut [2∆,+∞) of χ|∆||∆|, as well as the
pole of the integrand in z = 0. Since only the contribution of the pole survives at long times, one
sees that limt→+∞ ∆(t)−∆f = 0, in other words

∆∞ = ∆f (11)

in the small-amplitude regime and at T = 0. From the contribution of the branch cut we then
derive the version of Eq. (4) of the main text that is valid at all times:

∆(t)−∆f

∆i −∆f
=

2

π

∫ +∞

2∆f

cosωt

ω

χ′′
|∆||∆|(ω)

χ|∆||∆|(0)
dω. (12)

At long times, this frequency integral is evaluated by approximating χ′′
|∆||∆| by its behavior (Eq. (9))

near the pair-breaking threshold. This yields the expression of Ath (see Eq. (4) of the main text):

Ath =
T=0

2fl√
πχ|∆||∆|(0)

(13)

with χ|∆||∆|(0) the static modulus response and fl the spectral weight of the pair-breaking thresh-
old.
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Figure 3: Temperature dependence of the difference in the equilibrium order parameter from the initial
and final state δ∆ ≡ |∆f −∆i|. The initial and final state correspond to 1/(kF ai) = −0.18 and 1/(kF af ) =
0, respectively. The temperature is rescaled by the critical temperature at ai, that is Tc,i = 0.399TF

.

2.2 Numerical simulations

Outside the small amplitude regime, we evolve the equations of motion (Eqs. (1) and (2) of the
main text) using a Runge-Kutta method [18]. The momentum-space integrals in the gap (∆ =
(g0/V )

∑
k ck) and number (N = 2

∑
k nk) equations are evaluated in spherical coordinates using a

fine grid in momentum space1. The conservation of the total number of atoms N provides a check
on the integrity of the numerics. Similar dynamical problems near resonance have been studied in
Refs. [19, 20].

In this section, we consider an infinitely fast quench from 1/(kFai) = −0.18 to 1/(kFaf ) = 0
(see Sec. 3 for a discussion of the nonzero ramping time). As shown in Fig. 3, the relative variation
of the equilibrium order parameter is small at T = 0 (δ∆ ≡ |∆f −∆i| ≈ 0.16∆f ) but increases with
temperature, tending to 1 at Tc. Therefore, this limits the applicability of the analytical results
presented in Sec. 2.1 to the small temperature regime.

Using numerical simulations, we can instead explore the entire temperature range 0 ≤ T ≲ Tc,i.
For example, Fig. 4(a) shows the time evolution of the amplitude of the order parameter ∆ at
temperature T = 0.25Tc,i. As expected from literature (see e.g. Ref. [16] for T = 0) and discussed
in the main text, the order parameter asymptotes to a value ∆∞ a bit less than the expected final
state equilibrium value ∆f and oscillates at a frequency ωH = 2∆∞. Moreover, we expect a power-
law damping coefficient γ = 0.5, which is found if we neglect the very short time dynamics, as shown
in Fig. 4(b) for different temperatures. Finally, in Fig. 4(c), we show the temperature dependence of
the Higgs oscillation frequency (orange dash-dotted line) and the final order parameter (pink solid),
and compare it to the experimental data. The temperature is scaled to the critical temperature
of the initial scattering length (for the experimental data we have used Tc,i = 0.15TF ). The
comparison is not meant to be quantitative, as BCS theory is known to overestimate both the
superfluid gap and critical temperature at unitarity [13], but rather to confront the trend in the
vicinity of Tc.

1Numerically, we evaluate the momentum-space integral of a generic function f(k) using
∫
d3k/(2π)3f(k) →∑

