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Symmetry-breaking phase transitions are central to our understanding of states of matter. When a
continuous symmetry is spontaneously broken, new excitations appear that are tied to fluctuations
of the order parameter. In superconductors and fermionic superfluids, the phase and amplitude
can fluctuate independently, giving rise to two distinct collective branches. However amplitude
fluctuations are difficult to both generate and measure, as they do not couple to directly the density of
fermions and have only been observed indirectly to date. Here, we excite amplitude oscillations in an
atomic Fermi gas with resonant interactions by an interaction quench. Exploiting the sensitivity of
Bragg spectroscopy to the amplitude of the order parameter, we measure the time-resolved response
of the atom cloud, directly revealing amplitude oscillations at twice the frequency of the gap. The
magnitude of the oscillatory response shows a strong temperature dependence, and the oscillations
appear to decay faster than predicted by time-dependent BCS theory applied to our experimental
setup.

The ability of interacting particles to act collectively
underpins many of the remarkable properties of quan-
tum matter. From superfluidity and superconductivity
to magnetism and elementary particles, order parameters
and their fluctuations govern a wide variety of collective
quantum phenomena [1]. Phase transitions characterized
by a complex bosonic order parameter are generally ac-
companied by the emergence of two distinct collective ex-
citations, one corresponding to a (gapless) fluctuation of
the phase and the other to a (gapped) fluctuation of the
amplitude. The phase or Goldstone mode manifests as a
sound wave in neutral systems [2], but is pushed up to
the plasma frequency in charged systems [3, 4]. The am-
plitude mode has featured prominently in particle [5] and
condensed matter physics [6], and is commonly known as
the Higgs mode. Higgs excitations have been studied in a
variety of materials including charge density wave [7–9],
BCS [10] and cuprate [11, 12] superconductors as well as
superfluid 3He [13] and antiferromagnetic materials [14].
Ultracold atomic gases may also support stable Higgs
modes in certain situations including Bose gases near the
superfluid-Mott insulator transition [15, 16], spinor Bose-
Einstein condensates (BECs) [17], atoms in optical cav-
ities [18–20], Fermi gases [21], and supersolid phases in
dipolar gases [22].

In fermionic condensates, amplitude oscillations arise
through excitation of the pairing field – an intrinsically
many-body property, giving rise to rich phenomenol-
ogy [21, 23–25]. BCS superfluids can support a sta-
ble collective excitation branch within the pair-breaking
continuum, which persists even at strong coupling [26].
In the zero-momentum limit, the spectral weight of this
branch vanishes, yet amplitude oscillations still occur due

to the presence of a singularity in the amplitude response
function at the threshold energy for pair-breaking exci-
tations [25]. Within a mean-field approximation, the fre-
quency of these “Higgs” oscillations is set at twice the
gap in the fermionic excitation spectrum, and the oscil-
lations decay according to a power-law with an expo-
nent that varies with the interactions [23, 24, 27–29].
In the non linear excitation regime, other asymptotic
behaviours become possible, including persistent oscil-
lations [30]. In neutral Fermi gases, radio frequency (rf)
studies have identified a spectroscopic peak at the pair-
breaking continuum [21, 31], and both modulated [32]
and quenched [33, 34] interactions have been used to
study pair condensation dynamics, but no observation
of the characteristic oscillations have been reported.

Here, we directly observe amplitude oscillations in an
ultracold atomic Fermi condensate with resonant inter-
actions. We excite the oscillations by a uniform (zero-
momentum) quench of the interactions using a mag-
netic Feshbach resonance. We probe the ensuing out-
of-equilibrium dynamics using a high-momentum Bragg
pulse, tuned to the recoil energy of superfluid pairs, and
hence very sensitive to variations of the order parame-
ter. Our real-time experiment allows us to characterize
the frequency, magnitude and decay of the oscillations.
Comparing to predictions from time-dependent BCS the-
ory, our experiment confirms the oscillation frequency at
twice the value of the gap (2∆) and shows qualitative
agreement on the temperature dependence of the oscilla-
tion magnitude, with a reduction as the number of con-
densed pairs decreases near the critical temperature Tc.
The observed oscillations decay faster than predicted by
BCS theory, even when experimental effects such as in-
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FIG. 1. (Color online) Excitation and detection of amplitude
oscillations in a paired Fermi superfluid. Pairs of fermions
initially at equilibrium (dashed ellipses, top left) are excited
by a sudden a variation of the interatomic interactions. This
projects the pairs into a superposition of the more tightly
bound ground state and the continuum of excited states,
beginning at energy ϵk. The pairing field thus begins os-
cillating, triggering Higgs oscillations of the order parame-
ter (purple curve). The continuum edge at 2∆ ≡ 2min(ϵk)
sets the frequency of the oscillations, which attenuate over
time due to the spreading of the excited state wave func-
tions and k-dependent frequencies, eventually stabilizing at
∆∞. At nonzero temperatures, the superfluid pairs are sur-
rounded by a thermal cloud of unpaired atoms (isolated blue
and red dots), reducing the spectral weight of the Higgs mode.
To measure the oscillations, we quench the interactions from
slightly on the BCS side of a broad Feshbach resonance, to
unitarity in a time tq = 50µs and hold the cloud for a time
th before probing the Bragg response from the central region.
The optical confinement is then switched off and the atoms
allowed to expand for a time ttof before being imaged to de-
termine the momentum imparted by the Bragg pulse [35].

homogeneous broadening are taken into account.