i wik
2
i f(ki)/2π

2, where ki and wi are the abscissas and weights of the Gauss-Legendre quadrature method [18].
Because nk and ck become small after a few kF , we split the integration in two intervals: [0, 10kF ] and [10kF ,Λ],
where Λ = 350kF is a momentum cut-off (large enough such that numerical results are insensitive to it). In every
interval, we take 1500 points, so that the first interval is much more dense than the second one, where nk and ck
are ≈ 0.
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Figure 4: (a) Numerical result for the time evolution of the amplitude of the order parameter ∆(t) at
T = 0.25Tc,i after a fast quench from 1/(kF ai) = −0.18 to 1/(kF af ) = 0. The frequency of oscillation is
ωH = 2∆∞ ≲ 2∆f . (b) Damping coefficient γ for ∆(t) as a function of the starting point of the fit tst for
different temperatures. Here, we have used as a fitting function ∆(t) = ∆∞ + A cos(ωHt + ϕ)/tγ in the
range [tst, tend], where the final point tend is fixed. (c) Oscillation frequency (dashed dot line) as a function
of temperature T/Tc,i. The dashed (purple) line corresponds to ∆f in Fermi units. The data points are
from the experimental results in Fig. 3(a) of the main text.

3 Application of time-dependent BCS theory to the exper-
imental setup

In this Section, we consider the impact of various experimental effects on the amplitude oscillations
and their detection by Bragg spectroscopy. This includes the following: the presence of a nonzero-
duration initial ramp of the magnetic field (Sec. 3.1), density inhomogeneities due to the trapping
potential (Sec. 3.2), and time averaging over a Bragg pulse of nonzero duration (Sec. 3.3).

3.1 Ramp-rate dependence

To mimic experimental protocols for Feshbach resonances, we include in our numerics an initial
linear magnetic field ramp: B(t) = Bi + Rt, where R = dB/dt is the ramp rate. The presence of
the ramp delays the start of the Higgs oscillation. This delay can be quantified using a timescale
tq = |Bf−Bi|/R, which must be compared with the Fermi scale τF and the characteristic timescale
of the order parameter dynamics t∆ = 1/∆ [21, 22]. When tq becomes much longer than t∆, |∆(t)|
adiabatically evolves to ∆f .

We vary the ramp rate R to study its impact on the early-time dynamics of |∆(t)|. Fig. 5
shows how for slower changes of B (smaller R) the amplitude of the oscillations becomes smaller
leading to a decrease in the visibility of the Higgs mode, and the early-time behaviour of |∆| has
a more parabolic shape that cannot be fitted using a function ∼ cos(2∆t)/

√
t (see Eq. (4) in the

main text). In the inset of Fig. 5, we plot the same quantities but we include a delay equal to half
ramp time tq/2. Accounting for this delay, acts to align the oscillation phases.

3.2 Inhomogeneous broadening of the signal

As discussed in Sec. 1.1, during the sample preparation, the atoms are loaded into an oblate
harmonic potential. In this section, we show how this causes an inhomogeneous broadening of the
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Figure 5: Early-time evolution of the amplitude of the order parameter ∆(t) after a quench from
1/(kF ai) = −0.18 to 1/(kF af ) = 0 for an infinitely fast ramp (black solid line) and for different ramp time
tq (coloured lines) at zero temperature. We indicate with the bottom coloured arrows, the values of the
ramp time tq corresponding to ramp rate R (see the text). Inset: Same as (a) but the curves are delayed
by half the ramp time tq/2.

signal, which can lead to a sharp increase of the damping coefficient γ from 1/2 to 2 depending on
the width of the Bragg beam.

We begin by writing the external trapping potential as

Vho(r) =
1

2
m
(
ω2
rr

2 + ω2
zz

2
)
, (14)

where ωr and ωz are the trapping angular frequencies in the radial and axial directions, respec-
tively [23]. In the local density approximation (LDA), the trapped system can be treated as a
collection of locally uniform subsystems2. This means that at equilibrium the equation of state
for the superfluid can be solved after replacing µ by a local µ(r) = µ − Vho(r) and the number
equation becomes

N =

∫
d3rn(r), (15)

where n(r) = 2
∑

k nk(r) is the local density. Consequently, ∆(r), 1/(kF (r)a), and kBT/EF(r)
also acquire a dependence on r [25–28]. At unitarity, 1/(kF (r)a) = +∞ becomes uniform, but ∆
still depends on r because T/Tc(r) does.