Our experimental protocol is depicted in Fig. 1 [25].
An ultracold gas of fermionic 6Li atoms is prepared in a
balanced mixture of two spin states, initially at thermal
equilibrium. Elastic collisions between atoms in these
states can be tuned by an external magnetic field through
a broad Feshbach resonance [35]. Interactions are char-
acterised by the dimensionless parameter 1/(kFa) where
kF = (3π2n)1/3 is the Fermi wave vector, n is the atomic
density and a is the s-wave scattering length. The cloud
is initially prepared below Tc, slightly to the BCS side
of the Feshbach resonance (1/(kFai) ≈ −0.18 ± 0.02).
The magnetic field is then ramped to unitarity (where
a → ∞) in a time tq = 50µs, too fast for the system to
follow adiabatically, creating a superposition of the more
strongly paired ground state and the continuum of ex-
cited states. As this superposition evolves, the pairing

field oscillates at a frequency set by the energy difference
between the ground and excited states, leading to Higgs
oscillations of the order parameter.
According to Refs.[23, 24, 30] a power-law damping of

the oscillations occurs, due to the spread in energy of the
lowest lying excited states. In the BCS (weak-coupling)
limit, the lowest energy excitations occur at the Fermi
surface, p ≈ ℏkF, where the 3D density of excited states is
large, and this small spread in energy leads to oscillations
decaying slowly, as t−1/2 [23]. In the opposite limit of
tightly bound molecules, the dispersion minimum occurs
at p = 0, where the density-of-state vanishes, as for free
particles. The evolution of the excited wave function is
thus similar to a 3D ballistic expansion and the overlap
with the molecular ground state decays as t−3/2 [24].
We model this dynamics using time-dependent BCS

theory [36]. The initial state of the gas is treated
in first approximation as a homogeneous BCS state at
nonzero temperature, containing both superfluid pairs
and unpaired thermal atoms with a Fermi-Dirac distri-
bution nF(ϵk,i) = 1/(1 + exp(ϵk,i/kBT )), where ϵk,i =√
(ℏ2k2/2m− µi)2 +∆2

i is the initial spectrum, ∆i and
µi the initial gap and chemical potential, respectively.
Following the quench, the initial momentum distribution
of the atoms nk(t = 0) = nk,i and pair correlation func-
tion ck(t = 0) = ck,i are out-of-equilibrium and evolve
according to the time-dependent BCS equations:

iℏ∂tnk = ∆c∗k − ck∆
∗, (1)

iℏ∂tck = (ℏ2k2/m)ck + (1− 2nk)∆ (2)

where a non-linearity is caused by the gap equation
∆(t) = g0

∫
d3kck/(2π)

3 with g0 the coupling constant
of the short-range interactions.

For temperatures well below Tc, our quench is shallow
(|∆i −∆(t)| ≪ ∆i), and the cloud remains close to equi-
librium. In this limit, the dynamical system (1)–(2) can
be treated within linear response and the time-evolution
of ∆ expressed as a Fourier transform of the amplitude-
amplitude response function χ|∆||∆| [35]:

∆(t)−∆∞ ∝
∫ +∞

2∆/ℏ

cosωt

ω
χ′′
|∆||∆|(ω)dω, (3)

where the asymptotic value ∆∞ = ∆(t → +∞) is not
necessarily the equilibrium state in this integrable the-
ory. This frequency integral covers the superposition
of all excited states with energy 2ϵk, giving rise to the
collective response of ∆(t). The gapped BCS spectrum
sets the lower bound 2∆/ℏ, and the behavior near this
pair-breaking threshold governs the long-time behavior of
∆(t). In the BCS regime (µi > 0, which includes unitar-
ity), the amplitude response has a square-root singular-

ity at the continuum edge, χ′′
|∆||∆| ∝

ω→2∆/ℏ
1/
√

ω − 2∆/ℏ

leading to power-law damped oscillations of the form

∆(t)−∆∞

∆i −∆∞
=

t≫τF
Ath

cos (2∆t/ℏ+ π/4)

(2∆t/ℏ)γth
. (4)
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We find that the amplitude Ath decreases with temper-
ature, whereas the damping exponent γth = 1/2 stays
constant. For larger quenches triggering nonlinear dy-
namics, the oscillatory form (4) can remain valid but the
oscillation frequency ωH deviates from 2∆/ℏ [30, 35].
We probe these dynamics using Bragg spectroscopy.

Our experiments use atom clouds confined in an oblate
harmonic potential, formed by a combination of optical
and magnetic fields [35], leading to a non-uniform density
distribution. As a consequence the pairing gap ∆(r), set
by the local Fermi energy, EF(r) = ℏ2(3π2n(r)2/3)/(2m),
varies with position r across the cloud. To overcome
this, we probe only a small, near-homogeneous volume
of the cloud using two-photon Bragg scattering. At
the end of the hold time th, we send in two tightly-
focused Bragg lasers (Fig. 1), that intersect in the centre
of the trapped cloud, where the density distribution is
most uniform [37, 38]. We define the average density
in the Bragg volume n̄ =

∫
ΩBr(r)n(r)d

3r/
∫
ΩBr(r)d

3r,
where ΩBr(r) is the spatially dependent two-photon Rabi
frequency. In the experiments presented here, we find
n̄ = (0.955 ± 0.018)n0, where n0 is the peak density in
the trap centre, to be independent of temperature within
our experimental resolution [35]. The remaining small
inhomogeneities can be accounted for in our theoretical
description within the local density approximation [35].
They cause an additional damping of the oscillations, as
regions oscillating at different frequencies gradually de-
phase.

To resonantly excite pairs with zero center-of-mass
momentum, we set the frequency difference between
the two lasers to half of the atomic recoil (ℏωr/2 =
ℏ2k2/(4m)) [38, 39]. Bragg scattered pairs begin mov-
ing with a velocity ℏk/(2m) where k = ka − kb is the
difference of the wave-vectors of the two Bragg lasers.
We use k ≃ 4kF to ensure that ℏω is large compared to
EF, and the Bragg pulse duration (tB = 50µs) provides
good spectral resolution, while remaining 3 to 4 times
shorter than the typical oscillation period (τH = 2π/ωH)
so the oscillations remain visible. We estimate that the
observed oscillation magnitude is reduced by less than
15% due to this time-averaging [35].

The resulting center of mass displacement S =∆XCoM

following time-of-flight expansion, is proportional to
the momentum transferred to the atoms by the Bragg
lasers [35], hence to the imaginary part of density-density
response function χ′′

nn(ωr/2, k = 4kF) [37]. At large
k, χ′′

nn has a sharp peak at the continuum threshold
which coincides approximately with the pair recoil fre-
quency [40, 41]. Both the height and energy of this peak
are sensitive to variations in ∆. When tB ≪ τH, the
Higgs oscillations are approximately stationary during
the Bragg pulse and the time-dependent Bragg response
can be written as

χ′′
nn(ω, k, t) ≈ χ′′

nn(ω, k; ∆i) +
dχ′′

nn

d∆
(∆(t)−∆i), (5)

Our Bragg frequency ω = ωr/2 sits just on the high en-
ergy slope of the threshold peak [35], where χ′′

nn is very

sensitive to variations of ∆. Experimentally, we observe
that the Bragg response at ω = ωr/2 shows a strong de-
pendence on the condensate fraction, reflecting the tem-
perature dependence of the spectral weight of this thresh-
old peak [35].
Armed with this capability, we use local Bragg scat-

tering as a sensitive, temporally resolved probe for oscil-
lations of the order parameter. Fig. 2 shows examples
of the measured Bragg response, as a function of hold
time th, in units of the local Fermi time τF = ℏ/EF, for
a range of temperatures1 [35]. A damped oscillation is
clear in the Bragg response of the colder clouds, giving
a direct signature of the Higgs oscillations. The magni-
tude of the oscillations decreases for warmer clouds, un-
til non-oscillatory behavior is observed for T ≳ 0.15TF.
Also shown are fits of the data to a function of the form
S(t) = Aex cos (ωHt+ ϕ)/tγ + S∞ where Aex, ωH, ϕ, γ
and S∞ are fit parameters that characterize the oscilla-
tions.

To compare our experimental measurements to the-
ory, we obtain the asymptotic Bragg response S∞ (t →
∞), and the separately measure the responses Si and
Sf at thermal equilibrium with the initial and final
scattering lengths. From these we construct the ratio
(S(t)−S∞)/(Sf −Si), which we directly compare to the
theoretical equivalent (∆(t)−∆∞)/(∆f −∆i). The ad-
vantage of comparing these quantities is that they do not
depend on the experimental sensitivity dχ′′

nn/d∆ or the
offset in the experimental data due to the normal phase
response χnn(T > Tc), which is not captured in BCS
theory. Note the experimental and theoretical tempera-
tures are scaled by the respective critical temperatures
of the initial clouds Tc,i. In Fig. 2(b) we see good agree-
ment in the dynamics at short times and lower tempera-
tures, however at later times, the experimental signal de-
cays faster than theoretically predicted. This is empha-
sized in Fig. 3(b) which shows the root-mean-square of
(S(t)−S∞)/(Si−Sf ) in the time interval 3 ≤ t/τH ≤ 20
where experiment and theory differ by roughly a factor
of two.