At zero temperature, for a weakly interacting gas (|a| ≪ k−1
F ), n(r) is well-approximated by

the Thomas-Fermi distribution:

n(0)(r) =
8N

π2R2
rRz

[
1−

(
r

Rr

)2

−
(

z

Rz

)2
]3/2

, (16)

where Ri =
√
2Eho

F /(mω2
i ) = aho(24N)1/6ωho/ωi (i = {r, z}) are the Thomas Fermi radii, ωho =

(ω2
rωz)

1/3 is the geometric mean of the angular frequencies, aho =
√
1/(mωho) = (24N)1/6/khoF is

the oscillator length, and khoF =
√

2mEho
F is the Fermi momentum in a trapped system.

Equation 16 is altered by increasing the scattering length with respect to khoF as shown in
Fig. 6(a), where we compare n(0)(r) with the density profiles for 1/(khoF a) = −0.18 and 0 using the

2The local density approximation remains valid while the harmonic oscillator length, which is the typical length
at which n(r) varies, is much larger than both the healing length 1/

√
2mµ and pair correlation length [24] with the

latter diverging near Tc as kF /m∆, marking an obvious breakdown of the approximation.
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Figure 6: Particle density n(ρ) in a harmonic trap as a function of the weighted radial coordinate ρ in
Fermi units. (a) At zero temperature for a non-interacting system (dashed grey), for 1/kho

F a = −0.18 (green
dash dotted), and at unitarity (black solid). (b) For fixed 1/(kho

F a) = −0.18 and different temperatures
(different colors).

trapping parameters of Sec. 1.13. In Fig. 6, we have utilized the weighted radial coordinate

ρ =

√
(ωrr)2 + (ωzz)2

ωho
, (17)

with corresponding (rescaled) Thomas-Fermi readius ρTF =
√

2Eho
F /(mω2

ho). From Fig. 6(a), it is

clear that interactions lead to a narrowing of the density distribution. It is noteable that Eq. (17)
also shows how the case of a cigar-shape trap can be reduced to the spherical case by homothety.
The influence of temperature on the density profile is shown in Fig. 6(b). Deviations from the
zero-temperature profile (black solid curve) begin on the edges of the cloud and progress towards
the center as temperature is increased.

Within the local density approximation, we use the density distribution n(r) to calculate the
global order parameter by averaging over the cloud profile. The spatial weight is the product of
the local density, n(r), and local intensity of the probe beam, I(r),

∆̄(t) =
1

n̄

∫
d3rn(r)I(r)∆(r), (18)

such that
1

n̄

∫
d3rn(r)I(r) = 1, (19)

where n̄ is the mean density. The finite width of the probe beam allows us to consider smaller
volumes of the cloud, mimicking the experimental Bragg scheme described in Sec. 1.3. We approx-
imate the probe beam with a Gaussian profile, such that

I(r) = I(0) exp

(
−|r|2
2λ2

)
, (20)

where I(0) is a normalization constant and λ is the effective width of the beam which is fixed to
match the experimental mean density (Eq. 1).

Using Eq. (4) of the main text for the time-evolution of ∆, Eq. (18) becomes

∆̄(t) =
1

n̄

∫
d3rn(r)I(r)

(
∆∞(r) +

cos(2∆(r)t+ ϕ)√
ν(∆(r))t

)
. (21)

3When a → ∞, the dimensionless parameter 1/(kF (r)a) loses spatial dependence, and the equation of state
for the Fermi gas is expected to be universal in terms of density scales and is written in terms of the Bertsch
parameter ξB [13, 29]. Therefore, using µ(r)/EF (r) = ξB and Eq. 16, the density profile can be approximated by

n(r) = ξ
−3/2
B n(0)(r), which well describes experimental data in the unitary regime when a beyond-mean field ξB is

used [30].
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with the rewriting of the oscillation amplitude ν = 2∆/(Ath(∆i −∆∞))2. The density average of
functions oscillating at frequencies 2∆(r) leads to a blurring of the Higgs signal and consequently
to a reduced contrast of the oscillations.

3.2.1 Qualitative discussion in the limit of a tightly focused beam

When the beam is well focused around the center of the trap, one can approximate the density
using

n(ρ) = n0 − αρ2, (22)

with α = −(1/2)d2n/dρ2 (see Eq. (16)). The small variation of the density around trap center
causes a spatial variation of the order parameter ∆(ρ) = ∆0 − ∆′αρ2, and of the magnitude of
the Higgs oscillations ν(ρ) = ν0 − ν′αρ2 (where ∆′ = d∆/dn and ν′ = dν/dn). To simplify the
discussion, we consider here only a probe which respects the cylindrical symmetry of the trapping
potential I(r) = I(ρ), as defined in Eq. (20). This leads to

∆̄(t) = ∆̄∞ +
4πn0

n̄
√
ν0t

∫ +∞

0

ρ2dρI(ρ)(1− cρ2) cos(2∆0t−∆′αρ2t+ ϕ), (23)

where the term proportional to c = α(1/n0 − ν′/2ν0) is included for completeness but becomes
negligible when the beam waist tends to 0. In this approximation, the averages of slowly-varying
quantities simply coincide with their value at the center of the trap (n̄ = n0, ν̄ = ν0 etc.), and only
the average of the oscillatory part remains.

Performing the radial integral in Eq. (23) for the Gaussian profile Eq. (20) gives

∆̄(t) = ∆̄∞ +
1√
ν0t

Re
[
e2i∆0t+iϕf(t)

]
, (24)

where the complex-valued blurring function

f(t) =

(
1− it/td
1 + t2/t2d

)3/2

(25)

depends on the characteristic timescale

td =
1

4λ2α∆′ ≈
1

∆(λ)−∆0
(26)

Assuming that this timescale is large (∆0td ≫ 1), the Higgs oscillations will still display the
expected 1/

√
t attenuation law at short times (t ≪ td). However, beginning at t ≈ td the decay is

quickened and the phase shifts from the original ϕ = π/4 phase. At later times (t ≫ td), one finds
instead a 1/t2 attenuation law:

∆̄(t) ≃
t→+∞

∆̄∞ − t
3/2
d√
ν0t2

sin 2∆0t. (27)

This shows that inhomogeneous broadening can seriously impair the observation of the power-law
damping exponent γ = 1/2 or 3/2.

3.2.2 Numerical solutions in the general case

More generally, we solve numerically4 Eq. (18) for different values of λ and, consequently, for
different n̄. Fig. 7 shows the evolution of the superfluid order parameter at zero temperature after

4To perform the integration in Eq. 18, we sample n(r) using a “accept-reject method” [31], which generates a set
of random numbers distributed according to the initial distribution: n(r) → {ni, with i = 1, · · · , Np}. The average
on Eq. 18 can be then performed using

∆̄(t) =
1∑Np

i I(ni)

Np∑
i=1

I(ni)∆(ni, t), (28)

where Np is the total of number of extracted values ni.
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Figure 7: Time evolution of the order parameter after averaging over the total density profile of the trap
(green solid line) and over a reduced volume with corresponding n̄ = 0.91n0 (blue dashed line) at zero
temperature. Black dotted and yellow dashed dotted lines indicate the power law curves 1/

√
t, which is

found at short times, and 1/t2 from Eq. 27, which characterizes longer times than the maximum time in
the figure (t ≫ td).

a quench from 1/khoF a = −0.18 to unitarity after averaging over a probe beam of width λ = 0.06ρTF

such that n̄ = 0.91n0, compared to the case where the probe beam covers the entire volume. We
observe that this latter case yields strongly-damped oscillations, which would be difficult to observe.
Instead, the experimentally-relevant average over a smaller volume leads to distinct oscillations.
Moreover, because λ = 0.06ρTF is small compared to the effective Thomas-Fermi radius ρTF, the
characteristic time td is much larger than the oscillation period 2π/ωH, and therefore, for times
t < td, we do not expect the attenuation law 1/t2 (as described by Eq. (27)) to play a role within
the experimentally relevant time window.

We address also the impact of inhomogeneous broadening on the damping law in the time
region 0 < t < td. Fig. 8 shows trends in the local oscillation maxima ∆̄(tn) at discrete times tn
measured in units of the oscillation frequency ωH and at temperature T = 0.66Tc,i. We fit the
first few oscillations to a power-law damping, thereby mimicking the analysis performed on the
experimental data. For smaller values of λ compared to ρTF, the power law decay 1/

√
t is still a

good fit for the short-time behavior of ∆̄, as shown by the case with n̄ = 0.98n0 in Fig. 8. For
larger values of λ, we find an intermediate behavior, characterized by a power-law decay 1/tβ with
0.5 < β < 2.0.