From the fits to the experimental data we extract
the oscillation frequency ωH and damping exponent γ.
Fig. 3(a) shows ℏωH/2EF versus temperature, along with
a selection of previous measurements and calculations of
the pairing gap ∆. Theoretically, we expect ℏωH to pro-
vide a lower bound on 2∆, and to approach this value
at low temperatures when our quench is in the shal-
low regime. Our measurements lie mostly in the range
0.4 ≲ ℏωH/2EF ≲ 0.5, in good agreement with previous
studies [31, 37, 43], as well as advanced calculations based
on many-body T-matrix methods [44, 45] and quantum
Monte-Carlo techniques [46, 47]. Although ∆ is expected

1 Note that the temperature of the cloud was measured after the
quench at unitarity. This will therefore include some heating that
occurs due to the non-adiabatic experimental quench, which is
not accounted for by BCS theory.
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FIG. 2. (Color online) (a) Bragg response (centre of mass displacement S), relative to the asymptotic response S∞ (t → ∞),
as function of hold time after the quench for a selection of (final) equilibrium cloud temperatures. Points are the experimental
measurements and solid lines are fits to the data of a power-law damped sinusoidal function (see text). (b) Comparison with
time-dependent BCS theory including experimental effects [35]. The experimental points are shown as a function of ωHth
and T/Tc using the fitted value of ℏωH/ϵF and the estimated value Tc,i/TF ≃ 0.15 [42] at 1/kFa = −0.18. The Bragg signal
S(t)−S∞ is scaled to its variation Sf −Si under an adiabatic sweep of the scattering length, which we measured independently,
and the theoretical curves are offset by the delay acquired during the ramp time [35]

to vanish with a critical exponent of ν ≃ 0.62 at Tc [48],
we do not observe a noticeable reduction of ωH in the
temperature range we probe.

Fig. 3(c) shows the fitted damping exponents γ which
all lie close to unity. While the uncertainties in γ
are relatively large, our measurements are not consis-
tent with either the BEC or BCS exponents and dis-
play no obvious temperature dependence. The average
of our measured damping coefficients is γ̄ = 0.98± 0.15.
This is significantly above the theoretical prediction of
γth = 0.50 ± 0.02 [35] where we take into account the
inhomogeneous density and the finite experimental time
window. These effects lead to compensating shifts on
the BCS prediction γth = 1/2, resulting in a correction
that is small compared to the difference between BCS
and BEC limits. We note that the prediction of power-
law damping is based on integrable theories [30] and may
be violated at long times in the (ergodic) experimental
system. Indeed, fitting an exponentially decaying cosine
function to the experimental data gives a statistically in-
distinguishable quality of fit such that we cannot rule
out exponential decay or that γ is affected by other er-
godic processes. In the vicinity of Tc, the local density
approximation may also break down for describing delo-
calised pairs. Effects of the inhomogeneity of the cloud
may thus become enhanced even in the nearly-uniform

region probed by our Bragg beams.

Fifty years after their prediction [23], we present the
direct observation of amplitude oscillations in a weakly-
excited Fermi superfluid. Using Bragg spectroscopy we
probe the real-time dynamics in a unitary Fermi gas, in
qualitative agreement with time-dependent BCS theory,
both at low temperatures and near the phase transition.
Our work opens a wide avenue of research, with possible
direct extensions to the BCS and BEC regimes, different
quench regimes [30] or dynamical crossings of the phase
transition [34]. Our work also opens pathways to inves-
tigate ergodic evolution and the possibility of achieving
pre-equilibrated states in strongly interacting quantum
matter.
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FIG. 3. (Color online) (a) Frequency of the Higgs oscillation
versus the normalised temperature T/TF along with previous
measurements and a theoretical calculation (dashed line) of
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the same interaction quench) [35]. (b) Comparison of the
experimental and theoretical averaged magnitudes of the os-

cillations Arms =
√

1
t2−t1

∫ t2
t1

dt(S(t)− S∞)2/(Sf − Si)2 with

t1 = 3τH and t2 = 20τH. The influence of the choice of t1 and
t2 is discussed in the Supplementary Material [35]. (c) The
fitted damping exponents of the Higgs oscillation lie approx-
imately midway between the BCS and BEC values.
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