3.3 Averaging over the Bragg time

Experimental measurements are taken using two-photon Bragg scattering as illustrated in Fig. 1 of
the main text. To avoid over-broadening the sharp features of the response function, the duration
tB = 50µs of the Bragg pulse should be as long as possible. However, in an out-of-equilibrium
system, using pulses that are too long allows the system to evolve significantly during the probe time
violating the timescale separation assumptions underlying Eq. (5) of the main text and possibly
blurring the oscillatory signal. Explicitly, the observable ∆ reported at the time t is actually the
result of a time-average:

⟨∆(t)⟩Bragg =
1

tB

∫ t+tB/2

t−tB/2

∆(t′)dt′. (29)

Fig. 9 shows the comparison between the time-evolution of (spatially-averaged) ∆ for tB = 0 and
tB = 50µs. Although the time-averaging reduces the contrast of the oscillations by reducing their
the magnitude, it is less critical than the spatial averaging as it does not affect the attenuation
law.
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Figure 8: Data points: Maximum values of (∆̄(t)/∆∞−1) for different n̄ or equivalently λ at T = 0.66Tc,i.
The solid black line represents the homogeneous power-law behavior 1/

√
t (see Eq. (4) in the main text).

Dashed lines: Fitting functions 1/tβ for times t < td. Gray solid line: power law 1/t2 recovered only in
the case with lower n̄.

Figure 9: Comparison between the time and space averaged order parameter (⟨∆̄(t)⟩, yellow solid line)
and the same quantity only averaged over space (∆̄(t), blue dashed line). The time average is performed
over the Bragg time tB (see Eq. (29)) and the density average corresponds to the case n̄ = 0.91n0 (see
Eq. (18)). The temperature is T = 0.66Tc,i.
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Figure 10: Comparison between the theoretical (diamonds and x’s) and experimental (squares and plus)
averaged magnitudes of the oscillations, Arms, in two different time ranges in units of τH. Shown as dashed-
dotted lines is the magnitude of the oscillations obtain by integrating Eq. (12), that is, in the linear regime
and without any of the experimental effects discussed in Sec. 3.

4 Comparing theoretical predictions and experimental mea-
surements

The comparisons with experiment shown in Figs. 2(b) and 3(b) of the main text use theoretical
predictions for ⟨∆̄(t)⟩ that combine both the spatial and temporal averages discussed in Secs. 3.2
and 3.3 and the dephasing introduced by the finite ramp time tq discussed in Sec. 3.1. From Eq. (5)
of the main text, we write the experimental signal as S(t) ≈ α + β∆(t), where α and β depend
on the sensitivity with an explicit expression of those quantities given below. This dependency is
removed by taking the ratio

S(t)− S∞

Sf − Si
∼ ⟨∆̄(t)⟩ −∆∞

∆f −∆i
. (30)

To avoid the well-known overestimation of BCS theory of the critical temperature Tc and super-
fluid gap ∆, we compare theoretical predictions and experiment signal as a function of ωHt and
T/Tc,i using experimental values of ωH/ϵF , fitted from the bare experimental signal, and Tc,i/TF ,
estimated as the temperature at which Higgs oscillations are no longer observed.

4.1 Magnitude averaged over different time windows

To quantify the agreement between experiment and theory, we compute at each temperature the
root-mean-square of the signal (30):

Arms =

√
1

t2 − t1

∫ t2

t1

dt

(
S(t)− S∞

Sf − Si

)2

, (31)

As discussed in the main text, the choice of the averaging time window [t1, t2] significantly affects
the gap between measurements and theoretical predictions, the best agreement being found at
early times. In Fig. 10, we show that the agreement is better from [t1, t2] = [τH, 10τH] than in the
window [3τH, 20τH] used in the main text.

4.2 Comparisons including the sensitivity of the Bragg pulse

In this subsection, we predict the experimental Bragg signal from our calculation of the density-
density response within the Random Phase Approximation (RPA), that is, without scaling out
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Figure 11: The imaginary part of the density-density response function χnn in density units as a function
of the excitation frequency ω at fixed excitation wave number q = 4kF and temperature varying from T = 0
(blue curves), T = 0.9Tc (purple curves) to T = 0.97Tc (red curves). The threshold of the pair-breaking
continuum (black dotted vertical lines, given by Eq. (33)) is sensitive to the value of ∆ and thus depends
slightly on temperature, tending to 2(q2/8m− µ) in the limit T → Tc where ∆ → 0. For comparison, we
show the kinetic energy of atoms (mass m) and pairs (mass 2m) in vacuum (blue vertical dotted lines,
independent of T ). At the pair-breaking threshold, χnn has a sharp peak indicating resonance with the
condensed pairs. As temperature increases, the number of pairs decreases in favor of unpaired atoms.
This results in a decreased spectral weight of the peak at ωth and correspondingly in a growth of a broad
single-atom scattering continuum centered around ω = q2/2m. This broad peak is due to the imaginary
part of the normal density-density propagator Πnn (see Eq. (46) in [34]) which is shown by the red crosses
at the highest temperature T = 0.97Tc. These curves are drawn at unitarity (1/|a| = 0) which corresponds
at T = 0 and with the mean-field equation-of-state to µ/∆ ≃ 0.86 and ϵF /∆ ≃ 1.46. At T = Tc, this
corresponds to µ(Tc)/Tc = 1.50448, ϵF (Tc)/Tc ≃ 0.89.

the sensitivity. As discussed in the main text (see Eq. (5)), the Bragg signal is sensitive to the
variations of ∆(t) through the dimensionless sensitivity

σ =
∆

χnn

(
∂χnn

∂∆

)
n,T

, (32)

This thermodynamic quantity is computed by comparing equilibrium states having the same equi-
librium density and temperature but slightly different values of the order parameter ∆ (or equiv-
alently, slightly different values of the scattering length a). The calculation of χnn within RPA is
a standard problem [32, 33]. In practice we have used the explicit expressions of Ref. [34] (see in
particular Eqs. (36) and (46) therein) to evaluate numerically χnn as a function of the excitation
frequency ω and wavevector q.

To illustrate how the density-density response is sensitive to ∆, Fig. 11 shows χnn(ω) in the
regime of large excitation wavevector (q = 4kF ) used in the experiment. The feature which
characterizes the superfluid phase is a sharp edge at the pair-breaking threshold:

ωth = 2

√
∆2 +

(
q2

8m
− µ

)2

(for q2/8m > µ). (33)

As this threshold location changes with ∆, the density response χnn for fixed ω/ϵF varies sharply.
However, as temperature increases towards Tc, the spectral weight of the edge drops in favor of
the broad atomic scattering continuum, characteristic of the ideal (normal) Fermi gas. This fading
of the pair-breaking edge consequently reduces the sensitivity σ.
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In theory, the vertical tangent of ω 7→ χnn(ω,∆) in ω+
th, causes a divergence5 of the sensitivity

at the edge (see the blue curve in Fig. 12), which should favor the detection of Higgs oscillations.
In practice, the finite duration of the Bragg pulse limits the spectral resolution on χnn, thereby
limiting the maximal accessible value of the sensitivity to roughly σ ≲ 2 (red curve in Fig. 12).
This is obtained by broadening χnn according to the convolution formula

χbr
nn(ω0) =

∫ +∞

−∞
dωχnn(ω)fδω(ω0 − ω) (34)

where fδω(ω) is a broadening function parametrized by its energy-width δω. In the comparison
performed in Fig. 13 we have taken δω/ϵF = τF/tB ≃ 0.55, using the Fermi time τF ≃ 27.4402µs
associated to the density in the trap center at unitarity, and a Gaussian broadening profile:

fδω(ω) =
1√
2πδω

e−ω2/2(δω)2 . (35)

However the choice of a Gaussian broadening profile is not crucial for this discussion. Compared
to our previous experimental schemes [35], the spectral width is relatively larger here, due to the
necessity of maintaining a Bragg duration much smaller than 2π/ωH. As visible in Fig. 12, the
selected excitation frequency ω = ℏ2q2/4m is fairly optimal for the broadened sensitivity whereas
ω = ωth is preferable in the absence of broadening.
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Figure 12: The bare (blue curve) and broadened (red curve) sensitivities as a function of the excitation
frequency for q = 4kF , T = 0, and 1/kF a = 0.

Using the sensitivity (32), we directly predict the scaled Bragg response S(t)/S∞ from

⟨χ̄′′
nn(t)⟩

χ̄′′
nn(+∞)

= 1 + σf
∆∞

∆f

( ⟨∆̄(t)⟩
∆∞

− 1

)
, (36)

where we have assumed that the width of the Bragg laser λ is small enough such that the depen-
dence of the sensitivity σf ≡ σ(∆f ) on r can be neglected. Note that the linearization of χnn

performed in Eq. (36) is valid only in the small amplitude approximation, hence at low T/Tc.
In Fig. 13, we compare the theoretical curve Eq. (36) to the experimental measurements of

S(t)/S∞. We consider the lowest temperature case, T = 0.10TF , for which δ∆ is small enough

5To understand this divergence and also to obtain rigorous numerical results for the blue curve in Fig. 12, we
write χnn(ω,∆) = Θ(ω−ωth(∆))f(ω−ωth(∆),∆) where the function δω 7→ f(δω,∆) is defined on [0,+∞[. Taking
the derivative with respect to ∆ (and using f(0,∆) = 0), we have ∂χnn/∂∆ = ∂f/∂∆ − (dωth/d∆) × (∂f/∂δω).
The vertical tangent of χnn in ω+

th implies a divergence of ∂f/∂δω in δω = 0+, and therefore a divergence of the
sensitivity.
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Figure 13: Comparison between the experimental Bragg signal S(t)/S∞ and its theoretical prediction
Eq. (36). The theoretical curve has been obtained at fixed T = 0.66Tc,i by including a linear ramp in 50µs
with th = t−tq/2 corresponding to the theoretical delay found in Sec. 3.1, the inhomogeneous broadening,
the Bragg time averaging, and the Fourier broadening. The experimental points correspond to T = 0.10TF

and the mean density is n̄ = (0.955 ± 0.018)n0 (see main text). We show the deviation from the 1/t0.5

power-law damping (grey dashed line). The power-law 1/t0.645±0.005 (dashed-dotted purple curve) has
been obtained by fitting the theoretical curve in the time range 9 ≤ ωHth ≤ 23 (from the second peak to
the last experimental point). Inset: Damping coefficient as a function of the starting time tst of the fitting
window used for the theoretical curve.

with respect to ∆f to justify the use of the small-amplitude regime (we have |∆∞−∆f | ≃ 0.11∆f ).
At the latest times considered in the experiments, we find a small deviation of our theoretical
prediction from the homogeneous 1/t1/2 power-law damping, with γ increasing to 0.645 ± 0.005.
This deviation could be seen if we exclude the first peak of the oscillation from the theoretical
fitting window, consistently with our analysis in Sec. 3.2 (compare with Fig. 8 and the inset of
Fig. 13). Instead, using the experimental fitting window, which also includes the first peak, this
deviation is nearly compensated, as discussed in the main text.
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[13] G. C. Strinati, P. Pieri, G. Röpke, P. Schuck, and M. Urban, Physics Reports 738, 1 (2018).

[14] A. Volkov and S. M. Kogan, Zh. Eksp. Teor. Fiz 65, 2038 (1973).

[15] V. Gurarie, Phys. Rev. Lett. 103, 075301 (2009).

[16] E. A. Yuzbashyan, M. Dzero, V. Gurarie, and M. S. Foster, Phys. Rev. A 91, 033628 (2015).

[17] H. Kurkjian, S. N. Klimin, J. Tempere, and Y. Castin, Phys. Rev. Lett. 122, 093403 (2019).

[18] W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, et al., Numerical Recipes,
Vol. 3 (Cambridge University Press, Cambridge, 1989).

[19] M. Holland, S. J. J. M. F. Kokkelmans, M. L. Chiofalo, and R. Walser, Phys. Rev. Lett. 87,
120406 (2001).

[20] S. J. J. M. F. Kokkelmans, J. N. Milstein, M. L. Chiofalo, R. Walser, and M. J. Holland,
Phys. Rev. A 65, 053617 (2002).

[21] R. A. Barankov, L. S. Levitov, and B. Z. Spivak, Phys. Rev. Lett. 93, 160401 (2004).

[22] R. G. Scott, F. Dalfovo, L. P. Pitaevskii, and S. Stringari, Phys. Rev. A 86, 053604 (2012).

[23] L. Pitaevskii and S. Stringari, Bose-Einstein Condensation and Superfluidity, Vol. 164 (Oxford
University Press, 2016).

[24] M. Marini, F. Pistolesi, and G. Strinati, The European Physical Journal B 1, 151–159 (1998).

[25] A. Perali, P. Pieri, and G. C. Strinati, Phys. Rev. A 68, 031601 (2003).

[26] L. Salasnich, N. Manini, and A. Parola, Phys. Rev. A 72, 023621 (2005).

[27] M. L. Chiofalo, S. J. J. M. F. Kokkelmans, J. N. Milstein, and M. J. Holland, Phys. Rev.
Lett. 88, 090402 (2002).

[28] R. Haussmann and W. Zwerger, Phys. Rev. A 78, 063602 (2008).

[29] T.-L. Ho, Phys. Rev. Lett. 92, 090402 (2004).

[30] A. Perali, P. Pieri, and G. C. Strinati, Phys. Rev. Lett. 93, 100404 (2004).

[31] W. Krauth, Statistical Mechanics Algorithms and Computations (Oxford University Press,
Oxford, 2006).

[32] G. M. Bruun and B. R. Mottelson, Phys. Rev. Lett. 87, 270403 (2001).

[33] A. Minguzzi, G. Ferrari, and Y. Castin, The European Physical Journal D 17, 49–55 (2001).

[34] H. Kurkjian, J. Tempere, and S. N. Klimin, Scientific Reports 10(1), 11591 (2020).

[35] S. Hoinka, P. Dyke, M. G. Lingham, J. J. Kinnunen, G. M. Bruun, and C. J. Vale, Nature
Physics 13, 943 (2017).

17

http://dx.doi.org/ 10.1103/PhysRevLett.112.100404
http://dx.doi.org/ 10.1103/PhysRevLett.101.250403
http://dx.doi.org/10.1103/PhysRevLett.92.040403
http://dx.doi.org/10.1103/RevModPhys.82.1225
http://dx.doi.org/ https://doi.org/10.1016/j.physrep.2018.02.004
http://dx.doi.org/10.1103/PhysRevLett.103.075301
http://dx.doi.org/10.1103/PhysRevA.91.033628
http://dx.doi.org/10.1103/PhysRevLett.122.093403
http://dx.doi.org/10.1103/PhysRevLett.87.120406
http://dx.doi.org/10.1103/PhysRevLett.87.120406
http://dx.doi.org/10.1103/PhysRevA.65.053617
http://dx.doi.org/10.1103/PhysRevLett.93.160401
http://dx.doi.org/10.1103/PhysRevA.86.053604
http://dx.doi.org/10.1007/s100510050165
http://dx.doi.org/10.1103/PhysRevA.68.031601
http://dx.doi.org/10.1103/PhysRevA.72.023621
http://dx.doi.org/10.1103/PhysRevLett.88.090402
http://dx.doi.org/10.1103/PhysRevLett.88.090402
http://dx.doi.org/10.1103/PhysRevA.78.063602
http://dx.doi.org/10.1103/PhysRevLett.92.090402
http://dx.doi.org/10.1103/PhysRevLett.93.100404
http://dx.doi.org/10.1103/PhysRevLett.87.270403
http://dx.doi.org/10.1007/s100530170036
http://dx.doi.org/10.1038/nphys4187
http://dx.doi.org/10.1038/nphys4187

	Experimental protocol
	Sample Preparation
	Bragg Spectroscopy Calibration
	Determination of Density

	Order parameter dynamics within time-dependent BCS theory
	Analytical solution in the small-amplitude regime
	Numerical simulations

	Application of time-dependent BCS theory to the experimental setup
	Ramp-rate dependence
	Inhomogeneous broadening of the signal
	Qualitative discussion in the limit of a tightly focused beam
	Numerical solutions in the general case

	Averaging over the Bragg time

	Comparing theoretical predictions and experimental measurements
	Magnitude averaged over different time windows
	Comparisons including the sensitivity of the Bragg pulse


